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QUANTIZATION OF THE ENERGY FOR THE INHOMOGENEOUS
ALLEN-CAHN MEAN CURVATURE

HUY THE NGUYEN AND SHENGWEN WANG

ABSTRACT. We consider the varifold associated to the Allen—Cahn phase transition prob-
lem in R"™!(or n + 1-dimensional Riemannian manifolds with bounded curvature) with
integral L% bounds on the Allen-Cahn mean curvature (first variation of the Allen—Cahn
energy) in this paper. It is shown here that there is an equidistribution of energy between
the Dirichlet and Potential energy in the phase field limit and that the associated varifold
to the total energy converges to an integer rectifiable varifold with mean curvature in
L9 gy > n. The latter is a diffused version of Allard’s convergence theorem for integer
rectifiable varifolds.

1. INTRODUCTION

Let  C (M™!, g) be an open subset in a Riemannian manifold with bounded curvature.
Consider u € W?P(Q) satisfying the following equation

W (ue)

(1.1) eAu, — = [e

where W(t) = (1_52)2 is a double-well potential. The equation ([LI]) can be viewed as a

prescribed first variation problem to the Allen—Cahn energy

E.(u) = /Q (5|V2“5|2 + Wi“‘f)) dz.

For any compactly supported test vector field n € C>®(2,R"™!), we have a variation
us(x) = u(x + sn(x)) and the first variation formula at ug = u. is given by

d W' (u.
—|  E.(uy) = / (—EAUE + (u )) (Vue,n)dz
ds s=0 Q g
(1.2) 1
S < |12d
| () wmevuras
where v = @Zi | is a unit normal to the level sets at non-critical points of u.

By [MMT77], [Mod87], [Ste88] using the framework of [DGTI], the sequence of functionals
E. T'-converges to the n-dimensional area functional as ¢ — 0. This shows that minimizing
solutions to (ILIl) with f. = 0 converge as ¢ — 0 to area minimizing hypersurfaces. For
general critical points (f. = 0) a deep theorem of Hutchinson—Tonegawa [HT00, Theorem
1] shows the diffuse varifold obtained by smearing out the level sets of u converges to limit

which is a stationary varifold with a.e. integer density. The main result of this paper is
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to prove Hutchinson-Tonegawa’s Theorem [HT00, Theorem 1] in the context of natural
integrability conditions on the first variation of E.. Under suitable controls on the first
variation of the energy functional E. (the diffuse mean curvature) we can show comparable
behaviour for the limit. In the case where n = 2, 3 Roger—Schétzle [RS06] have shown under
the assumption

o 1
lim inf (Ea(ua) + g||f5||i2(m) <00
that the limit is an integer rectifiable varifold with L? generalised mean curvature.

The main focus of this paper is to generalise this result to higher dimensions. Before
we state our main theorem, we give a choice of the diffused analogue of “mean curvature”
in the Allen—Cahn setting, which will be used to state our bounded L% Allen—Cahn mean
curvature condition in the theorem.

Recall that for an embedded hypersurface ¥ C Q C R""! restricted to a bounded
domain €2 and a compactly supported variation ¥, with g = X, we have the first variation
area at s = 0 given by

d
(13) 5 w0 = [ Hodus = [ s
dS s=0 RnJrl RnJrl
where H is the mean curvature scalar, H = — Hv is the mean curvature vector, v is a unit

normal vector field, 7 is the variation vector field, and dusy is the hypersurface measure. By
comparing the first variation formula ([2]) for Allen-Cahn energy and the first variation

formula (L3) for area , we can see that (€|§u|) roughly plays the role of the mean curvature

scalar in the Allen—Cahn setting. In [AllI72], a result of Allard implies that if a sequence of
integral varifolds has L% integrable mean curvature scalar with gy > n, then after passing
to a subsequence, there is a limit varifold which is also integer rectifiable.

Under similar conditions on L% integrability of the term (e‘fvfu‘) with gy > n, we prove

the integer rectifiability of the limit of sequences of Allen—Cahn varifolds :
Theorem 1.1. Let u. € W2(Q),Q C R*"™ satisfy equation (LI) with e — 0 and f. €
LY(Q). If any one of the following holds:

(1) Bounds on the total energy

(1.4) /Q (€W2U€|2 + Wi%)) dr < Ep;

(2) Uniform L* bounds
(1.5) ||| o) < co;

(8) L% bounds on the diffuse mean curvature

el ™ 2
1. 2dx < A
(1.6) A(gwue‘ e|Vu|2dz < Ag

for some qo > n;
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then after passing to a subsequence, we have for the associated varifolds (see [Ilm93| for
the definition) V,. — Vi weakly and

(1) Vi is an integral n-rectifiable varifold;

(2) For any B.(xy) CC ), the LT norm of the generalized mean curvature of V. is
bounded by Ag;

(8) The discrepancy measure (% — @) dx — 0 weakly, i.e. there is an equidis-

tribution of energy as € — 0 (c.f. Proposition [{.]]).

This theorem shows we can prove a result analagous to Hutchinson-Tonegawa [HT00],
Tonegawa [Ton03] and show as ¢ — 0, the diffuse varifold associated to the Allen-Cahn
functional converges to an integer rectifiable varifold. This has some similarities with
Allard’s compactness theorem for rectifiable varifolds and for integral varifolds but here
the sequence consists of diffuse varifolds and hence we require stronger conditions on the
proposed mean curvature. As we shall see in a later paper, these conditions are exactly
what is required to prove a version of Allard’s regularity theorem for Allen—Cahn varifolds.
As an application, we have the following Corollary

Corollary 1.2. If u. satisfies (ILT)) and of one of the following conditions holds:

(1)

I fll o) < Claé, for some2 <s<n
n—2
Je < Cs,  for somet > s > max{s,n — 2};
e|Vue| LHQ) s—2

(2)

fe n+1
<C > — L1201 );
TV o ,  for somep 5 (c.f | 1);

(3)
I fell 2@ < Ciez, if the ambient dimension n+1 =2, (c.f. |IRS06])

e
e|Vu,|

< Cy, if the ambient dimension n+ 1 > 3;
L= (%)

then after passing to a subsequence as € — 0, the associated varifolds V. converge to an
integral n-rectifiable varifold with generalized mean curvature in L% for some gy > n.

Proof. (1) To see the first condition implies the conditions in Theorem [[T], we choose
q = @ + 2 (go > n is satisfied due to the choice of ¢t and s above). Then we
have

9 q0—2 2
/ - 5|Vu€|2dx:/ e £ dx
o lelVue| o |elVu.| £
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1 (‘10*3)5 %2 2
<! / fe </ fag)
£ Q €‘VU5| Q
Y I P

< C2007% < A

where we used Holder’s inequality in the second line with exponent

(2) In the paper [TT20], assuming condition (2) above, the authors proved the same
integer rectifiability and L% mean curvature bound for the limit varifold. We show
this conditions implies the integral bounds in the hypothesis of Theorem [L1] for
some ¢y > n. To see this, we compute

np ’n,p (n+1)(p—1)
V( n+17p) = nti-p V.
¢ n+1-— pgZS ¢
and applying [Zie89, 5.12.4](c.f. [TTQO Theorem 3.7]) and [ITT20, Theorem 3.8],
and Holder’s inequality, with ¢ = ¢"+1 » and dp = | Vu|?dL .

[ ] < ctm) [ velact v e cr ey
n Rn

which implies

/ || 15| Ve PdL | < / god,u’
n+1 Rn+1

< C(n)K(p)

(n+1)(p—1)
/R+1 —l—l |V¢||¢| iy d LM

<C(n,p)K(n)

(+)(P 1)
/ IV oljg) SHE g om
RnJr

1/p p(n+1) pT
< C(n.p) ( / \W’) ( [ )
Rn+1 Rn-+1

(p—1)(n+1)

Cn, PIVO o@nin ] ;EIL)”

Ln n+l—p (Rn+ )

where C'(n,p) — 0o as p — n + 1. We apply the above inequality with ¢ = 1)—Z
and du = |Vu.|? together the Sobolev inequality to get for ¢ € CJ(£2)

E\Vus\

£ | f f R
n+l—p n+l—p
/ Y—Ie e|Vu. 2! gCHV (¢ . ) p—de
Q 5|VUE| €|VU€| LP(Q) €|VU€| Ln¥1=5 (Q)
(p—1)(n+1)
n+l—p

Je
= CHV (¢5|VU6|) LP(Q

Je
v <w5|vua|)

Lr(Q)
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Je
e|Vug|

< Cy

wir(Q
n+1

where we have ¢y = = > n since p >

(3) If n+ 1 = 2 then this is proven in [RS06]. For n+ 1> 3 it can be directly verified
that the condition (3) implies the the conditions in Theorem [.1]

O

Here we give an overview of our proof. In Section 2], we gather together some standard
notation on varifolds and the first variation. In section [3, we prove the main estimates
required for the proof of the integrality and rectifiability. Specifically we will need a mono-
tonicity formula. For the homogeneous Allen—Cahn equation and Allen—Cahn flow, a strict
monotonicity formula can be proven due to Modica’s estimate showing the discrepancy is
negative. This estimate is not true without a homogeneous left hand side to equation (I1]).
Instead we will use the integral bound (L) to derive a decay bound for L' norm of the
discrepancy which we eventually show vanishes in the limit ¢ — 0. This estimate consti-
tutes one of the main advances of this paper. In section [ we show the limiting varifold
we obtain as € — 0 is a rectifiable set and in section [5] we show the limiting varifold is in
addition integral.

Acknowledgements. The first author was supported by EPSRC grant EP/S012907/1.
The second author was supported by EPSRC grants EP/S012907/1 and EP/T019824/1.

2. PRELIMINARIES AND NOTATIONS

Throughout the paper, we will denote a constant by C'if it only depend on the constants
n, Fy, co, Ag which appear in the conditions of Theorem [[LII A certain points we may
increase this constant in some steps of the argument, but we will not relabel the constant
unless there is a risk of confusion from the context. We associate to each solution of
(L) a varifold in the following way : let G(n + 1,n) denote the Grassmannian (the
space of unoriented n-dimensional subspaces in R"™!). We regard S € G(n + 1,n) as the
(n+ 1) x (n + 1) matrix representing orthogonal projection of R"! onto S, that is

S?=8 STS=1

and write Sy - Sy = tr(ST - S5). We say V is an n-varifold in Q Cc R™* if V is a Radon
measure on G,(2) = Q x G(n + 1,n). Varifold convergence means convergence of Radon
measures or weak-* convergence. We let V' € V,,(2) and let ||V|| denote the weight measure
of V and we define the first variation of V' by

V(n) = / ( )Vn(:)s) -SdV(x) Vi€ CHQR™.

We let ||§V]| be the total variation of §V. If ||5VH is absolutely continuous with respect to
|0V then the Radon-Nikodym derivative 2 exists as vector valued measure. We denote

by HV

||V||

”V”, the generalised mean curvature.
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Let u be a function, we define the associated energy measure as a Radon measure given

by
2
i = <5|Vu| N W(ua)) g

2 €

where £ is the (n + 1) dimensional Lebesgue measure. We also denote the the energy
of the 1 dimensional solution by

1 V2W (s)ds.

There is an associated varifold V' € V,,(Q) to the functions u given by

)
v = | WO}¢< (eh) )du(x)

)
)
_/{Vu¢0}¢( L W) © \Vu( )\) du(z), ¢ € Ce(Gn(9))-

u(x
where I is the (n 4+ 1) x (n 4+ 1) identity matrix and

Vu(z) @ Vu(z)
[Vu(z)] — [Vu(z)]

is orthogonal projection onto the space orthogonal to Vu(z), that is {a € R"™ | (a, Vu(z)) =
0}. By definition ||V|| = pLqjvy£01 and the first variation may be computed as

B (i Vu(x) Vu(zx) . v e
(2.1)  oV(n) = /{|Vu|;£0} Vn (I V()] ® \Vu(x)\) du(z), Vne C,(Q;R"™).

