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FLAG-ACCURATE ARRANGEMENTS

PAUL MÜCKSCH, GERHARD RÖHRLE, AND TAN NHAT TRAN

Abstract. In [MR21], the first two authors introduced the notion of an accurate
arrangement, a particular notion of freeness. In this paper, we consider a special
subclass, where the property of accuracy stems from a flag of flats in the intersection
lattice of the underlying arrangement. Members of this family are called flag-accurate.
One relevance of this new notion is that it entails divisional freeness. There are a
number of important natural classes which are flag-accurate, the most prominent one
among them is the one consisting of Coxeter arrangements. This warrants a systematic
study which is put forward in the present paper.

More specifically, let A be a free arrangement of rank ℓ. Suppose that for every
1 ≤ d ≤ ℓ, the first d exponents of A – when listed in increasing order – are realized as
the exponents of a free restriction of A to some intersection of reflecting hyperplanes
of A of dimension d. Following [MR21], we call such an arrangement A with this
natural property accurate. If in addition the flats involved can be chosen to form a
flag, we call A flag-accurate.

We investigate flag-accuracy among reflection arrangements, extended Shi and ex-
tended Catalan arrangements, and further for various families of graphic and digraphic
arrangements. We pursue these both from theoretical and computational perspec-
tives. Along the way we present examples of accurate arrangements that are not
flag-accurate.

The main result of [MR21] shows that MAT-free arrangements are accurate. We
provide strong evidence for the conjecture that MAT-freeness actually entails flag-
accuracy.
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1. Introduction and Statements of Results

In the study of hyperplane arrangements and their freeness it is important to under-
stand the behavior of different classes of arrangements with respect to combinatorial or
geometric constructions. Moreover, a central theme is to fix certain numerical properties
of (free) arrangements and to investigate a possible classification of such arrangements
in different prominent classes such as reflection arrangements, their subarrangements
and deformations thereof. Following this philosophy, our present work is a systematic
study of a new notion which is shared by many arrangements in those well established
classes and to initiate a detailed study of connections to other known families of free
arrangements.
We begin by recalling and by extending the definition of an accurate arrangement

from [MR21].

Definition 1.1. Suppose A is free with exponents exp(A ) = (e1, e2, . . . , eℓ)≤ (this
notation, used throughout, simply means that e1 ≤ e2 ≤ . . . ≤ eℓ).

(i) A is called almost accurate provided for each 1 ≤ d ≤ ℓ there exists a flat Xd in
the intersection lattice L(A ) of A of dimension d such that the restriction A Xd

of A to Xd is free with exp(A Xd) ⊆ exp(A ). The tuple (X1, X2, . . . , Xℓ) is called
a witness for the almost accuracy of A .

(ii) A is said to be accurate provided there is a witness (X1, X2, . . . , Xℓ) for the almost
accuracy of A such that for every 1 ≤ d ≤ ℓ, we have exp(A Xd) = (e1, e2, . . . , ed)≤.
We say that (X1, X2, . . . , Xℓ) is a witness for the accuracy of A .

(iii) For 1 ≤ k ≤ ℓ − 1, A is k-accurate provided there is a witness (X1, X2, . . . , Xℓ)
for the accuracy of A such that k is maximal subject to (X1, X2, . . . , Xk) being a
flag in L(A ). Then (X1, X2, . . . , Xℓ) is a witness for the k-accuracy of A .

(iv) Dually, A is k-coaccurate provided there is a witness (X1, X2, . . . , Xℓ) for the
accuracy of A such that k is minimal subject to (X1, X2, . . . , Xℓ−k) being a flag
in L(A ). We say that (X1, X2, . . . , Xℓ) is a witness for the k-coaccuracy of A .
Thus an ℓ-arrangement A is k-accurate if and only if A is (ℓ− k)-coaccurate.

(v) A is called flag-accurate provided there is a witness for the (ℓ − 1)-accuracy
(equivalently, for the 1-coaccuracy) of A . Such an ℓ-tuple is a witness for the
flag-accuracy of A .
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(vi) A is called ind-flag-accurate if A is both inductively free and flag-accurate, and
there is a witness (X1, X2, . . . , Xℓ) for the flag-accuracy of A such that A Xd is
inductively free for every 1 ≤ d ≤ ℓ. In that case (X1, X2, . . . , Xℓ) is said to be a
witness for the ind-flag-accuracy of A .

In the sequel we give examples which discriminate between these different notions of
accuracy. For instance, the reflection arrangement of the exceptional complex reflection
group of typeG31 turns out to be flag-accurate, but it is not ind-flag-accurate (as it is not
inductively free), see Remark 1.5. On the other hand, all Coxeter arrangements are ind-
flag-accurate, see Corollary 1.7. Also in Example 4.5 we present a rank 5 arrangement
D which is 2-accurate, and so D is accurate but not flag-accurate. Moreover, in Section
6 we construct a family of graphic arrangements which are (k + 1)-coaccurate but not
k-coaccurate for any k, see Theorem 6.12.

In his seminal work on the connection of freeness to properties of characteristic poly-
nomials [Abe16], Abe introduced the following notion, where χ(A , t) denotes the char-
acteristic polynomial of A , see (2.1).

Definition 1.2 ([Abe16, Def. 1.5]). An ℓ-arrangement A is divisionally free if there is
a flag

X1 ⊆ X2 ⊆ · · · ⊆ Xℓ−1 ⊆ Xℓ = V

such that dim(Xi) = i for each 1 ≤ i ≤ ℓ and χ(A Xi , t) divides χ(A Xi+1 , t) for each
1 ≤ i ≤ ℓ− 1. Such a flag is called a divisional flag.

Remarks 1.3. (i). It follows from the definitions above that if an arrangement is
flag-accurate, then it is both accurate and divisionally free, since any witness for the
flag-accuracy is simultaneously a divisional flag and a witness for accuracy for free. The
converse of this implication is false. For, in Example 5.5 we present an accurate and
divisionally free arrangement which is not flag-accurate (see also Corollary 6.14).
(ii). It is clear that flag accuracy only depends on the intersection lattice of the un-

derlying arrangement and is thus a combinatorial property, ditto for ind-flag-accuracy.
Likewise, divisional freeness is also combinatorial [Abe16, Thm. 4.4(3)]. But it is not
known whether this is also the case for accuracy itself.
(iii). Non-divisionally free accurate arrangements are not necessarily flag-accurate,

see Example 4.5.
(iv). While flag-accuracy implies divisional freeness, the converse is false, see [MR21,

Ex. 5.4].
(v). A product of arrangements is flag-accurate if and only if each factor is flag-

accurate, cf. [OT92, Prop. 2.14, Prop. 4.28]; ditto for ind-flag-accuracy, cf. [HR15,
Prop. 2.10].

We focus on specific classes of arrangements in this paper and investigate (ind-)flag-
accuracy among them. The beginning of our investigation concentrates on the question
of ind-flag-accuracy of complex reflection arrangements and of their restrictions. For
instance, in Theorem 4.1 we show that the notions of flag-accuracy and ind-flag-accuracy
coincide for complex reflection arrangements. Here is a compelling consequence of this
result.
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Theorem 1.4. Let G be an irreducible complex reflection group with reflection arrange-
ment A = A (G). Suppose G 6= G31. Then the following are equivalent:

(i) A is accurate;
(ii) A is flag-accurate;
(iii) A is ind-flag-accurate;
(iv) A is divisionally free;
(v) A is inductively free.

Remark 1.5. The reason why we need to exclude the exceptional complex reflection
group of type G31 in Theorem 1.4 is due to the fact that A (G31) itself is not inductively
free, [HR15, Thm. 1.1], but A (G31) does satisfy the properties in parts (i), (ii), and
(iv) of the theorem, cf. [MR21, Thm. 5.8], Theorem 4.1, and [Abe16], respectively. In
particular, A (G31) is flag-accurate, but not ind-flag-accurate.

The same equivalence as the one in Theorem 4.1 prevails for restrictions of complex
reflection arrangements. The following is a consequence of Theorem 4.4.

Theorem 1.6. Let G ⊆ GL(Cn) be an irreducible complex reflection group with re-
flection arrangement A (G). Let A = A (G)Y be the restriction of A (G) to some flat
Y ∈ L(A (G)) \ {Cn}. Then the following are equivalent:

(i) A is accurate;
(ii) A is flag-accurate;
(iii) A is ind-flag-accurate.

For an explicit list of all instances that satisfy the equivalent statements above, see
Theorem 4.4.
We emphasize that the equivalences in Theorems 1.4 and 1.6 do hold in particular

for Coxeter arrangements; we do record this as a separate result and do note in passing
that all Coxeter arrangements are hereditarily inductively free, cf. [BC12] and [HR15,
§3.2.2].

Corollary 1.7. Coxeter arrangements are ind-flag-accurate.

In [ABC+16], Abe, Barakat, Cuntz, Hoge and Terao proved the so-called Multiple
Addition Theorem (MAT) (Theorem 2.10) which is a variation of the addition part of
Terao’s seminal Addition-Deletion Theorem [Ter80a] ([OT92, Thm. 4.51]). Using this
theorem, they went on to uniformly derive the freeness of ideal subarrangements of Weyl
arrangements (Definition 4.6 and Theorem 4.7). As a special case of this result, they
obtained a new uniform proof of the classical Kostant-Macdonald-Shapiro-Steinberg
formula for the exponents of a Weyl group.

In [CM20], Cuntz and the first author introduced the notion ofMAT-freeness (Defini-
tion 2.12) to investigate arrangements whose freeness can be derived using an iterative
application of the Multiple Addition Theorem (Theorem 2.10).
Next we recall the principal result from [MR21, Thm. 1.2], which asserts that MAT-

freeness is sufficient for accuracy from Definition 1.1.

Theorem 1.8. MAT-free arrangements are accurate.
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As ideal subarrangements of Weyl arrangements are MAT-free, by [ABC+16] (see
Theorem 4.7), Theorem 1.8 readily yields the following [MR21, Thm. 1.3].

Theorem 1.9. Ideal arrangements are accurate.

It is natural to ask whether ideal arrangements also satisfy the stronger property
of flag-accuracy. Unfortunately, this cannot be derived from Theorem 1.9 since the
class of ideal arrangements is not closed under restrictions. However, we can give a
positive answer to this question for ideal arrangements of rank up to 8 (Theorem 4.8).
In particular, all ideal arrangements stemming from exceptional reflection groups are
flag-accurate. This motivates the following.

Conjecture 1.10. Ideal arrangements are flag-accurate.

In fact much evidence points to an even stronger assertion. For, firstly all ideal
arrangements are inductively free, thanks to [CRS19], and secondly a large number of
them are even supersolvable thus hereditarily inductively free (e.g. this applies to all
ideal arrangements in type A, B, C and G2). (Though in general, ideal arrangements
are not hereditarily free, cf. [AMR18].) So if a supersolvable ideal arrangement is
flag-accurate it is trivially also ind-flag-accurate. Thus it is tantalizingly tempting to
formulate the following.

Conjecture 1.11. Ideal arrangements are ind-flag-accurate.

We have confirmed Conjecture 1.11 for all ideal arrangements up to rank 6, see
Remark 4.9.
In view of Theorem 1.8, Conjecture 1.10 naturally leads to the following more general

question, see also Corollary 3.6.

Problem 1.12. Are all MAT-free arrangements flag-accurate?

Our evidence for Conjecture 1.11 does point to an even stronger implication.

Problem 1.13. Are all MAT-free arrangements ind-flag-accurate?

The next class we consider is given by certain deformations of Weyl arrangements –
extended Shi and extended Catalan arrangements.
In [MR21, Thm. 1.8] it was shown that extended Shi arrangements, ideal-Shi ar-

rangements and extended Catalan arrangements are accurate. In Theorems 5.7 and 5.8
we partially strengthen these results as follows.

Theorem 1.14. Extended Shi arrangements Shim are flag-accurate. Extended Catalan
arrangements Catm of Dynkin type A,B, or C are flag-accurate.

The second part of this theorem strongly hints towards the following.

Conjecture 1.15. Extended Catalan arrangements are flag-accurate.

Moreover, in view of [MR21, Thm. 1.8] we might even pose the following.

Problem 1.16. Are all ideal-Shi arrangements flag-accurate?
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In Section 6, we consider free graphic arrangements under the aspect of flag-accuracy.
We exhibit an infinite family of flag-accurate graphic arrangements (Theorem 6.8 and
Theorem 6.19). In particular, all trivially perfect graphs are ind-flag-accurate. In
Example 6.3, we present a non-flag-accurate free graphic arrangement which admits an
extension by one vertex which gives a flag-accurate graphic arrangement. Thus, (ind-
)flag-accuracy, similarly to accuracy, is neither compatible with restriction, nor with
localization.
Finally, in the last section we investigate flag-accuracy for ψ-digraphic arrangements.

Among them are N -Ish arrangements. Here we also discuss classes of arrangements
called Shi descendants and Catalan descendants, which are closely related to extended
Shi and extended Catalan arrangements by means of graph theoretic operations which
we call mutation. The core results here are as follows. Theorem 7.20 demonstrates
that the origins in the Shi descendant sequences have ind-flag-accurate cones. This in
particular implies that the extended Shi arrangements have this property, see Remark
7.21. In Theorem 7.22 we then show that all Shi descendants admit ind-flag-accurate
cones. There are analogous results for Catalan descendants. For instance, Corollary
7.31 proves that the cones of extended Catalan arrangements of type A are also ind-
flag-accurate. Finally, in Theorem 7.33 we show that indeed all Catalan descendants
are ind-flag-accurate.

For general information about arrangements we refer the reader to [OT92].

2. Preliminaries

In this section we review some basic concepts and preliminary results on various
classes of free arrangements. Our standard reference is [OT92].

2.1. Hyperplane arrangements. LetK be a field and let V = Kℓ be an ℓ-dimensional
vector space over K. A hyperplane in V is an affine subspace of codimension 1 of V .
An arrangement A = (A , V ) is a finite collection of hyperplanes in V . We say that A

is central if every hyperplane in A passes through the origin. If we want to emphasize
the dimension ℓ of the ambient vector space we say that A is an ℓ-arrangement.
Let A be an arrangement. Define the intersection poset L(A ) of A by

L(A ) :=

{
⋂

H∈B

H 6= ∅ | B ⊆ A

}
,

where the partial order is given by reverse inclusion X ≤ Y ⇔ Y ⊆ X forX, Y ∈ L(A ).
We agree that V is a unique minimal element in L(A ) as the intersection over the
empty set. Thus L(A ) is a semi-lattice which can be equipped with the rank function
rk(X) := codim(X) for X ∈ L(A ). We also define the rank rk(A ) of A as the rank
of a maximal element of L(A ). The intersection poset L(A ) is sometimes referred to
as the combinatorics of A .
All of the properties considered in the present paper, such as supersolvability, (induc-

tive, divisional, recursive, MAT-)freeness, ((almost, ind-)flag-)accuracy of arrangements
are compatible with products.
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An ℓ-arrangement A is called essential if rk(A ) = ℓ. Any arrangement A of rank r
in Kℓ can be written as the product of an essential arrangement A ess and the (ℓ− r)-
dimensional empty arrangement ∅ℓ−r. We call A ess the essentialization of A . Thus
A satisfies any of these properties if and only if A ess does.

