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Abstract

We present a cut finite element method for the heat equation on two overlapping
meshes: a stationary background mesh and an overlapping mesh that moves around
inside/“on top” of it. Here the overlapping mesh is prescribed a simple continuous
motion, meaning that its location as a function of time is continuous and piecewise
linear. For the discrete function space, we use continuous Galerkin in space and
discontinuous Galerkin in time, with the addition of a discontinuity on the bound-
ary between the two meshes. The finite element formulation is based on Nitsche’s
method and also includes an integral term over the space-time boundary between
the two meshes that mimics the standard discontinuous Galerkin time-jump term.
The simple continuous mesh motion results in a space-time discretization for which
standard analysis methodologies either fail or are unsuitable. We therefore employ
what seems to be a relatively new energy analysis framework that is general and
robust enough to be applicable to the current setting. The energy analysis consists
of a stability estimate that is slightly stronger than the standard basic one and an
a priori error estimate that is of optimal order with respect to both time step and
mesh size. We also present numerical results for a problem in one spatial dimension
that verify the analytic error convergence orders.

Keywords: CutFEM, space-time CutFEM, time-dependent CutFEM, overlapping meshes,
parabolic problem, energy analysis

1 Introduction

Issue - Cost of mesh generation: Generating computational meshes for numerically
solving differential equations can be a computationally costly procedure. In practical
applications the mesh generation can often represent a substantial amount of the total
computation time. This is especially true for problems where the solution domain changes
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during the solve process, e.g., evolving geometry and shape optimization. With standard
methods the mesh then has to be constantly checked for degeneracy and updated if
needed, meaning a persisting meshing cost for the entire solve process.

Remedy - CutFEM: Cut finite element methods (CutFEMs) provide a way of de-
coupling the computational mesh from the problem geometry. This means that the same
discretization can be used for a changing solution domain. CutFEMs can thus make
remeshing redundant for problems with changing geometry but also for other applica-
tions involving meshing such as adaptive mesh refinement. The cost of CutFEMs is
treating the mesh cells that are arbitrarily cut by the independent problem geometry.

Figure 1: Computed streamlines around a pro-
peller. Image by Anders Logg is licensed under
CC BY 4.0.

CutFEM on overlapping meshes: A
common type of problem with changing
geometry is one where there is a mov-
ing object in the solution domain, e.g.,
see Figure 1. A straightforward CutFEM-
approach to this problem would be to con-
sider CutFEM for the interface problem,
i.e., to use a background mesh of the empty
solution domain together with an interface
that represents the object. However, a
more advantageous and sophisticated ap-
proach is to consider CutFEM on overlap-
ping meshes, meaning two or more meshes
ordered in a mesh hierarchy. This is also
called composite grids/meshes and multi-
mesh in the literature. The idea is to use
a background mesh of the empty solution
domain, just as for the interface problem,
but instead to encapsulate the object in
a second mesh. The mesh containing the
object is then placed “on top” of the background mesh, creating a mesh hierarchy. The
motion of the object will thus also cause its encapsulating mesh to move. There are
some advantages of using a second overlapping mesh instead of an interface. Firstly, an
overlapping mesh can incorporate boundary layers close to the object. Something an in-
terface cannot. Secondly, the total number of degrees of freedom (DOFs) of the resulting
linear system may be reduced. This is so since for CutFEM for the interface problem
this number can be twice the number of DOFs of the background mesh or more, whereas
for CutFEM on overlapping meshes it will be the number of DOFs of the background
mesh plus the number of DOFs of the second mesh. Thirdly, if the object has a com-
plicated geometry, representing it with an interface can lead to tricky cut situations and
thus a higher computational cost. By instead using an object-encapsulating mesh with a
simply-shaped exterior boundary, the cut situations can be made less tricky, see Figure 2.
A way to further sophisticate this is to allow the moving object to deform the interior
of the overlapping mesh while initially keeping its exterior boundary fixed. Only when
the deformations have become too large is the overlapping mesh “snapped” into place
to avoid degeneracy. Such a snapping feature provides a choice between computing cut
situations or computing deformations, thus allowing the cheapest option for the situation
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at hand to be chosen. A drawback of using a second overlapping mesh instead of an
interface is that overlapping meshes require collision computations between the cells of
the meshes, something that can be computationally expensive.

Figure 2: Overlapping meshes for a problem
with a rotating propeller. Image by Anders
Logg is licensed under CC BY 4.0.

CutFEM on overlapping meshes can
also be used as an alternative to adaptive
mesh refinement by keeping a smaller finer
mesh in regions requiring higher accuracy.
Yet another application example is to use a
composition of simpler structured meshes
to represent a complicated domain.

Literary background: Over the past
two decades, a theoretical foundation for
the formulation of stabilized CutFEM has
been developed by extending the ideas of
Nitsche, presented in [1], to a general weak
formulation of the interface conditions,
thereby removing the need for domain-
fitted meshes. The foundations of Cut-
FEM were presented in [2] and then ex-
tended to overlapping meshes in [3]. The
CutFEM methodology has since been de-
veloped and applied to a number of im-
portant multiphysics problems. See for ex-
ample [4–7]. For overlapping meshes in
particular, see for example [8–11]. So far,
only CutFEM for stationary problems on
overlapping meshes have been developed
and analysed to a satisfactory degree, thus
leaving analogous work for time-dependent
problems to be desired.

This work: The work presented here is intended to be an initial part of developing and
analysing CutFEMs for time-dependent problems on overlapping meshes. We consider a
CutFEM for the heat equation on two overlapping meshes: one stationary background
mesh and one moving overlapping mesh with no object. Depending on how the mesh
motion is represented discretely, quite different space-time discretizations may arise, al-
lowing for different types of analyses to be applied. Generally the mesh motion may
either be continuous or discontinuous. We have considered the simplest case of both of
these two types, which we refer to as simple continuous and simple discontinuous mesh
motion. Simple continuous mesh motion means that the location of the overlapping mesh
as a function of time is continuous and piecewise linear, and simple discontinuous mesh
motion means that it is discontinuous and piecewise constant. The latter is studied in
other work and the former in this.

Analytic novelty: The simple continuous mesh motion results in a space-time dis-
cretization with skewed space-time nodal trajectories and cut prismatic space-time cells.
This discretization lacks a slabwise product structure between space and time. Standard
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analysis methodology relying on such a structure therefore either fail or require too re-
strictive assumptions here. The reason for this is that standard analysis methodology
typically use spatial operators that map to the momentaneous finite element space, such
as the discrete Laplacian and the solution operator used to define the H−1-norm on L2. If
the spatial discretization changes within slabs these operators get an intrinsic time depen-
dence that standard methodologies fail to incorporate. We therefore employ what seems
to be a relatively new analysis framework for parabolic problems that avoids the use of
operators of the aforementioned type which thus makes it general and robust enough to
be applicable to the current discretization. It seems that the core components of this
analysis framework have been discovered independently by us and Cangiani, Dong, and
Georgoulis in [12]. The analysis is of an energy type, where space-time energy norms are
used to derive and obtain a stability estimate that is slightly stronger than the standard
basic one and an a priori error estimate that is of optimal order with respect to both time
step and mesh size. The main steps of this new energy analysis are:

0. Handling of the time derivative: This is the initial step that characterizes and sets
the course for the whole analysis. Instead of the H−1-norm, the L2-norm scaled
with the time step is used to include the time-derivative term in a space-time energy
norm.

1. Analytic preliminaries: A “perturbed coercivity” is proved which is used to show
an inf-sup condition. These results become slightly different compared with corre-
sponding standard ones due to the new handling of the time derivative.

2. Stability analysis: The “perturbed coercivity” is used to derive a stability estimate
that is somewhat stronger than the standard basic one obtained by testing with the
discrete solution.

3. Error analysis: Just as in a standard energy analysis, a Cea’s lemma type argument
is followed by using the inf-sup condition, Galerkin orthogonality, and continuity.
A difference here is that the continuity comes with a twist, namely temporal inte-
gration by parts, which is needed because of the slightly different inf-sup condition.
Finally, together with an interpolation estimate, an optimal order a priori error
estimate may be proved.

Paper overview: In Section 2, the model problem is formulated. In Section 3, the
CutFEM is presented. In Section 4, tools for the analysis are presented. In Section 5, we
present and prove a stability estimate for the discrete solution. In Section 6, we present
and prove an optimal order a priori error estimate. In Section 7, we present numerical
results for a problem in one spatial dimension that verify the analytic convergence orders.
In the appendix we present technical estimates and interpolation results used in the
analysis.

2 Problem

For d = 1, 2, or 3, let Ω0 ⊂ Rd be a bounded convex domain with polygonal bound-
ary ∂Ω0. Let T > 0 be a given final time. Let G ⊂ Ω0 ⊂ Rd be another bounded
domain with polygonal boundary ∂G. We let the location of G be time-dependent by
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prescribing for G a velocity µ : [0, T ] → Rd. We point out that the size and shape of
G remain the same for all times. Using Ω0 and G, we define the following two domains:

: Ω1

: Ω2

: Γ
Ω0

µ

G

Figure 3: Partition of Ω0 into Ω1 (blue) and
Ω2 (red) for d = 2 with G moving with velocity
µ.

Ω1 := Ω0 \ (G ∪ ∂G) (2.1)

Ω2 := Ω0 ∩G (2.2)

with boundaries ∂Ω1 and ∂Ω2, respec-
tively. Let their common boundary be

Γ := ∂Ω1 ∩ ∂Ω2 (2.3)

For t ∈ [0, T ], we have the partition

Ω0 = Ω1(t) ∪ Γ(t) ∪ Ω2(t) (2.4)

See Figure 3 for an illustration. We con-
sider the heat equation in Ω0× (0, T ] with
source f ∈ L2((0, T ],Ω0), homogeneous
Dirichlet boundary conditions, and initial data u0 ∈ H2(Ω0) ∩H1

0 (Ω0):
u̇−∆u = f in Ω0 × (0, T ]

u = 0 on ∂Ω0 × (0, T ]

u = u0 in Ω0 × {0}
(2.5)

3 Method

3.1 Preliminaries

Let T0 and TG be quasi-uniform simplicial meshes of Ω0 and G, respectively. We denote
by hK the diameter of a simplex K. We partition the time interval (0, T ] quasi-uniformly
into N subintervals In = (tn−1, tn] of length kn = tn − tn−1, where 0 = t0 < t1 < . . . <
tN = T and n = 1, . . . , N . We assume the following space-time quasi-uniformity: For
h = maxK∈T0∪TG{hK}, and k = max1≤n≤N{kn},

h2 . kmin k . hmin (3.1)

where kmin = min1≤n≤N{kn}, and hmin = minK∈T0∪TG{hK}. We next define the following
slabwise space-time domains:

S0,n := Ω0 × In (3.2)

Si,n := {(x, t) ∈ S0,n : x ∈ Ωi(t)} (3.3)

Γ̄n := {(s, t) ∈ S0,n : s ∈ Γ(t)} (3.4)

In general we will use bar, i.e., ·̄, to denote something related to space-time, such as
domains and variables. In addition to the domains Ω1(t) and Ω2(t), we also consider the
“covered” overlap domain ΩO(t). To define it we will use the set of simplices T0,Γ̄n

:=
{K ∈ T0 : ∃t ∈ In such that K ∩ Γ(t) 6= ∅}, i.e., all simplices in T0 that are cut by Γ̄n.
We define the overlap domain ΩO(t) for a time t ∈ In by

ΩO(t) :=
⋃

K∈T0,Γ̄n

K ∩ Ω2(t) (3.5)
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S1,n−1

x2

x1

t S2,n−1

tn−2

S1,n

tn

S2,n

tn−1

tn−1
x

t

tn

Figure 4: Left: Space-time slabs with simple continuous mesh motion.
Right: Space-time discretization for S0,n for d = 1 when µ > 0. At time
t = tn, the nodes of the blue background mesh T0 are marked with circles
and the nodes of the red moving mesh TG with crosses. The blue vertical
lines are thus the nodal trajectories of T0 and the red skewed vertical lines
those of TG.