3. DISCREPANCY BOUNDS AND MONOTONICITY FORMULA

I —

In this section, we deduce integral bounds on the discrepancy. There exists an almost
monotonicity formula for the Allen-Cahn energy functional, we will give estimates on the
terms appearing in the almost monotonicity formulas under the assumptions in Theorem
[L.T] and obtain a monotonicity formula for the n-dimensional volume ratio. It will be used
in the next section to deduce rectifiability and integrality of the limit varifold as ¢ — 0.
Conditions (1)-(3) in Theorem [[.1] are assumed to hold throughout this section.

The n-dimensional volume ratio of the energy measure satisfies the following almost
monotonicity formula.

Proposition 3.1 (Almost Monotonicity Formula). If u. satisfies (L)) in B; C R™*1, then
forr <1, we have

d (1.(B, 1 |
ey (u in )) —eB) rniz/ V) - W/B@; Vi) ..

Here ji.(B,) = [ dp- = [, (dV;s‘Q Wi) is the total energy and (B,) = [ (€|V“5|2 M)

2 €
1s the dzscrepcmcy measure (difference between the Dirichlet and potentml energy) in B,.
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Proof. Multiplying equation (LI by (z, Vu.) and integrating by parts on B,, we get

| @
/BT eAu.(z, Vu.) — /T. <w,x>

OBy c

L ( - TWSL&)> - [ (evup (VI ) - ()
-, (5

2 _ 2
W) |Vu ) . / <€<n DIVucl? | (n+ 1>W<ue>)
€ 2 . 2 €
2 Wue el? | Wiue
S [ (AT Wy [ (TR W) e g
- 2 g OB, 2 g T OB,
The conclusion then follows by dividing both sides by r"*! and noticing

(B [ (AT W) LA W)

Integrating the almost monotonicity formula ([B.1]) from € to rg for 0 < e < 1y < 1, we
have

(n+ 1)W(ua))

€

aua

O

(3.2)
1(Br)  pe(B.)

70 1 1

Vue|>  W(ue V e
> —7( SUP Wn+1 <E| vl Wi )) —i—/ £, ni / n+1/ x, Vu) fodr,
B 2 € . Jegse 2l r

70

where w,,,; denotes the volume of unit ball in R**!.

We need to estimate the first and third term on the right hand side to obtain a mono-
tonicity formula. In order to estimate the third term, we derive an a priori gradient bound
for u. Condition (3) of Theorem [[.T] states a combined integrability for the inhomogeneity
fe and |Vul|. The following theorem allows us to obtain separate integrability and regularity
for each quantity.
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Theorem 3.2. There exists C ey > 0 depending on Ey, co, Ao as defined in Theorem [ 1]
such that if u. satisfies (L)) in By C R"™ with e < e and if go > n+ 1, then

(3.3) sup €|Vu.| < C,
Blfs
and
(3.4) 2 [|u| s SC

0 (Bi-¢)
Ifn<qo<n+1, then

(3.5) e%|u || o 4 <C.

7(Blfs) -
Furthermore, there exists a 6o > 0 so that f has the following improved integrability

(3.6) (WA < Ce w.

L7 +%0(B1_(x0))
Proof. We first consider the case gy > n + 1: Define the rescaled solution u(z) := u(ex)
and f(x) = ef.(ex) which satisfies the equation

(3.7) Al —W'(@) = f, in Bi C R™.
By condition (3) in Theorem [[LT], we have by rescaling
(3.8)
fq‘)é"_qo\Vﬂ|2_q° :/ 8_2q°fq°€|Vﬂ\2_q°6q°_2€"+l — / 5_q°fq°6\Vu|2_q° < A,.
B B B

Claim. For any B (zy) C B1_,, we have
Hva||L2(B1(wo)) S C(C()v A07 qo, n)

Proof of Claim. By the hypothesis By(z) C Bi_; we have By(zg) C Bi. We choose a
smooth cutoff function ¢ € C° (Ba(x0)), [0,1]) with ¢ = 1 in By(x) and |V¢| < 4. By
integration by parts and Young’s inequality, we obtain

(3.9)
/ Vis? < / 2¢0|Vil]| 61| V6| + / cod?| A
Ba(zo) Ba(zo0) Ba(zo)

2c0|Viil|o||V w’ 2 f
S/Bmo) ol V|9l ¢\+/B2(xo)co¢| <>\+/ cod?|f

Ba(z0)

1 5 ~
<o [ wapes [ adiweps [ adCo+ [ adlfl
Ba(zo) Ba(zo) Ba(zo) Bs(zo)

~ ~ n 2
We write cod?|f| = col flew ' |Va|w " x ¢! 7w |Vl % and use Young’s inequality with

exponent gy to get
1q0+5(%—1)/
4o BQ(ZB())

Co¢2|f| > /
/Bz(mo) 5qo Ba(x0)

_4d0
qo—1

~ 2
col flen ™ |Vifw

q0|Vu|
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q0 5 _ 1 2q —2
CLAO‘I‘ (qO )/ ¢ﬁ|va|%ﬁ
4o o B (o)

g’

0(go — 1 4q 25130121_)
< G064+ C, (QO ) (/ ¢q002‘Vﬂ|2)
dqo o Ba(x0)

ag_
< —40 ( 5 >COA0 + 1max [/ ¢2|Vﬂ\2] " 1.
7 4 Bs(z0)

~n 2 4|90 _n
Here we used (B.8) to bound [ (o ‘Cof{;‘qo V| w 1‘ and the fact that ¢ @ < 1 in the
2(Q0 1)

IN

second inequality, Holder’s mequahty with exponent in the third inequality. And in

the fourth inequality we used (;5‘10 % < ¢2, and chose 6 to be ; We insert the above

inequality into (3.9) and get

1
[owvarg<g [ wapes [ agiwers [ aec,
Ba(xo) 2 Ba(zo) Ba(zo) Ba(z0)
4C,, — 1)cf 1 5
+MAO+—IH&X{/ ¢2|Vu|2,1}.
dp 4 Ba(zo)

We assume [ - ¢°|Val> > 1, otherwise the desired bound holds trivially. Then by
moving the first term %IBWCO) |Vi|*¢? and the fifth term [, - ¢*[Va|® on the right to
the left, we prove the claim. O

(01

Now suppose ||Vl rro(B, (@) < C(co, Mo, qo,n) (independent of €) for some py > 1 (po
can be chosen to be 2 by the claim above). For any Bs(zg) € Bi(0), we have by Holder’s

inequality

(3.10)

po+a9—2

||f‘|| _ |f|p0fq%0 ) P90
Lpo+qo* (B1(z0)) B (z0)

040

po+a0—2

po+tgp—2

pPod0 P0490

(5 @ |Vu|1__) rotio2

pPotap—2 )
L Po (Bi(zo))

potap—2
L -2 (Bi(zo))

[ ~ n—40 21
< [z
) potap—2

110772 P40
Ao S apo )
€ po+qo . |vu|
Bi(zo)

a0 —2

qi qo—n ~ P90
=A" e w0 - |ValPe
Bi(zo)

< C(Co,Ao,qO,nk% < C(co, Mo, qo, ).

IN
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Remark 3.3. Here o > n will make the scaling subcritical and ensures a uniform bound
of HfHLm%%b(Bl(mo)) independent of «.

Thus f is uniformly bounded in LPOTQ?*Q(Bl(xO)) independent of €. By applying the
Sobolev inequality to (3.7)), standard Calderon-Zygmund estimates and finally using the
L* bound of u in condition (2) of Theorem [LLT], we have

(3.11)
Vi s < |la s
| HLW(&(%)) H ||VVL”°+"°’27”°"J+lr (Bi(x0))
< U q
= CHUHWZ’PO#FQMO%?(Bl(xo))
<c|f (@

q0—2

= G-n . Podo I
<CA° - m - / | V| + CWH (@) || oo (B1 (o))
Bl(:(:())

< C(co, Ao, o, n)(e @ +1) < Clco, Ao, go, ).

qo—n
We remark that gy > n ensures the coefficient e stays uniformly bounded as ¢ — 0.

In the case z% > n + 1, by Calderon—Zygmund estimates we have

- qo—n -
HUHWQ,#Z(&(%)) < C(co, Mo, qo,m) (e @0 +1) < C(co, Ao, qo, 7).

The Sobolev inequality then gives ||V~ < C.

In the case 2> <n +1, using go > n+ 1, we have py < po;f5. Namely
4o do do
3.12 Do = Po = Do-
(3.12) Po+qo— 2 — Posiy (Po — poz25) + (g0 — 2) qo — 2

So we improved Vu from LP° to L3 Define Di = q(;’—ﬂQpi_l. Using gy > n+ 1, we iterate
finitely many times until p; > %, ie. % > n+1. The Sobolev inequality gives
Vi e L>®. Soif g > n+1, we get Vi € L. Rescaling back, we get (83). By (B8] where
(o >n+1>2)and Va € L™, we have f e L©. Standard Calderon-Zygmund estimates
give

||V7~LHCO,17”TT)1

which gives (3.4)).
Consider now the case n < gy <n + 1. For any

2(n+1)
n—l—l—qo

oy S N0,y < 1l o)+ IV @0 120 < 00

(3.13) pi <
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we have
do n+1-—qo
i+ 00 —2— i i g — 2
Di + qo Pi— 1 =p 1 + Qo
2(n+1 n+1-—
n+1—q n+1
_ _n+1—QO5
q0 771_‘_1
And thus
q0 4o
314 pz_ n pz Di-
( ) bi + qo — 2 - Di n(zl?l qo — —;{qué

—1—an = pi
So (BI1)) increases the integrability of Va from LPi to L%~ w10 And we can iterate
until (3.I3) fails, namely
qgo—n
S C(COa AOa qo0, n)goq—o S C(CO> AOa qo0, n)a

-6

(B1(z0))
for any zyp € Bi_,(so that the condition in the claim above is satisfied). By Sobolev
inequalities, we then have for any zo € B1_,

(3.15) IV 2mrn
Lntl=a

HaHCO’%(Bﬂ:cO)) = CH@HWLZWH)(Bl(IO))
< Cllall | 20+
w o ntI=a0

- 0*6(31(%»

S C(CO,A,QQO, )5 qo < C(CO>A 0 » 4o, T )

Rescaling back gives

1 ~ —m
EQHUH S ||U|| S C(C())A()aq07n)€ 0 S C(CQ,AQ,QQ,”),

1 1
Cc*3(Bi-.) c®3(B1_,)
€

which is (35). By I0) we improve the integrability of £ in (3I0) up to
qQ—"n

[ =t <Cew,

LPit0=2 (B (x0))

for p; < J(r";rlq — 6. So if gy € (n,n+ 1], by choosing p; = 2(n + 1), we have
i 1 1 2 1 2 1
(3.16) P _ B P _ (711+ ) _2n+1)
pitg—2 e R MJrl 3

rearranging gives p_ﬁ;‘f)‘)_2 > ("; b > "TH + 0o for some §; > 0. On the other hand, if

g > n + 1, using ([B.8) and the uniform gradient bound of w in Theorem B.2] we have
||f||qu(Bl(m0)) < Cs%, where ¢gg > n+1 > "TH + 0p. Combining both cases, for any
o > n
(3.17)

a—n

171, 52 gy oy < O
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and
qpo—n
—n—1
(3.18) ||f|| n+1+60 By, (o)) < Ce w0 ¢ s
Rescaling back gives the bound on f,
||f|| n+ +50(Bl (1‘0)) S OE 0 .