The characteristic polynomial χ(A , t) ∈ Z[t] of A is defined by

(2.1) χ(A , t) :=
∑

X∈L(A )

µ(X)tdim(X),

where µ denotes the Möbius function µ : L(A ) → Z defined recursively by

µ (V ) := 1 and µ(X) := −
∑

Y ∈L(A )
X(Y

µ(Y ).

Let S = S(V ∗) be the symmetric algebra of the dual space V ∗ of V . We fix a basis
x1, . . . , xℓ for V ∗ and identify S with the polynomial ring K[x1, . . . , xℓ]. The algebra
S is equipped with the grading by polynomial degree: S =

⊕
p∈Z Sp, where Sp is the

K-space of homogeneous polynomials of degree p (along with 0), where Sp = {0} for
p < 0.
The defining polynomial Q(A ) of A is given by

Q(A ) :=
∏

H∈A

αH ∈ S,

where αH = a1x1 + · · ·+ aℓxℓ + d (ai, d ∈ K) satisfies H = ker(αH).
The operation of coning is a standard way to pass from an arbitrary arrangement

to a central one. The cone cA over A is the central arrangement in Kℓ+1 with the
defining polynomial

Q(cA ) := zQ(A )′ ∈ K[x1, . . . , xℓ, z],

where Q(A )′ is the homogenization of Q(A ), and z = 0 is the hyperplane at infinity,
denoted H∞; cf. [OT92, Def. 1.15]. By abuse of notation, if the cone cA has a property,
e.g., supersolvability, freeness, etc, we sometimes say A has that property too. The
characteristic polynomials of A and cA are related by the following simple formula
(e.g., [OT92, Prop. 2.51]):

χ(cA , t) = (t− 1)χ(A , t).

Associated with X ∈ L(A ) we have two canonical arrangements, the localization AX

of A at X , given by

AX := {H ∈ A | H ⊇ X},

and the restriction A X of A to X , defined by

A
X := {H ∩X 6= ∅ | H ∈ A \ AX}.

Two (central) arrangements A and B in Kℓ are said to be (linearly) affinely equiv-
alent if there is an invertible (linear) affine endomorphism ϕ : Kℓ → Kℓ such that
B = ϕ(A ) = {ϕ(H) | H ∈ A }. In particular, the intersection posets of two affinely
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equivalent arrangements are isomorphic. All of the properties of arrangements consid-
ered in the present paper are preserved under affine and linear equivalences. In the rest
of the paper, we often identify affinely equivalent arrangements and note that for such
non-central A and B, the cones cA and cB are linearly equivalent.

2.2. Free, inductively free, and recursively free arrangements. A K-linear map
θ : S → S which satisfies θ(fg) = θ(f)g+fθ(g) is called a K-derivation. Let Der(S) be
the S-module of K-derivations of S. It is a free S-module with basis ∂/∂x1, . . . , ∂/∂xℓ.

We say that a non-zero derivation θ =
∑ℓ

i=1 fi∂/∂xi is homogeneous of degree p provided
all coefficients fi belong to Sp, cf. [OT92, Def. 4.2]. In this case we write deg θ = p. We
obtain a Z-grading Der(S) =

⊕
p∈Z Der(S)p of the S-module Der(S).

In the remainder of this section, we assume that A is a central ℓ-arrangement.

Definition 2.2. The module of A -derivations of A is defined by

D(A ) := {θ ∈ Der(S) | θ(Q(A )) ∈ Q(A )S}.

In particular, if B ⊆ A , then D(A ) ⊆ D(B).
We say that A is free if the module of A -derivations is a free S-module.

If A is a free arrangement we may choose a homogeneous basis θ1, . . . , θℓ of D(A ).
Then the degrees of the θi are called the exponents of A . They are uniquely determined
by A [OT92, Def. 4.25]. In that case we write

exp(A ) := (deg θ1, . . . , deg θℓ)

for the exponents of A . If exp(A ) = (e1, e2, . . . , eℓ) with e1 ≤ e2 ≤ . . . ≤ eℓ we
often write exp(A ) = (e1, e2, . . . , eℓ)≤, as in the introduction. If A has an exponent e
appearing d ≥ 0 times in exp(A ) we also write ed ∈ exp(A ).
Note that the empty arrangement ∅ℓ in V is free with D(∅ℓ) = Der(S) so that

exp(∅ℓ) = (0ℓ) ∈ Zℓ.
Fix H ∈ A , denote A ′ := A \ {H} and A ′′ := A H . We call (A ,A ′,A ′′) the triple

with respect to the hyperplane H ∈ A .

Theorem 2.3 (Addition-Deletion Theorem [Ter80a], [OT92, Thms. 4.46 and 4.51]). Let
A be a non-empty arrangement and let H ∈ A . Then two of the following statements
imply the third:

(i) A is free with exp(A ) = (e1, . . . , eℓ−1, eℓ).
(ii) A ′ is free with exp(A ′) = (e1, . . . , eℓ−1, eℓ − 1).
(iii) A ′′ is free with exp(A ′′) = (e1, . . . , eℓ−1).

Moreover, all three assertions hold if A and A ′ are both free.

Theorem 2.3 above motivates the following concepts.

Definition 2.4 ([OT92, Def. 4.53]). The class IF of inductively free arrangements is
the smallest class of arrangements which satisfies

(i) the empty arrangement ∅ℓ is in IF for ℓ ≥ 0,
(ii) if there exists H ∈ A such that A ′′ ∈ IF , A ′ ∈ IF , and exp(A ′′) ⊆ exp(A ′),

then A ∈ IF .
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Definition 2.5 ([OT92, Def. 4.60]). The class RF of recursively free arrangements is
the smallest class of arrangements which satisfies

(i) ∅ℓ ∈ RF for ℓ ≥ 0,
(ii) if there exists H ∈ A such that A ′′ ∈ RF , A ′ ∈ RF , and exp(A ′′) ⊆ exp(A ′),

then A ∈ RF ,
(iii) if there exists H ∈ A such that A ′′ ∈ RF , A ∈ RF , and exp(A ′′) ⊆ exp(A ),

then A ′ ∈ RF .

Thus IF ⊆ RF , and by Theorem 2.3 every recursively free arrangement is free.

2.3. Multiarrangements. A multiarrangement is a pair (A ,m) where A = (A , V )
is an arrangement and m is a map m : A → Z≥0, called a multiplicity on A . Let
A be a central arrangement in Kℓ and let m be a multiplicity on A . The defining
polynomial Q(A ,m) of the multiarrangement (A ,m) is given by

Q(A ,m) :=
∏

H∈A

α
m(H)
H ∈ S = K[x1, . . . , xℓ].

When m(H) = 1 for every H ∈ A , (A ,m) is simply a hyperplane arrangement. The
module D(A ,m) of logarithmic derivations of (A ,m) is defined by

D(A ,m) := {θ ∈ Der(S) | θ(αH) ∈ α
m(H)
H S for all H ∈ A }.

We say that (A ,m) is free with the multiset exp(A ,m) = (d1, . . . , dℓ) of exponents if
D(A ,m) is a free S-module with a homogeneous basis {θ1, . . . , θℓ} such that deg θi = di
for each i. It is known that (A ,m) is always free for ℓ ≤ 2 [Zie89, Cor. 7].

Next we consider the Ziegler restriction of a simple arrangement, [Zie89, Thm. 11].
Let H ∈ A . The Ziegler restriction of A onto H is a multiarrangement (A H ,mH)
defined by

mH(X) := |AX | − 1 for X ∈ A
H .

We say that A is locally free in codimension three along H if AX is free for every
X ∈ L(A ) with X ⊆ H and codimV (X) = 3.
The following fundamental theorem gives a deep connection between the freeness of

a simple arrangements and the freeness of a particular Ziegler restriction.

Theorem 2.6 ([Yos04, Thm. 2.2], [AY13, Thm. 4.1], [Zie89, Thm. 11]). Let A be
a central arrangement in Kℓ with ℓ ≥ 3 and let H ∈ A . Then A is free with
exp(A ) = (1, d2, . . . , dℓ) if and only if the Ziegler restriction (A H ,mH) is free with
exp(A H ,mH) = (d2, . . . , dℓ) and A is locally free in codimension three along H.

2.4. Supersolvable arrangements. Let A be a central arrangement. An element
X ∈ L(A ) is said to be modular if X + Y ∈ L(A ) for all Y ∈ L(A ). A modular
element of corank 1 is called a modular coatom. If X ∈ L(A ) is a modular coatom, we
call the localization AX a modular coatom of A as well.

Definition 2.7. A central arrangement A of rank r is called supersolvable if there
exists a chain of arrangements, called an M-chain,

∅ = AX0 ⊆ AX1 ⊆ · · · ⊆ AXr
= A ,
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in which AXi
is a modular coatom of AXi+1

for each 0 ≤ i ≤ r − 1.

The following result is useful to check whether an element is a modular coatom.

Proposition 2.8 ([BEZ90, Thm. 4.3]). Let X ∈ L(A ) be a coatom. Then AX is a
modular coatom of A if and only if for any distinct H,H ′ ∈ A \ AX , there exists
H ′′ ∈ AX such that H ∩H ′ ⊆ H ′′.

Next we recall a classical result on supersolvable and free arrangements.

Theorem 2.9 ([JT84, Thm. (4.2)]). If A is supersolvable, then A is inductively free
hence free. Furthermore, if A has an M-chain ∅ = AX0 ⊆ AX1 ⊆ · · · ⊆ AXrk(A )

= A ,

then exp(A ) = (0ℓ−rk(A ), e1, . . . , erk(A )) where ei = |AXi
\ AXi−1

|.

2.5. MAT-free arrangements. We begin by recalling the core result from [ABC+16],
the so-called Multiple Addition Theorem (MAT).

Theorem 2.10 ([ABC+16, Thm. 3.1]). Let A ′ = (A ′, V ) be a free arrangement with
exp(A ′) = (e1, . . . , eℓ)≤ and let 1 ≤ p ≤ ℓ be the multiplicity of the highest exponent,
i.e.

eℓ−p < eℓ−p+1 = · · · = eℓ =: e.

Let H1, . . . , Hq be hyperplanes in V with Hi 6∈ A ′ for i = 1, . . . , q. Define

A
′′
j := (A ′ ∪ {Hj})

Hj = {H ∩Hj | H ∈ A
′}, for j = 1, . . . , q.

Assume that the following conditions are satisfied:

(1) X := H1 ∩ · · · ∩Hq is q-codimensional.
(2) X 6⊆

⋃
H∈A ′ H.

(3) |A ′| − |A ′′
j | = e for 1 ≤ j ≤ q.

Then q ≤ p and A := A ′ ∪ {H1, . . . , Hq} is free with

exp(A ) = (e1, . . . , eℓ−q, (e+ 1)q)≤.

We frequently consider the addition of several hyperplanes using Theorem 2.10. This
motivates the next terminology.

Definition 2.11. Let A ′ and {H1, . . . , Hq} be as in Theorem 2.10 such that conditions
(1)–(3) are satisfied. Then the addition of {H1, . . . , Hq} to A ′ resulting in A = A ′ ∪
{H1, . . . , Hq} is called an MAT-step.

An iterative application of Theorem 2.10 motivates the following natural concept.

Definition 2.12 ([CM20, Def. 3.2, Lem. 3.8]). An arrangement A is called MAT-free
if there exists an ordered partition

π = (π1| · · · |πn)

of A such that the following hold. Set A0 := ∅ℓ and

Ak :=
k⋃

i=1

πi for 1 ≤ k ≤ n.

Then for every 0 ≤ k ≤ n− 1 suppose that
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(1) rk(πk+1) = |πk+1|,
(2) ∩H∈πk+1

H *
⋃

H′∈Ak
H ′,

(3) |Ak| − |(Ak ∪ {H})H| = k for each H ∈ πk+1,

i.e. Ak+1 = Ak ∪ πk+1 is an MAT-step.
An ordered partition π with these properties is called an MAT-partition for A .

Remark 2.13 ([MR21, Rem. 2.15]). Suppose that A is MAT-free with MAT-partition
π = (π1| · · · |πn). Then we have:

(i) for each 1 ≤ k ≤ n, Ak is MAT-free with MAT-partition (π1| · · · |πk),
(ii) A is free and the exponents exp(A ) = (e1, . . . , eℓ)≤ of A are given by the block

sizes of the dual partition of π:

ei := |{k | |πk| ≥ ℓ− i+ 1}|,

(iii) |π1| > |π2| ≥ · · · ≥ |πn|.

The following central result in [MR21] relates arrangements which are constructed
by MAT-steps from smaller free arrangements with the notion of accuracy.

Theorem 2.14 ([MR21, Thm. 3.11]). Let A = A ′∪̇B be a free arrangement ob-
tained from the free arrangement A ′ through MAT-steps with exponents exp(A ) =
(e1, . . . , eℓ)≤. Suppose that π = (π1| · · · |πn) is the corresponding ordered partition of B.
Then for each 1 ≤ k ≤ n and each |πk+1| ≤ q ≤ |πk| there is a C ⊆ πk with |C | = q
such that for X := ∩H∈CH the restriction A X is free with exponents

exp
(
A

X
)
= (e1, . . . , eℓ−q)≤.

3. Flag-accuracy

In this section we collect some sufficient conditions for (ind-)flag-accuracy which are
used in subsequent proofs. Let K be an arbitrary field and A an arrangement in
V = Kℓ. The following simple criteria, which readily follow from the definitions, are
useful to show (ind-)flag-accuracy within an inductive argument.

Lemma 3.1. Let A be (inductively) free with exponents exp(A ) = (e1, . . . , eℓ)≤.
Then A is (ind-)flag-accurate if and only if there exist k linearly independent hyper-
planes H1, . . . , Hk ∈ A for some 1 ≤ k ≤ ℓ such that A Xi is (inductively) free with

exp(A Xi) = (e1, . . . , eℓ−i)≤ for each 1 ≤ i ≤ k where Xi :=
⋂i

j=1Hj and that A Xk is

(ind-)flag-accurate.
In particular, A is (ind-)flag-accurate if and only if there exists an H in A such

that A H is (ind-)flag-accurate with exp(A H) = (e1, . . . , eℓ−1)≤.