As a discrete counterpart to the motion of the domain G, we prescribe a simple continuous
motion for the overlapping mesh TG. By this we mean that the location of the overlapping
mesh TG is a function with respect to time that is continuous on [0, T ] and linear on
each In. This means that the discrete velocity we prescribe for TG is constant on each
In. Henceforth, we let µ denote this discrete velocity. Letting µcont denote the velocity
prescribed for G, we take the discrete velocity to be µ|In = k−1

n

∫
In
µcont(t) dt, for n =

1, . . . , N , i.e., the slabwise average. An illustration of the slabwise space-time domains
Si,n defined by (3.3) is shown in Figure 4 (Left). Figure 4 (Right) shows a slabwise space-
time discretization that has both straight and skewed space-time trajectories as a result
of the simple continuous mesh motion. In a standard setting with only straight space-
time trajectories, the time-derivative operator ∂t is naturally also a derivative operator in
the direction of the trajectories. This is convenient and we would like have an analogous
operator for our setting. We start by defining the domain-dependent velocity µi = µi(t)
by

µi(t) :=

{
0 i = 1

µ(t) i = 2
(3.6)

We use this velocity to define the domain-dependent derivative operator Dt = Dt,i by

Dt,i{·} := ∂t{·}+ µi · ∇{·} (3.7)

The operator Dt is a scaled derivative operator in the direction of the space-time tra-
jectories. To see this, consider the space-time vector µ̄i = (µi, 1) and the space-time
gradient ∇̄ = (∇, ∂t). The unscaled derivative operator in the direction of the space-time
trajectories is

Ds,i =
µ̄i
|µ̄i|
· ∇̄ =

1

|µ̄i|
(
µi · ∇+ ∂t

)
=

1

|µ̄i|
Dt,i (3.8)

We thus have Dt,i = |µ̄i|Ds,i. Let τ̄ = τ̄(t) denote a space-time trajectory that is uncut
on the time interval (ta, tb), and v be a function of sufficient regularity. The intrinsic
scaling of Dt gives the convenient integral identity∫ τ̄(tb)

τ̄(ta)

Dsv ds =

∫ tb

ta

Dtv dt (3.9)
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x2

x1

n2

n̄2 Γ̄n
Ω2(t

∗)

tn−1

tn

t∗

t

Figure 5: Space-time normal vector n̄2 to Γ̄n
(red) in relation to the spatial normal vector n2

to ∂Ω2.

Next we introduce some normal vectors.
Let the spatial vector n = ni denote the
outward pointing unit normal vector to
∂Ωi. Let the space-time vector n̄ = n̄i =
(n̄xi , n̄

t
i) denote the outward pointing unit

normal vector to ∂Si,n, where n̄xi and n̄ti
denote the spatial and temporal compo-
nent(s), respectively. On a purely spatial
subset, the space-time unit normal vector
is purely temporal, i.e., n̄i = (0,±1), and
vice versa, i.e., n̄i = (ni, 0). The remaining
case is a mixed space-time subset and the
only such set is Γ̄n. See Figure 5 for an illustration. We define the space-time unit normal
vector to Γ̄n by

n̄i|Γ̄n
= (n̄xi , n̄

t
i)|Γ̄n

:=
1√

(ni · µ)2 + 1
(ni,−(ni · µ)) (3.10)

3.2 Finite element spaces

We define the discrete spatial finite element spaces Vh,0 and Vh,G as the spaces of con-
tinuous piecewise polynomials of degree ≤ p on T0 and TG, respectively. We also let the
functions in Vh,0 be zero on ∂Ω0. For t ∈ [0, T ], we use these two spaces to define the
broken finite element space Vh(t) by

Vh(t) := {v : v|Ω1(t) = v0|Ω1(t) for some v0 ∈ Vh,0 and

v|Ω2(t) = vG|Ω2(t) for some vG ∈ Vh,G}
(3.11)

See Figure 6 for an illustration of a function v ∈ Vh(t). For n = 1, . . . , N , we define the

x

v(x, t)

0

Figure 6: Example of v(·, t) ∈ Vh(t) for d = 1 and p = 1, where T0 is blue
and TG red.

discrete space-time finite element spaces V n
h,0 and V n

h,G as the spaces of functions that for
a t ∈ In lie in Vh,0 and Vh,G, respectively, and in time are polynomials of degree ≤ q along
the trajectories of T0 and TG for t ∈ In, respectively. For n = 1, . . . , N , we use these two
spaces to define the broken finite element space V n

h by:

V n
h := {v : v|S1,n = vn0 |S1,n for some vn0 ∈ V n

h,0 and

v|S2,n = vnG|S2,n for some vnG ∈ V n
h,G}

(3.12)

We define the global space-time finite element space Vh by:

Vh := {v : v|S0,n ∈ V n
h , n = 1, . . . , N} (3.13)
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3.3 Finite element formulation

We may now formulate the space-time cut finite element formulation for the problem
described in Section 2 as follows: Find uh ∈ Vh such that

Bh(uh, v) =

∫ T

0

(f, v)Ω0 dt+ (u0, v
+
0 )Ω0 ∀v ∈ Vh (3.14)

The non-symmetric bilinear form Bh is defined by

Bh(w, v) :=
2∑
i=1

N∑
n=1

∫
In

(ẇ, v)Ωi(t) dt+
N∑
n=1

∫
In

Ah,t(w, v) dt

+
N−1∑
n=1

([w]n, v
+
n )Ω0 + (w+

0 , v
+
0 )Ω0 +

N∑
n=1

∫
Γ̄n

−n̄t[w]vσ ds̄

(3.15)

where (·, ·)Ω is the L2(Ω)-inner product, [v]n is the jump in v at time tn, i.e., [v]n = v+
n−v−n ,

v±n = limε→0+ v(x, tn± ε). The last term in Bh mimics the standard dG-time-jump term,
but over Γ̄n. Here, n̄ is the space-time normal vector to Γ̄n defined by (3.10), [v] is the
jump in v over Γ̄n, i.e., [v] = v1 − v2, vi = limε→0+ v(s̄ − εn̄i), s̄ = (s, t). If n̄ = n̄1, we
take σ = 1

2
(3 + sgn(n̄t)) and if n̄ = n̄2, we take σ = 1

2
(3− sgn(n̄t)), where sgn is the sign

function. These choices make it so that σ always picks the limit on the positive (in time)
side of Γ̄n. The symmetric bilinear form Ah,t is defined by

Ah,t(w, v) :=
2∑
i=1

(∇w,∇v)Ωi(t) − |µ̄|(〈∂n̄xw〉, [v])Γ(t) − |µ̄|(〈∂n̄xv〉, [w])Γ(t)

+ |µ̄|(γh−1
K [w], [v])Γ(t) + ([∇w], [∇v])ΩO(t)

(3.16)

where |µ̄| =
√
|µ|2 + 1, 〈v〉 is a convex-weighted average of v on Γ, i.e., 〈v〉 = ω1v1 +ω2v2,

where ω1, ω2 ∈ [0, 1] and ω1 + ω2 = 1, ∂n̄xv = n̄x · ∇v, γ ≥ 0 is a stabilization parameter,
hK = hK(x) = hK0 for x ∈ K0, where hK0 is the diameter of simplex K0 ∈ T0, and ΩO(t)
is the overlap domain defined by (3.5). The reason for including the factor |µ̄| in the Γ(t)
terms is that when considering spacetime, these terms should be on Γ̄n. Since |µ̄| is the
skewed temporal scaling, we have that∫

In

|µ̄|(w, v)Γ(t) dt =

∫
Γ̄n

wv ds̄ (3.17)

4 Analytic preliminaries

4.1 The bilinear form Ah,t

The space of Ah,t is H3/2+ε(∪iΩi(t)) where ε > 0 may be arbitrarily small. Let ΓK(t) :=
K ∩ Γ(t). We define the following two mesh-dependent norms:

‖w‖2
1/2,h,Γ(t) :=

∑
K∈T0,Γ(t)

h−1
K ‖w‖

2
ΓK(t) ‖w‖2

−1/2,h,Γ(t) :=
∑

K∈T0,Γ(t)

hK‖w‖2
ΓK(t) (4.1)

Note that

‖w‖2
Γ(t) ≤ h‖w‖2

1/2,h,Γ(t) (w, v)Γ(t) ≤ ‖w‖−1/2,h,Γ(t)‖v‖1/2,h,Γ(t) (4.2)

8



We define the time-dependent spatial energy norm |||·|||Ah,t
by

|||w|||2Ah,t
:=

2∑
i=1

‖∇w‖2
Ωi(t)

+ |µ̄|‖〈∂n̄xw〉‖2
−1/2,h,Γ(t) + |µ̄|‖[w]‖2

1/2,h,Γ(t) + ‖[∇w]‖2
ΩO(t) (4.3)

Continuity of Ah,t follows from using (4.2) in (3.16). Next we consider the coercivity:

Lemma 4.1 (Discrete coercivity of Ah,t). Let the bilinear form Ah,t and the energy
norm |||·|||Ah,t

be defined by (3.16) and (4.3), respectively. Then, for t ∈ [0, T ] and γ
sufficiently large,

Ah,t(v, v) & |||v|||2Ah,t
∀v ∈ Vh(t) (4.4)

Proof. Following the proof of the coercivity in [2], we consider

2|µ̄|(〈∂n̄xv〉, [v])Γ(t) ≤
|µ̄|
ε
‖〈∂n̄xv〉‖2

−1/2,h,Γ(t) + ε|µ̄|‖[v]‖2
1/2,h,Γ(t)

≤ 2|µ̄|
ε
CI

( 2∑
i=1

‖∇v‖2
Ωi(t)

+ ‖[∇v]‖2
ΩO(t)

)
− |µ̄|

ε
‖〈∂n̄xv〉‖2

−1/2,h,Γ(t) + ε|µ̄|‖[v]‖2
1/2,h,Γ(t)

(4.5)

where we have used Lemma A.5 and denoted its constant by CI . We use (4.5) in

Ah,t(v, v) =
2∑
i=1

‖∇v‖2
Ωi(t)
− 2|µ̄|(〈∂n̄xv〉, [v])Γ(t) + γ|µ̄|‖[v]‖2

1/2,h,Γ(t) + ‖[∇v]‖2
ΩO(t)

≥
(

1− 2|µ̄|CI
ε

) 2∑
i=1

‖∇v‖2
Ωi(t)