O

Since in the case qg € (n,n+1], we lack gradient bounds of u as in the case go > n+1. In
order to get better estimates of the discrepancy terms in the almost monotonicity formula,
we use some ideas from [RS06]. We will apply the following Lemma to ([B.7) for € sufficiently

small such that C’e% <w.

Lemma 3.4 (cf [RS06, Lemma 3.2]). Let n+1 > 3,0 < § < §; and R(6) = 57, w(8) = 672,
where py = 5,py = 35. If i € C*(Bg), f € C°(Bg), Bg = Br(0) C R**! where
—Au+W'(a)=f in Bg,
|1~L| < Co m BR,

1]

co is as assumed in condition (2) of Theorem[I1l and 6y is as in Theorem[3.3. Then

(3.19) /B ('V;”Q - W(ﬂ)) <o

+

L™ 400 (BR) s w

200
(n+1)24+(n+1)d0+650

~12 2 ~12
(3.20) / (ﬂ—W(Q)) gm/ (‘W| + W (4 )) / Val
By 2 + By 2 ByN{jal21-7) 2

Proof. Let us consider the auxiliary function ¢ which solves the Dirichlet problem
(3.21) Ay =—f, in Bpg

=0, on JdBg.
The auxiliary function will allows us to control the inhomogeneous part of the equation.

Claim. The function 1 defined in (3.21]) satisfies the bounds

n+1

And for T = 0P3, where p3 =

, we get

25457 w1,
(3.22) [l Lo (Br) < C6 <1,
_ 35
(323) ||V¢||L(n+711)4£1fj214:)250) (Bx) S C(A) = 05 .

Proof. Rescaling by 1—1%, we have

Ap = fr, in B

(3.24)
Yr =0, on 0B,
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where () = ¥(Rz), fr(x) = R?f(Rz). Standard CalderonZygmund estimates give

n+1 n+1
r T 1L < T nF1l
Hd’RHWz 2550 gy = < [|fr] L5 o0 (g R 5= +d0 ’|f| L2 40 () < C’R EREI)
where 2 — anfjéO > (. Rescaling back yields
||,I7Z)|| n+1+50(B +R||V¢|| n+1+50(B +R2||v2w|| n+1+50(BR)
J:L1+1 J:L1+1 J;LlJrl 9
n n n
= R0 il sy )+ BTN VRI sy )+ B V2081 gy
n+1
=S
_ RT+6O Hd}RH _2_+60(B1)
n+1 _ n+1
< CR™ 0 R "5ty
= CR*w
= (6%,

Here we prove ([322): by the Sobolev inequality since 4y > 0 —> "H + 0 > ";1, we
have

[0y = el < Clrlly s

n+1

< CR _ler_lHOw
2545 n+1

_ 05 n+1+60 << 17

d (n4+1)(n+1+2d)

125, > n+ 1. Here we prove the gradient

due to the choice of w, where we use

bound (3:23):

n+1-24g _1
< Rn+1i+28
R)

IVYRl @ineriiem
L n+1-24q (Bl)

n+1-246¢ _1
< O Rn+1+25

IVOI oo
L n+1-24( (B

||¢R||W2,”T+1+5O(Bl)

nt1-25g 42— nflﬂ
< CR 7L+1+260 R —5—+d0 w
= CR
= Cw = C5*.

We define g := @+ ¢ € W2 s +%(Bg). By B21), B22), i satisfies

(3.25) liio| < co + 1,
AUO W/( )
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We compute for any g > 0,
[Va?
2

~ 2
Vo~ VO v (g — )

< (5+8) 1 + (5 + 5 ) IVGF = Wi + Clol,
for some C' > 0. Thus by (3.:22)) and (8.23)), we have
[, (55=-w)
— Wi(a)
By 2 +
S5 o, e ()
< [ (F5E-wan) « [ (swar+cwi+(5+3) v

~ 12 n+1
g/ M—W(ao) +C ﬁ+R I 4 1+l w? ).
B 2 + 2 B

n+1 25+ 5(n+1)

"5+ By

— W (@) =

By choosing f = w < 6”2 and using our hypothesis on w : R T +%w = §
our choice of p; = 2, py = 15, we ensure
B =6°<09,

- n+n1+1 25+ 7LJ:L1+1
R =T *ow=9§ = o < (),

1 1 2 1 70 35
- 4+ — = — —+ <

for n > 2. Thus

[ (e W(@>)+ < [ (i W(a0>)+ s

To prove ([3.19), it suffices to show
~ 12
(3.26) / ('V;m' - W(ao)) < Cs.
By

+

Here we estimate @. Define tg(z) = @(Rz) then by the Calderon-Zygmund estimates we
have

(3.27) |liigll ,nis < O|| Adig] g

w27z t%0(B)
2

+C||2~LR||L"T+1+6O

T2 To(By) (B1)

n+1

2_n— ~
<C <R AT g1y + 1)

IN

2_nn+1
C <R ) (”W( )| L 0 (B, + Hf” L+ )> + 1)

29— n1+1 n+1
SC(R n+ LI +30 (R—2—+60 ‘I‘W)“—]_)
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< CR%.
By the Sobolev embedding
(3.28) IVa|| mrnmeirasy) < Rzﬁigg_IHVﬂRH (n+1)(n+14260)
L n+1-24q (B% L n+1-246q (B%_)

n+1-248g 1~
< Rntit25 HURHWz,%r—lHO(Bl)
3

ntl-26p 4 n41-2§

< Rz . OR? = O Rn+is 1,
We define

f(] = —Aao + W/(a(])

:—Aw—Aa+WﬁD+Wﬂm¢+%W@@M9+%Vw@m3

:wwm¢+;M%®W+éWW@Wi

since the derivatives of order 5 or higher of the potential W (u) = (1_2“ “” Vanish. By (3:22)),
B23)) and ([B.28), we have

- ~ 2— 3 T5+1575
(3.20) ||fo||Loo<BR>scnwniwwmsc(R Tw) < o8N 1,
and
(3.30)

vaOH (n4+1)(n+1+28q) S C (HV@H (n41)(n+1+28q)
L n+17230 (BR) L n+17230 (B

R

o+ 1990wy )
n+1—246,

S C Rn+1+260 . R “g+00 + w

= O(R*w +w)
< CR*w
= (0§ <« 1.

Since we have |ug| < ¢o, we apply Calderon—Zygmund to ([B.25), for any By(z) C By and
1 <r < oo and we get

(331) ||ﬁ0||W2,r(B%(I)) S CT"
Hence by the Morrey embedding
HV,&OHLM(BR—l) <C.
We define a modified discrepancy

Vil
)

(3.32) e W (o) — G(io) — ¢,
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for some function G € C*°(R) and ¢ € W??(Bpg) that we choose as in the following claims

Claim. If we make the following choice of G,

" ¢ W'(s)|+ 4
3.33 Gs(r):=9 (1 +/ exp (—/ |—ds) dt)
(3:33) o) s 1 200(5) 4 0)
then we have the properties

6 < Gs(tg) < C,
! <
(3.34) 0 < G(ug) <9, )
|W!(to)| + 6

Gy (i) = Giito) <cC.

2(W (o) + 9)

Furthermore we have

(3.35) GE5W' = 2G5(W + Gs) > 6GYs
and
(3.36) Gg(ﬂo) > 63,

Proof of Claim. The first three equations of (3.34]) follow from the direct computations.
or (B.33)), since G5 > J, we obtain

Av v " _ / |W/| +9

W'+
> / !/ |
_%OV+M%®
=G5 (W' +|W' +96)
> 0GY.

or (B:36), from the definition of G5 (8:33) and the bound |ig| < ¢g + 1, we compute

o co+1 |W/(S)|—|—5
Gé“m>Ei5exp<E‘J{W_liaii‘7175d5)
256Xp<—/___1 dilog( ds—/ ds—(co+1))
> dexp (— (log(W(—co — 1) +6) —logd) — (lo (1 +0) —logd) — (co + 1))

> Jexp <C~’ - log(52)>
> O,

(W + 6))

s)+0)

where we used W is an even function, increasing in [—1,0] and decreasing in [—cy —
1,-1]. 0
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Claim. If we choose ¢ to satisfy the Dirichlet problem
~Ap = [(Viio, V fo) = (W' + G5) fol >0 in B,

(3:37) =0 on 8B§

then we have

(3.38) >0 inBg

and

(3.39) [ () < ORY e, — (VT

Proof. Since we have ¢ > 0 in 0B R by applying the maximum principle, we have ¢ > 0
in Br which gives us (3.38). The estimates (3.31]), (3.29) and (3.30) bound the right hand
side of (3.37), that is
||ASOH (n+1)+(7lz+21;260) = |<V?~L0, Vf0> (W/ + G/)f0| (n41)(n+14250) < CRz(U = 0525.
L 2%

(BB) n+1-24q (BB)
2 2
Denote by ¢r(z) = ¢(££), then the Calderon-Zygmund estimates give

lellwr=mg) = lerllwiem) < CH@R||W2,“”,?+<’;73%W(B”

S CHASORH (n+1)(n+1+259)
- (B1)

< CR n+1+250 ||A(p|| M;ﬁﬁ
(B

%)

n+1-24g

< C’R n+1+250 w

n+1-24g
_ g

and hence we obtain (B3.39). O
We choose ¢ according to (3.37)). Notice if £ > 0, then we have Vig # 0 and

1
(3.40) W (i) < 5\V@OP.

The case £ < 0 immediately gives us our desired estimate since we are seeking an upper
bound.

Claim. For the choice of G asin (8:33) and ¢ as in (8:37) we have the differential inequality

(3.41) Aég > —C (1 + ) (IVea] + R n+1+2éow) + C (8% + 6%

| Viio]
in Br N {&c > 0} Nn{Vay # 0}.
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Proof. We compute the Laplacian of the modified discrepancy
(3.42)
Al = |V3ig|* + (Viig, VATy) — Ap — (W' + G Atig — (W + G")|Viig|?
= [V2a|* + (Viio, W"Viio = V fo) = Ap — (W' + G')(W'(iio) — fo) = (W + G")| Vo
= V2> — (Viio, V fo) — Ap — (W' + G)(W'(iio) — fo) — G"|Viio|*.
By differentiating (8.32]), we have
Véq = V2 Vig — (W + G)Viy — Vo,
and thus
(V200 |*|Vio|* > [V Vol
> |Véa + (W + G')Vig + Vol?
> 2(W' +G') (Viag, V(éq + ) + (W' + G")? Vi) *.
Dividing by |Viig|?, the first term in ([3.42), |V2ag|? , is bounded as follows
2(W'+ @)

v2~ 2>
V=" > N

(Viig, V(éa + @) + (W' + G')%.
The last term in (342) is
[Viio* = 266 + W + G + ¢).