Lemma 3.2. Suppose A is free with exponents exp(A ) = (1, e, . . . , e) for some e ≥ 1.
Then A is flag-accurate if and only if A is divisionally free. In particular, if A is
inductively free with exp(A ) = (1, e, . . . , e), then A is flag-accurate.

Next, we recall the well-known modular coatom technique.

Proposition 3.3. Let A be a central arrangement and let X ∈ L(A ) be a modular
coatom. Then the following statements hold.
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(i) t · χ(A , t) = (t− |A \ AX |) · χ(AX , t).
(ii) A is supersolvable (resp., (inductively) free) if and only if AX is supersolvable

(resp., (inductively) free). In this case, exp(A )∪{0} = exp(AX)∪{|A \AX |}.
(iii) If AX is ((ind-)flag-)accurate whose exponents do not exceed |A \AX |, then A

is ((ind-)flag-)accurate.
(iv) If AX is almost accurate, then A is also almost accurate.

Proof. Part (i) follows from [Sta71, Thm. 2]. For the forward implication in (ii) note that
supersolvability, freeness and inductive freeness are closed under taking localizations
(see [Sta72, Prop. 3.2], [OT92, Thm. 4.37], [HRS17, Thm. 1.1]). For (iii), (iv) and
the reverse implication in (ii) note that there exists a H ∈ A \ AX such that the
essentializations (A H)ess and A ess

X are linearly equivalent (see [MMR23, Lem. 2.2]). �

The following general statement due to Abe [Abe16, Thm. 6.2] was first introduced
to give a sufficient condition for divisional freeness. Its proof applies equally to flag-
accuracy.

Theorem 3.4. Assume that there are distinct hyperplanes H1, . . . , Hℓ−1 ∈ A so that
the following conditions hold:

(i) A ′
i := A \ {Hi} is free with exp(A ′

i ) = (1, d1, . . . , di−1, di− 1, di+1, . . . , dℓ−1) for
each 1 ≤ i ≤ ℓ− 1.

(ii) A ′ := A \{H1, . . . , Hℓ−1} is free with exp(A ′) = (1, d1−1, d2−1, . . . , dℓ−1−1).

Then A is flag-accurate with exp(A ) = (1, d1, d2, . . . , dℓ−1).

Moreover, suppose 1 ≤ d1 ≤ d2 ≤ · · · ≤ dℓ−1 and set Xi :=
⋂ℓ−1

j=i Hj for 1 ≤ i ≤ ℓ−1.

Then (X1, . . . , Xℓ−1, Xℓ = V ) is a witness for the flag-accuracy of A .

We also recall the following similar statement from [MR21].

Corollary 3.5 ([MR21, Cor. 2.13]). Let A ′ be free, A = A ′∪̇{H1, . . . , Hp} an MAT-
step and C ⊆ {H1, . . . , Hp}. Suppose that exp(A ) = (e1, . . . , eℓ)≤ and let X := ∩H∈CH.
Then A X is free with exp(A X) = (e1, . . . , eℓ−|C |)≤.

From the previous corollary and Theorem 2.14 we readily obtain the following.

Corollary 3.6. Let A be a free arrangement of rank at most 4 which is obtained from
the free arrangement A ′ by MAT-steps such that one of the steps has size at least 2.
Then A is flag-accurate.

Proof. Without loss we may assume that A is a free arrangement in K4 with exp(A ) =
(e1, e2, e3, e4)≤. Assume further that A = A ′ ∪ B and that π = (π1| · · · |πn) is a
partition of B yielding the successive MAT-steps form A ′ to A . By assumption there
is a k ∈ {1, . . . , n} such that |πk| ≥ 2 and |πi| ≤ 1 for k < i ≤ n. By Theorem 2.14
there is an H ∈ πk such that A H is free with exp(A H) = (e1, e2, e3). Moreover, for
D := A ′ ∪ (∪k

i=1πi) ⊆ A we have that DH ⊆ A H is free with exp(DH) = (e1, e2, e3)
by Corollary 3.5, since πk is an MAT-step. In particular, |A H | = |DH |, so A H = DH .
Thus, for any other H ′ ∈ πk \{H} and X = H∩H ′ we have that A X = DX is free with
exp(A X) = (e1, e2), again, thanks to Corollary 3.5. As a rank 2 arrangement, A X is
flag-accurate, so A H is flag-accurate by Lemma 3.1 and A is flag accurate as well. �
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4. Flag-accurate reflection arrangements

4.1. Complex reflection arrangements and their restrictions. Let G ⊆ GL(V )
be a finite, complex reflection group acting on the complex vector space V = Cℓ. The
reflection arrangement of G in V is the hyperplane arrangement A (G) consisting of
the reflecting hyperplanes of the elements in G acting as reflections on V .
Terao [Ter80b] has shown that every reflection arrangement A (G) is free and that

the exponents of A (G) coincide with the coexponents of G, cf. [OT92, Prop. 6.59 and
Thm. 6.60].
In [MR21, Thm. 1.6], it was shown that all Coxeter arrangements are accurate and in

[MR21, Thm. 5.8], that more generally a complex reflection arrangement is accurate if
and only if it is divisionally free. In view of these results, it is natural to examine flag-
accuracy for the class of complex reflection arrangements. Thanks to Remark 1.3(v) and
[Rö18, Prop. 2.12], flag-accuracy and divisional freeness are compatible with products.
The proofs from [MR21] carry over almost immediately. So that we observe that a

reflection arrangement is flag-accurate if and only if it is accurate; likewise for restric-
tions of reflection arrangements. We record both results correcting an omission in the
second in [MR21, Thm. 5.12].

Theorem 4.1. Let G be a complex reflection group with reflection arrangement A =
A (G). Then A is flag-accurate if and only if it is divisionally free. This is the case
if and only if G has no irreducible factor isomorphic to one of the monomial groups
G(r, r, ℓ), r > 2, ℓ > 2, or G24, G27, G29, G33, G34.

In view of Theorem 4.1 and the fact that all restrictions of complex reflection ar-
rangements are free (thanks to [OT92, §6.4, App. D], [OT93], and [HR13]), it is natural
to investigate flag-accuracy among restrictions of complex reflection arrangements, not
all of which are reflection arrangements again.
In order to state our results, we require some further notation. Orlik and Solomon

defined intermediate arrangements A k
ℓ (r) in [OS83, §2] (cf. [OT92, §6.4]) which in-

terpolate between the reflection arrangements of the monomial groups G(r, r, ℓ) and
G(r, 1, ℓ). They show up as restrictions of the reflection arrangement of G(r, r, ℓ′), for
some ℓ′, [OS83, Prop. 2.14] (cf. [OT92, Prop. 6.84]).
For ℓ, r ≥ 2 and 0 ≤ k ≤ ℓ the defining polynomial of A k

ℓ (r) is given by

Q(A k
ℓ (r)) = x1 · · ·xk

∏

1≤i<j≤ℓ
0≤n<r

(xi − ζnxj),

where ζ is a primitive r-th root of unity, so that A ℓ
ℓ (r) = A (G(r, 1, ℓ)) and A 0

ℓ (r) =
A (G(r, r, ℓ)). For k 6= 0, ℓ, these are not reflection arrangements themselves.
Next we recall [OS83, Props. 2.11, 2.13] (cf. [OT92, Props. 6.82, 6.85]).

Proposition 4.2. Let A = A k
ℓ (r) for ℓ, r ≥ 2 and 0 ≤ k ≤ ℓ. Then

(i) A is free with

exp(A ) = (1, r + 1, . . . , (ℓ− 2)r + 1, (ℓ− 1)r − ℓ+ k + 1),

(ii) for H ∈ A , the type of A H is given in Table 1.
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k αH Type of A H

0 arbitrary A 1
ℓ−1(r)

1, . . . , ℓ− 1 xi − ζxj 1 ≤ i < j ≤ k < ℓ A
k−1
ℓ−1 (r)

1, . . . , ℓ− 1 xi − ζxj 1 ≤ i ≤ k < j ≤ ℓ A k
ℓ−1(r)

1, . . . , ℓ− 1 xi − ζxj 1 ≤ k < i < j ≤ ℓ A
k+1
ℓ−1 (r)

1, . . . , ℓ− 1 xi 1 ≤ i ≤ ℓ A
ℓ−1
ℓ−1 (r)

ℓ arbitrary A
ℓ−1
ℓ−1 (r)

Table 1. Restriction types of A k
ℓ (r)

The following two results are the counterparts of [MR21, Lem. 5.10] and [MR21,
Thm. 5.12] for flag-accuracy.

Lemma 4.3. Let A = A k
ℓ (r) for ℓ, r ≥ 2 and 1 ≤ k ≤ ℓ− 1. Then

(i) for r = 2, A is flag-accurate;
(ii) for r > 2, A is flag-accurate if and only if r + k ≥ ℓ.

Theorem 4.4. Let G be an irreducible complex reflection group with reflection arrange-
ment A (G). Let A = A (G)Y , for Y ∈ L(A ) \ {V }. Then A is flag-accurate if and
only if one of the following holds:

(i) G 6= G(r, r, ℓ), G34;
(ii) G = G34 and A 6= A (G)H ;
(iii) G = G(r, r, ℓ) and either r = 2 or else A = A k

ℓ′ (r) with r + k ≥ ℓ′ for r > 2.

Next we describe all ind-flag-accurate reflection arrangements and all ind-flag-accurate
restrictions of reflection arrangements. Since all inductively free reflection arrangements
are hereditarily inductively free, owing to [HR15, Thm. 1.2] likewise for all inductively
free restrictions of reflection arrangements, by [AHR14, Thm. 1.3], the ind-flag-accurate
reflection arrangements are simply the flag-accurate ones among the inductively free
ones and likewise for the ind-flag-accurate restrictions of reflection arrangements. Con-
sequently, Theorems 1.4 and 1.6 are immediate from Theorem 4.1 and [HR15, Thm. 1.1],
respectively, Theorem 4.4 and [AHR14, Thm. 1.2].

Next we revisit [MR21, Ex. 5.5] which gives an instance of an accurate but non-flag-
accurate arrangement.

Example 4.5. In [HR19] a free arrangement D is constructed within a rank 5 restric-
tion of the Weyl arrangement of type E7 which is not divisionally free with exponents
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(1, 5, 5, 5, 5) and defining polynomial

Q(D) = x2(x1 + x3 − x5)(2x1 + x2 + x3)(2x1 + x2 + 2x3 + x4 − x5)

x5(x1 + x3)(x2 + x5)(2x1 + x2 + 2x3 + x4)(2x1 + x3 − x5)

(2x1 + 2x2 + 2x3 + x4)(x2 + x3 + x4)(x1 + x2 + x3 + x4)

(x3 + x4)(x1 + x2 + x3)x1(x1 + x3 + x4)(2x1 + x2 + x3 − x5)

(x2 + x3 + x4 + x5)(x1 − x5)(x1 − x4 − x5)x4.

One can check that D is still accurate: Only the restriction to H = ker(x4) has
exponents (1, 5, 5, 5) and only the restrictions to

X1 = ker(2x1 + x2 + x3) ∩ ker(2x1 + x2 + 2x3 + x4 − x5),

X2 = ker(x2 + x5) ∩ ker(x2 + x3 + x4)

are free with exponents exp(DX1) = exp(DX2) = (1, 5, 5). However, neither of those
flats is contained in H = ker(x4). Note further that Y1 = X1∩H and also Y2 = X2∩H
are rank 3 flats with exp(DY1) = exp(DY2) = (1, 5). In particular, the lack of a suitable
rank 2 flat lying between Y1 (or Y2) and H prevents D from being divisionally free. In
particular, D is not flag-accurate. Specifically, D is only 2-accurate.
It is also easily seen that the free but non-divisionally free rank 7 arrangement B

constructed in [HR19] as a certain subarrangement of the Weyl arrangement of type E7

is also still accurate. But again it is not flag-accurate.
In [CM20, §6], Cuntz and Mücksch checked that both D and B fail to be MAT-free.

4.2. Ideal arrangements. For general information about Weyl groups and their root
systems, see [Bou68].
Let W be a Weyl group acting as a reflection group on the real vector space V = Rℓ.

Let Φ := Φ(W ) ⊆ V ∗ be a (reduced) root system for W and Φ+ ⊆ Φ a positive system
with simple roots ∆ ⊆ Φ+. The rank of W respectively Φ is rk(W ) := rk(Φ) :=
dim(RΦ). We have Φ+ = (

∑
α∈∆ Z≥0α) ∩ Φ, i.e. if β ∈ Φ+ then there are integers

nα ∈ Z≥0 such that β =
∑

α∈∆ nαα. Then the height of β is defined by

ht(β) :=
∑

α∈∆

nα.

The partial order ≤ on Φ+ is defined by

β ≤ γ : ⇐⇒ γ − β ∈
∑

α∈∆

Z≥0α.

A subset I ⊆ Φ+ is an ideal if it is a (lower) order ideal in the poset (Φ+,≤), i.e. for
α ∈ I and β ∈ Φ+ with β ≤ α, we have β ∈ I.
The Weyl arrangement A (W ) is the hyperplane arrangement in V defined by

A = A (W ) := {ker(β) | β ∈ Φ+}.

Definition 4.6 ([ABC+16]). If I ⊆ Φ+ is an order ideal then

AI := {ker(β) | β ∈ I} ⊆ A (W )

is called an ideal (sub)arrangement.
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We denote by mI the maximal height of a root in I. For 1 ≤ k ≤ mI , let

πk,I := {ker(α) | α ∈ I, ht(α) = k}

and let

πI := (π1,I | · · · |πmI ,I) ,

be the root-height partition of AI . Set πj,I = ∅ for j > mI .
Next we recall the principal result from [ABC+16, Thm. 1.1] (Ideal-free Theorem) in

our terminology.

Theorem 4.7. Let AI ⊆ A (W ) be the ideal subarrangement of the Weyl arrangement
A (W ) for an order ideal I ⊆ Φ+. Then AI is MAT-free with MAT-partition πI =
(π1,I| · · · |πmI ,I) and exponents

exp (AI) =
(
eI1 , . . . , e

I
ℓ

)
,

where

eIr = |{j | |πj,I| ≥ ℓ− r + 1}|.

Theorems 1.8 and 4.7 and the following theorem are the basis for Conjecture 1.10.

Theorem 4.8. Ideal arrangements of rank at most 8 are flag-accurate.