+
|µ̄|
ε
‖〈∂n̄xv〉‖2

−1/2,h,Γ(t)

+ (γ − ε)|µ̄|‖[v]‖2
1/2,h,Γ(t) +

(
1− 2|µ̄|CI

ε

)
‖[∇v]‖2

ΩO(t)

(4.6)

By taking ε > 2|µ̄|CI , and γ > ε we may obtain (4.4) from (4.6). �

4.2 The bilinear form Bh

The bilinear form Bh can be expressed differently, as noted in the following lemma:

Lemma 4.2 (Alternative form of Bh). Let ζ = 1
2
(3− sgn(n̄t)). The bilinear form Bh,

defined by (3.15), can be written as

Bh(w, v) =
2∑
i=1

N∑
n=1

∫
In

(w,−v̇)Ωi(t) dt+
N∑
n=1

∫
In

Ah,t(w, v) dt

+
N−1∑
n=1

(w−n ,−[v]n)Ω0 + (w−N , v
−
N)Ω0 +

N∑
n=1

∫
Γ̄n

n̄twζ [v] ds̄

(4.7)

Proof. The proof is analogous to the standard case. The first term in (3.15) is integrated
by parts in time via

∫
Si,n

(∇, ∂t) · (0, wv) dx̄ and the result is combined with the last three

terms in (3.15). The combination of purely time-jump-related terms is exactly as in the
standard case. For the Γ̄n-integral terms, we let ζ = 1

2
(3− sgn(n̄t)), if σ = 1

2
(3 + sgn(n̄t))

and n̄ = n̄1. This makes ζ, σ ∈ {1, 2} and ζ 6= σ. �
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An important result for the analysis is obtained by first taking the same function as
both arguments of Bh. We present this result as a coercivity of Bh with the following
space-time energy norm:

|||v|||2Bh
:=

N∑
n=1

∫
In

|||v|||2Ah,t
dt

+
N−1∑
n=1

‖[v]n‖2
Ω0

+ ‖v−N‖
2
Ω0

+ ‖v+
0 ‖2

Ω0
+

N∑
n=1

‖|n̄t|1/2[v]‖2
Γ̄n

(4.8)

Lemma 4.3 (Discrete coercivity of Bh). Let the bilinear form Bh and the energy
norm |||·|||Bh

be defined by (3.15) and (4.8), respectively. Then, for γ sufficiently large,
we have that

Bh(v, v) & |||v|||2Bh
∀v ∈ Vh (4.9)

Proof. The proof is analogous to the standard case. First the same function v is taken as
both arguments of Bh. Then the first term in (3.15) is integrated in time via

∫
Si,n

(∇, ∂t) ·
(0, v2) dx̄ and the result is combined with the last three terms in (3.15). The combination
of purely time-jump-related terms is exactly as in the standard case. For the Γ̄n-integral
terms, we note from the interdependence of σ and n̄ that the combined integrand may
be written as n̄tsgn(n̄t)[v]2. Also using Lemma 4.1 then shows the desired estimate. �

For the continued analysis, we define three space-time energy norms by

|||v|||2X :=
2∑
i=1

N∑
n=1

∫
In

kn‖Dtv‖2
Ωi(t)

dt+ |||v|||2Bh
(4.10)

|||v|||2Y+
:=

N∑
n=1

(∫
In

1

kn
‖v‖2

Ω0
dt+

∫
In

|||v|||2Ah,t
dt+ ‖v+

n−1‖2
Ω0

)
(4.11)

|||v|||2Y− :=
N∑
n=1

(∫
In

1

kn
‖v‖2

Ω0
dt+

∫
In

|||v|||2Ah,t
dt+ ‖v−n ‖2

Ω0

)
(4.12)

The X-norm is the main norm, meaning that it is in this norm that we obtain stability
and error estimates. The Y -norms are auxiliary norms. We use the X-norm and Y -norms
to obtain continuity of Bh which comes in two variants depending on the starting point,
i.e., the standard form of Bh (3.15) or the alternative (4.7).

Lemma 4.4 (Continuity of Bh). Let the bilinear form Bh be defined by (3.15) and the
norms |||·|||X , |||·|||Y+

, and |||·|||Y− by (4.10), (4.11), and (4.12), respectively. Then for any
functions w and v with sufficient spatial and temporal regularity we have that

Bh(w, v) . |||w|||X |||v|||Y+
(4.13)

Bh(w, v) . |||w|||Y− |||v|||X (4.14)

Proof. The proofs of (4.13) and (4.14) are analogous so we only consider the latter
since it gives the continuity result needed in the error analysis. The starting point is
the alternative form of Bh (4.7). Applying the Cauchy–Schwarz inequality to all the
terms (several times and different versions for some), (3.7) to split the first term followed
by Corollary A.1 for the w-factor in the resulting µi · ∇-part, the continuity of Ah,t in
the treatment of the second term, and Lemma A.3 in the treatment of the fifth, we get
product terms, where one factor may be estimated by |||w|||Y− and the other by |||v|||X . �
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Next, we present an estimate involving the bilinear form Bh and the X-norm that may
be viewed as a counterpart to such a coercivity. Due to the appearance of the estimate,
we call it “perturbed coercivity”. The estimate is a cornerstone of the energy analysis. It
is fundamental to the stability analysis and also the starting point for deriving an inf-sup
condition that in turn is essential for the error analysis. Key technical results used in the
proof of the perturbed coercivity are Lemma A.8 and Lemma A.10.

Lemma 4.5 (Discrete perturbed coercivity of Bh). Let the bilinear form Bh and
the norm |||·|||X be defined by (3.15) and (4.10), respectively. Then, for q = 0, 1, and γ
sufficiently large, there exists a constant δ > 0 such that

Bh(v, v + δknDtv) & |||v|||2X ∀v ∈ Vh (4.15)

Proof. Using Lemma 4.3 with constant β > 0, the left-hand side of (4.15) is

Bh(v, v + δknDtv) ≥ β |||v|||2Bh
+Bh(v, δknDtv) (4.16)

The second term on the right-hand side is

Bh(v, δknDtv) =
2∑
i=1

N∑
n=1

∫
In

(v̇, δknDtv)Ωi(t) +
N∑
n=1

∫
In

Ah,t(v, δknDtv) dt

+
2∑
i=1

N−1∑
n=1

([v]n, (δknDtv)+
n )Ωi,n

+
2∑
i=1

(v+
0 , (δknDtv)+

0 )Ωi,0

+
N∑
n=1

∫
Γ̄n

−n̄t[v](δknDtv)σ ds̄

(4.17)

The treatment of most of the terms involve the Cauchy–Schwarz inequality and for some
also an ε-weighted Young’s inequality. The first term in (4.17) is split using (3.7), where
the Dt-part is good, and we use standard estimates for the µi · ∇-part. For the second
term in (4.17), we use the continuity of Ah,t followed by Lemma A.8. The third and fourth
term in (4.17) are estimated by Lemma A.10. For the fifth and final term in (4.17), we
use Lemma A.3 and Lemma A.8. Collecting all the estimates and using the result in
(4.16), we may obtain

Bh(v, v + δknDtv) ≥ δ

(
1− δ

ε
C

) 2∑
i=1

N∑
n=1

∫
In

kn‖Dtv‖2
Ωi(t)

dt

+

(
β −

(
ε+ δ +

δ2

ε

)
C

)
|||v|||2Bh

(4.18)

where C > 0 denote various constants. First taking ε > 0 sufficiently small and then
taking δ > 0 sufficiently small gives the desired estimate. �

Using Lemma 4.5 and Lemma A.11, we may obtain the discrete inf-sup condition:

Corollary 4.1 (A discrete inf-sup condition for Bh). Let the bilinear form Bh and
the norm |||·|||X be defined by (3.15) and (4.10), respectively. Then, for q = 0, 1, and γ
sufficiently large, we have that

|||w|||X . sup
v∈Vh\{0}

Bh(w, v)

|||v|||X
∀w ∈ Vh (4.19)
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To show Galerkin orthogonality, we need the following lemma on consistency:

Lemma 4.6 (Consistency). The solution u to problem (2.5) also solves (3.14).

Proof. First insert u in place of uh on the left-hand side of (3.14) and use the regularity
of u. Then integrate by parts in space via

∫
Si,n

(∇, ∂t) · (∇uv, 0) dx̄ to get interior and

boundary terms. The exterior boundary terms vanish because of the boundary conditions
imposed on v thus leaving the Γ-terms which are combined. Applying Lemma A.1 and the
regularity of u only leaves terms which from (2.5) equals the right-hand side of (3.14). �

From Lemma 4.6, we may obtain the Galerkin orthogonality:

Corollary 4.2 (Galerkin orthogonality). Let the bilinear form Bh be defined by
(3.15), and let u and uh be the solutions of (2.5) and (3.14), respectively. Then

Bh(u− uh, v) = 0 ∀v ∈ Vh (4.20)

5 Stability analysis

In this section we present and prove a stability estimate for the solution uh to (3.14).
The key component in the proof is Lemma 4.5, i.e., the perturbed coercivity of Bh on Vh.

Lemma 5.1 (A stability estimate in |||·|||X). Let uh be the solution of (3.14). Let
u0 and f be the initial data and source in (2.5), respectively. Then, for q = 0, 1, and γ
sufficiently large, we have that

|||uh|||X . ‖u0‖Ω0 + ‖f‖L2((0,T ];L2(Ω0)) (5.1)

Proof. By taking v = uh ∈ Vh in Lemma 4.5 and v = uh + δknDtuh ∈ Vh in (3.14), we
have

|||uh|||2X . Bh(uh, uh + δknDtuh)

= (u0, u
+
h,0)Ω0 + (u0, δk1(Dtuh)

+
0 )Ω0

+
N∑
n=1

∫
In

(f, uh)Ω0 dt+
N∑
n=1

∫
In

(f, δknDtuh)Ω0 dt

(5.2)

Applying the Cauchy–Schwarz inequality to all the terms (several times and different
versions for some), Lemma A.10 in the treatment of the second term, and Corollary A.1
in the treatment of the third, we get product terms, where one factor is ‖u0‖Ω0 or
‖f‖L2((0,T ];L2(Ω0)) and the other may be estimated by |||uh|||X . Dividing both sides by
|||uh|||X thus gives (5.1).