Substituting these into (3.42]) and rearranging, we have in Br C {Viy = 0}

2W+ G, . "
AgG — W<VUO’ V£G> +2G gG
> (W + G2 = W'(W +G) - 2G"(W +G) + %Wﬂm V)
0

—2G"p — Ao — (Viig, Vo) + (W + &) fo
2(W' + @)

_ 2 ! r_ "
= (G + (GW' =2G"(W +G)) + Vi

(Vig, Vo) —2G"p — Ap

- <V1~L0, vf0> + (W/ + G/)fo.

We choose G to be ([8:33) which allows us to apply the estimates ([8:34) and (3.33]) so that
&q satisfies

2(W'+ @)
|Vio|?
+(G5)? + 0G5 — 2Gip — Ap — (Viig, V fo) + (W' + G5) fo,
in B N{Vigy # 0}. Furthermore we have by (3.40)
W (i) * = [0l *(1 = [iio|*)* < CW (i) < C|Viio|*.
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From (3.34)), the bounds on G and its derivatives, we get
W'+ G§) (o) Vi Ve + 0|V )
(W + 5)(20) | < 5| Vo] ) 2‘ o | <C’<1+ a )
‘VUO‘ |VUO| ‘VUO‘
Substituting in (3.37), ([3.39), and (3.44) into (3:43]) and using the fact that G” < 0, we

have

(3.44)

5 ,
8662 ~C (14 ot ) (V6] + Vi) + (G5 + 365 — Ap+ Ay

)

>—C (14 =) (IVéal + R" G w) +(GL)? + 6.
V|

Thus applying equation (3.36]) in Br N {& > 0} N{Vuy # 0}, we have (341

)
(345) Agg > -C <1 + ﬁ) (|V§G| + R n+1+250 CU) + 0(56 + 54)
O
We define
(3.46) 7= sup g

and consider two cases :
case i) 7 :=supp, {g < 4. Since

Viip|? B )
€G = % - W(Uo) — G(UO) —p< 5’
by (3:34) and (3:39) this implies
iol” n+1—24
W;O' — W (i) < 6+ Gliig) + ¢ <+ C6 + CR* o,
. . _nt+1-24g 15457120
Our choices give CRY w5350y = O6 n+1+250 < C5 %0
2
Vil wag) < 05

which, after integrating proves (3.20).
case ii) 7 := supp {¢ > 0 > 0. We choose a cutoff function A € Cg(Bg) satisfying

0<A<I1,A=1lon Bg and |VIA| < CR™ for j = 1,2. Then 3z € Bg such that
(Ao (20) = max {(Agg)(x) Lz e Bg} > 5> 0.
By B31]) we have ¢ < C for some C(cg, Ag, Eg,n) > 0 in Bg_4, and thus
n
A —.
(z0) = C

Moreover,
|Viig(20)|* > 26a(z0) > 2(Nq)(x0) > 21 > 20 > 0.
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Since zg is a critical point, V(A{g)(xo) = 0, and we get
Ve (wo)| = AMzo) ! [VA(20)[éa(20) < C(Rn)™
At a maximum point zg, the Laplacian of the function A\¢s satisfies
0> A(Xg)(xo)
= Azo)A&c (o) + 2(VA(20), V& (7o) + AN (20)éc(20),

and thus
(3.47) Ag(wo) < Mao) ™ (C|VA(20)|[VEa(@o)| + [AN(@o)|[§c(20)])

<Cn ' (CR™(Rn)™'+CR™?)

<CRn'(1+n7")

<CR*p'(1+467")

< CR 27671,
since 0 < 1. Combining (3.41]) and (B.47) we have

CR™y7'67' > —C (1 - ) (Iveel + B w cu) +C(0° +07)

0
|Vitig(o)|
>C {(1 255) ((Rﬁ) Ly RY e w) + 54]

Thus the last term above is bounded by

1-24¢g

st<C (R_277_15_1 + (Rn)” ) + CRY 7L+1+250w

n+1-246¢
. 4 nt1=20g
By our choice of p; = 2,py = 15, we have R~ "1+ =

< C (R 270 + (Rp)™Y),
dividing both sides by d*n~! gives
n<C (R0 '+R 'Y
< .
Namely, assuming ([3.46]) or not, we have
§o < C9,

n+1l—

RUHET; < 54, So

and thus by (3:39)
|Viig|?

5 W(tg) = &a + Gs(to) + ¢

n+1-—24,

< 05 + R n+1+268w

n+1-248g

< Cd+ 515+5 7L+1+260
< (9.
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This proves ([3.28) and as a consequence ([3.19). If |4 > 1 — 7 in B 1, then B:20)) follows
because the left hand side is less than the second term on the right. So we only need to
consider the case there exists o € By with u(zg) < 1 — 7. By the Sobolev inequality and
Calderon—Zygmund estimates we bound u in the Holder norm as follows

HUHCO’%%‘%(BQ < ||u||W2'i2ﬂ+60(B1)
< C (W @ 25200z, + 171221500, + 1, 252 50
<C
Therefore || <1 — 7 and W(u) > %42 in B @+, C By So
(56) o
) GERM(CERIEEN a5
n+1)“+(n+1 —+4.
W(ﬂ)27—<7:> ’ =Cr B
By 4 \20,
: _ 26
By our choice p3 = ogyeraiays,res
V|2 _
/ (| | —W(u)) <06
B% 2 +
(n41)2+(n+1)69+65
S CT 260
(n+1)2+(n+1)59+46g
<Crr 280
Vi |? _
<Cr <| | + W(u)) :
Bq 2
which proves (3.20). O

Next we derive energy estimates away from transition regions.
Proposition 3.5 (JRS06, Proposition 3.4]). For anyn > 2,0 < § < 6y, € > 0,u. €
C*(Q), f. € CYUQ), if

—eAu, +

/
L/ iue) =f. in{

and
Q' ccQ0<r<d,o0)
then

/ 2
[ (e M W
{Jue|>1-8}ng € €
2 Ce

< 05/ e|Vuc|? + Ce/ P+ C (§ + 5—2) eLH(Q) + —2/ W (ue)?.
{luc|<1-8}NQ Q ror T Hjue|>13n0
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(Notice the power of f. in the above inequality will still be 2 instead of "TH + dp.)
Proof. Define a continuous function
Ww'(t), for|t|>1-0
g(t) =<0, for |t| <ty
linear, fort e [—14 6, —to| U [to,1 — 4],

where ty = % is chosen to be the number in (0, 1) such that W”(tg) = 0. Clearly |g| < |W’|.
For n € C}() satisfying 0 <n <1,n=1o0n Q and |Vy| < Cr~!, we get by integration
by parts

[ st = [ (e + ) gt

— [ e Vuprt +2 [ egluin(Vu. Vo) + [
Q 0 0
The left hand side of (3.48) can be bounded by

9 € o 1 2.2 _ € o 1 / 2
49 [ fotu? <3 (18P + 5 [atwrr <3 [ 16P+ 5 [ Wit

By the definition of g above, we have
lg(t)] < [g(1 = 0)| = W'(1 - 6) < C5,

g1 —9)| _ [¢(1 —9)|
1-90 = 1—-6

for [t| < 1 — 6. Applying these estimates to the second term on the right hand side of
(3.48) we get the bound

(3.50)
‘2 /Q eg(ue)n(Vue, Vﬂ)‘

(3.48) )

€

glue)n”.

lg'(1)] <

< 6,

< 95 / en| V][ V| + ' / 5W’(u€)<Vu€,Vn>‘
{Jue|<1-6} {lue|>1-6}

< 6’5/ e|Vue|? +edr 1L (Q) + 7'/ e|Vu.*n* + C&tT‘lr—2/ W' (u.)?,
{Jue|<1-6} { {luec|>1-0}

for 7> 0. As ¢'(t) = W"(t) > Cw > 0 for [t| > 1 — §, we obtain from ([B48), (3.49) and
(3.50)

1
C'W/ €|Vu€|2+—/W/(u€)g(u€)n2
{lue|>1-5} 2¢ Jo

< Cyo / Va2 4 7 / IVl + / £
(luc|<1-8} (luc]>1-8) 2 Ja

|ue|>1—0}
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+ (6r~t 4+ OO 7)) LM Q) + C'é?T_lr_2/ W (u.)?.

{lue|=>1}

Choosing 7 = <, and using W (t) < CyW'(t)? for [t| > 1 — § we get

/ 2
[ (e M W
{lue|>1-6}n8 € €

/ 2
< C/ (»5|Vu€|2 + M)
{lue|>1-8}ngY &

< 05/ e|Vue|* + Ce/ |[.]? + Ce (677" + 8%72) L)
{‘us‘gl_é} Q

+ C’ar‘z/ W (uz)?,
{luel>1}

which completes the proof. O

The following proposition shows for all € sufficiently small, if u. satisfies the inhomo-
geneous Allen-Cahn equation then we can control the last term |, (lu W' (u.)? in
Proposition by applying the proposition inductively.

Proposition 3.6 (J[RS06, Proposition 3.5]). Forn > 2, > 0,u. € C*(Q), f. € C°(Q), if

>13ney

/
—eAu, + Wiuf) —f inQ
and ' CC Q,0 <r <d(QY,00) then
/ Wi < G+ e [ ppeca e [ iy
{Jue|>1}3n0 o, {luc|>1}nQ

for all k € Ny.
Proof. For any k € NT we choose a sequence of open sets

Q fori =20

O = {x e Qld(z, ) < %} fori=1,.. k-1,
94 for i = k.

This sequence satisfies
Q=Q,ccQ,_,CcC..CcCcQ=9,
with d(€;, €% ;) > ¢ for i = 1,..., k. Applying Proposition (3.3) with J = 0, we have

/ W (u.)? < 052/
{lue[>1}0] o

i—1

L2 + Ok / W (u,),

{lue[=1300;_,

for i = 1,..., k. The conclusion is obtained by applying the above inequality inductively k
times. (]
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We conclude with the following integral bound for positive part of discrepancy measure.

Lemma 3.7 ([RS06, Lemma 3.1] for all n). Let n > 2, 0 < 6 < &, (where §; given as

in Lemma[37), 0 < € < p, po := max{2,1 + §"Me}p for some large universal constant
M. Ifu. € C*(B,,), f- € C°(B,,) satisfies (L) in B,,(0) then the positive part of the
discrepancy measure satisfies

9 2
p_n/ (E|VUE| _ W(“é)) So(gpap—n/ <€|Vu€| W (ue )) +Co Mep™ / FAE
B, 2 € + B3y 2 < Beo
Wiue)®

o ro(2)s
BpoN{|ue|>1} € P

Proof. We prove the case 0 < ¢ < p = 1. The case for other p > 0 follows by rescaling
to p=1. For 0 < § < §; we choose R(§) = 5+ and w(d) = C,07 as in Lemma 3.4l Let
{z;}ie1 C B1,I C N be a maximal collection of points satisfying

min | x| > °
mi|xr;, —xr;| = <.
i#j J 2
Since ¢ < 1, we have
> X5 < CuXpa(0),
i€l

Z XBage(zi) = Rn+1XBl+2RE(O)

i€l
For i € I and x € Bsg, we define the rescaled and translated functions as

() = ue(x; + ex),
filw) == eful; +ew),
which satisfy the rescaled equation
(3.51) —Adi; + W (@) = fi, in Byg(0).
For ;, fl to be well-defined, we choose M > 5n + 6 and §; < % so that
x; +ex € Biiope(0) C By 5-1.(0) C B,y (0).
We decompose the index set I into
L= {i € L 4] o
L:=1\I,.