Proof. Firstly, all ideal arrangements of rank at most 4 are flag-accurate, by Theorem
4.7 and Corollary 3.6.
For ideal arrangements of rank 5 up to 8, we used a computer to check flag-accuracy.

The computation can be considerably simplified in a large number of cases by using
Theorem 2.14 as follows. In the root height partition (of an ideal arrangement of rank
at least 5) there is always a block of size at least 2 which is either the last block of the
partition or one only followed by blocks of size 1. Consequently, analogous to the proof
of Corollary 3.6, a partial flag up to the restriction of all the hyperplanes in this block
can always be built, realizing subsets of the exponents in correct order by Theorem
2.14. Now, in most of the cases it turns out that the restriction to the intersection
of all the hyperplanes in this block is itself flag-accurate, yielding the flag-accuracy of
the whole ideal arrangement. Unfortunately, there are still cases of ideals in the root
systems of type E6, E7, E8 where this heuristic doesn’t work. Hence a hard computer
check in these cases (a few hundred) is unavoidable but readily manageable. �

Remark 4.9. Concerning Conjecture 1.11, we were able to confirm with the aid of a
computer that all ideal arrangements AI of rank up to 6 are indeed ind-flag-accurate.

4.3. Crystallographic arrangements. Crystallographic arrangements were first in-
troduced and studied by Cuntz and Heckenberger in the setting of finite Weyl groupoids,
culminating in a complete classification in [CH15], see also [Cun11a]. They are gener-
alization of Weyl arrangements or even of restrictions of Weyl arrangements as every
Weyl arrangement is crystallographic and the class of crystallographic arrangements is
closed under taking restrictions, cf. [BC12, Prop. 5.3].
Let us recall the definition of a crystallographic arrangement.
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Definition 4.10. Let A be a hyperplane arrangement in V ∼= Rℓ. Denote the chambers
of A , i.e. the connected components of V \ (∪H∈AH) by C(A ).
For C ∈ C(A ) define the walls of C as

WC := {H ∈ A | 〈H ∩ C〉 = H}.

If Φ ⊆ V ∗ is a finite set such that A = {ker(α) | α ∈ Φ} and Rα ∩Φ = {±α} for all
α ∈ Φ then Φ is called a (reduced) root system for A .
If Φ is a root system for A , then for each C set

BC
Φ := {α ∈ Φ | ker(α) ∈ WC and α−1(R>0) ⊇ C} ⊆ Φ.

If every C ∈ C(A ) is a simplicial cone and there exists a root system Φ ⊆ V ∗ for A

such that

Φ ⊆
∑

α∈BC
Φ

Zα for all C ∈ C(A ),

then A is called crystallographic and Φ a crystallographic root system for A .

Crystallographic arrangements were classified by Cuntz and Heckenberger [CH15].
Perusing at the classification one observes that each irreducible crystallographic ar-
rangement of rank at least 4 and each member of the infinite series is a restriction of a
Weyl arrangement, see [CL17, Thm. 3.7]. Hence, to derive the following result, by The-
orem 4.4, it suffices to check the finite list of sporadic irreducible rank 3 arrangements,
cf. [CH15, App. B.1].

Theorem 4.11. Crystallographic arrangements are ind-flag-accurate.

Proof. By [BC12, Cor. 5.15], all restrictions of crystallographic arrangements are in-
ductively free. As mentioned above, in view of Theorem 4.4, it suffices to check the
finite list of sporadic irreducible crystallographic arrangements of rank 3.
Let A be one of the 50 sporadic arrangements listed in [CH15, App. B.1] and set

exp(A ) = (1, e1, e2)≤. Then a straightforward calculation shows that there is an H ∈
A , such that exp(A H) = (1, e1). Hence, A is ind-flag-accurate, by Lemma 3.1. �

5. Extended Shi, extended Catalan, and ideal-Shi arrangements

Recall the notation from Section 4.2. In addition let

h := mΦ+ + 1

be the Coxeter number of W .
Embed V ⊆ V ′ := Rℓ+1 and let z ∈ (V ′)∗ \ {0} such that V = ker(z) =: Hz, i.e. z

corresponds to the (ℓ+ 1)-st coordinate. For α ∈ Φ and j ∈ Z define the hyperplanes

Hj
α := ker(α− j) ⊆ V and cHj

α := ker(α− jz) ⊆ V ′.

When j = 0, we simply write Hα for H0
α. For integers a ≤ b, let [a, b] := {n ∈ Z |

a ≤ n ≤ b}. The deformed Weyl arrangement of Φ is defined by

A
[a,b]
Φ := {Hj

α | α ∈ Φ+, j ∈ [a, b]}.
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In particular, A
[0,0]
Φ is identical to the Weyl arrangement A (W ) defined above. When

[a, b] 6= [0, 0], the cone cA
[a,b]
Φ over the non-central arrangement A

[a,b]
Φ is given by

cA
[a,b]
Φ = {cHj

α | α ∈ Φ+, j ∈ [a, b]} ∪ {Hz}.

The study of the combinatorics of deformations of Weyl arrangements was initiated
by Athanasiadis in [Ath96]; among them are the so called extended Shi arrangements.
We are interested in the following generalization, investigated by Abe and Terao in
[AT16], the so called ideal-Shi arrangements.

Definition 5.1. For m ∈ Z>0, the extended Shi arrangement Shim is defined as

Shim = Shim(Φ) := A
[1−m,m]
Φ .

For m ∈ Z>0 and I ⊆ Φ+ an ideal, the ideal-Shi arrangement ShimI is defined as

ShimI = ShimI (Φ) := Shim ∪
{
H−m

β | β ∈ I
}
.

In the special case when I = Φ+ we obtain the extended Catalan arrangement

Catm = Catm(Φ) := ShimΦ+ .

In [Yos04], Yoshinaga proved the following remarkable theorem, confirming a conjec-
ture by Edelman and Reiner [ER96, Conj. 3.3].

Theorem 5.2 ([Yos04, Thm. 1.2]). Let m ∈ Z>0. Then the cone over the extended Shi
arrangement Shim is free with exponents

exp (c Shim) = (1, (mh)ℓ),

and the cone over the extended Catalan arrangement Catm is free with exponents

exp (cCatm) = (1, mh+ e1, . . . , mh+ eℓ),

where (e1, . . . , eℓ) = exp(A (W )).

We need the following special case of a result by Abe and Terao (cf. [AT16, Thm. 1.6]).

Proposition 5.3. Let Σ ⊆ ∆ be a subset of the simple roots of Φ+. Then the cone of
the arrangement

Shim−Σ := Shim \ {Hm
α | α ∈ Σ}

is free with exponents given by

exp
(
c Shim−Σ

)
=

(
1, (mh− 1)|Σ|, (mh)ℓ−|Σ|

)
.

We recall the main result from [MR21] for this class of arrangements.

Theorem 5.4 ([MR21, Thm. 1.8]). The cones of the extended Shi arrangements c Shim

and ideal-Shi arrangements c ShimI are accurate. In particular, the cones over the ex-
tended Catalan arrangements cCatm are accurate.

The following example illustrates that there exist arrangements that are both accu-
rate and divisionally free but not flag-accurate. (We are going to encounter another
example arising from graphic arrangements in Corollary 6.14.)



FLAG-ACCURATE ARRANGEMENTS 19

Example 5.5. Let ∆ = {α1, α2, α3, α4} be a simple system of the root system Φ of
type F4, corresponding to the labeling of the Dynkin diagram as in [Bou68, Planche
VIII]. Let Φ+ be the set of positive roots with respect to ∆ and I is the ideal consisting
of the roots

I = {α2, α3, α4, α2 + α3, α3 + α4}.

Then A := c Shi1−I = c Shi1 \{H1
α | α ∈ I} is free with exponents exp(A ) =

(1, 10, 10, 11, 12). Moreover, the arrangement A is accurate and also divisionally free.
A calculation reveals that there are exactly four hyperplanes H ∈ A whose restriction

A H is still accurate. But none of these restrictions contains a rank 2 intersection
X ∈ L(A ) such that A X is accurate. Consequently, no restriction of A to a hyperplane
is flag-accurate and by Lemma 3.1 A is not flag-accurate.

The main objective in this subsection is to show that the cones over the extended Shi
arrangement of arbitrary type and the cones over the extended Catalan arrangement
of type A, B or C are flag-accurate.
We first introduce some notion which allows us to specify the nature of a witness for

accuracy in extended Shi arrangements based on simple roots.

Definition 5.6. Suppose that [a, b] 6= [0, 0] and the cone cA
[a,b]
Φ is flag-accurate. A

witness Xℓ−1 ⊆ · · · ⊆ X2 ⊆ X1 ⊆ V ′ = Rℓ+1 for the flag-accuracy of cA
[a,b]
Φ is

called a simple root witness if there exist simple roots α1, . . . , αℓ−1 ∈ ∆ and integers
j1, . . . , jℓ−1 ∈ Z such that Xs =

⋂s
i=1 cH

ji
αi

for each 1 ≤ s ≤ ℓ− 1.

Theorem 5.7. The cone over the extended Shi arrangement Shim is flag-accurate with
a simple root witness.

Proof. Owing to Theorem 3.4 and Proposition 5.3 we derive that c Shim is flag-accurate
with a simple root witness. Alternately, in view of the nature of the set of exponents of
c Shim (see Theorem 5.2), the flag-accuracy of c Shim can also be deduced from Lemma
3.2 and the fact that c Shim is divisionally free, thanks to [Abe16, Thm. 6.1]. �

Theorem 5.8. If Φ is of type A, B or C, then the cone over the extended Catalan
arrangement Catm(Φ) is flag-accurate with a simple root witness.

Proof. The proof follows from Theorems 5.12, 5.13 below, and Corollary 7.31. �

Notation 5.9. In what follows, when writing the defining equation of a set of hyper-
planes, e.g., for N ⊆ Z by setting xi = N and xi = Nz, we mean the affine coordinate
hyperplanes xi = n and their homogenizations xi = nz for all n ∈ N .

We need an extension of Theorem 5.2 for extended Catalan arrangements of type B.

Theorem 5.10. Let a,m ≥ 0, ℓ ≥ 1 and 0 ≤ p ≤ ℓ. Let B
p
ℓ (m, a) be the arrangement

consisting of the hyperplanes

xi ± xj = [−a, a] (1 ≤ i < j ≤ ℓ),

xi = [1−m,m] (1 ≤ i ≤ p),

xi = [−m,m] (p < i ≤ ℓ).
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Then the cone cB
p
ℓ (m, a) is recursively free with exponents

exp (cBp
ℓ (m, a)) = (1, 2ℓ− p− 1, 1, 3, 5, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ).

Proof. Define the lexicographic order on the set of pairs

{(ℓ, ℓ− p) | 0 ≤ ℓ− p ≤ ℓ, ℓ ≥ 1}.

We prove that A := cB
p
ℓ (m, a) belongs to RF with the desired exponents by induction

on (ℓ, ℓ− p). When ℓ = 1, this is obvious. So suppose ℓ ≥ 2.
Case 1. Suppose that ℓ − p ≥ 1. Let H ∈ A denote the hyperplane xp+1 = −mz.

Then A ′ = A \ {H} = cB
p+1
ℓ (m, a) is recursively free with exponents

exp
(
cB

p+1
ℓ (m, a)

)
= (1, 2ℓ− p− 2, 1, 3, 5, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ),

by the induction hypothesis. Moreover, A ′′ = A H consists of the following hyperplanes

z = 0,

xi ± xj = [−a, a]z (1 ≤ i < j ≤ ℓ, i 6= p+ 1, j 6= p+ 1),

xi = [−(m+ a), m+ a]z (1 ≤ i ≤ ℓ, i 6= p+ 1).

Thus A ′′ = cB0
ℓ−1(m+ a, a) is recursively free with exponents

exp
(
cB0

ℓ−1(m+ a, a)
)
= (1, 2m+ 2aℓ− 2a+ 2i− 1)ℓ−1

i=1 ,

by the induction hypothesis. Therefore, by the addition part of Theorem 2.3, also
A = cB

p
ℓ (m, a) is recursively free with the desired exponents.

Case 2. Suppose that ℓ = p. The arrangement in question is cBℓ
ℓ(m, a) given by

z = 0,

xi ± xj = [−a, a]z (1 ≤ i < j ≤ ℓ),

xi = [1−m,m]z (1 ≤ i ≤ ℓ).

We need to prove that cBℓ
ℓ(m, a) belongs to RF with exponents

exp
(
cBℓ

ℓ(m, a)
)
= (1, ℓ− 1, 1, 3, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ).

By Case 1, we have cBℓ−1
ℓ (m, a) ∈ RF with exponents

exp
(
cBℓ−1

ℓ (m, a)
)
= (1, ℓ, 1, 3, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ).

Note that cBℓ
ℓ(m, a) = cBℓ−1

ℓ (m, a) \ {Hℓ}, where Hℓ ∈ cBℓ−1
ℓ (m, a) denotes the

hyperplane xℓ = −mz. Again by Case 1,
(
cBℓ−1

ℓ (m, a)
)Hℓ = cB0

ℓ−1(m + a, a). Thus(
cBℓ−1

ℓ (m, a)
)Hℓ belongs to RF with exponents (1, 2m+ 2aℓ− 2a+ 2i− 1)ℓ−1

i=1 , by our
induction hypothesis. By applying the deletion part of Theorem 2.3, we deduce that
cBℓ

ℓ(m, a) is recursively free with the desired exponents. �

We have a similar result for type C but the proof is more complicated than the one
in type B.
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Theorem 5.11. Let a,m ≥ 0, ℓ ≥ 1 and 0 ≤ p ≤ ℓ. Let C
p
ℓ (m, a) be the arrangement

consisting of the hyperplanes

xi ± xj = [−a, a] (1 ≤ i < j ≤ ℓ),

2xi = [1−m,m] (1 ≤ i ≤ p),

2xi = [−m,m] (p < i ≤ ℓ).

Then the cone cC
p
ℓ (m, a) is free with exponents

exp (cC p
ℓ (m, a)) = (1, 2ℓ− p− 1, 1, 3, 5, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ).

Proof. Define the lexicographic order on

{(ℓ, ℓ− p) | 0 ≤ ℓ− p ≤ ℓ, ℓ ≥ 1}.

We prove that A := cC
p
ℓ (m, a) is free with the desired exponents by induction on

(ℓ, ℓ− p). When ℓ = 1, the result is obvious. So suppose ℓ ≥ 2.
Case 1. Suppose ℓ− p ≥ 1. Let H ∈ A denote the hyperplane 2xp+1 = −mz. Then

A \ {H} = cC
p+1
ℓ (m, a) is free with exponents

exp
(
cC

p+1
ℓ (m, a)

)
= (1, 2ℓ− p− 2, 1, 3, 5, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ),

by our induction hypothesis.