�

6 A priori error analysis

Theorem 6.1 (An optimal order a priori error estimate in |||·|||X). Let |||·|||X be
defined by (4.10), let u be the solution of (2.5) and let uh be the finite element solution
defined by (3.14). Then, for q = 0, 1, and γ sufficiently large, we have that

|||u− uh|||2X . k2q+1F 2
k (u) + h2p

(
F 2
h (u) + E2

h,1(u)

)
(6.1)

where Fk, Fh, and Eh,1 are defined by (B.25), (B.26), and (B.23), respectively.
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Proof. We use the interpolant Īhu ∈ Vh, where Īh is the space-time interpolation operator
defined by (B.19), to split the error e = u− uh into ρ = u− Īhu and θ = Īhu− uh. Thus

|||e|||X ≤ |||ρ|||X + |||θ|||X (6.2)

where we focus on the θ-part first. From Corollary 4.2, i.e., Galerkin orthogonality, we
have for any v ∈ Vh that

Bh(θ, v) = −Bh(ρ, v) (6.3)

We note that θ ∈ Vh and use Corollary 4.1, i.e., a discrete inf-sup condition for Bh, the
Galerkin orthogonality result (6.3), and Lemma 4.4, i.e., continuity of Bh, to estimate
the θ-part by

|||θ|||X . sup
v∈Vh\{0}

Bh(θ, v)

|||v|||X
= sup

v∈Vh\{0}

−Bh(ρ, v)

|||v|||X
. sup

v∈Vh\{0}

|||ρ|||Y− |||v|||X
|||v|||X

= |||ρ|||Y− (6.4)

Using (6.4) in (6.2), we estimate the approximation error by

|||e|||2X . |||ρ|||
2
X + |||ρ|||2Y−

.
∑
i,n

(
kn

∫
In

‖Dtρ‖2
Ωi(t)

dt+
1

kn

∫
In

‖ρ‖2
Ωi(t)

dt

)
+ |||ρ|||2Bh

+
N∑
n=1

‖ρ−n ‖2
Ω0

(6.5)

By applying various interpolation error estimates: Lemma B.4 and using (3.1) for the
first term, Lemma B.5 for the second, and Corollary B.1 for the third, we get results that
may be estimated by the right-hand side of (6.1).

�

7 Numerical results

Here we present numerical results for a problem in one spatial dimension on the unit
interval with exact solution u(x, t) = sin2(πx)e−t/2. We compute uh for p = 1 and
q = 0, 1. For dG(1) in time, some of the left-hand side integrals involving time have been
approximated locally by quadrature. For integrals over cut space-time prisms, composite
three-point Lobatto quadrature has been used in time. For integrals over intraprismatic
segments of the space-time boundary Γ̄n, three-point Lobatto quadrature has been used.
Both of these choices of quadrature result in a quadrature error = O(k4). The right-hand
side integrals have been approximated locally by quadrature over the space-time prisms:
first quadrature in time, then quadrature in space. In space, the trapezoidal rule has been
used, thus resulting in a quadrature error = O(h2). For dG(0) in time, the midpoint rule
has been used, thus resulting in a quadrature error = O(k2). For dG(1) in time, three-
point Lobatto quadrature has been used, thus resulting in a quadrature error = O(k4).
For simplicity, the velocity µ of the overlapping mesh is set to be constant at the value
µ(tn) on every subinterval In = (tn−1, tn]. The stabilization parameter γ = 10.

For the error convergence study, both T0 and TG are uniform meshes, with mesh sizes
h0 and hG, respectively. The temporal discretization is also uniform with time step k
for each instance. The final time is set to T = 1, the length of TG is 0.25, and the
initial position of TG is the spatial interval [0.125, 0.125 + 0.25]. The error is |||e|||X =
|||u− uh|||X . All time, space, and space-time integrals involving u in the X-norm have
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been approximated locally by three-point Gauss-Legendre quadrature: first quadrature
in time, then quadrature in space where applicable. This results in a quadrature error
= O((k6 +h6)1/2). In the k-convergence study, the mesh sizes have been fixed at h = 10−3

and h = 10−4 for dG(0) and dG(1), respectively. Analogously, in the h-convergence study,
the time step has been fixed at k = 10−4 and k = 10−2 for dG(0) and dG(1), respectively.
Figure 7 and 8 display error convergence plots for dG(0) and dG(1) in time with µ = 0.6.
The left plots show the error versus k and the right plots versus h = h0 ≥ hG. Besides
the computed error, each plot contains a line segment that has been computed with the
linear least squares method to fit the error data. This line segment is referred to as the
LLS of the error. Reference slopes are also included. In Table 1 we summarize the slope
of the LLS of the error for different values of µ.

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

Figure 7: Error convergence for dG(0) with µ = 0.6.
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Figure 8: Error convergence for dG(1) with µ = 0.6.

dG(0) in time dG(1) in time
µ versus k (points) versus h (points) versus k (points) versus h (points)
0 0.5058 (4–12) 1.0190 (1–9) 1.4506 (1–5) 1.0137 (1–15)
0.1 0.5026 (4–12) 1.0205 (1–9) 1.4893 (1–7) 1.0155 (1–15)
0.2 0.4985 (4–12) 1.0221 (1–9) 1.4947 (1–8) 1.0162 (1–15)
0.4 0.5163 (4–12) 1.0179 (1–9) 1.5031 (1–11) 1.0147 (1–15)
0.6 0.5179 (4–12) 1.0047 (1–9) 1.5151 (1–13) 1.0091 (1–15)

Table 1: The slope of the LLS of the error versus k and h for different
values of µ.
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The numerical solutions presented in Figure 9 have been computed for an equidistant
space-time discretization: 22 nodes for T0, 7 nodes for TG for all times, and 10 time steps
on the interval (0, 3]. The length of TG has again been 0.25 and the velocity µ has for
simplicity been slabwise constant at µ|In = 1

2
sin(2πtn

3
).
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Figure 9: Space-time discretization (left) with resulting dG(0)cG(1)-
solution (middle) and dG(1)cG(1)-solution (right).

8 Conclusions

We have presented a cut finite element method for a parabolic model problem on an over-
lapping mesh situation: one stationary background mesh and one continuously moving
overlapping mesh. We have applied what we believe to be a relatively new analysis frame-
work for finite element methods for parabolic problems. This new analysis framework
may arguably be considered more robust and natural than standard ones, since it is the
only one that we have been able to successfully apply to our overlapping mesh situation.
The analysis is of an energy type and the main results are a basic stability estimate and
an optimal order a priori error estimate. We have also presented numerical results for
a parabolic problem in one spatial dimension that verify the analytic error convergence
orders.

A Analytic tools

Lemma A.1 (A jump identity). Let ω+, ω− ∈ R and ω+ +ω− = 1, let [A] := A+−A−,
and 〈A〉 := ω+A+ + ω−A−. We then have

[AB] = [A]〈B〉+ 〈A〉[B] + (ω− − ω+)[A][B]. (A.1)

Proof. Using the definitions and evaluating both sides shows the identity. �

A.1 Spatial estimates

Lemma A.2 (A Poincaré inequality for H1
0 (∪iΩi(t))). For t ∈ [0, T ] we have that

‖v‖Ω0 . ‖∇v‖Ω1(t)∪Ω2(t) + ‖[v]‖Γ(t) ∀v ∈ H1
0 (∪iΩi(t)) (A.2)

Proof. To lighten the notation we omit the time dependence, which has no importance
here anyways. For v ∈ H1

0 (Ω1 ∪ Ω2), we consider the dual problem: Find φ ∈ H2(Ω0) ∩
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H1
0 (Ω0) such that −∆φ = v in Ω0. By using the dual problem, partial integration, that

v|∂Ω0 = 0, Lemma A.1, and the regularity of φ ([∂nφ]|Γ = 0 in L2(Γ)), we have

‖v‖2
Ω0

=
2∑
i=1

(−∆φ, v)Ωi
=

2∑
i=1

(∇φ,∇v)Ωi
− (〈∂nφ〉, [v])Γ (A.3)

Using a standard trace inequality for ∇φ|Ωi
∈ H1(Ωi), elliptic regularity on H2(Ω0) ∩

H1
0 (Ω0) for φ, and the dual problem, the first argument to the last inner product may be

estimated by

‖〈∂nφ〉‖Γ ≤
2∑
i=1

‖∇φi‖∂Ωi
.

2∑
i=1

‖∇φ‖1,Ωi
. ‖φ‖2,Ω0 . ‖∆φ‖Ω0 = ‖v‖Ω0 (A.4)

We note that this also gives an estimate for the first argument to the penultimate inner
product. Thus using (A.4) in (A.3) followed by cancellation of a factor ‖v‖Ω0 on both
sides gives (A.2). �

By squaring both sides of (A.2), using Young’s inequality, and (4.2), we may estimate
the resulting right-hand side by |||·|||Ah,t

:

Corollary A.1 (An energy Poincaré inequality for H3/2+ε(∪iΩi(t))∩H1
0 (∪iΩi(t))).

Let the time-dependent spatial energy norm |||·|||Ah,t
be defined by (4.3). Then, for t ∈

[0, T ], we have that

‖v‖Ω0 . |||v|||Ah,t
∀v ∈ H3/2+ε(∪iΩi(t)) ∩H1

0 (∪iΩi(t)) (A.5)

Lemma A.3 (A spatial continuity result for Γ(t)). Let the space-time vector n̄ =
(n̄x, n̄t) and the time-dependent spatial energy norm |||·|||Ah,t

be defined by (3.10) and

(4.3), respectively. Let σ change arbitrarily along Γ(t) between the values 1 and 2 and
let |µ|[0,T ] = maxt∈[0,T ]{|µ|}. Then, for t ∈ [0, T ], we have that

(n̄t[w], vσ)Γ(t) . |µ|[0,T ]h
1/2 |||w|||Ah,t

|||v|||Ah,t

∀w, v ∈ H3/2+ε(∪iΩi(t)) ∩H1
0 (∪iΩi(t))

(A.6)

Proof. To lighten the notation we omit the time dependence, which has no importance
here anyways. Using |n̄t| ≤ |µ|, which follows from (3.10), the left-hand side of (A.6) is

(n̄t[w], vσ)Γ ≤ |µ|[0,T ]‖[w]‖Γ‖vσ‖Γ (A.7)

Using (4.2) and (4.3), the w-factor may be estimated by h1/2 |||w|||Ah,t
. Applying the stan-

dard trace inequality for H1(Ωi), Corollary A.1, and (4.3), the v-factor may be estimated
by |||v|||Ah,t

. This shows (A.6). �

Lemma A.4 (A scaled trace inequality for domain-partitioning manifolds of
codimension 1). For d = 1, 2, or 3, let Ω ⊂ Rd be a bounded domain with diameter L,
i.e., L = diam(Ω) = supx,y∈Ω |x− y|. Let Γ ⊂ Ω be a continuous manifold of codimension
1 that partitions Ω into N subdomains. Then

‖v‖2
Γ . L−1‖v‖2

Ω + L‖∇v‖2
Ω ∀v ∈ H1(Ω) (A.8)
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Proof. If (A.8) holds for the case N = 2, then that result may be applied repeatedly to
show (A.8) for N > 2. We thus assume that Γ partitions Ω into two subdomains denoted
Ω1 and Ω2 with diameters L1 and L2, respectively. From the regularity assumptions on
v, we have for i = 1, 2, that v ∈ H1(Ωi) and thus

‖v‖2
Γ ≤ ‖v‖2

∂Ωi
. L−1

i ‖v‖2
Ωi

+ Li‖∇v‖2
Ωi

(A.9)

where we have used a standard scaled trace inequality. Using the triangle type inequality
L ≤ L1 + L2 and (A.9), the left-hand side of (A.8) is

‖v‖2
Γ ≤

2∑
i=1

Li
L
‖v‖2

Γ .
2∑
i=1

(
L−1‖v‖2

Ωi
+ L‖∇v‖2

Ωi

)
. L−1‖v‖2

Ω + L‖∇v‖2
Ω (A.10)

which shows (A.8). �

Let ΓK = ΓK(t) = K ∩ Γ(t). For t ∈ [0, T ], j ∈ {0, G}, a simplex K ∈ Tj,Γ(t) = {K ∈ Tj :
K ∩ Γ(t) 6= ∅}, and v ∈ H1(K), we have from Lemma A.4 that

‖v‖2
ΓK
. h−1

K ‖v‖
2
K + hK‖∇v‖2

K (A.11)

where hK is the diameter of K. For v ∈ P(K), we have the standard inverse estimate

‖Dk
xv‖2

K . h−2
K ‖D

k−1
x v‖2

K for k ≥ 1 (A.12)

Using (A.12) in (A.11), we get the following corollary:

Corollary A.2 (A discrete spatial local inverse inequality for ΓK(t)). For t ∈
[0, T ], j ∈ {0, G}, K ∈ Tj,Γ(t) with diameter hK , let ΓK(t) = K ∩ Γ(t). Then, for k ≥ 0,
we have that

‖Dk
xv‖2

ΓK(t) . h−1
K ‖D

k
xv‖2

K ∀v ∈ Vh(t) (A.13)

Lemma A.5 (A discrete spatial inverse inequality for Γ(t)). Let the mesh-dependent
norm ‖ · ‖−1/2,h,Γ(t) be defined by (4.1). Then, for t ∈ [0, T ], we have that

‖〈∂n̄xv〉‖2
−1/2,h,Γ(t) .