For i € I;, we have
ntl <w < O,

||fz| L% 7°0(Bype (24))

(@] = 1)l Baniey = € " (el = Dl Bane @)y < Co

ntl_q4§
90 (Bype (7)) <er ‘W, H(|u€| o 1)+’|L1(32Rs($i)) < ngn—l—l},

n+1 -5
LlJ?r_lMO(BzR(O)) i ||€f€|
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By the condition ||u||z~ < ¢ in the condition of Theorem [[T], and choosing C,, sufficiently
small, we have

s || oo By < 1+C-Cyy < 2.
Applying Lemma B4l to u; gives (with ps from Lemma [3.4])

[, (52 -wa),

~ 12 ~ 12
gow/ G@i+W@0+/ Viu®
By \ 2 Byn{alz1-s 2

Rescaling back, we get

/ (5|Vu5|2 B W(ua))
By (x:) 2 e /s

2 2
§05p3/ <£|Vu€\ N W(ue)) +/ e|Vu| '
(@) 2 € Be (e)n{juel>1-5) 2

Summing over i € I, and noticing Bs (z;) are disjoint, we get

(3.52)
Z/ (5|Vu5| W(ua))
i€ly 5(1‘1 € +
< 05”3/ <E|Vue|2 i W(Ua)) L O e|Vu,|?
B (0) 2 € ByOnfluclz1-5) 2

2
< Cép:’)/ (5‘VUE‘ + W(us)) + 05/ ‘fz—:|2 +Ce ((5+ W/(U€)2) ’
B3 (0) 2 € Bs(0) Ba(0){Jus>1}

where we used Proposition in the last line. Since for n > 3 (the n = 2 case requires
do > %, but has already been addressed in [RS06])

W/(t)? > 4t*(1 + t)*(1 — t)* > Cwt*(|t] — 1)* > Cw (|t| — 1) R

Thus for i € I, (at least one of the bounds in I; does not hold), we have

ntl -
Co < / (|t — 1)+2 oo +w™? fi2
Byr(0)

Bar

< C’/ W (1;)* + w_2/ f2.
Bapr(0)n{|a;|>1} Bar
By elliptic estimates applied to the rescaled equation (B.51]), we get

/\WWSO (Wmm+ﬁ+ﬁ)
B1 Bl

2
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<C @V@aﬁ+ﬁ>+éwwﬁg%h

Bar

<C (W'(W 42 f;) ,

Bar

where we used ||1;]|z~ < ¢o. Rescaling back gives

W/ 2
/ e|Vu|* < C/ ( (ue) +5W_2|f6|2) :
Be (x:) Bage (i) €

Then summing over ¢ € I, we get

(3.53) Z/ e|Vu.|? < Zc/

W' (u,)?
< ( 6) +5w_2|fa|2>
i€1s 5 (xz i€lsy BaRre (mz) €
W/ 2
< C’R”+1/ <7(u5) + Ew_2|fa|2>
B142Rr:(0) €

W/ - 2
S Cé—M/ ( (U ) +€|fe|2) 7
B 5-m.(0) €

for large enough M since both R = 07" and w = 6?2 are fixed powers of §. Combining

B52) and ([B.53) we get

/Bl (e|v2ua|2 ) wiua>)+
ue) +Z/ 5|Vu€\

6\Vu5|2
[ (%5
= 5(1‘1 5(1‘1

2
§06p3/ <€‘VUE‘ 4 w ue)) +C€/ ‘f5‘2+05 ((S—f—/ W/(U€)2)
B3 (0) 2 B3 (0) Ba(0)N{Juc|>1}

+C(5—M/ M+g‘f€‘2
BlJr(Sst(O) €

2
< C(SPS/ (Wuf‘ + W(%)) 4 Ced+ Ca(S‘M/ 1.2
B2 (0) 2 B

€ max{2,14+5—M¢} (0)

/ 2
+05—M/ Wiue)”
B S

A

~—~ O

()

max{2,1+6— Mg} (0)

This completes the proof for p = 1 and rescaling gives the cases for other p > 0. U

As a result of these, we have the L' convergence of the positive part of the discrepancy
measure as € — 0.
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Lemma 3.8. If we consider {& = &4 — &, — the decomposition of & into positive and
negative variations then

er — 0 ase—0.
Furthermore this shows & < 0.

Proof. For By, = Bs,(z) C ' CC 2,0 < § < § and 0 < ¢ < 6" then applying Lemma
3.7 we have

9 2
[ (AT WDy o [ (AT WODY gy [y
B, 2 € /4 Bap 2 : o

W/ 2
+ o™ / (we)” | (5) 5p".
Bpn{|ue|>1} € P
Proposition gives us

/ W/(u€>2 < Ck(1+p_2k€2k)€2/ |f5|2—|—Ckp_2k€2k/ W/(u€)2
{lue|>1}NB, Bap

{lue|21}NB2y,

(3.54)

for all £ € Ny. Choosing k = 2 and applying the bound
/ W (ue)? < C()
{lue|21}NBa2,

and inserting these estimates into (3.54]), we get

9 2
/ <€|VU5| B W(ua)) < Cdp?’/ <€|VU5| 4 W(UE)) + 0(5_M6 —|—€2)/ |f€|2
B, 2 € + Bap 2 < Be

L O5MES 4 O (%) e

By the Holder inequality with exponent ¢y/2, we estimate

£\ 2
3.55 5/ f? = 52/ ( e|Vu,
(359 pe 7 o, v ) Y

f q0 2/qO q(;]gg
S 82 / € €|VU€|2 / 5|Vu5|2
B, | €IV Ue| B, 2
S €2C(A0, Eo),
and obtain
2 ~ ~ ~ ~ ~
/ <E|V“E| _ W(“f)) <O+ C5 M2 4 02+ O M3 4 Cde
B, 2 € n
< .

Letting ¢ — 0 we get & +(B,) — 0. O
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4. RECTIFIABILITY

We will proceed by proving upper and lower density bounds for the energy measure.
Combining the estimates obtained in the previous section, we get an upper bound on the
density ratio of the limit energy measure.

Theorem 4.1. If we consider ' CC  and ry(§)') := min {1, W} then for all xy €

Q0 < r <r there exists a function ¢(e) with lim._,o ¢(c) = 0 such that
(4.1) r " u (B, (1)) < C(Ag, ) + @

Letting € — 0 we get

where p = limg_, . is the weak-* limit of p. = 5+ Wi“”) dz in the sense of Radon
Measures.

Proof. For the sake of simplicity we set zyp = 0 and set B,(0) = B,. By the almost
monotonicity formula ([B.I]), Lemma B.8 and Holder’s inequality

d Ns(Bp) 1 £ 9 1
(42) d_p (7 = —Wge(Bp) + W/@ p<x, VU) — p”+1 /B;p <l’, Vu>f€
We estimate the last term above as follows

I ;.
149) | [ ) < o [ e vl | ev
L[
< — elVu
AEI R
1 90—1
1 / fa q0 ) a0 / ) a0
< — elVu elVu
p" ( B, e|Vul | | B, | |

1 a0—1

q0 a0 1 a0 q—1
e|Vu|2> | e

Je
e|Vul

IN

(5 (Ll

< cang i (P

< C(Ag)p (1 + %)

1
where we used the inequality a' "% < 1+ a which holds for all @ > 0. Inserting this
inequality into (£.2)) and discarding the positive second term on the right had side, we get
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Multiplying both sides by exp ( [C (Ao)p_%dp> = exp (

2 o (g2t ) (1 420)| e (2t 420

Integrating from r to rqy gives

o (202 ( 5 o (2 ) 120
G —n Ty qo — 7N "
> —/ exp (q()q%nC(AO)PI__) &;(H 2

o =\ [ e+ (By)
> 90 AR
> —exp (QO — nC(AO)’FO ) /T P

(Ao)p' 40) we have

(4.5) eXp( %o C(Ao)ré_%) <1+ ue(Bm)> B S o [ ErB)

1
r A

n [0 & (B
_C(A(]vQ) %7

where we used exp ( (Ao) ﬁ) > 1 for r > 0. Passing to the limit as ¢ — 0 and

using Lemma 3.8 we have

N(BT>

TTL

S C(AOa Qla n, qO)

Next, we obtain estimates of the discrepancy measure for each e.

Proposition 4.2. Let d =pY,e < p<r for0<~vy <
For By,i-s(x) CC 2, we have

< %, we have 6 Me < pl=M7 < 1.

L
M

(4.6)
P 1(By(x)) < CpP " g (Byy ()

+ ékap_MV_"_l/ |fo|? + Cpep? ™2 (1 +/ W’(u€)2> :
By 1 s(@) {lucl>1}NB, 15 (@)
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Proof. For 0 < v < 17 < 1, by choosing § e < p'™M7 <1 we get max{2,1+ ¢ Me} =2.
Therefore substituting § = p? into Lemma [3.7] we have

o ol e|lVue|?  Wiu.
RS S €. )
By () € +

Vu > W(u.
Scppg'y—n—lf <5| U| + (gu )) _‘_Cgp—My—n—l/B |fa|2

Bap(x) 2 20(2)

+ Cetp Myt / W (u.)? + Cep?™2.
Bap(x)N{lue[>1}

On the other hand we have by Proposition B0 with r := d(Bs,(x), 0Bs-s(z)) = 3p'™F —
20> p'F

/ W/(ue)z < Ck(l + p_2k(1—5)82k)82/
{|us‘21}ﬂsz

By,1p

[ + Ciop2t1-9) g2 / W ()2,

{lue|>1}nB, 15
Substituting this into our above estimate, we get

e|Vu?  Wiu. N VR
gy sopret [ (AL T g [ pp

Bay (@) 2 31— (@)

+ Ce—lp—M'y—n—lékp2k6—2kE2k/ W’(u5)2 + Cep’y—2
{lucl>130B, 15 (@)

< CpP " e (Byy(x)) + Crep™ ™7 / |fI?

By,1-p(2)

+C <€p’Y—2 + E—lp—M’y—n—lg%B/ W’(ua)2>
{

\Us\zl}ﬂB:;pl—B (ZB)

< PPV (Boy()) + Cropep / P

By 1-p(x)

+ Cgep’™2 (1 +/ W/(u€)2> ,
{lue|>1}1By 15 (@)

where we have chosen —M~y—n+2kf+1>~vy—2or k > %ﬁwnﬂ sufficiently large. [

In the following theorem we prove the density lower bound for the limit measure.

Theorem 4.3. There exists 0 > 0 such that for any Q' CC Q and ri () < w
sufficiently small, we have

r " u(B,(z)) >0 —Cr?,
for some vy >0, and all x € spt uN QY and 0 < r < ry. In particular,

]
07 (1) > —

Wn
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for p-a.e. in 2.