For a,m, n ≥ 0 and ℓ ≥ 1, define the arrangement C̃ℓ(m, a, n) consisting of the
hyperplanes

xi ± xj = [−a, a] (1 ≤ i < j ≤ ℓ),

2xi = [−m,m] ∪ {±(m+ 2),±(m+ 4), . . . ,±(m+ 2na)} (1 ≤ i ≤ ℓ).

One can check that A H = cC̃ℓ−1(m, a, 1) (we need to treat the two cases m ≥ a and
m < a separately). We show that A H is free with exponents (1, 2m+2aℓ−2a+2i−1)ℓ−1

i=1.
Then we apply Theorem 2.3 to deduce that A = cC

p
ℓ (m, a) is free with the desired

exponents.
The case ℓ = 2 is clear. Suppose ℓ ≥ 3. Consider cC 0

ℓ−1(m+ a, a). Note that thanks
to our induction hypothesis, the arrangement cC 0

ℓ−1(m+ a, a) is free with exponents

exp
(
cC 0

ℓ−1(m+ a, a)
)
= (1, 2m+ 2aℓ− 2a+ 2i− 1)ℓ−1

i=1 .

Moreover, A H and cC 0
ℓ−1(m + a, a) share the Ziegler restriction onto the hyperplane

at infinity H∞ = ker z. By Theorem 2.6, it suffices to prove that A H is locally free in
codimension three along H∞. By [AT11, Lem. 3.1] (cf. also the case (2-ii) in the proof
of [AT15, Prop. 2.4]), this is the case once we know that the cone cCata(A2) over the

type A2 extended Catalan arrangement and cC̃2(m, a, 1) are both free. The former is
known to be free by Theorem 5.2 (see also Corollary 7.31).
Concerning the freeness of the latter, we actually show a more general statement,

namely that cC̃2(m, a, n) is free for n ≥ 0 with exponents

exp
(
cC̃2(m, a, n)

)
= (1, 2m+ 2na + 2a+ 1, 2m+ 2na+ 2a+ 3).
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Then the special case n = 1 gives the desired result for cC̃2(m, a, 1). We argue by
induction on n ≥ 0. Since cC 0

ℓ−1(m, a) is also free by our induction hypothesis on

(ℓ, ℓ− p), the arrangement cC̃2(m, a, 0) = cC 0
2 (m, a) consisting of

z = 0,

x1 ± x2 = [−a, a]z,

2xi = [−m,m]z (1 ≤ i ≤ 2)

is a localization of cC 0
ℓ−1(m, a) hence free with exponents (1, 2m+2a+1, 2m+2a+3).

Thus the base case n = 0 is clear.
Next we show that if cC̃2(m, a, n) is free then so is cC̃2(m, a, n+1) for n ≥ 0. Define

4a hyperplanes by setting

K4s−3 : 2x2 = (m+ 2na+ 2s)z, K4s−2 : 2x1 = (m+ 2na+ 2s)z,

K4s−1 : 2x2 = −(m+ 2na+ 2s)z, K4s : 2x1 = −(m+ 2na + 2s)z,

for each 1 ≤ s ≤ a. By adding the hyperplanes K1, K2, . . . , K4a to cC̃2(m, a, n) in this
order and by applying Theorem 2.3 to each addition step, we are able to conclude that

cC̃2(m, a, n + 1) is free with the desired exponents.
Case 2. Suppose ℓ = p. The arrangement in question is cC ℓ

ℓ (m, a) given by

z = 0,

xi ± xj = [−a, a]z (1 ≤ i < j ≤ ℓ),

2xi = [1−m,m]z (1 ≤ i ≤ ℓ).

We aim to prove that cC ℓ
ℓ (m, a) is free with exponents

exp
(
cC ℓ

ℓ (m, a)
)
= (1, ℓ− 1, 1, 3, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ).

According to Case 1, cC ℓ−1
ℓ (m, a) is free with exponents

exp
(
cC ℓ−1

ℓ (m, a)
)
= (1, ℓ, 1, 3, . . . , 2ℓ− 3) + (0, (2m+ 2aℓ− 2a)ℓ).

Note that cC ℓ
ℓ (m, a) = cC ℓ−1

ℓ (m, a)\{Hℓ}, where Hℓ ∈ cC ℓ−1
ℓ (m, a) denotes the hyper-

plane given by 2xℓ = −mz. Again by Case 1,
(
cC ℓ−1

ℓ (m, a)
)Hℓ is free with exponents

(1, 2m+2aℓ−2a+2i−1)ℓ−1
i=1. Applying the deletion part of Theorem 2.3, we infer that

cC ℓ
ℓ (m, a) is free with the desired exponents. �

Now we are ready to give the proofs for the flag-accuracy of the extended Catalan
arrangements of type B and C.

Theorem 5.12. For integers m, a, ℓ as in Theorem 5.10, the arrangement cB0
ℓ (m, a)

is flag-accurate. In particular, the extended Catalan arrangement Catm(Bℓ) of type Bℓ

(Definition 5.1), equal to B0
ℓ (m,m), has flag-accurate cone with exponents

exp (cCatm(Bℓ)) = (1, 2mℓ+ 2i− 1)ℓi=1.
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Proof. The flag-accuracy of cB0
ℓ (m, a) can be shown by constructing a witness as hinted

in Case 1 in the proof of Theorem 5.10. Define ℓ hyperplanes H1, . . . , Hℓ ∈ cB0
ℓ (m, a)

as follows:

Hℓ : xℓ = −mz, Hi : xi − xi+1 = −az (1 ≤ i ≤ ℓ− 1).

Set Xn :=
⋂ℓ

j=nHj for 1 ≤ n ≤ ℓ. Then X1 ⊆ X2 ⊆ · · · ⊆ Xℓ ⊆ V ′ = Rℓ+1 and

dimV ′(Xn) = n. Moreover, for each 1 ≤ n ≤ ℓ, one may show that

A
Xn = cB0

n−1(m+ (ℓ− n+ 1)a, a).

Hence, by Theorem 5.10, A Xn ∈ RF with exponents (1, 2m + 2aℓ − 2a + 2i − 1)n−1
i=1 .

Thus (X1, X2, . . . , Xℓ, V
′) is a witness for the flag-accuracy of cB0

ℓ (m, a). �

Theorem 5.13. For integers m, a, ℓ as in Theorem 5.11, the arrangement cC 0
ℓ (m, a)

is flag-accurate. In particular, the extended Catalan arrangement Catm(Cℓ) of type Cℓ

(Definition 5.1) equal to C 0
ℓ (m,m) has flag-accurate cone with exponents

exp (cCatm(Cℓ)) = (1, 2mℓ+ 2i− 1)ℓi=1.

Proof. The case ℓ ≤ 2 is already done in Case 1 of the proof of Theorem 5.11. Suppose

ℓ ≥ 3. Recall the arrangement cC̃ℓ(m, a, n) therein. First observe that cC̃ℓ(m, a, n) is
free with

exp
(
cC̃ℓ(m, a, n)

)
= exp

(
cC 0

ℓ (m+ na, a)
)
= (1, 2m+ 2a(ℓ+ n− 1) + 2i− 1)ℓi=1.

This is because cC̃ℓ(m, a, n) and cC 0
ℓ (m+ na, a) share the Ziegler restriction onto H∞,

and the former is locally free in codimension three along H∞, by an argument similar

to the one used earlier to prove the local freeness of cC̃ℓ−1(m, a, 1) in Theorem 5.11

(here the freeness of cC̃2(m, a, n) for n ≥ 0 is crucial).
Now define ℓ hyperplanes H1, . . . , Hℓ ∈ cC 0

ℓ (m, a) as follows:

Hℓ : 2xℓ = −mz, Hi : xi − xi+1 = −az (1 ≤ i ≤ ℓ− 1).

Set Xn :=
⋂ℓ

j=nHj for 1 ≤ n ≤ ℓ. Then X1 ⊆ X2 ⊆ · · · ⊆ Xℓ ⊆ V ′ = Rℓ+1 and

dimV ′(Xn) = n. Moreover, for each 1 ≤ n ≤ ℓ, one can show that
(
cC 0

ℓ (m, a)
)Xn

= cC̃n−1(m, a, ℓ− n+ 1).

To see this notice that
(
cC̃ℓ(m, a, n)

)K

= cC̃ℓ−1(m, a, n+ 1),

where K ∈ cC̃ℓ(m, a, n) denotes the hyperplane 2xℓ = −(m+ 2na)z.

Thus for each 1 ≤ n ≤ ℓ, (cC 0
ℓ (m, a))

Xn is free with

exp
(
(cC 0

ℓ (m, a))
Xn

)
= exp

(
cC 0

n−1(m+ (ℓ− n+ 1)a, a)
)
= (1, 2m+2aℓ−2a+2i−1)n−1

i=1 .

Hence (X1, X2, . . . , Xℓ, V
′) is a witness for the flag-accuracy of cC 0

ℓ (m, a). �

Unfortunately, we are unable to show the flag-accuracy of the extended Catalan
arrangement of type D. We propose a potential approach.
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Conjecture 5.14. Let a ≥ 0, ℓ ≥ 1 and 0 ≤ r ≤ ℓ. Let Dr
ℓ (a) be the arrangement

consisting of the hyperplanes

2xi = [−2a, 0] (1 ≤ i ≤ r),

xi + xj = [−3a, a] (1 ≤ i < j ≤ r),

xi − xj = [−2a, 2a] (1 ≤ i < j ≤ r),

xi ± xj = [−2a, a] (1 ≤ i ≤ r < j ≤ ℓ),

xi ± xj = [−a, a] (r + 1 ≤ i < j ≤ ℓ).

Then the cone cDr
ℓ (a) is free with exponents

exp (cDr
ℓ (a)) = (1, ℓ+ r − 1, 1, 3, 5, . . . , 2ℓ− 3) + (0, (2aℓ+ 2ar − 2a)ℓ).

Note that D0
ℓ (a) equals the extended Catalan arrangement Cata(Dℓ) of type Dℓ (see

Definition 5.1 and see also the arrangement cBℓ
ℓ(0, a) in Theorem 5.10), and D ℓ

ℓ (a) is
affinely equivalent to the arrangement C 0

ℓ (a, 2a) from Theorem 5.11 via xi 7→ xi −
a
2
.

Thus the cases r = 0 and r = ℓ are already done. Note also that if 0 ≤ r ≤ ℓ − 2,
then the restriction of Dr

ℓ (a) to the hyperplane xr+1−xr+2 = a is affinely equivalent to
D

r+1
ℓ−1 (a). When r = ℓ− 1, the restriction of D

ℓ−1
ℓ (a) to the hyperplane xℓ−1 − xℓ = a is

affinely equivalent (via xi 7→ xi+1 −
a
2
(1 ≤ i ≤ ℓ− 2), xℓ 7→ x1 −

a
2
) to the arrangement

Fℓ−1(a, 0) from Conjecture 5.15 below.

Conjecture 5.15. Let a, n ≥ 0 and ℓ ≥ 1. Let Fℓ(a, n) be the arrangement consisting
of the hyperplanes

2x1 = [−(4n + 3)a, a],

2xi = [−a, a] (2 ≤ i ≤ ℓ),

xi ± xj = [−2a, 2a] (2 ≤ i < j ≤ ℓ),

x1 ± xi = [−(2n + 3)a, 2a] (2 ≤ i ≤ ℓ).

Then the cone cFℓ(a, n) is flag-accurate with exponents

exp (cFℓ(a, n)) = (1, 4a(ℓ+ n) + 2i− 1)ℓi=1.

Note that the flag-accuracy of cFℓ(a, n) follows from its freeness and exponents.
Indeed, assume that A := cFℓ(a, n) is free with exponents (1, 4a(ℓ + n) + 2i − 1)ℓi=1

for any a ≥ 1, n ≥ 0, ℓ ≥ 1. Let H ∈ A denote the hyperplane x1 − x2 = 2az. Then
the restriction A H is linearly equivalent to cFℓ−1(a, n + 1). Thus A H is free with
exponents (1, 4a(ℓ + n) + 2i − 1)ℓ−1

i=1 . The strategy is now to use induction on ℓ and
apply Lemma 3.1 to deduce the flag-accuracy of cFℓ(a, n).

Remark 5.16. We have verified Conjectures 5.14 and 5.15 by computer in the following
few cases: for (ℓ, a) = (2, 1), (2, 2), (3, 1), (3, 2), (4, 1) and (4, 2) and all 0 ≤ r ≤ ℓ in the
first instance and all values for n ≤ 2 in the second.
We remark that if these conjectures are true, then we may conclude that the extended

Catalan arrangement Catm(Dℓ) of type Dℓ for m ≥ 0 and ℓ ≥ 2 has flag-accurate cone
with exponents

exp (cCatm(Dℓ)) = (1, ℓ− 1, 1, 3, 5, . . . , 2ℓ− 3) + (0, (2mℓ− 2m)ℓ).
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Let us verify this claim. Let A := cCatm(Dℓ). Recall that cHj
α = ker(α − jz) for

α ∈ Φ and j ∈ Z and also that αi = xi − xi+1 (1 ≤ i ≤ ℓ− 1), and αℓ = xℓ−1 + xℓ.
When ℓ = 2p, define p subspaces X1, . . . , Xp ∈ L(A ) as follows:

Xk :=

k⋂

j=1

cHm
α2j−1

for 1 ≤ k ≤ p.

One may show that for every 1 ≤ k ≤ p

A
Xk = cDk

ℓ−k(m).

If Conjecture 5.14 is true, then A Xk is free with exponents

exp
(
A

Xk
)
= (1, ℓ− 1, 1, 3, 5, . . . , 2ℓ− 2k − 3) + (0, (2mℓ− 2m)ℓ).

As noted before, Dp
p (m) = C 0

p (m, 2m) (cf. Theorem 5.11). Moreover, by Theorem 5.13,

A Xp = cC 0
p (m, 2m) is flag-accurate. Thus by Lemma 3.1, A is flag-accurate.

When ℓ = 2p+ 1, define p+ 1 subspaces X1, . . . , Xp+1 ∈ L(A ) as follows:

Xk :=

{⋂k
j=1 cH

m
α2j

for 1 ≤ k ≤ p,

Xp ∩ cHm
α1

for k = p+ 1.

Using an argument similar to the one in the previous case and the notation from
Conjecture 5.15, one can show that

A
Xk = cDk

ℓ−k(m) for 1 ≤ k ≤ p, and A
Xp+1 = cFp(m, 0).