2∑
i=1

‖∇v‖2
Ωi(t)

+ ‖[∇v]‖2
ΩO(t) ∀v ∈ Vh(t) (A.14)

Proof. To lighten the notation we omit the time dependence, which has no importance
here anyways. We follow the proof of the corresponding inequality in [2] with some
modifications. We use index j ∈ {0, G}, such that, if j = 0, then i = 1 and if j = G, then
i = 2, and let ΓKj

= Kj ∩ Γ and Tj,Γ = {Kj ∈ Tj : Kj ∩ Γ 6= ∅}. Note that for i = 1, 2,∑
K0∈T0,Γ

hK0‖vi‖2
ΓK0
.

∑
KG∈TG,Γ

hKG
‖vi‖2

ΓKG
(A.15)

which follows from ∪K0∈T0,ΓΓK0 = Γ = ∪KG∈TG,Γ
ΓKG

and the inter-quasi-uniformity of the
meshes. Since ∂n̄xv = n̄x · ∇v and |ωi||n̄x| ≤ 1, we have ‖ωi(∂n̄xv)i‖2

ΓKj
≤ ‖(∇v)i‖2

ΓKj
.

Using this after (A.15), and followed by Corollary A.2, the left-hand side of (A.14) is

‖〈∂n̄xv〉‖2
−1/2,h,Γ .

2∑
i=1

∑
Kj∈Tj,Γ

hKj
‖(∇v)i‖2

ΓKj
.

2∑
i=1

∑
Kj∈Tj,Γ

‖(∇v)i‖2
Kj

=
∑

K0∈T0,Γ

(
‖∇v‖2

K0∩Ω1
+ ‖(∇v)1‖2

K0∩Ω2

)
+

∑
KG∈TG,Γ

‖∇v‖2
KG

(A.16)

The resulting terms may be estimated by the right-hand side of (A.14). �
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A.2 Temporal estimates

Recall the domain-dependent velocity µi, defined by (3.6). For a time t∗ ∈ In, a point
x ∈ Ωi(t

∗) and a point s ∈ Γ(t∗), approached from Ωi(t
∗), we define the spatial compo-

nents x̂(t) and ŝi(t) of the slabwise space-time trajectory through x and that through s,
respectively, by

x̂(t) := x+

∫ t

t∗
µi(τ) dτ ∀t ∈ In (A.17)

ŝi(t) := s+

∫ t

t∗
µi(τ) dτ ∀t ∈ In (A.18)

For i = 1, we get a straight space-time trajectory parallel to the time axis. For i = 2, we
simply follow a point along the space-time surface Γ̄n. See Figure 10 for an illustration.
To lighten the notation, we omit the index i and the time dependence when there is no
risk of confusion. Thus (ŝ, t) = (ŝi(t), t) and ŝk = ŝi,k = ŝi(tk), if not explicitly stated
otherwise.

x

t

tn

tn−1

S1,nS2,n

s̄

(ŝ1,n−1, tn−1)(ŝ2,n−1, tn−1)

(ŝ2,n, tn)(ŝ1,n, tn)

Figure 10: Slabwise space-time trajectories through a point s̄ ∈ Γ̄n for
d = 1.

Lemma A.6 (Discrete temporal inverse estimates in ‖·‖Ω(t)). Let kn be the length
of interval In and the scaled differential operator Dt be defined by (3.7). For v ∈ V n

h , let
w = wr = Dr

xv, where 0 ≤ r ≤ p. Then, for any v ∈ V n
h , we have that∫

In

k2
n‖Dtw‖2

Ω1(t)∪ΩO(t) dt .
∫
In

‖w‖2
Ω1(t)∪ΩO(t) dt (A.19)∫

In

k2
n‖Dtw‖2

Ω2(t) dt .
∫
In

‖w‖2
Ω2(t) dt (A.20)

Proof. The estimates follow from applying a standard one-dimensional inverse estimate
for polynomials along the space-time trajectories. The presence of Dt in the In-integrals
gives the correct scaling for going to the space-time trajectories and back. �

Lemma A.7 (An inequality for W 1,1((a, b))). For an open interval (a, b), a point
c ∈ (a, b), and for any function w ∈ W 1,1((a, b)) it holds that

(b− a)w(c) ≤
∫ b

a

w(x) dx+ (b− a)

∫ b

a

|w′(x)| dx (A.21)
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Proof. Consider an open interval (α, β) ⊂ (a, b). For an arbitrary point y ∈ (α, β), we
use integration by parts to get

(β − y)w(β−) + (y − α)w(α+) ≤
∫ β

α

w(x) dx+ (β − α)

∫ β

α

|w′(x)| dx (A.22)

The left-hand side of (A.21) is

(b− a)w(c) = (b− c)w(c) + (c− a)w(c)

≤
∫ b

c

w(x) dx+ (b− c)
∫ b

c

|w′(x)| dx

+

∫ c

a

w(x) dx+ (c− a)

∫ c

a

|w′(x)| dx

≤
∫ b

a

w(x) dx+ (b− a)

∫ b

a

|w′(x)| dx

(A.23)

where we have used (A.22) with y = β− = β = b and α = c, and (A.22) with β = c and
y = α+ = α = a to obtain the first inequality. This concludes the proof. �

Lemma A.8 (A discrete temporal inverse estimate in |||·|||Ah,t
). Let |||·|||Ah,t

be

defined by (4.3), kn be the length of interval In, and the scaled differential operator Dt

be defined by (3.7). Then we have that∫
In

|||knDtv|||2Ah,t
dt .

∫
In

|||v|||2Ah,t
dt ∀v ∈ V n

h (A.24)

Proof. We expand the left-hand side of (A.24) by using (4.3)∫
In

|||knDtv|||2Ah,t
dt =

2∑
i=1

∫
In

k2
n‖∇Dtv‖2

Ωi(t)
dt︸ ︷︷ ︸

= I

+

∫
In

k2
n|µ̄|‖〈∂n̄xDtv〉‖2

−1/2,h,Γ(t) dt︸ ︷︷ ︸
= II

+

∫
In

k2
n|µ̄|‖[Dtv]‖2

1/2,h,Γ(t) dt︸ ︷︷ ︸
= III

+

∫
In

k2
n‖[∇Dtv]‖2

ΩO(t) dt︸ ︷︷ ︸
= IV

(A.25)

We treat the terms separately, starting with the first. Using that ∇Dtv = Dt∇v and
Lemma A.6, the first term in (A.25) is

I =
2∑
i=1

∫
In

k2
n‖Dt∇v‖2

Ωi(t)
dt .

∫
In

2∑
i=1

‖∇v‖2
Ωi(t)

+ ‖[∇v]‖2
ΩO(t) dt

≤
∫
In

|||v|||2Ah,t
dt

(A.26)

The second term in (A.25) receives the same treatment after first using Lemma A.5, thus

II .
∫
In

k2
n|µ̄|

( 2∑
i=1

‖∇Dtv‖2
Ωi(t)

+ ‖[∇Dtv]‖2
ΩO(t)

)
dt .

∫
In

|||v|||2Ah,t
dt (A.27)

The third term in (A.25) requires some more work than the others. Recall the slabwise
space-time trajectories through a point s̄ ∈ Γ̄n, whose spatial components ŝ = ŝi(t) are
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defined by (A.18). Let Sqn denote the set of points in In corresponding to temporal degrees
of freedom for V n

h . Thus S0
n = {tn} and S1

n = {tn, t+n−1}. For q > 1, interior points of
In are also included in Sqn. We consider the temporal basis functions λk ∈ Pq(In),
where every λk corresponds to a point tk ∈ Sqn. Writing x̂k = x̂(tk), where x̂ is defined
by (A.17), and using a somewhat relaxed notation, any v ∈ V n

h may be represented
as v(x, t) =

∑
tk∈Sq

n
v(x̂k, tk)λk(t). With simple continuous mesh motion, µ is constant

along every slabwise space-time trajectory, which means that Dtv(x̂k, tk) = 0. Using this
together with the somewhat relaxed representation, we have that

Dtv(x, t) =
∑
tk∈Sq

n

v(x̂k, tk)Dtλk(t) =
∑
tk∈Sq

n

v(x̂k, tk)λ
′
k(t) (A.28)

With (A.28), the third term in (A.25) is

III ≤ k2
n

hmin

∫
In

|µ̄|
∫

Γ(t)

|(Dtv(s, t))1 − (Dtv(s, t))2|2 ds dt

≤ k2
n

hmin

∫
In

|µ̄|
∫

Γ(t)

( ∑
tk∈Sq

n

|v1(ŝ1,k, tk)− v2(ŝ2,k, tk)| |λ′k(t)|︸ ︷︷ ︸
≤C(q)/kn

)2

ds dt

. h−1
min

∑
tk∈Sq

n

∫
In

|µ̄|
∫

Γ(t)

|v1(ŝ1,k, tk)− v2(ŝ2,k, tk)|2 ds dt︸ ︷︷ ︸
=III.k

(A.29)

We split III.k by

III.k .
∫
In

|µ̄|
∫

Γ(t)

|v1(ŝ1,k, tk)− v1(ŝ2,k, tk)|2 ds dt︸ ︷︷ ︸
=III.k.1

+

∫
In

|µ̄|
∫

Γ(t)

|v1(ŝ2,k, tk)− v2(ŝ2,k, tk)|2 ds dt︸ ︷︷ ︸
=III.k.2

(A.30)

For the first term in (A.30), we consider the spatial plane curve resulting from projecting
s(τ) ∈ Γ(τ), for all τ between tk and t, onto the spatial plane at time tk. By applying
the fundamental theorem of calculus for line integrals to this curve, we have that

III.k.1 =

∫
In

|µ̄|
∫

Γ(t)

|v1(s(t), tk)− v1(s(tk), tk)|2 ds dt

=

∫
In

|µ̄|
∫

Γ(t)

∣∣∣∣ ∫ t

tk

µ(τ) · ∇v1(s(τ), tk) dτ

∣∣∣∣2 ds dt

≤ |µ|2Inkn
∫
In

|µ̄|
∫

Γ(t)