Proof. Without loss of generality, we assume 0 € spt N Q' and want to prove a density
lower bound at 0. We first integrate (4.4)) from s to r.

pe(Br(z)) _ f1e(Bs())

rm sm
(47) q0—1
"1 " —n [ e B, (x 90
> [t~ [ ety (HEA)
By (4.6]) in Proposition [4.2], the discrepancy term

(4.8)
- / e (By(@) > - / O (Buy(a) — / ' Gyepinnt /B Splm\fe\2

—/ Coep? ™2 (1 +/ W’(ue)z) :
s {Jue|>1}N2

By the e-Upper Density Bound ({1]) we get

- [ B w) = - [ )

> - / g (C(AO,Q’) %)

; 9(¢) _ _
> P3Y _ P3V) _ psy—n _ p3r—n)
> —C(Ao, &) (r sP37) P — (r s )

The last term in (4.8) may be estimated as follows

T t
—/ Cﬁc":‘p'y_2 (1 + /{| S1n0 W,(U5)2) > —Cﬁ/ pv_ldp < —Cﬁ(’/‘ﬂy - 87).
s ug|=1iN s

Using the bound

90—

(Ns(Bp(SC))) 7 < (1_|_ Ne(Bp(x)))
P p"
and the e-Upper Density Bound (@), we get

qo—1

n 12
s P

> —/TO(AO,Q’)p_% (1 + C(Ao, ) + Qi?)

> —C(A, ) (rl_% — sl_%)

— (Ao, ) (e) (rl—"—% - 31—"—%) .



32 HUY THE NGUYEN AND SHENGWEN WANG

Thus, plug all the above estimates of terms in (4.1), we get

(4.9)
pe (B (%)) _ pe(Bs()) > —C(Ag, Q) (rP7 — s77) — ¢(c) (Tpsv—n _ Spsv—n)
rn s" - ’ p3y —n+1

—/ Cpep™ ™! (/B " |fa|2> dp — Cy(r — 57)
s 3p1-5 (T

n n

= C(80, @) (r'70 =70 ) — O, )ofe) (1 -
Next, we estimate the term [/ Cep™ ! <f33017a(:c) |fa|2> dp in the following claim.

Claim. There exists z € Bg such that

(4.10) e (Bu(x)) > 200 > iy > / " Glyeptene ( / N f€\2> dp,
£ B3p1,5 T

for some universal constant 6, > 0.

Proof of Claim. Consider a point x € Br with |uc(z)| <1 — 7, for some 0 < 7 < 1. We
can assume £ "u.(B.(x)) < 1(otherwise the conclusion automatically follows), and so

5_"_1/ u?l < 5_"_1/ b < chwpy1, Vp > 1.
B () Be(z)

From Theorem we have

lellcos g,y < ©
and thus
.| <1-L, in B (z)
2 ac
So since W (t) = (1 —t?)? = (1 4+ ¢)*(1 — t)? we find in B2 ()
4C?
-2
W(ue) = (1+ fuel*(1 = fue])* = —
_ _ W (u.) I 722\ " 72
4.11 "1 (B, >e " > & " Wy Vs -
) ez [ e ()]
ic?
Z CnT2n+4
Denote

20y := min{1, C, 72"},
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then for z € Br N {|ue| <1 — 7} the first inequality in the conclusion of the claim holds.
Applying the error estimates Proposition with the choice €0 = B: and 2 = B, for
sufficiently small 7

1e(Bs) = iz (B N {Juc] < 1= 7)) + pe (By O {Juc 21— 7})

< Cle (Bg N{ju| <1-7}) + Cg/ |f-]2 + Ce(rr™ + 725" 1) 4+ Cr 2.
Br

Notice by ([B.53)), the second term ¢ [, p |fo|? < 2C(Ag, Ey). So the last three terms are
at most of order O(e). Hence, as 0 € spt i, by passing to limit € — 0 we have
0 < u(By) <liminf p(By) < lim inf p. (B: n{Jus] <1—7}).
And in the set {|u.| <1 —7}, we get by Lemma 3.8 that
(4.12) lim iéafe‘lﬁnﬂ(B% N{jul <1-71})
e—

W
> lim inf 5_1/ (ge)
€0 By{juc|<1-r} T

= liminfi (e = &) (Br N{|uc| <1 —17})

e—0 7'2

.. .1
> = hrari)lglfpa (Bg N{ju| <1-7}) —hlgn_gonf §§€7+(B§ N{|us| <1—7})

1(Bs)
7—2

> > 0.

(This guarantees we can always choose such a point x € Br with |u.(z)] < 1 — 7 if
0 € spt p.) To complete the proof, we define for 0 < p < r; the convolution

o 1 . 1
wo (@) = p l(pr*—\fsP)(x)zp [ b
€ By(z) €
with

1
foeol@lirimy) < [ ZIRE < Olho Bo) < o
B

2
T
Lo

by ([855). Denote by w.(x) := forl w2, (x)dp, we have
||WE(1')||L1(B%Q) < r1C(Ao, Ep) < 0.

Now we can estimate the term on the right hand side in the claim, by a change of variables
t = 3p'~P. Here 8 := (1) is chosen small enough such that 3 (%)1_6 < r;. We calculate,
setting t = 3p' ="

M~ry—n—1

r 1 3(5)77 4\ T 1 £\ 77
[P [ )= | (—) (/ —|fe|2)d<—)
e nglfﬁ(m)g 3el-8 3 Bt(x)g 3
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r\1-8
3(1)1 —M~y—n—1+8 1
< Cp t s —|f? ) at
3e1-5 B €

3(%)176 —M~y—n—148 +(n+1)
< CB/ t— 15 We(x)dt.
3

el=p
We find
My-n—1+8 —My —np
1-0 1-0

—M~y—np
so that 77 isa decreasing function. Hence we get the bound

ri\1-8
i 1 3(71> —M~y—np
/4 p—M—y—n—l (/ _|fa|2) dp < Cﬁ/ 4 (361—5) 1-8 wa,t(x)dt
€ B, 1_5(z) € 3el-8
3515 (2)

T1
SCBE_M”_"B/ We(x)dt
0

<0

+(n+1) =

(4.13)

< Cpe™Mr7mby, (93)

Choosing My < 3 L and 3 sufficiently small so that M~y + n8 < 1 , and applying the weak
L' inequality for the distribution function and (4.I3)), we get for some Cs depending on /3

(4.14) £t (B% N { / ' Cgep M1 ( / \ f€|2> dp > éo}>
£ B3p1,5 (Z‘)

< L™ (By N {Cpe®e ™M () > 0y })
< Coe® MG |we |y
< Cpe? MG () |51y
< Cype>=MnBg1 O (Ao, Ey)
— 0,

as ¢ — 0. This guarantees we can always choose such a point 2’ € B with

([oarvm([ us)usa)
15 BSﬂlfﬁ z’

We can thus combine (.12) with (4£14) to find an x € Bz so that the upper bound and
lower bound in the claim holds. O

With this claim, we proceed with the proof of the density lower bound. For the 6,
obtained from the claim, we denote by s := sup{0 < p < 7 : M > 20y}, And it is
obvious from ({Z.11])

s> e.
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By this choice of s, we have
pie(Bs ()
S’I’L

P 4

Substituting 7 for r in the integral form of the almost monotonicity formula (£9), we get
from (A.I0) the following density lower bound

peBy())] _ pelBy(@)
" ] @

> B om0 (5) =) - 2D () o)

r/4 N _~
- [ Gz ( / \f€|2> do—Col(3) ")
s ngl,,g(x)

n

~ C(8o, @) ((2)1_‘” - sl‘q’é) — (Ao, 2)6(e) ((%)1‘"‘55 - 31—"—;5)

p—n

> 200 — C(Ag, X)r™ — C(Ao, )p(e)r "0 — C(Ao, ) (e)r? "+

_

> By — C(Ag, )17 = C(Ag, Y)(e)r™" a0 — C(Ag, )l ",
where v, := min{p3y,7,1— -} > 0, and ¢(¢) — as £ = 0 by Theorem lL.Tl As Br(z) C
B,(0) we let ¢ — 0 and get for some ~,, > 0

B, (B, . <
p(By) Zlimsup'u (B:) thsup'u

rr e—0 r e—0

Z 29—07

277/

By (x))

2
rn

> Cné(] — Cnr“’”.

Approximating ' 7 r we get for 0 < r < ()
B, —
WBO) .

/erL
and hence

0 () > wi p-a.e. in Q.

which completes the proof. O

Before proving the rectifiability of the limit measure, we need to show that the full
discrepancy vanishes as the limit ¢ — 0.

Proposition 4.4.
&l =0 & ¢ =0.
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Proof. We first prove the lower n-dimensional density of the discrepancy measure vanishes.
Namely

0°(le]) = nrppgglf‘g‘[ﬂ—fp) _0.

If not, there exists 0 < py,d < 1 and B,, C €2 such that
€l(Ba)) | 5
pTL
Multiplying both sides of ([@2]) by an integrating factor and integrating from r to pg as in
the proof of Theorem 1] we get

C(Ao, ) (%l;po)) — C(Ay, Q) (“eifr>) > — (Ao, ) [O 55/)(310)@

Using Lemma B.8| that is £, = 0 and Theorem [4.I, we have when passing to the limit

e—0
CAo, @) > C(Ao, ) / "EB) 4y (g, ) / MEB) 6B,

pn-l—l pn-l—l

V0 < p < po.

T

e [T,

pn+1

PO 5
> C(A(),Q/)/ ;d,o

T

— C (Ao, )5 1In (@) .

r

This gives a contradiction by letting » — 0. By the density lower bound Theorem and
differentiation theorem for measures, we have
o |€1(B, ()
B liminf, ,, 5"=2=
D,J¢|(z) = limint [SIBe@) IR0

p—=0 u(B,y(z)) ~ limsuppﬁow

AR
- 0

0

and this shows

|§| :Du|§| - =0.
]

Vue
[Vue|

Proposition 4.5. We choose a Borel measurable function v. : Q@ — 0B1(0) extending
on Vu. # 0 and consider the varifold V. = u. @ v. that is

~ V() Vu(z) -
(4.15) /{wmd’(”f’[ |Vu<a:>|®|w<x>|)d”l( ) € Gl D).
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The first variation is given by

(4.16) /fa Vus,n d:):+/V17 <|§Ua| |§Ua|) dé., Vn € CHQ x R™M).

Proof. By equation (21I), we have
5V.(n) = / divs f(z)dVi(z, S)
QAxG(n+1,n)

= /(divn — Vn(ve, ve))dpe
Q

2
=/@wwvm%%wfﬁf‘+wgvdmﬂ
Q

The Stress-Energy tensor for the Allen—-Cahn equation is given by
|Vu.|?

T, =e 8i; — eViuViue + W (ue) dij,
VT = eViViuViudy — eAuViu, — eVuV;Viu,
+ W' (ue) Viudy
= (—eAu. + W' (u.)) Vju..
Now

2
Tbvﬂbzz(dV;J +wvxua)<hvn—evm<Vuavma

2
— (5|V2u5| + W (u€)> divn — Vn(v., v.)e|Vu.|?.

Integrating by parts, we get

2
/ (% + W(ua)) divn — Vn(ve, ve) <€|Vu€|2 /V T;in;
Q

_A<¢%+mew%m.

Hence inserting this into our expression for the first variation we get

v = = [ (~edu+ L) @ugpac 4 [ wntn e

Combining Theorem E.1], Theorem and Proposition 4], we obtain

Theorem 4.6. After passing to a subsequence, the associated varifolds V. — V' where V
is a rectifiable n-varifold with the weak mean curvature in L (py).
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Proof. We first compute the first variation of the associated varifolds V. to the energy
measure p.(c.f. [RS06, Proposition 4.10], [TT20, Equation 4.3]). For any n € C}(Q; R"*1),
using Proposition 4.5 and Proposition 4.4l

6V ()] = [1m(6V2) ()]

Vu. Vu
= |lim /f5 Vue,n d:c+/Vn< : : ) d@)
5_>0< Vu s‘ V|

<ting [ 11|Vl + ling / Vildle.