If Conjecture 5.15 is true, then A Xp+1 is flag-accurate with exponents (1, 4mp+2i−1)pi=1.
Thus by Lemma 3.1, A is flag-accurate.

Remark 5.17. The extended Catalan arrangement of type G2 is clearly flag-accurate
by Theorem 5.4 and Lemma 3.1. For the other exceptional types F4, E6, E7, and E8,
our computer could only produce a result in the case of F4 which shows that the cone
cCat1(F4) is indeed flag-accurate.

The discussion above motivates Conjecture 1.15.

6. Flag-accurate graphic arrangements

In this section we examine flag-accuracy among free graphic arrangements. For basics
on the latter, we refer to [OT92, Sec. 2.4].
Let K be an arbitrary field. Let G = (VG, EG) be a simple graph (i.e., no loops and

no multiple edges) with vertex set VG = {v1, . . . , vℓ} and edge set EG.

Definition 6.1. The graphic arrangement AG in Kℓ is defined by

AG := {Hij := ker(xi − xj) | {vi, vj} ∈ EG}.

A simple graph G is chordal if it does not contain an induced cycle Cn of length
n > 3, i.e. if G is Cn-free for n > 3 for short. The freeness of graphic arrangements is
characterized by chordality:

Theorem 6.2 ([Sta72], [ER94, Thm. 3.3]). The graphic arrangement AG is free if and
only if G is chordal.
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Figure 1. A chordal graph G giving rise to a graphic arrangement which
is free, but not accurate, and an extension G′ by one vertex v resulting
in a graphic arrangement which is ind-flag-accurate.

We begin with an example from [MR21].

Example 6.3. Let G be the chordal graph shown in Figure 1. It was shown in [MR21,
Ex. 5.7] that AG is not accurate and so it is not flag-accurate. Extending G by one
additional vertex v and the edges indicated by the dashed lines in Figure 1 yields a new
chordal graph G′. The corresponding graphic arrangement AG′ is free with exponents
exp(AG′) = (0, 1, 26, 33). It is not hard to see, by contracting the appropriate edges, that
AG′ is flag-accurate. But for H ′ = ker(x1−xv) ∈ AG′ (the hyperplane corresponding to
the new edge (1, v) of G′), we have A H′

G′ = AG. Moreover, forX =
⋂

1≤i<j≤10 ker(xi−xj)
we also obtain (AG′)X

∼= AG. This shows that in general, flag-accuracy is neither
inherited by restrictions, nor by localizations.

In [TT22], Tsujie and the third author gave a characterization of MAT-free graphic
arrangements by means of strongly chordal graphs – the graphs that are chordal and
n-sun-free for n ≥ 3. Recall that an n-sun Sn (n ≥ 3) is a (chordal) graph with vertex
set VSn

= [n] ∪ {v1, . . . , vn} and edge set

ESn
= {{i, j} | 1 ≤ i < j ≤ n} ∪ {{vi, j} | 1 ≤ i ≤ n, j ∈ {i, i+ 1}} ,

where the vertices 1 and n+1 are identified; see Figure 2 for illustrations of S3 and S4.

Theorem 6.4 ([TT22, Thm. 2.10]). The graphic arrangement AG is MAT-free if and
only if G is strongly chordal.

In the case of graphic arrangements, the concepts of supersolvability, inductive free-
ness, divisional freeness, almost accuracy and freeness are essentially equivalent. In
particular, ind-flag-accuracy coincides with flag-accuracy. However, a characterization
of (flag-)accurate graphic arrangements is unknown. We present in this section some
classes of flag-accurate graphic arrangements.
Next, we first fix some notation which is used throughout the section. For a positive

integer n let [n] := {1, 2, . . . , n}. For an edge e ∈ EG denote by He the hyperplane that
is defined by e. For a subset F ⊆ EG let XF :=

⋂
e∈F He ∈ L(AG).
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The following special Q-family of graphs is of particular interest. For, the set of
graphic arrangements stemming from Q is closed under restrictions to a hyperplane,
see Remark 6.7.

Definition 6.5 (Q-family). For ℓ ≥ 2, let Kℓ be the complete (undirected) graph on

[ℓ]. Let M = (mij | 1 ≤ i < j ≤ ℓ) ∈ Zℓ(ℓ−1)/2
≥0 be a tuple of non-negative integers of

cardinality ℓ(ℓ− 1)/2 where the element mij ∈M corresponds to the edge {i, j} of Kℓ.
ByQ we denote the following family of chordal graphs whose elements Qℓ = Qℓ(M) ∈ Q
are defined as follows: Qℓ consists of an “inner” complete graph Kℓ, and to each edge
{i, j} of Kℓ we attach mij ≥ 0 many “outer” triangles (3-cycles). (We may also think of
Qℓ(M) as an edge-weighted graph with weight mij in each edge {i, j} of the complete
graph Kℓ.) See Figure 2 for an example.

Example 6.6. The n-sun is a member in the Q-family given by Sn = Qn(M) where
mij = 1 if j = i+ 1 for 1 ≤ i ≤ n and mij = 0 otherwise.

1

23

Figure 2. From left to right : S3, S4 and Q3(M) with m12 = 0, m13 >
0, m23 > 0.

Remark 6.7. It is not hard to see that the graphic arrangement AQℓ
defined by the

graph Qℓ from Definition 6.5 is free with exponents

exp(AQℓ
) = (2|m|, ℓ− 1, ℓ− 2, . . . , 2, 1, 0),

where |m| :=
∑

mij∈M
mij . We observe that regarding their exponents, up to symmetry

there are three types of restrictions of AQℓ
to a hyperplane, or equivalently, three types

of edge-contractions of Qℓ. Below we give an edge representative of each type:

(I) e ∈ EKℓ
with me = 0, i.e., e is an edge of the inner complete graph Kℓ with

no outer triangles. In this case, the contraction Qℓ/e of e on Qℓ results in a
graph Qℓ−1(M

′) in the Q-family for a tuple M ′ of cardinality (ℓ − 1)(ℓ − 2)/2.
Furthermore, the restriction of AQℓ

to the hyperplane He defined by the edge e
is free and for ℓ ≥ 2,

exp
(
A

He

Qℓ

)
= exp(AQℓ

) \ {ℓ− 1}.

(II) e ∈ EKℓ
with me > 0. In this case, we have

exp
(
A

He

Qℓ

)
= (2|m|−me, 1me , ℓ− 2, . . . , 2, 1, 0).

In particular, exp
(
A

He

Qℓ

)
6= exp(AQℓ

) \ {ℓ− 1} if ℓ ≥ 3.
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(III) e ∈ EQℓ
\ EKℓ

. In this case, the contraction Qℓ/e is of the form Qℓ−1(M
′) ∈ Q

with M ′ = (M \ {me}) ∪ {me − 1}. Thus,

exp
(
A

He

Qℓ

)
= (2|m|−1, ℓ− 1, ℓ− 2, . . . , 2, 1, 0).

In particular, exp
(
A

He

Qℓ

)
6= exp(AQℓ

) \ {ℓ− 1} if ℓ ≥ 4.

By the observation above, it is easily seen that if ℓ ≤ 3 then AQℓ(M) is flag-accurate
for any finite tuple M of non-negative integers. To see this, contract the edges of type
(III) successively.

The following theorem gives a sufficient condition for the arrangements in the Q-
family to be flag-accurate.

Theorem 6.8. Let M = (mij) ∈ Zℓ(ℓ−1)/2
≥0 be a tuple of non-negative integers such that

mij = 0 for {i, j} /∈ {{1, 2}, . . . , {ℓ− 1, ℓ}, {ℓ, 1}} (i.e. the edges not in the great circle
of Kℓ have weight 0). Then the graphic arrangement AQℓ(M) is flag-accurate.

Proof. We argue by induction on ℓ. The case ℓ ≤ 3 is clear from Remark 6.7. When
ℓ = 4 we may contract an edge of type (I) (which reduces the problem to the case ℓ = 3)
and then apply Lemma 3.1. Suppose ℓ ≥ 5. Note that m13 = m24 = 0. In view of
Remark 6.7, we may compute exp

(
A

H13
Qℓ

)
= exp(AQℓ

) \ {ℓ− 1} and exp
(
A

H13∩H24
Qℓ

)
=

exp(AQℓ
) \ {ℓ − 1, ℓ − 2}. Moreover, the contraction (Qℓ/{1, 3})/{2, 4} = Qℓ−2(M

′′)
is a graph in the Q-family where M ′′ satisfies the assumption of the theorem. By
our induction hypothesis, Qℓ−2(M

′′) is flag-accurate. Again, Lemma 3.1 completes the
proof. �

The following is an immediate consequence of Theorem 6.8.

Corollary 6.9. ASn
is flag-accurate for n ≥ 3.

An example of a non-accurate arrangement is given in Example 6.3. The following
proposition extends this example.

Proposition 6.10. Let ℓ ≥ 4 and M = (mij) ∈ Zℓ(ℓ−1)/2
>0 be a tuple of positive integers.

Then the graphic arrangement AQℓ(M) is not (flag-)accurate.

Proof. There is no edge of type (I). �

It is obvious that if an arrangement is k-coaccurate, then it is (k + 1)-coaccurate
(see Definition 1.1). Now we show that for any given k ≥ 1 there exists a graphic
arrangement that is (k + 1)-coaccurate but not k-coaccurate.

Definition 6.11. Let k ≥ 1. Let G be the graph defined as follows: G consists of the
graph Q4(M) in the Q-family with mij = k for all {i, j} ∈ EK4 and we draw k many
4-complete graphs Di with vertex set {1, 2, 3, vi} for 1 ≤ i ≤ k. See Figure 3 for the
case k = 1.

Theorem 6.12. Let k ≥ 1. If G is the graph from Definition 6.11, then the graphic
arrangement AG is (k + 1)-coaccurate but not k-coaccurate.
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Figure 3. A graph whose corresponding graphic arrangement is accu-
rate but not flag-accurate.

Proof. It is easily seen that AG is free with exp(AG) = (3k+1, 26k+1, 1, 0). We observe
that regarding exponents up to symmetry there are three types of edge-contractions of
G whose edge representatives are given below:

(i) e is an edge of a 4-complete graph Di but not an edge of Q4(M), i.e., e = {vi, j}
for some 1 ≤ i ≤ k and 1 ≤ j ≤ 3. In this case, contracting the edge e of G simply
removes the edges {vi, j} for 1 ≤ j ≤ 3 which yields exp

(
A

He

G

)
= exp(AG) \ {3}.

(ii) e is an edge of the inner complete graph K4 of Q4(M) (similar to type (II) in
Remark 6.7). In this case, the contraction G/e produces k + 1 many exponents
1 in exp(A He

G ). To study the contraction more explicitly, we distinguish two sub-
types: (iia): e ∈ {{1, 4}, {2, 4}, {3, 4}} and (iib): f ∈ {{1, 2}, {2, 3}, {3, 1}}. Then

exp
(
A

He

G

)
= (3k, 25k+1, 1k+1, 0) and exp

(
A

Hf

G

)
= (26k+1, 1k+1, 0).

(iii) e is an edge of an outer triangle in Q4(M) but not an edge of K4 (similar to type
(III) in Remark 6.7). In this case, exp

(
A

He

G

)
= exp(AG) \ {2}.

Claim 6.13. Let 1 ≤ p ≤ k. For any F ⊆ EG with |F | = p, we have exp
(
A

XF

G

)
=

(3k−p+1, 26k+1, 1, 0), where XF =
⋂

e∈F He if and only if all edges in F are of type (i).

Proof of Claim 6.13. The reverse implication is clear since contracting p edges of type
(i) in any order removes p many exponents 3 of AG.
Write F = {e1, e2, . . . , ep} so that e1 < e2 < · · · < ep is the contracting order in

G/F , i.e., G/F = (((G/e1)/e2) · · · )/ep. Suppose that F contains an edge of type (ii)
and let eq for q ≤ p be the first edge of this type in the contracting order above.

Denote F ′ := {e1 < · · · < eq} ⊆ F . Note that G/F = G′/(F \ F ′) and AG′ = A
XF ′

G

where G′ = G/F ′. Since there are at most q − 1 many edges of type (iii) in F ′, we
must have 1k+2−q ∈ exp(AG′). In order to achieve the desired exponents of A

XF

G , we
have to remove k − q + 1 many exponents 1 from exp(AG′) but this is impossible since
|F \ F ′| = p − q < k − q + 1. Hence F has no edge of type (ii). It is thus easily
seen that F has no edge of type (iii) either. This completes the proof of the forward
implication. �

We return to the proof of Theorem 6.12. First we show that the graphic arrangement
AG is not k-coaccurate. Suppose to the contrary that AG is k-coaccurate. Then by
definition there exists Xk ∈ L(AG) of codimension k such that A

Xk

G is flag-accurate

with exp
(
A

Xk

G

)
= (3, 26k+1, 1, 0). By Claim 6.13, the underlying graph of A

Xk

G must
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have the form Q4(M
′) with me = k for all me ∈M ′. However, this arrangement is not

(flag-)accurate, by Proposition 6.10, a contradiction.
Finally, we show that AG is (k + 1)-coaccurate. By Claim 6.13, for each 1 ≤ p ≤ k

there exists Xp ∈ L(AG) of codimension p such that exp
(
A

Xp

G

)
= (3k−p+1, 26k+1, 1, 0).

It suffices to find Xk+1 ∈ L(AG) of codimension k + 1 such that exp
(
A

Xk+1

G

)
=

(26k+1, 1, 0) and A
Xk+1

G is flag-accurate. This can be done as follows: Let {2, 3, ui} for
1 ≤ i ≤ k be the set of the k outer triangles based in {2, 3} (an edge of type (iib)),
we first contract the edge {2, 3} of G then contract the k edges {3, ui} in any order.
The resulting graph is of the form Q3(M

′′) where M ′′ = (k, 2k, 3k). The corresponding
graphic arrangement has exponents (26k+1, 1, 0) and is flag-accurate, by Remark 6.7. �

The following is a direct consequence of Theorem 6.12 by taking k = 1 (cf. Figure 3).

Corollary 6.14. Accurate graphic arrangements need not be flag-accurate.

Remark 6.15. Theorem 6.12 implies that for a given k ≥ 1 there exists a graphic
arrangement that is (6k+3)-accurate but not (6k+4)-accurate. It would be interesting
to know whether there exists an arrangement that is k-accurate but not (k+1)-accurate
for any k ≥ 1.

Next we show that the operation of adding a dominating vertex to a graph preserves
k-coaccuracy.