∫
In

|∇v1(s(τ), tk)|2 dτ ds dt

= |µ|2Ink
2
n|µ̄|

∫
Γ(tk)

∫
In

|∇v1(s(τ), tk)|2 dτ ds

. |µ|2Ink
2
n|µ̄|

∫
Ω1(tk)∪ΩO(tk)

|∇v1(x, tk)|2 dx

. |µ|2Inkn
∫
In

‖∇v1‖2
Ω1(t)∪ΩO(t) dt

. |µ|2Inkn
∫
In

|||v|||2Ah,t
dt

(A.31)
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where, in the fifth step, we have taken possible multiples of the same line integrals into
account and expanded the domain of integration. In the sixth step, we have used a
standard inverse inequality for polynomials. For the second term in (A.30), we use
Lemma A.7, thus

III.k.2 = kn|µ̄|
∫

Γ(tk)

|v1(s, tk)− v2(s, tk)|2 ds =

∫
Γ(tk)

(
kn|µ̄|[v]2(s, tk)

)
ds

.
∫

Γ(tk)

(∫
In

|µ̄|[v]2(ŝ2, t) dt+ kn|µ̄|
∫
In

∣∣∣∣Dt,2[v]2(ŝ2, t)

∣∣∣∣ dt) ds

.
∫

Γ̄n

|[v]|2 ds̄+ kn

∫
Γ̄n

|[v]||Dt,2[v]| ds̄

≤ ‖[v]‖2
Γ̄n

+ kn‖[v]‖Γ̄n
‖Dt,2[v]‖Γ̄n

≤
(

1 +
1

ε

)
‖[v]‖2

Γ̄n︸ ︷︷ ︸
=III.k.2.1

+ εk2
n‖Dt,2[v]‖2

Γ̄n︸ ︷︷ ︸
=III.k.2.2

(A.32)

Using (4.2), the first term is

III.k.2.1 =

(
1 +

1

ε

)∫
In

|µ̄|‖[v]‖2
Γ(t) dt . h

∫
In

|µ̄|‖[v]‖2
1/2,h,Γ(t) dt

≤ h

∫
In

|||v|||2Ah,t
dt

(A.33)

Using again (4.2), the second term is

III.k.2.2 = εk2
n‖Dt,2v1 −Dt,2v2‖2

Γ̄n
= εk2

n‖Dtv1 + µ · ∇v1 −Dtv2‖2
Γ̄n

. εk2
n‖[Dtv]‖2

Γ̄n
+ εk2

n‖µ · ∇v1‖2
Γ̄n

≤ εk2
n

∫
In

|µ̄|‖[Dtv]‖2
Γ(t) dt+ |µ|2Ink

2
n‖∇v1‖2

Γ̄n

≤ εh

∫
In

k2
n|µ̄|‖[Dtv]‖2

1/2,h,Γ(t) dt︸ ︷︷ ︸
=III

+ |µ|2Ink
2
n‖∇v1‖2

Γ̄n︸ ︷︷ ︸
=III.k.2.2.2

(A.34)

where the first term is done. For the second term, we use Corollary A.2, thus

III.k.2.2.2 = |µ|2Ink
2
n

∫
In

|µ̄|
∑

K∈T0,Γ(t)

‖∇v1‖2
ΓK

dt

.
|µ|2Ink

2
n

hmin

∫
In

∑
K∈T0,Γ(t)

‖∇v1‖2
K dt

≤
|µ|2Ink

2
n

hmin

∫
In

‖∇v1‖2
Ω1(t)∪ΩO(t) dt .

|µ|2Ink
2
n

hmin

∫
In

|||v|||2Ah,t
dt

(A.35)

This concludes the separate treatment of all the terms unfolding in the estimation of the
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third term in (A.25). Collecting all the estimates and using (3.1) gives us

III . h−1
min

∑
tk∈Sq

n

(
|µ|2Inkn

∫
In

|||v|||2Ah,t
dt+ h

∫
In

|||v|||2Ah,t
dt+ III.k.2.2

)

. h−1
min

((
|µ|2Inkn + h+

|µ|2Ink
2
n

hmin

)∫
In

|||v|||2Ah,t
dt+ εh(III)

)
.
∫
In

|||v|||2Ah,t
dt+ ε(III)

(A.36)

By kicking back the ε-term and taking ε sufficiently small, we may estimate the third
term in (A.25) by the first term on the right-hand side of A.36. The fourth term in (A.25)
receives the same treatment as the first, thus

IV .
∫
In

k2
n

(
‖Dt∇v‖2

Ω1(t)∪ΩO(t) + ‖Dt∇v‖2
Ω2(t)

)
dt .

∫
In

|||v|||2Ah,t
dt (A.37)

The treatment of all the terms in (A.25) is done. This shows (A.24). �

Lemma A.9 (An inverse inequality for P((a, c), (c, b))). For an open interval (a, b),
a point c ∈ (a, b), and for w ∈ P((a, c), (c, b)), i.e., w is a polynomial on (a, c), possibly
another polynomial on (c, b), and possibly discontinuous at c, there exists a positive
constant depending on the polynomial degree such that

(b− a)|w(a+)|2 .
∫ c

a

|w(x)|2 dx+

∫ b

c

|w(x)|2 dx+ (b− c)|[w](c)|2

+ (b− c)(c− a)

∫ c

a

|w′(x)|2 dx

(A.38)

Proof. Using a standard inverse inequality for polynomials with a positive constant that
depends on the polynomial degree, the left-hand side of (A.38) is

(b− a)|w(a+)|2 .
∫ c

a

|w(x)|2 dx+ (b− c)|w(a+)|2 (A.39)

Adding and subtracting w(c−) and w(c+) within the absolute value, followed by using
standard estimates, the second term is

(b− c)|w(a+)|2 = (b− c)
∣∣∣∣− ∫ c

a

w′(x) dx− [w](c) + w(c+)

∣∣∣∣2
. (b− c)(c− a)

∫ c

a

|w′(x)|2 dx

+ (b− c)|[w](c)|2 +

∫ b

c

|w(x)|2 dx

(A.40)

�

Lemma A.10 (Discrete temporal inverse inequalities for V n
h ). Let kn be the

length of interval In, the scaled differential operator Dt be defined by (3.7), |µ|In =
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maxt∈In{|µ(t)|}, and |||·|||Ah,t
be defined by (4.3). Then, for q = 0, 1, we have that

2∑
i=1

k2
n‖(Dtv)+

n−1‖2
Ωi,n−1

.
2∑
i=1

∫
In

kn‖Dtv‖2
Ωi(t)

dt

+ |µ|In
∫
In

|||v|||2Ah,t
dt ∀v ∈ V n

h

(A.41)

2∑
i=1

k2
n‖(Dtv)−n ‖2

Ωi,n
.

2∑
i=1

∫
In

kn‖Dtv‖2
Ωi(t)

dt

+ |µ|In
∫
In

|||v|||2Ah,t
dt ∀v ∈ V n

h

(A.42)

Proof. We only prove (A.41), since the proof of (A.42) is analogous. Recall x̂(t) defined
by (A.17). We denote by ¯̂xni the slabwise space-time trajectory through a point xi,n−1 ∈
Ωi,n−1. We define the set of points in Ω1,n−1 with cut and uncut space-time trajectories
by

ΩΓ
1,n−1 := {x ∈ Ω1,n−1 : ¯̂xn1 ∩ Γ̄n 6= ∅} (A.43)

Ωn
1,n−1 := {x ∈ Ω1,n−1 : ¯̂xn1 ∩ Γ̄n = ∅} (A.44)

The idea to prove (A.41) is that if a point’s space-time trajectory is uncut, we use a
standard inverse inequality, and if it is cut, we use Lemma A.9. Using that ΩΓ

1,n−1 and
Ωn

1,n−1 form a partition of Ω1,n−1, the left-hand side of (A.41) is

2∑
i=1

k2
n‖(Dtv)+

n−1‖2
Ωi,n−1

= k2
n‖(Dtv)+

n−1‖2
Ωn

1,n−1︸ ︷︷ ︸
=I

+ k2
n‖(Dtv)+

n−1‖2
Ω2,n−1︸ ︷︷ ︸

=II

+ k2
n‖(Dtv)+

n−1‖2
ΩΓ

1,n−1︸ ︷︷ ︸
=III

(A.45)

We treat the terms separately. See Figure 11 for an illustration of the proof idea. Using

x

t

tn

tn−1

Ωn
1,n−1

I II
III.3

III.2

III.1

Ω2,n−1 ΩΓ
1,n−1 Ωn

1,n−1

Figure 11: The starting domains Ωn
1,n−1, Ω2,n−1, and ΩΓ

1,n−1. The arrows
represent the treatment of the corresponding right-hand side terms.

a standard inverse inequality, the first and second term in (A.45) are

I .
∫
In

kn‖Dtv‖2
Ω1(t) dt II .

∫
In

kn‖Dtv‖2
Ω2(t) dt (A.46)

23



For the third term in (A.45), we recall ŝ defined by (A.18). We consider a space-time
curve that starts at x ∈ ΩΓ

1,n−1, goes straight up in time until it hits Γ̄n, which occurs
at time tΓ, then travels on Γ̄n along (ŝ(t), t) up to tn. We will apply Lemma A.9 to the
function that is (Dtv)1 up until tΓ along this space-time curve, and (Dtv)2 afterwards.
Here the corresponding derivative term on the right-hand side of (A.38) vanishes since
D2
t v(x, t) = 0 for q ≤ 1. Thus

III = kn

∫
ΩΓ

1,n−1

(
kn|Dtv(x, t+n−1)|2 dx

)
. kn

∫
ΩΓ

1,n−1

(∫ tΓ

tn−1

|Dtv(x, t)|2 dt+

∫ tn

tΓ

|µ̄||(Dtv)2(ŝ(t), t)|2 dt

+ (tn − tΓ)|[Dtv](x, tΓ)|2 + (tn − tΓ)(tΓ − tn−1)

∫ tΓ

tn−1

|D2
t v(x, t)|2 dt

)
dx

. kn

∫
ΩΓ

1,n−1

∫ tΓ

tn−1

|Dtv(x, t)|2 dt dx︸ ︷︷ ︸
=III.1

+ kn

∫
ΩΓ

1,n−1

∫ tn

tΓ

|µ̄||(Dtv)2(ŝ(t), t)|2 dt dx︸ ︷︷ ︸
=III.2

+ kn

∫
ΩΓ

1,n−1

(tn − tΓ)|[Dtv](x, tΓ)|2 dx︸ ︷︷ ︸
=III.3

.