(4.17) < iy / ‘ L
fe

q0
: V|2 Pt 2\ ©
< lim (/ e|Vu,| el Vel ) </|77| eVl )

1
< APl gy, (< Clho. Eo)ln).

So we see the limit varifold has locally bounded first variation, combining with the density
lower bound Theorem we conclude the limit varifold is rectifiable by Allard’s rectifia-
bility theorem Moreover, the above calculation shows 0V is a bounded linear functional

on Lloc (py) and thus itself is in L0 (uy). O

5. INTEGRALITY

In this section, we prove the integrality of the limit varifold.

Theorem 5.1. Let p be defined by (AI5). Then éu is an integral n-varifold where o =
[ _(tanh'z)2dx is the total energy of the heteroclinic 1-d solution.

From the previous section, we have already shown the limiting varifold V' is rectifiable.
And thus for a.e. xy € spt uy, we have for any sequence p; — 0

Dy, s © Toopt(lv) = 02y Fp,  for some Py € G(n+ 1,n),
where D, (z) = p; 'z and T, (z) = ¥ — 2o represent dilations and translations in R and
0., is the density of uy at xy. By choosing a sequence of rescaling factors p; such that
€q
(5.1) g =— —0,
Pi

the new sequence gz, (x) = u., (pix + o), faz( = plf,(p,z + xp) satisfies

)=
W) _

&\ iz, —
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and the associated varifold f/Z of this new sequence @z, converges to 6,,F. By (B.53]), we

also have
1 = q0
= fgzl <C / <~ Je. ) 5i‘vue}
& B, B, 5i|Vu€~i
2

C QO+1—(n+1) fE' 9 v 2 %
= . : & .
p / (ww@) V|

piP

<Cp, ©® =0,

(D T 2=
as go > n. Furthermore, by choosing more carefully so that p; := & =¢, "V we
have
1 2 ~n—1 ~
— Je <&, forp>g
&; B,
and thus
1 2 n—1
i B,

Therefore we have reduced Theorem [5.1] to the following proposition

Proposition 5.2. If the limit varifold is OgH" | Py for some Py € G(n+ 1,n) and 6y > 0,
then a0y is a nonnegative integer, where a = [ (tanh’x)?dx is the total energy of the
heteroclinic 1-d solution.

In order to prove Proposition [5.2] we need two lemmas. The first Lemma is a multi-
sheet monotonicity formula (c.f. [All72 Theorem 6.2] for the version for integral varifolds,
which is used to prove the integrality of the limits of sequences of integral varifolds). The
second Lemma [5.7] says at small scales, the energy of each layers are almost integer multiple
of the 1-d solution. We first gather some apriori bounds on energy ratio for p..

Proposition 5.3. Let d = p",e < p<r for0 <y < ﬁ < %, we have 6 Me < pt=Mv <1,

Furthermore we choose r := d(Ba,(x),0Bsn-5(x)) > p'~P. Then

Crpe(Brla)) 2 5™ (Bu() = C [ 970 e (Byfo))dp

(] )
(5.3) . B s

3p

—yer (1 +/ W’(u€)2) / p’rdp — C.
{Jucl>1}B, 15 () s
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Proof. Substitute (4.6]) into the equation (45]) in the proof of Theorem A1l we have for

e<s<p<r<li
54 Clna) (P00) > (B0 - oo -0 [T
(

z(“B

T)) — C(Ao, q0) — C/ P e (Bap () dp
_ Cﬁa/ p M (/B " \fﬁ) dp
S 3p17ﬂ z

(5.5) —/ Cpep?™? <1+/ W’(u€)2> dp.
. {Jue[>1)0B, 15 (@)

Noticing € < p in the last term, we then conclude the desired energy ratio bound. U

As a corollary, we have

Corollary 5.4. If in addition to the conditions in Proposition[5.3, we assume
1

(56) - f€2 S pn—l’ fOT P Z g,
€Js,

5€<Q;;¥B)’

then the following upper bound for the energy ratio for u. holds

and

51 0.5 B | i, g
fore <s<r.
Proof. We have

p3y — 1L, —M~y+pB(n—1),y—1>—1.
Thus by Proposition and ¢ < p, we have

C(%gfw)Zcuiwv_cl;chﬂ%ﬁﬁym
— Cpe’ / pria-son (4%3}112(;1{?2) d
~Cs (1 i /{u5>1}m W/(UE)Q) /: pridp=C
() [ ()
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The conclusion then follows by substituting in (5.6]) and applying Gronwall’s inequality to
the above differential inequality. O

Lemma 5.5. For any N € N, § > 0 small, A > 0 large and 5 € (0, %) where M,~
are from Proposition [{.2, there exists w > 0 such that the following holds: Suppose u.
satisfies (L)) and the conditions(1)-(3) in Theorem [I1] are satisfied, then for any finite
set X C {0"} x R C R", and the number of elements in X is no more than N. If

moreover for some 0 < e < d < R < w, the followings are satisfied
(5.8) diam(X) < wR,
(5.9) |t —y| >3d, forxz,y€ X and x #y,

(5.10)  [&|(B,(x)) +/ elVu*y /1 =12, <wp", forzeX andd < p<R,
Bp(x)

(5.11) %/ |f2 < Ap™t, for3dF < p < 3R7P,
By (z)
Then we have
(5.12) > d " pe(Ba(x)) < (1+ 6)R " te(Upex Br(x)) + 6.
zeX

The proof of the lemma is based on an inductive application of the sheets-separation
proposition, along with appropriate choices of parameters v and w. To simplify notation
in the remainder of this section, we introduce a shorthand for the sheets-separation term

Vul?  Wiu. Ju,
(5.13) Sy = (Yns1 — Tns) <5| 2“| + i”))— 4

(9xn+1 <y -, Vu€>7

for any pair of points z,y € R+

Proposition 5.6. Suppose the conditions in Theorem [l are satisfied and let X C {0"} x
[t1+d, to—d] C R™ consist of no more than N € N elements and Uyex Bygp—s C 2 C R
Furthermore suppose for —oo < t; < ty < 00,0 < e <d< R < 1,5 € (0, 21an) the
following are satisfied:

(5.14) (I'+ 1)diam(X) < R,  for some ' > 1,
(5.15) |t —y| >3d, forx#yelX,

R
(5.16) / p ! / SyodH;
d Bp(z){ynt+1=t;}

forany x € X, 7 =1,2 and for some w > 0,

G lB@) [ AVuP 12 <w ford<p<h
Bp(x)

dp <w
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1
(5.18) g/ 2 <Ap™t, for3d*F < p < 3RYP
By()

(B o
(5.19) % <A, VxeX (thisis implied by Corollary[5.4 as R > ¢).
Then by denoting S¥' = {t < yns1 < t'}, we have
(5.20) d"ue(Ba(z)) < R "u.(Br(z) N S2) + CR™ + 2w,

for some 9 > 0 and for all x € X. Furthermore, if X consists of more than one point,
then there exists t3 € (t1,t) such that Vx € X

(521) |£L’n+1 — t3| > d,

R
(5.22) / p / |Sy2] dHydp < 3NTw,
d By () {ynt+1=ts}

where R := Ddiam(X) and S, as defined in (5I3). Moreover, both X N X2 and X N X2
are non-empty and

B (Ut Bal(®) 0 55) + 11Uy s Ba(@) N 512)) <
1
(1 + f) R (Ugex Br(z) N S{2) + CR™ + 2w.

Proof. First we choose ¢ to be a non-increasing function satisfying

PR on [0, p]
" 710, on [p+6,00),

and ys satisfying

_ 1, on [t1+(5,t2—5],
Xo = 0, on (—oo,t] U [t, 00),

with x5 > 0 on [t;,t; + 6] and x5 < 0 on [ty — d,t2]. Then we multiply (II]) on both sides
by (Vu,n), where € Co(Q,R"*) is defined by n(y) := (y — 2)@s,(|y = =) Xs(yn+1)- Using
integration by parts, we have

/ £ 0y — 7, Vu) a4 — 2) x5 (Wns)

/faVun

2
— / <5|V2u5| + W(Eua)) divp — eVu ® Vu : Vn

= / (ly = =[5 xs + (0 + 1)bs.pXs + (Yni1 — Tni1)Ps,oX5) dpte
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¢i§,pX6 9 9 8u ,
- /€|y — $| <y -, Vu&) - /€|VU€| ¢6,pX6 - /58$n+1 <y —x, Vua)gb&pxé.

Letting 6 — 0, we have

[T
Bp(x)ﬂstf
—— [ sy [
8B,)ﬂStf B,)ﬂSttf
_'_/ (yn+1 - xn+1)d,ue - / (yn+1 - xn—i—l)d,ue
Bon{yn+1=t2} Bp{ynt+1=t1}

+/ ) ep Ny — x, Vu.)? —/ | Vu.|?
0B,NS,? B,NS;?

ou ou
+/ € (y—ZE,VuE>—/ € (y — z,Vu,).
Bp{yn+1=t2} n1 Bp{yn+1=t1} OTny1

Dividing both sides by p"*! and rearranging gives the following weighted monotonicity
formula

(5.23)
(B N 51)

= —np " pe(By(x) N Sg2) + p " (0B, N S;?)

=—(n+ 1),0‘"‘1/ dpe + p‘"/ djic
By (z)NS; 2 OB, (x)NS;?

+p—n—1/ t €‘VU5|2—p_n_1/ t dge
Bp(x)ﬂStf Bp(x)ﬂStf

=p ! / (Uns1 — T )dpe — p " / (Yns1 — Tpy1)dpte
Bp{ynt+1=t2} Bp{ynt+1=t1}
—n—1 8u —n—1 au
+p 68 <y_x7 qu) _p 8 <y_x7vu€>
Bp{yn+1=t2} OTn41 B Tn+1

9
o {Yynt+1=t1}
- ,0‘"‘1/ | dg— p‘"‘lf fely =2, Vue) + p‘"‘lf ey — @, Vue)®.
Bp(2)NS,? Bp(x)NS,? 9BpNS,?

By the condition given by (5.I0), the sum of norms of the first fours terms are bounded
by 2w. And by (4.0) and (5.I8), the discrepancy term is bounded by

p_n_l / . d&a;ﬁ-
Bp(gc)ﬂStf

< PP 1By () + Crep M /

By 1-p(x)

P

12+ C ”‘2(1+ W’u€2)
2+ Caep /{ (u2)

lue|>1}3NQ
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t
S Cppﬂ_l (/"LE(B2P(I) N Stf)) + Cgp—M’Y—n—lAgp(l—ﬁ)("—l) + 0507_2
pTL
t
S Cppsﬁ/_l (ME(B2P(;L2 N Stlz)) + Cp2—M'y—n—1+(n—1)—5("—1) + Cp“/—l

— M~

<Ol 4 Cp i 4 oY,

where we used (5.7) and € < p in the last line. By (43)) in the proof of Theorem [A.1] and
(57), we have

pe(B, N S;2)
p’ﬂ

—n—1

p

/ foly — 2, Vue)| < Cp (1 " ) <Cpio.
Bp(x)msff

By integrating (5.23) from d to R and noting By(z) C S;?, we obtain the following upper
bound of energy density for p.,

07" 1o(Ba(@)) = d"pe(Ba() 1 S2) < R~ pno(Br(e) 1 SE2) + CR® + 2w,

where 79 = min{ qoq;”,pgv, l_é‘/[“’,v} > (. This proves (5.20).