Theorem 6.16. Let G be a simple graph on ℓ vertices. Denote by G + v the graph
obtained from G by adding a new (dominating) vertex v /∈ VG adjacent to all the vertices
of G, i.e., VG+v = VG ∪ {v} and EG+v = EG ∪ { {u, v} | u ∈ VG}. Let 1 ≤ k ≤ ℓ− 1. If
AG is k-coaccurate, then so is AG+v. In particular, if AG is (flag-)accurate, then so is
AG+v.

Proof. Suppose that AG is k-coaccurate. In particular, AG is free and we may assume
exp(AG) = (0, d2, . . . , dℓ)≤. One can show that AG+v is also free (since any perfect
elimination ordering of G induces a perfect elimination ordering of G+ v) and compute
exp(AG+v) = (0, 1, d2 + 1, . . . , dℓ + 1)≤.
Since AG is k-coaccurate, by definition there exist subsets Fp ⊆ EG for 0 ≤ p ≤ ℓ− 1

with codimKℓ(XFp
) = p such that exp

(
A

XFp

G

)
= (0, d2, . . . , dℓ−p)≤ and Fk ⊆ Fk+1 ⊆

· · · ⊆ Fℓ−1.
For any F ⊆ EG, it is easily seen that codimKℓ(XF ) = codimKℓ+1(XF ) and we have

(G/F ) + v = (G + v)/F . Thus exp
(
A

XFp

G+v

)
= (0, 1, d2 + 1, . . . , dℓ−p + 1)≤. This

implies that (XFℓ−1
⊆ · · · ⊆ XF1 ⊆ XF0) is a witness for the accuracy of AG+v, and

(XFℓ−1
⊆ · · · ⊆ XFk

) is a witness for the flag-accuracy of A
XFk

G+v . Hence AG+v is k-
coaccurate. �

Definition 6.17. Let G denote the smallest class of simple graphs satisfying the fol-
lowing four conditions:

(1) K1 ∈ G, i.e., any one-vertex graph is in G.
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(2) If G,H ∈ G then G ⊔H ∈ G, i.e., the disjoint union of two graphs in G is again a
graph in G.

(3) If G,H ∈ G then any new graph Q formed by identifying a vertex in G and a vertex
in H as a new vertex in Q (often known as a vertex identification of G and H) is
in G.

(4) If G ∈ G and v /∈ VG is a new vertex then G + v ∈ G, i.e., adding one dominating
vertex to a graph in G gives a graph in G.

Example 6.18. Trivially perfect graphs are the graphs that can be constructed by
conditions (1), (2) and (4) in Definition 6.17. Thus trivially perfect graphs are examples
of the graphs in the class G.

Theorem 6.19. If G ∈ G then AG is flag-accurate. In particular, if G is trivially
perfect, then AG is flag-accurate.

Proof. Conditions (2) and (3) in Definition 6.17 both correspond to the operation of
taking products of two (graphic) arrangements. Apply Remark 1.3(v) and Theorem
6.16. �

We close this section with a comment on strong chordality and flag-accuracy. It
is not hard to see that strong chordality is closed under each operation defining the
class G. Thus any graph in G is strongly chordal. However, the converse is not true
(see Figure 4). Moreover, we have seen in Corollary 6.9 that the n-suns (that are
not strongly chordal) give rise to flag-accurate arrangements. We propose a conjecture
based on these observations, which, in view of Theorem 6.4, is the graphic counterpart
of Problem 1.12.

Conjecture 6.20. If G is a strongly chordal graph, then AG is flag-accurate.

Figure 4. A strongly chordal graph that is not in the class G.

7. Flag-accurate ψ-digraphic arrangements

In this section we examine ind-flag-accuracy in the class of ψ-digraphic arrangements
which was introduced by Abe, Tsujie and the last author [ATT21].
We fix some notation throughout this section. Our base field is R. By G = (VG, EG)

we denote a directed graph or digraph on VG = [ℓ]. A directed edge (i, j) ∈ EG is
considered to be directed from i to j. A vertex-weighted digraph is a pair (G,ψ) where
G is a digraph on [ℓ] and a map ψ : [ℓ] → 2Z, called a weight on G. A weight ψ is called
an interval weight if each image of ψ is an integral interval, i.e., ψ(i) = [ai, bi] ⊆ Z
where ai ≤ bi are integers for every i ∈ [ℓ].
We sometimes use the notation (G,ψ(i)) for (G,ψ) when we want to emphasize the

precise evaluation ψ(i). In particular, if ψ is a constant map with image U , we write
(G,U).
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7.1. ψ-digraphic arrangements. Next we define ψ-digraphic arrangements and recall
their basic properties following [ATT21].

Definition 7.1. Let (G,ψ) be a vertex-weighted digraph. The ψ-digraphic arrangement
A (G,ψ) in Rℓ is defined by

A (G,ψ) := Cox(Aℓ) ∪ {xi − xj = 1 | (i, j) ∈ EG} ∪ {xi = ψ(i) | 1 ≤ i ≤ ℓ},

where Cox(Aℓ) := {xi − xj = 0 | 1 ≤ i < j ≤ ℓ} is the Coxeter (or Weyl) arrangement
of type Aℓ−1 (see also Section 4.2).

Thus a ψ-digraphic arrangement can be regarded as a deformation of a subarrange-
ment of a Coxeter arrangement of type B.
The following digraphs play a crucial role in this section.

Definition 7.2. The transitive tournament T[ℓ], complete digraph K[ℓ], and edgeless

digraph K [ℓ] on [ℓ] are defined by

ET[ℓ]
:= {(i, j) | 1 ≤ i < j ≤ ℓ},

EK[ℓ]
:= {(i, j) | i, j ∈ [ℓ], i 6= j},

EK[ℓ]
:= ∅.

For simplicity we often use the notation Tℓ, Kℓ, Kℓ
1 for T[ℓ], K [ℓ], K[ℓ], respectively.

For 1 ≤ k ≤ ℓ, define the digraphs T k
ℓ , K

k
ℓ and K̂k

ℓ on [ℓ] by

ET k
ℓ
:= {(i, j) | 1 ≤ i < j ≤ ℓ− k + 1},

EKk
ℓ
:= {(i, j) | i, j ∈ [ℓ− k + 1], i 6= j},

EK̂k
ℓ
:= {(i, j) | i, j ∈ [ℓ− k], i 6= j} ∪ {(ℓ− k + 1, i) | i ∈ [ℓ− k]}.

A simplicial vertex in a simple undirected graph is a vertex whose neighbors are
mutually adjacent. The following is a counterpart of a simplicial vertex in a vertex-
weighted digraph.

Definition 7.3. Let (G,ψ) be a vertex-weighted digraph on [ℓ]. Let v be a vertex in
G and let Xv ∈ L(cA (G,ψ)) be the intersection of the following hyperplanes:

z = 0,

xi − xj = 0 (i, j ∈ [ℓ] \ {v}),

xi − xj = z ((i, j) ∈ EG, i, j ∈ [ℓ] \ {v}),

xi = ψ(i)z (i ∈ [ℓ] \ {v}).

The vertex v is said to be simplicial in (G,ψ) if Xv is a modular coatom of cA (G,ψ).

Let G\v denote the subgraph obtained from G by removing v and the edges incident
on v. Thus

(cA (G,ψ))Xv
= cA

(
G \ v, ψ|[ℓ]\{v}

)
×∅1.

1As we are only concerned with digraphs in this section, for simplicity of notation we continue to
use Kℓ for complete digraphs (previously used for complete undirected graphs in Sect. 6).



FLAG-ACCURATE ARRANGEMENTS 33

Proposition 7.4 ([ATT21, Prop. 3.12]). Let (G,ψ) be a vertex-weighted digraph on [ℓ]
and v an isolated vertex of G. If ψ(v) ⊆ ψ(i) for every i ∈ [ℓ], then v is simplicial in
(G,ψ).

The following is immediate from Proposition 3.3.

Corollary 7.5. Let (G,ψ) be a vertex-weighted digraph on [ℓ] and v a simplicial vertex
of (G,ψ). Then the following statements hold.

(i) The cone cA (G,ψ) is supersolvable (resp., (inductively) free) if and only if
cA (G \ v, ψ|[ℓ]\{v}) is supersolvable (resp., (inductively) free). In this case,

exp(cA (G,ψ)) = exp
(
cA (G \ v, ψ|[ℓ]\{v})

)
∪ {|ψ(v)|+ e + ℓ− 1},

where e denotes the number of edges incident on v.
(ii) If cA

(
G \ v, ψ|[ℓ]\{v}

)
is ((ind-)flag-)accurate whose exponents do not exceed

|ψ(v)|+ e + ℓ− 1, then cA (G,ψ) is ((ind-)flag-)accurate.

7.2. N-Ish arrangements. Our first set of examples of ψ-digraphic arrangements is
the class of N-Ish arrangements due to Abe, Suyama and Tsujie [AST17] which we now
recall. Let N = (N1, N2, . . . , Nℓ) be an ℓ-tuple of finite sets Ni ⊆ Z (not necessarily
integer intervals).

Example 7.6. The (essentialized) N-Ish arrangement A (N) is the arrangement in Rℓ

defined by

A (N) := Cox(Aℓ) ∪ {xi = Ni | 1 ≤ i ≤ ℓ}.

Thus any N -Ish arrangement is a ψ-digraphic arrangement: A (N) = A (G,ψ) where
G = Kℓ is the edgeless digraph on [ℓ] and ψ(i) = Ni for each i.

Theorem 7.7 ([AST17, Thm. 1.3]). The following are equivalent:

(i) The cone cA (N) is supersolvable.
(ii) The cone cA (N) is inductively free.
(iii) The cone cA (N) is free.
(iv) N is nested, i.e., there exists a permutation w of [ℓ] such that Nw(i) ⊆ Nw(i−1)

for every 2 ≤ i ≤ ℓ.

In this case, the exponents of cA (N) are given by (1, |Nw(i)|+ i− 1)ℓi=1 where w is any
permutation of [ℓ] such that Nw(i) ⊆ Nw(i−1) for every 2 ≤ i ≤ ℓ.

We call an ℓ-tuple N as above strictly nested if there exists a permutation w of [ℓ]
such that Nw(i) ( Nw(i−1) for every 2 ≤ i ≤ ℓ. Our next lemma asserts that strict
nestedness is sufficient for ind-flag-accuracy of cA (N).

Lemma 7.8. Let N = (N1, N2, . . . , Nℓ) with Nℓ ( · · · ( N2 ( N1. Then cA (N) is
ind-flag-accurate.

Proof. Note that |Ni|−|Ni+1| ≥ 1 for each 1 ≤ i ≤ ℓ−1. By Theorem 7.7, A := cA (N)
is supersolvable hence inductively free with exponents (1, |Nℓ|+ℓ−1, . . . , |N2|+1, |N1|)≤.
For each 1 ≤ i ≤ ℓ − 1 fix ai ∈ Ni \ Ni+1, and set Mi := {aj | 1 ≤ j ≤ i}. Also, let

Hi denote the hyperplane xi = aiz, and set Xi :=
⋂i

j=1Hj. Then Xℓ−1 ⊆ · · · ⊆ X2 ⊆
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X1 ⊆ V ′ = Rℓ+1 and dimV ′(Xi) = ℓ+ 1 − i. Moreover, for each 1 ≤ i ≤ ℓ− 1, one can
show that A Xi is identical to the nested N -Ish arrangement defined by

Nℓ ⊔Mi ( · · · ( Ni+2 ⊔Mi ( Ni+1 ⊔Mi.

Once again, according to Theorem 7.7, A Xi is inductively free with exponents given
by (1, |Nℓ| + ℓ − 1, . . . , |Ni+1| + i)≤. Thus cA (N) is ind-flag-accurate with a witness
(Xℓ−1, . . . , X2, X1, V

′). �

We complete this subsection by defining two operations on vertex-weighted digraphs
with interval weights needed for our subsequent discussion.

Definition 7.9. A vertex v in a digraph G is called a source (resp. sink) if (v, u) ∈ EG

(resp., (u, v) ∈ EG) for every u ∈ VG \ {v}.

Definition 7.10. Let (G,ψ) be a vertex-weighted digraph with non-empty interval
weight, that is, G is a digraph on [ℓ] and ψ : [ℓ] → 2Z is a map such that ∅ 6= ψ(i) =
[ai, bi] ⊆ Z where ai ≤ bi are integers for every i ∈ [ℓ]. Let v be a vertex in G.
Next we define the mutation of (G,ψ) with respect to a sink or source.

(i) Suppose that v is a sink in G. The mutation of (G,ψ) (w.r.t. v) is a new vertex-
weighted digraph (G′, ψ′) where G′ = ([ℓ], EG′) is a digraph and ψ′ is a weight
given by

EG′ := EG \ {(i, v) | i ∈ [ℓ] \ {v}}, ψ′(i) :=

{
[ai − 1, bi] (i ∈ [ℓ] \ {v}),

[av, bv] (i = v).

(ii) Dually, suppose that v is a source in G. The mutation of (G,ψ) (w.r.t. v) is a new
vertex-weighted digraph (G′′, ψ′′) given by

EG′′ := EG \ {(v, i) | i ∈ [ℓ] \ {v}}, ψ′′(i) :=

{
[ai, bi + 1] (i ∈ [ℓ] \ {v}),

[av, bv] (i = v).

Subsequently, when speaking of a mutation or of an evolution of a ψ-digraphic
arrangement A (G,ψ), we mean that mutation is applied to the underlying vertex-
weighted digraph (G,ψ). In particular, a mutation w.r.t. the sink (source) v in-
duces a (set) bijection on the underlying arrangements A (G,ψ) → A (G′, ψ′) (resp.,
A (G,ψ) → A (G′′, ψ′′)).
What we call a source, sink and mutation with respect to one of the former is called

a “king”, “coking” and “(co)king elimination operation”, respectively, in [ATT21].

7.3. Shi genealogy. Evolution leads to many ind-flag-accurate ψ-digraphic arrange-
ments. Among them is a deformation of the Shi arrangement of type A which we are
about to introduce.