(A.47)

Simply expanding the domain of integration, the first term is

III.1 .
∫
In

kn‖Dtv‖2
Ω1(t) dt (A.48)

For the second and third term in (A.47), we want to change the domain of integration
from ΩΓ

1,n−1 to its temporal projection onto Γ̄n. To do this, we note that dx . |µ|In ds̄,
where dx and ds̄ are the integration differentials for ΩΓ

1,n−1 and Γ̄n, respectively. Using
this, a standard trace inequality for H1(Ω2), that ∇Dtv = Dt∇v, and Lemma A.6, the
second term is

III.2 . kn

∫
ΩΓ

1,n−1

∫
In

|µ̄||(Dtv)2(ŝ(t), t)|2 dt dx

. kn

∫
Γ̄n

∫
In

|µ̄||(Dtv)2(s̄)|2 dt|µ|In ds̄ . |µ|Ink2
n

∫
In

|µ̄|‖(Dtv)2‖2
Γ(t) dt

. |µ|Inkn
∫
In

kn‖Dtv‖2
Ω2(t) dt+ |µ|In

∫
In

k2
n‖Dt∇v‖2

Ω2(t) dt

.
∫
In

kn‖Dtv‖2
Ω2(t) dt+ |µ|In

∫
In

|||v|||2Ah,t
dt

(A.49)

Using the relation between the integration differentials, the estimate (4.2), and Lemma A.8,
the third term in (A.47) is

III.3 . k2
n

∫
ΩΓ

1,n−1

|[Dtv](x, tΓ)|2 dx . k2
n

∫
Γ̄n

|[Dtv](s̄)|2|µ|In ds̄

. |µ|Ink2
n

∫
In

|µ̄|‖[Dtv]‖2
Γ(t) dt . |µ|Inh

∫
In

|||knDtv|||2Ah,t
dt

. |µ|In
∫
In

|||v|||2Ah,t
dt

(A.50)
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The treatment of all the terms in (A.45) is done. This shows (A.41). �

Lemma A.11 (A discrete temporal inverse estimate in |||·|||X). Let the norm
|||·|||X be defined by (4.10), kn be the length of time interval In, and the scaled differential
operator Dt be defined by (3.7). Then, for q = 0, 1, we have that

|||knDtv|||X . |||v|||X ∀v ∈ Vh (A.51)

Proof. The square of the left-hand side of (A.51) is

|||knDtv|||2X =
2∑
i=1

N∑
n=1

∫
In

kn‖Dt(knDtv)‖2
Ωi(t)

dt

+
N∑
n=1

(∫
In

|||knDtv|||2Ah,t
dt+ ‖|n̄t|1/2[knDtv]‖2

Γ̄n

)

+
2∑
i=1

N−1∑
n=1

‖[knDtv]n‖2
Ωi,n

+
2∑
i=1

(
‖(knDtv)−N‖

2
Ωi,N

+ ‖(knDtv)+
0 ‖2

Ωi,0

)
(A.52)

The first term vanishes since D2
t v(x, t) = 0 for q ≤ 1. The Γ̄n-norm term is estimated

by the Ah,t-norm term by using (4.2). Applying Lemma A.8 to the Ah,t-norm term and
Lemma A.10 to all the terms in the last two rows, we get terms which may be estimated
by |||v|||2X . �

B Interpolation

Let ·◦ denote the interior of a set, e.g., I◦n = (tn−1, tn). Also let Cb(∪nI◦n) denote the space
of functions that are continuous and bounded on every I◦n. In this section, the space-time
interpolation operator Īh : Cb(∪nI◦n;L1(Ω0)) → Vh is successively constructed by first
defining spatial interpolation operators, then temporal ones, and finally combining them.
Interpolation error estimates are also presented.

B.1 Slabwise operators and local estimates

Definition B.1. (Spatial interpolation operators) We define the spatial interpolation op-
erators πh,0 : L1(Ω0)→ Vh,0 and πh,G : L1(G)→ Vh,G to be the Scott-Zhang interpolation
operators for the spaces Vh,0 and Vh,G, respectively, where the defining integrals are taken
over entire simplices.

Note that πh,G is time-dependent but to lighten the notation we omit this. The temporal
interpolation operators will interpolate along the space-time trajectories of the domains
Ω0 and G. For n = 1, . . . , N , we define the slabwise space-time trajectory for a point
x ∈ Ω0 and that of a point xn ∈ G(tn) by

¯̂xn0 := {(x̂(t), t) : x̂(t) = x, t ∈ In} (B.1)

¯̂xnG := {(x̂(t), t) : x̂(t) = xn −
∫ tn

t

µ(τ) dτ, t ∈ In} (B.2)
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Note that (A.17) can be used to obtain all trajectories defined by (B.2) but not all defined
by (B.1) because some ¯̂xn0 may lie completely in S2,n. Let Sqn denote the set of temporal
interpolation points for interpolation to Pq(In). We take S0

n = {t−n } and S1
n = {t−n , t+n−1}.

For q > 1, we include interior points of In in some suitable fashion.

Definition B.2. (Temporal interpolation operators) For each time subinterval In, where
n = 1, . . . , N , we define the temporal interpolation operators πn0 : Cb(¯̂xn0

◦
)→ Pq(¯̂xn0 ) and

πnG : Cb(¯̂xnG
◦
)→ Pq(¯̂xnG) to be the nodal interpolation operators that use the points in Sqn

as nodal interpolation points.

Note that πn0 and πnG are spatially dependent but to lighten the notation we omit this.
We combine the spatial and temporal interpolation operators to define space-time ones.

Definition B.3. (Slabwise space-time interpolation operators) For n = 1, . . . , N , we
define the slabwise space-time interpolation operators Īnh,0 : Cb(I

◦
n;L1(Ω0)) → V n

h,0 and
Īnh,G : Cb(I

◦
n;L1(G))→ V n

h,G by

Īnh,0 := πn0πh,0 Īnh,G := πnGπh,G (B.3)

Recall the interdependent indices i ∈ {1, 2} and j ∈ {0, G} where j = 0 for i = 1 and
j = G for i = 2. Let K̄n := {(x, t) : x ∈ K = K(t), t ∈ In} denote an arbitrary
space-time prism, where K = Kj ∈ Tj. Let N (K) denote the neighborhood of a simplex
K, i.e., the set of all adjacent simplices to and including K. We also use the notation
‖w‖K,In = maxt∈In{‖w(·, t)‖K(t)}.

Lemma B.1 (Local space-time interpolation error estimates for K̄n). Let Īnh,j be
defined by (B.3), where j ∈ {0, G}, and let Dt be defined by (3.7). Then, for a function v
with sufficient spatial and temporal regularity, we have for 0 ≤ s ≤ q+1 and 0 ≤ r ≤ p+1
that

‖Ds
t (v − Īnh,jv)‖K̄n

. kq+1−s
n ‖Dq+1

t v‖K̄n
+ hp+1k1/2

n ‖Dp+1
x Ds

tv‖N (K),In (B.4)

‖Dr
x(v − Īnh,jv)‖K̄n

. kq+1
n ‖D

q+1
t Dr

xv‖K̄n
+ hp+1−rk1/2

n ‖Dp+1
x v‖N (K),In (B.5)

Proof. We show the two estimates separately, starting with the first. Using that Īnh,j =
πnj πh,j = πh,jπ

n
j , that Ds

tπh,j = πh,jD
s
t , stability of πh,j, and a trivial estimate, the left-

hand side of (B.4) is

‖Ds
t (v − Īnh,jv)‖K̄n

≤ ‖Ds
tπh,j(1− πnj )v‖K̄n

+ ‖Ds
t (v − πh,jv)‖K̄n

. ‖Ds
t (1− πnj )v‖K̄n

+ k1/2
n ‖Ds

tv − πh,jDs
tv‖K,In

(B.6)

Applying standard estimates for πnj and πh,j shows the first estimate and we move on
to the second. We are going to use the expansion of interpolants of πnj into a sum over
the temporal interpolation points tk ∈ Sqn with λk ∈ Pq(In) denoting the corresponding
shape function. For a function w of sufficient regularity, we have that

‖πnj w‖2
K̄n

=

∫
In

∫
K(t)

∣∣∣∣ ∑
tk∈Sq

n

w(x̂(tk), tk)λk(t)

∣∣∣∣2 dx dt

≤ (q + 1)
∑
tk∈Sq

n

∫
In

∫
K(t)

|w(x̂(tk), tk)|2 dx dt . kn‖w‖2
K,In

(B.7)
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Using this after using that Dr
xπ

n
j = πnjD

r
x, the left-hand side of (B.5) is

‖Dr
x(v − Īnh,jv)‖K̄n

≤ ‖Dr
x(v − πnj v)‖K̄n

+ ‖Dr
xπ

n
j (1− πh,j)v‖K̄n

. ‖Dr
xv − πnjDr

xv‖K̄n
+ k1/2

n ‖Dr
x(1− πh,j)v‖K,In

(B.8)

Applying standard estimates for πnj and πh,j shows the second estimate. �

Recall ŝ defined by (A.18). Let Tj,D = {K ∈ Tj : K ∩ D 6= 0}, where D is a possibly
time-dependent subset of Rd+1.

Lemma B.2 (Slabwise space-time interpolation error estimates for Γ̄n). Let Īnh,j
be defined by (B.3), where j ∈ {0, G}, and let Dt be defined by (3.7). Then, for any
function v with sufficient spatial and temporal regularity, we have that

‖(v − Īnh,jv)i‖2
Γ̄n
. k2q+2

n ‖Dq+1
t v‖2

L2(Γ̄n,L∞(In)) + h2p+1
∑

K∈Tj,Γ̄n

kn‖Dp+1
x v‖2

N (K),In (B.9)

Proof. The general proof idea is the same for all q ≥ 0. What varies is how a temporal
difference is treated. We show how to treat if for q = 1 from which it should be relatively
straightforward how to handle the other cases. Using the shape functions λk ∈ Pq(In),
corresponding to interpolation points tk ∈ Sqn, the argument of the norm on the left-hand
side of (B.9) is

(v − Īnh,jv)i|Γ̄n
= v(s, t)−

∑
tk∈Sq

n

πh,jv(ŝk, tk)λk(t)

=
∑
tk∈Sq

n

(
v(s, t)− v(ŝk, tk)

)
λk(t)︸ ︷︷ ︸

=A

+
∑
tk∈Sq

n

(
v(ŝk, tk)− πh,jv(ŝk, tk)

)
λk(t)︸ ︷︷ ︸

=B

(B.10)

The left-hand side of (B.9) may thus be split by ‖(v− Īnh,jv)i‖2
Γ̄n
. ‖A‖2

Γ̄n
+ ‖B‖2

Γ̄n
where

we consider the terms separately, starting with the first. We proceed with some further
treatment of A for which we restrict ourselves to the case q = 1. From this case it should
however be relatively straightforward how to treat A for q 6= 1. Using the mean value
theorem along the space-time trajectories, the explicit expressions for the shape functions
λn−1 and λn for q = 1, and the fundamental theorem of calculus, we have

A =
∑
tk∈Sq

n

Dtv(ŝ, ck)(t− tk)λk(t) =
(t− tn)(t− tn−1)

kn

∫ cn

cn−1

D2
t v(ŝ, τ) dτ (B.11)

Using (B.11), we have that

‖A‖2
Γ̄n
≤
∫
In

|µ̄|
∫

Γ(t)

k2
n(cn − cn−1)

∫ cn

cn−1

|D2
t v(ŝ, τ)|2 dτ ds dt

≤ k4
n‖D2

t v‖2
L2(Γ̄n,L∞(In))

(B.12)

Writing Bk = v(ŝk, tk) − πh,jv(ŝk, tk), using (A.11), and standard estimates for πh,j, we
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have that

‖B‖2
Γ̄n
.
∫
In

|µ̄|
∫

Γ(t)