Next, if X contains more than one point, then we can choose x4 € X such that z, , 11 —
T_ppr > 428X (where 4,41 denotes the (n + 1)-th coordinate of z) and there is no
other element of X in {0} X (2_ 41, T4 np1). Let 1 1= o, + Z22HT=0t and £, 1=

3 3
Typy1 — —mHEZ=r For o€ X,y € By(x),d < p < R, we have

<y - T, Vu€>

€ Vua 2 W Uge 8u€
|8y,:c‘ = '(y”-l'l _xn+1> < | | -+ ( )) — €

2 €
Wi(u.) e|Vu|®
2

8xn—l—l
ou,

81'714,_1 <y -, Vu€>

= '(yn+1 — Tnt1) <

) T |Gost = st )e Ve —

e|lVu>  W(u

< p| AVl Ty 92ty — 0, i) — (o= ) e, )
e|lVu>  W(u

=/ ‘2€| - ie) +&|Vue*ly — 2 1—’/52,n+1
e|lVu > W(u

<p ‘2€| — (65) + pe|Vue [’y /1 = V2,41

And thus by condition (5.I7), we have

ia rR
[ e Syl M,y dpt
t1 Jd By (z)N{ynt1=t}

R 2
. e|Vu W(u ou
/ P 1/ - (yn—i-l - zn—i—l) ( | 2 6‘ + ( €>) —¢€ -
d B,,(x)mstff

- T (y — z, Vue)| dydp
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R
< / p" / ]
d B,,(x)mstff

R
< / p"wp"dp
d

< wR.

Vul?> W
s a (8%) + e Ve |? 1_Vs2,n+1dydp

So there must exist a t3 € [t;,%,] such that

/ e 1/ |Syol AH, . —iyp
Bp(x) {ynt+1=t3}

wR < 3NwR

— = 3NTw.
T (ty —t;) ~ diam(X) “

By the choice of t3 € [t1,,], we automatically have |z, — t3] > d for all z € X. Finally,
by denoting

X, ={zre Xz, >t:},X_ ={re Xz, <t}
we have X4 # () and
(Usex_Bi(x) N S7?) U (Uex, Ba(z) N Si2) C By diam(x)(T0) N SH
for any zo € X. By (5:20)(with R + diam(X) in place of d), we then have
R (ua( vex_Ba(®) N S7) + e (Usex, Br(x) N 52))
<

R+d1am(X) (LU()) n S; )

) (B + diam (X)) By gy (20) 1 SE2)

R
1
(1 + f) R n,uE(BR(ZE()) N Sff) + CR™ + Qw)
(1 + %) R n,uE(UxexBR(l’) N 5:12)) + CR™ + 2w.
U

The next Lemma taken from [RS06] shows the energy ratio at small scales are very close
to the 1-d solution.

Lemma 5.7 (Lemma 5.5 of [RS06]). Suppose the conditions in Theorem 11l are satisfied.
For any T € (0,1),6 > 0 small, A > 0 large, there exists w > 0 sufficiently small and L > 1

sufficiently large such that the following holds: Suppose u. satisfies condition of Theorem
Ej] m B4La(0) C ]Rn_l—l and

(5.24) lus(0)] <1—7
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(5.25) 6(Bare(0))] + / Ty 1 = ey
1 2 n—2

. — 2| < A(4L

(5.26) R

(5.27) 11o(Ba(0)) < A(ALe)™.

Then by denoting (0,t) € R™ to be the point with first n-th coordinate functions being 0
and the (n + 1)-th coordinate functions being t, we have

(5.28) u(0,¢)] > 1 — % for all Le < |t| < 3Le
1
. _ — <
(5.30) ‘/ W%Otﬁ—ﬂ_&

Proof. First we consider the 1-dimensional solution
o(t) = VWi(q(t) VteR,
00 (0) = u(0).

We will use ¢y to choose L depending on 7, > 0. On R™™! we write ¢(z) = qo(x,41) and
choose L > 1 large enough depending on 7,4 so that

g0, )] =1 — g for all L < |t| < 3L,

S
S ML wig)) - a
Wl S0\ 2 @

‘/L W (q(0,8))dt — %‘ <3

—-L

(5.31)

whenever |¢(0)] <1 — 7. The function u satisfies the Allen-Cahn equation
—Au+W'(u) = f,
and by our condition (2) in Theorem [L.I we get ||uc||z(5, ,(x)) < co- Hence by Calderon—

Zygmund estimates we get uniform W2 545 estimates on Bs(0) of the form
(5.32) HuHW2 n1 < C(AL).

T30 (By,(0))

If there is no such w > 0 such that (5.28)), (5.29) and (530) holds then this implies there
exists w; — 0 and u;, f; satisfying the above estimates but that do not satisfy (5.28)), (5:29)
and (530). By (5:32), we get after passing to a suitable subsequence that u; — u weakly

in W25 +% (B, (0)) and f; — f weakly in L"5 % (B3, (0)). By the Sobolev embedding
we have W2"2 +90(By; (0)) — C° for & > 0 and hence we get u; — u uniformly in
C°(Bs.(0)).
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Claim. The functions u; — u = ¢ strongly in W2(Bs.(0)).
Proof. Writing V = (V’,0,,41) we get (5.25)
|V, |?

2
/ [Vl < liminf /
Bsr(0) J77%0 I Bsr(0) 2

< liminf |¢;|(Bs(0)) = 0
j—o0

— W(u) W (u;)

and

1/2
/ |V'u| < liminf/ |Viu;| < C(L) (/ |Vuj|2, /1 — ’/f,n> =0,
B3, (0) J77%0 JB31,(0) Bs1,(0)

where v; = % for Vu; # 0. Therefore |Vul|? = 2W (u) and u(y,t) = uo(t) for some

ug € W2 5 +%((—L L)) — CY((—L,L)) and |[ul| = 2,/2W (ug). As |up(0)] < 1 — 1
by uniform convergence, we see |ug| < 1 and |uj| > 0. After a reflection of the form
(y,x,) — (y, —x,) if necessary, we may assume uj > 0 and hence uj = /2W (up). This

gives us ug = go and u = ¢q. This shows u; = u = ¢ strongly in W'?(Bs.(0)). O
From this claim and (5.31)) we conclude u; satisfies (5.28), (5.29) and (5.30) for sufficiently
large 7 which is a contradiction. O

Now we prove Proposition

Proof of Proposition[5.2. Without loss of generality, we assume Py = {z € R"" ., = 0}
and let 7 : R"*! — P, denote the associated orthogonal projection. Furthermore we know

V;:/J@@Vs_)‘/

is rectifiable and

Ky =
V = 0yH" Py ® dp,
and
(5.33) lim e|Vu*y /1 =12, =0.

e—0 B4(0)
Let N € N be the smallest integer with

N
o)

and let 0 < 6 < 1 be small. By Proposition and the L*™ bound condition of u. in
Theorem [T}, we can fix 7 > 0 such that Ve(0) > 0 sufficiently small we have

2
/ W) | W)
{Jue|>1—7}NB4(0) £ €
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We have by Lemma, [3.8],
W (u.)
(5.34) pe({lucl = 1 — 7N By(0)}) < |€(B4(0))] 42
{Jue|>1-7}nBa(0) €
We want to apply Lemma and Lemma 5.7 We choose 0 < w = w(N, 4, 3,3,C) and
w(d,7,C) <1 where L = L(§, 7) which are the parameters that appear in Lemma [5.5] and
Proposition and C' is the constant so that

1
@+ [1np<c 2=5y0)

We define A, to be the set where the hypotheses for our Propositions hold, that is
us(z)] <1 -,
A= w e Bui0) | Ve < p <31 1By + fy 0 el Vel [T 12,0y < wp,
Ve<p<3:ii [ lfelf Swph

< 30.

We show the complement of the set A. has small measure. By Besicovitch’s covering
theorem, we find a countable sub-covering U, B, (z;), p; € [e,3] of {|u.| <1 —7}\ A. such
that every point = € {|u.| <1—7}\ A belongs to at most B,, balls in the covering, where
B,, depends only on the dimension n. For each 4, either

B+ [ TPz e,

or

1

—/ [fo]? > wpi ™" > Cwpy.
€ J By, ()

On the other hand, by (5.2), for sufficiently small e, we have

1

_/ |f£|2 < wpn—l’\v/p S [573]‘
€ JBy(xi)

By (5.7), for each i, we obtain

pe (Bpu(w)) < Cpt.
Since the overlap in the Besicovitch covering is finite and (5.34]), we get
(5.35)
pe (Bi(0) \ Ao) <30+ Cp?

1
g35+cw—1<g€ B4(0 +/ e|Vu > /1 — 12, +—/ faz)
1€:1(B4(0)) 0 Vue|"y/ 1 T2 B4(O)| |

< 49,
for e sufficiently small. First by Lemma 5.5 and Lemma 5.7 we have x € A,,VLe < R < w,
aw, —0 < (1+0)R "u.(Bgr(x)) + 6.
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By the reduction to the conditions in Proposition [5.2] we obtain
te (2\ {|zns1]| < ¢}) =0, for any fixed ¢ > 0.
Thus, for sufficiently small 6 > 0, we get
A CH{lzng| < ¢}, with (¢ = 0as e — 0.
For any g € B}(0) C R", consider a maximal subset

X={y}x{th <..<tg}C ANz ()

with |z — 2’| > 3Le if © # 2/ € X, where m denotes the projection to {x,,1 = 0}. If

K > N, we apply Lemma [5.5 with d = 3Le, R = w and Lemma [5.7] to get
Naw, = N6 < (L+06)R™"pe (Br(y)) +6 < (14 0)R™" e (Brc. (y)) + 6.
As
limsup(1 + )R " (Bric.(y)) < R™"u(Br(y)) + CS = Ow, + C4,

e—0

and § > 0 is arbitrarily small, we have
Na <40,
which is a contradiction to our definition of N. So we obtain
K<N-1.
Since X is maximal, we get

A. N y) € {y} x UK (tx — 3Le, ty + 3Le).

By (.28),
AN y)N ({y} x Ui, (tk — 3Le, ty + 3Le))
=A.Na " (y) N ({y} x U, (t, — Le, ty + Le)) .
So
A.Nm M y) € {y} x UK (tp — Le, ty, + Le)
and by (5.30)),

tk+L€
[y 2
\—Le € 2

Hence summing over k gives

/ qu_[lgu_,_(]v_l)(g
Acnm—1(y) 19 2

and integrating over B}'(0) C R™ we obtain

N—1
/ Ly ydmr+t < / / Wiue) dy < W=Dow s
Bt (0)nA. € n(0) J A-nm—1( 2
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Recalling (5.33]), we get

e (By(0)) < / L0 () a1 [ (Bu(0)) | + pie (By(0) \ AL

B (0)nA. €

< (N = 1)aw, + Co.

On the other hand, since lim,_,q . (B1(0)) = 6w, and 6 > 0 is arbitrarily small, we obtain

0 <(N-1)a.

And since by definition N is the smallest integer such that § < Na, we have

[AI72]
[DG79]
[HT00]
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[Mod87]
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0=(N-1)a.
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