∑
tk∈Sq

n

|v(ŝk, tk)− πh,jv(ŝk, tk)|2 ds dt

.
∑
tk∈Sq

n

∑
K∈Tj,Γ̄n

kn‖Bk‖2
ΓK
.
∑
tk∈Sq

n

∑
K∈Tj,Γ̄n

kn

(
h−1
K ‖Bk‖2

K + hK‖DxBk‖2
K

)
. h2p+1

∑
K∈Tj,Γ̄n

kn‖Dp+1
x v‖2

N (K),In

(B.13)

�

Lemma B.3 (Local spatial interpolation error estimates for temporal end-
points). Let Īnh,j be defined by (B.3), where j ∈ {0, G}, let tτk ∈ {t+n−1, t

−
n }, and let Dt be

defined by (3.7). Then, for any function v with sufficient spatial and temporal regularity,
we have for q > 0 that

‖(v − Īnh,jv)τk‖K . hp+1‖Dp+1
x v(·, tτk)‖N (K) (B.14)

and for q = 0 that

‖(v − Īnh,jv)−n ‖K . hp+1‖Dp+1
x v(·, t−n )‖N (K) (B.15)

‖(v − Īnh,jv)+
n−1‖K . k1/2

n ‖Dtv‖K̄n
+ hp+1‖Dp+1

x v(·, t−n )‖N (K) (B.16)

Proof. Estimates (B.14) and (B.15) follow from simply using that tτk is an interpolation
point of πnj and then a standard estimate for πh,j. This does not work for (B.16), since
t+n−1 is not an interpolation point for q = 0. Instead, we integrate along the slabwise
space-time trajectory of an element x ∈ K to obtain

‖v(·, t+n−1)− v(·, t−n )‖2
K =

∫
K

∣∣∣∣v(x(t+n−1), t+n−1)− v(x(t−n ), t−n )

∣∣∣∣2 dx

=

∫
K

∣∣∣∣ ∫
In

Dtv(x(t), t) dt

∣∣∣∣2 dx ≤ kn‖Dtv‖2
K̄n

(B.17)

Using the definition of πnj for q = 0, the left-hand side of (B.16) is

‖(v − Īnh,jv)+
n−1‖K ≤ ‖(v − πnj v)(·, t+n−1)‖K + ‖(πnj v − πnj πh,jv)(·, t+n−1)‖K

= ‖v(·, t+n−1)− v(·, t−n )‖K + ‖(v − πh,jv)(·, t−n )‖K
(B.18)

Applying (B.17) and a standard estimate for πh,j shows (B.16). �

B.2 Global operator and estimates

Definition B.4. (Main space-time interpolation operator) We define the main space-time
interpolation operator Īh : Cb(∪nI◦n;L1(Ω0))→ Vh by, for n = 1, . . . , N ,

Īhv|S1,n := Īnh,0v|S1,n Īhv|S2,n := Īnh,Gv|S2,n (B.19)
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Lemma B.4 (Global space-time interpolation error estimates for Ω0 × (0, T ]).
Let Īh be defined by (B.19) and Dt by (3.7). Then, for any function v with sufficient
spatial and temporal regularity, we have for 0 ≤ s ≤ q + 1 and 0 ≤ r ≤ p+ 1 that

2∑
i=1

N∑
n=1

∫
In

‖Ds
t (v − Īhv)‖2

Ωi(t)
dt . k2(q+1−s)E2

k,0(v) + h2(p+1)E2
h,s(v) (B.20)

2∑
i=1

N∑
n=1

∫
In

‖Dr
x(v − Īhv)‖2

Ωi(t)
dt . k2(q+1)E2

k,r(v) + h2(p+1−r)E2
h,0(v) (B.21)

where

E2
k,r(v) =

2∑
i=1

N∑
n=1

∑
K∈Tj,Si,n

‖Dq+1
t Dr

xv‖2
K̄n

(B.22)

E2
h,s(v) =

2∑
i=1

N∑
n=1

∑
K∈Tj,Si,n

kn‖Dp+1
x Ds

tv‖2
N (K),In (B.23)

Proof. Both estimates follow by applying Lemma B.1. �

Lemma B.5 (An interpolation error estimate in |||·|||Bh
). Let |||·|||Bh

, Īh, and Dt be
defined by (4.8), (B.19), and (3.7), respectively. Then, for any function v with sufficient
spatial and temporal regularity, we have that∣∣∣∣∣∣v − Īhv∣∣∣∣∣∣2Bh

. k2q+1F 2
k (v) + h2pF 2

h (v) (B.24)

where

F 2
k (v) =

2∑
i=1

N∑
n=1

∑
K∈Tj,Si,n

(
‖Dq+1

t v‖2
K̄n

+ ‖Dq+1
t ∇v‖2

K̄n
+ ‖Dq+1

t D2
xv‖2

K̄n

)

+
2∑
i=1

N∑
n=1

‖Dq+1
t v‖2

L2(Γ̄n,L∞(In))

(B.25)

F 2
h (v) =

2∑
i=1

N∑
n=1

∑
K∈Tj,Si,n

kn‖Dp+1
x v‖2

N (K),In (B.26)

Proof. Letting w = v − Īhv, the left-hand side of (B.24) is

|||w|||2Bh
=

N∑
n=1

∫
In

|||w|||2Ah,t
dt︸ ︷︷ ︸

= I

+
N∑
n=1

‖|n̄t|1/2[w]‖2
Γ̄n︸ ︷︷ ︸

= II

+
2∑
i=1

N−1∑
n=1

‖[w]n‖2
Ωi,n︸ ︷︷ ︸

= III

+
2∑
i=1

‖w−N‖
2
Ωi,N︸ ︷︷ ︸

= IV

+
2∑
i=1

‖w+
0 ‖2

Ωi,0︸ ︷︷ ︸
= V

(B.27)
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We consider the terms separately, starting with first.

I =
2∑
i=1

∫
In

‖∇w‖2
Ωi(t)

dt︸ ︷︷ ︸
= I.i

+

∫
In

|µ̄|‖〈∂n̄xw〉‖2
−1/2,h,Γ(t) dt︸ ︷︷ ︸

= I.ii

+

∫
In

|µ̄|‖[w]‖2
1/2,h,Γ(t) dt︸ ︷︷ ︸

= I.iii

+

∫
In

‖[∇w]‖2
ΩO(t) dt︸ ︷︷ ︸

= I.iv

(B.28)

Letting wnj = v − Īnh,jv, we treat each term in (B.28) separately, starting with the first.

I.i ≤
∫
In

∑
K∈Tj,Ωi(t)

‖∇wnj ‖2
K dt ≤

∑
K∈Tj,Si,n

‖∇wnj ‖2
K̄n

(B.29)

By using standard estimates, (A.15), and (A.11), the second term is

I.ii .
∫
In

2∑
i=1

∑
Kj∈Tj,Γ(t)

hKj
‖(∇w)i‖2

ΓKj
dt

.
2∑
i=1

∑
K∈Tj,Γ̄n

(
‖∇wnj ‖2

K̄n
+ h2

K‖D2
xw

n
j ‖2

K̄n

) (B.30)

For the third term we use the same standard estimates and again (A.15), thus

I.iii .
∫
In

|µ̄|
2∑
i=1

∑
Kj∈Tj,Γ(t)

h−1
K0
‖wi‖2

ΓKj
dt ≤ h−1

min

2∑
i=1

‖(wnj )i‖2
Γ̄n

(B.31)

The fourth term is

I.iv .
∫
In

2∑
i=1

‖(∇w)i‖2
ΩO(t) dt ≤

2∑
i=1

∑
K∈Tj,Γ̄n

‖∇wnj ‖2
K̄n

(B.32)

We are done with the separate treatments of all the terms in (B.28) and move on to the
second term in (B.27). For this term, using that |n̄t| ≤ |µ| and (4.2) results in a factor
that is I.iii which may simply be estimated by (B.31), thus

II ≤ |µ|(0,T ]h

∫
In

|µ̄|‖[w]‖2
1/2,h,Γ(t) dt . |µ|(0,T ]hh

−1
min

2∑
i=1

‖(wnj )i‖2
Γ̄n

(B.33)

Combining the third, fourth and fifth term in (B.27), we have

III + IV + V .
N∑
n=1

(
‖w−n ‖2

Ωi,n
+ ‖w+

n−1‖2
Ωi,n−1

)

≤
N∑
n=1

( ∑
K∈Tj,Ωi,n

‖(wnj )−n ‖2
K +

∑
K∈Tj,Ωi,n−1

‖(wnj )+
n−1‖2

K

) (B.34)
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The separate treatments of all the terms in (B.27) are done. The obtained estimates give

|||w|||2Bh
.

N∑
n=1

2∑
i=1

( ∑
K∈Tj,Si,n

‖∇wnj ‖2
K̄n︸ ︷︷ ︸

= A

+
∑

K∈Tj,Γ̄n

h2
K‖D2

xw
n
j ‖2

K̄n︸ ︷︷ ︸
= B

+ h−1
min‖(wnj )i‖2

Γ̄n︸ ︷︷ ︸
= C

+
∑

K∈Tj,Ωi,n

‖(wnj )−n ‖2
K︸ ︷︷ ︸

= D

+
∑

K∈Tj,Ωi,n−1

‖(wnj )+
n−1‖2

K︸ ︷︷ ︸
= E

) (B.35)

We proceed by considering the five different types of terms separately. For term A we
use Lemma B.1 with r = 1:

A = ‖∇(v − Īnh,jv)‖2
K̄n
. k2(q+1)

n ‖Dq+1
t ∇v‖2

K̄n
+ h2pkn‖Dp+1

x v‖2
N (K),In (B.36)

For term B we apply Lemma B.1 with r = 2:

B = h2
K‖D2

x(v − Īnh,jv)‖2
K̄n
. k2(q+1)

n ‖Dq+1
t D2

xv‖2
K̄n

+ h2pkn‖Dp+1
x v‖2

N (K),In (B.37)

For term C we use Lemma B.2 and (3.1):

C = h−1
min‖(v − Īnh,jv)i‖2

Γ̄n

. k2q+1
n ‖Dq+1

t v‖2
L2(Γ̄n,L∞(In)) + h2p

∑
K∈Tj,Γ̄n

kn‖Dp+1
x v‖2

N (K),In
(B.38)

By applying Lemma B.3 to term D and using (3.1), we get

D = ‖(v − Īnh,jv)−n ‖2
K . h2pkn‖Dp+1

x v‖2
N (K),In (B.39)

Using Lemma B.3 and (3.1) for term E, we get

E = ‖(v − Īnh,jv)+
n−1‖2

K . k2q+1
n ‖Dq+1

t v‖2
K̄n

+ h2pkn‖Dp+1
x v‖2

N (K),In (B.40)

Using these local estimates in (B.35) gives (B.24). �

By applying Lemma B.3 and using (3.1), we get the estimate:

Corollary B.1 (A global spatial interpolation error estimate for temporal end-
points). Let Īh and Fh be defined by (B.19) and (B.26), respectively. Then, for any
function v with sufficient spatial and temporal regularity, we have that

N∑
n=1

‖(v − Īhv)−n ‖2
Ω0
. h2pF 2

h (v) (B.41)
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