Definition 7.11. Let 1 ≤ k ≤ ℓ and recall the digraph T k
ℓ from Definition 7.2. Fix ℓ

pairs of integers ci ≤ di for 1 ≤ i ≤ ℓ. Let

A
k
ℓ := A

(
T k
ℓ , ψ

k
ℓ

)
for 1 ≤ k ≤ ℓ

be the ψ-digraphic arrangements defined by the following recurrence relation:

(i) A 1
ℓ = A (T 1

ℓ , ψ
1
ℓ ) with ψ

1
ℓ (i) = [ci, di] for each i ∈ [ℓ].
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(ii) For k = 1, 2, . . . , ℓ − 1 the arrangement A
k+1
ℓ is obtained from A k

ℓ by applying
mutation w.r.t. the sink ℓ−k+1 of the induced subgraph

(
T k
ℓ [ℓ− k + 1], ψk

ℓ |[ℓ−k+1]

)

of
(
T k
ℓ , ψ

k
ℓ

)
by [ℓ−k+1], and keeping the isolated vertices i ∈ [ℓ−k+2, ℓ] with their

weights unchanged. The relation induces a bijection between the arrangements
A k

ℓ and A
k+1
ℓ , denoted τℓ−k+1 : A k

ℓ → A
k+1
ℓ .

We call the arrangements A k
ℓ Shi descendants, and call the sequence

A
1
ℓ

τℓ−→ A
2
ℓ

τℓ−1
−→ · · ·

τ2−→ A
ℓ
ℓ

a Shi descendant sequence with origin A 1
ℓ and end A ℓ

ℓ .

The solution of the recurrence relation from Definition 7.11 is given below.

Proposition 7.12. With the notation in Definition 7.11, for each 1 ≤ k ≤ ℓ, we have

ψk
ℓ (i) = ϕk

ℓ (i), where ϕk
ℓ (i) := [1−min{ℓ− i+ 1, k}+ ci, di] (1 ≤ i ≤ ℓ).

In other words, A k
ℓ consists of the following hyperplanes:

xi − xj = 0 (1 ≤ i < j ≤ ℓ),

xi − xj = 1 (1 ≤ i < j ≤ ℓ+ 1− k),

xi = [1− k + ci, di] (1 ≤ i ≤ ℓ+ 1− k),

xi = [−ℓ+ i+ ci, di] (ℓ+ 1− k < i ≤ ℓ).

Proof. It is clear that ψ1
ℓ = ϕ1

ℓ . Fix 1 ≤ k ≤ ℓ− 1 and set v := ℓ− k + 1. Each vertex
i ∈ [v + 1, ℓ] is isolated and its weight is the same in both

(
T k
ℓ , ϕ

k
ℓ

)
and

(
T k+1
ℓ , ϕk+1

ℓ

)

given by ϕk
ℓ (i) = ϕk+1

ℓ (i) = [−ℓ + i + ci, di]. It suffices to prove that after applying
a mutation to

(
T k
ℓ [v], ϕ

k
ℓ |[v]

)
w.r.t. the sink v, we obtain

(
T k+1
ℓ [v], ϕk+1

ℓ |[v]
)
. It is clear

that (T k
ℓ [v])

′ = T k+1
ℓ [v]. Moreover,

(ϕk
ℓ |[v])

′(v) = [1− k + cv, dv] = ϕk+1
ℓ |[v](v),

and for each i ∈ [ℓ− k]

(ϕk
ℓ |[v])

′(i) = [−k + ci, di] = ϕk+1
ℓ |[v](i),

Thus (ϕk
ℓ |[v])

′ = ϕk+1
ℓ |[v], as desired. �

One of the main examples of Shi descendant sequences is the sequence of arrange-
ments between Shi and Ish introduced recently by Duarte and Guedes de Oliveira
[DGdO18, DGdO19]. Let 2 ≤ k ≤ ℓ. Let S k

ℓ be the arrangement consisting of the
following hyperplanes:

xi − xj = 0 (1 ≤ i < j ≤ ℓ),

x1 − xj = i (1 ≤ i < j ≤ ℓ, i < k),

xi − xj = 1 (k ≤ i < j ≤ ℓ).

In particular, S 1
ℓ = S 2

ℓ is known as the type A Shi arrangement due to Shi [Shi86,
Chap. 7], whose essentialization agrees with Shi1(Aℓ−1) from Definition 5.1. In addition,
S ℓ

ℓ is known as the type A Ish arrangement due to Armstrong [Arm13]. The Shi and
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Ish arrangements share many common properties, e.g., see [AR12]. The arrangements
S k

ℓ interpolate between the Shi and Ish arrangements as k varies.

Proposition 7.13 ([ATT21, Prop. 2.11]). If 1 ≤ k ≤ ℓ then

S
k+1
ℓ+1 = A

k
ℓ [−1, 0]×∅1,

where A k
ℓ [−1, 0] denotes the Shi descendant with ci = −1, di = 0 for each 1 ≤ i ≤ ℓ.

Theorem 7.14 ([ATT21, Thm. 1.6]). If 1 ≤ k ≤ ℓ, then the cone cS k
ℓ is free with

exponents (0, 1, ℓℓ−1). Moreover, if ℓ ≥ 3 then only cS ℓ
ℓ is supersolvable among the

arrangements cS k
ℓ .

Now we define the protagonist of this subsection, a special subclass of Shi descendants
at the same time extending “vertically” the arrangements between Shi and Ish above.

Definition 7.15. Let d,m ≥ 0, 1 ≤ k ≤ ℓ, 0 ≤ p ≤ ℓ be integers. Let A
p,k
ℓ (m, d) be

the ψ-digraphic arrangement defined by

A
p,k
ℓ (m, d) := A

(
T k
ℓ , ψ

p,k
ℓ

)
,

where T k
ℓ is the digraph from Definition 7.2 and the map ψp,k

ℓ : [ℓ] → 2Z is given by

ψp,k
ℓ (i) :=

{
[1−min{ℓ− i+ 1, k} −m, d] (1 ≤ i ≤ p),

[−min{ℓ− i+ 1, k} −m, d] (p < i ≤ ℓ).

In other words, A
p,k
ℓ (m, d) consists of the following hyperplanes:

xi − xj = 0 (1 ≤ i < j ≤ ℓ),

xi − xj = 1 (1 ≤ i < j ≤ ℓ+ 1− k),

xi = [1−min{ℓ− i+ 1, k} −m, d] (1 ≤ i ≤ p),

xi = [−min{ℓ− i+ 1, k} −m, d] (p < i ≤ ℓ).

A convenient way to view the arrangements above is to place them in an (ℓ+ 1)× ℓ

matrix (ap,k)0≤p≤ℓ,1≤k≤ℓ with entry ap,k for the arrangement A
p,k
ℓ (m, d). We call this

matrix the Shi descendant matrix :


A
0,1
ℓ (m, d)

k varies
−→ A

0,ℓ
ℓ (m, d)

↓ p varies
...

...

A
ℓ,1
ℓ (m, d) · · · A

ℓ,ℓ
ℓ (m, d)


 .

The proposition below asserts that each arrangement A
p,k
ℓ (m, d) is indeed a Shi

descendant.

Proposition 7.16. Fix 0 ≤ p ≤ ℓ. The arrangements A
p,k
ℓ (m, d) in the p-th row of

the Shi descendant matrix constitute the Shi descendant sequence

A
p,1
ℓ (m, d)

τℓ−→ A
p,2
ℓ (m, d)

τℓ−1
−→ · · ·

τ2−→ A
p,ℓ
ℓ (m, d).

Moreover, for fixed 1 ≤ k ≤ ℓ each vertex n ∈ [ℓ− k + 2, ℓ] is isolated and simplicial

in
(
T k
ℓ [n], ψ

p,k
ℓ |[n]

)
, the induced subgraph of

(
T k
ℓ , ψ

p,k
ℓ

)
by [n] = {1, 2, . . . , n}.
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Proof. The first statement is clear from Proposition 7.12. To show the second statement
we consider two cases: p ≤ ℓ + 1 − k and p > ℓ + 1 − k. If the former occurs, then by
definition

ψp,k
ℓ (i) =





[1−m− k, d] (1 ≤ i ≤ p),

[−m− k, d] (p < i ≤ ℓ + 1− k),

[−m− ℓ+ i− 1, d] (ℓ+ 1− k < i ≤ ℓ).

Therefore for each i ∈ [ℓ+ 1− k] we have

ψp,k
ℓ (i) ⊇ ψp,k

ℓ (ℓ+ 2− k) ⊇ · · · ⊇ ψp,k
ℓ (ℓ).

Owing to Proposition 7.4, we know that each n ∈ [ℓ−k+2, ℓ] is isolated and simplicial

in
(
T k
ℓ [n], ψ

p,k
ℓ |[n]

)
. If the latter occurs, then

ψp,k
ℓ (i) =





[1−m− k, d] (1 ≤ i ≤ ℓ+ 1− k),

[−m− ℓ+ i, d] (ℓ+ 1− k < i ≤ p),

[−m− ℓ+ i− 1, d] (p < i ≤ ℓ).

Therefore, for each i ∈ [ℓ+ 1− k] we have

ψp,k
ℓ (i) ⊇ ψp,k

ℓ (ℓ+ 2− k) ⊇ · · · ⊇ ψp,k
ℓ (p) = ψp,k

ℓ (p+ 1) ⊇ · · · ⊇ ψp,k
ℓ (ℓ).

The result follows from another application of Proposition 7.4. �

Thus the arrangement A
p,1
ℓ (m, d) in the first column of the Shi descendant matrix

given by

(7.17) A
p,1
ℓ (m, d) :





xi − xj = [0, 1] (1 ≤ i < j ≤ ℓ),

xi = [−m, d] (1 ≤ i ≤ p),

xi = [−m− 1, d] (p < i ≤ ℓ),

is the origin of the Shi descendant sequence in the p-th row and plays the role of a
Shi-like arrangement. The end A

p,ℓ
ℓ (m, d) in the last column given by

(7.18) A
p,ℓ
ℓ (m, d) :





xi − xj = 0 (1 ≤ i < j ≤ ℓ),

xi = [−m+ i− ℓ, d] (1 ≤ i ≤ p),

xi = [−m+ i− ℓ− 1, d] (p < i ≤ ℓ),

is precisely a nested N -Ish arrangement hence it is supersolvable (Theorem 7.7). In
particular, the arrangements A k

ℓ [−1, 0] in Proposition 7.13 can be found in the ℓ-th row
of the Shi descendant matrix when m = 1, d = 0, or the 0-th row when m = 0, d = 0.
See Figure 5 for the Shi descendant matrix for ℓ = 3.
Our main result in this subsection is that all the arrangements in the Shi descendant

matrix are ind-flag-accurate, which is given in Theorem 7.22. Furthermore, all the ar-
rangements in the same row have the same multiset of exponents, generalizing Theorem
7.14. Before addressing the proof of Theorem 7.22, we comment on the freeness of the
members in the Shi descendant matrix.
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Figure 5. The Shi descendant matrix for ℓ = 3.

Remark 7.19. The freeness of the arrangements in the Shi descendant matrix can
be readily verified by using [ATT21, Thms. 3.1 and 4.1] (and the modular coatom
technique in Corollary 7.5) which implies that the maps τℓ, . . . , τ2 in Proposition 7.16
preserve freeness and characteristic polynomials of the arrangements involved. This
method was also used in the proof of Theorem 7.14. Thus the freeness and exponents
of the Shi descendants follow from the supersolvability of the corresponding final terms,
the “supersolvable descendants” in the last column. However, to show the ind-flag-
accuracy in the proof of Theorem 7.22, we need a different “reverse” approach: We
first employ the ind-flag-accuracy of the Shi-like arrangements (the origins) in the first
column, then observe that this property propagates to all the arrangements in the Shi
descendant matrix.

The Shi-like arrangements A
p,1
ℓ (m, d) for 0 ≤ p ≤ ℓ when d = 0 are affinely equivalent

to (the essentializations of) the inductively free arrangements in [Ath98, Thms. 3.1
and 3.3] due to Athanasiadis. The Shi arrangements therein were defined so that
they contain sufficient deletions and restrictions in order to apply the addition-deletion
theorem (Theorem 2.3) to guarantee the inductive freeness of all the arrangements in
the family. This observation is also helpful for the proof of their ind-flag-accuracy which
we show below as a generalization of [Ath98, Thm. 3.3]. Roughly speaking, in order to
achieve the inductive freeness and ind-flag-accuracy, we consider the restriction to the
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“m-hyperplane” xi = −(m + 1)z and the “n-hyperplane” xi = (na − 1)z, respectively
(see also Theorems 7.29 and 7.32 for a similar observation for Catalan arrangements).

Theorem 7.20. Let m ≥ 0, a, n, ℓ ≥ 1, and 0 ≤ p ≤ ℓ. Let H
p
ℓ (m, a, n) be the

arrangement consisting of the following hyperplanes:

xi − xj = [1− a, a] (1 ≤ i < j ≤ ℓ),

xi = [−m,na− 1] (1 ≤ i ≤ p),

xi = [−m− 1, na− 1] (p < i ≤ ℓ).

The cone over H
p
ℓ (m, a, n) is ind-flag-accurate with exponents

exp (cH p
ℓ (m, a, n)) = (1, 0p, 1ℓ−p) + (0, (m+ a(ℓ+ n− 1))ℓ).

As a consequence, the origin A
p,1
ℓ (m, d) = H

p
ℓ (m, 1, d+1) in the first column of the

Shi descendant matrix given in (7.17) has ind-flag-accurate cone with exponents

exp
(
cA

p,1
ℓ (m, d)

)
= (1, (ℓ+m+ d)p, (ℓ+m+ d+ 1)ℓ−p).

Proof. The inductive freeness of cH
p
ℓ (m, a, n) when n = 1 was shown in [Ath98,

Thm. 3.3] (after the transformation xi 7→ xi − x0 for all i) by an inductive method
(see also [JT84, Ex. (2.6)]). Our proof uses a similar argument but requires an addi-
tional treatment when n > 1 (see Case 2 below).
Define the lexicographic order on

{(ℓ, ℓ− p) | 0 ≤ ℓ− p ≤ ℓ, ℓ ≥ 1}.

First we prove that A := cH
p
ℓ (m, a, n) belongs to IF with the desired exponents, by

induction on (ℓ, ℓ− p). When ℓ = 1, it is obvious. Suppose ℓ ≥ 2.
Case 1. First consider 0 ≤ p ≤ ℓ − 1. Let H ∈ A denote the hyperplane xp+1 =

−(m+ 1)z. Then A ′ = A \ {H} = cH
p+1
ℓ (m, a, n) ∈ IF with exponents

exp(cH p+1
ℓ (m, a, n)) = (1, 0p+1, 1ℓ−p−1) + (0, (m+ a(ℓ+ n− 1))ℓ)

by the induction hypothesis since (ℓ, ℓ − p) > (ℓ, ℓ − p − 1). Moreover, A ′′ = A H

consists of the following hyperplanes

z = 0,

xi − xj = [1− a, a]z (1 ≤ i < j ≤ ℓ, i 6= p + 1, j 6= p+ 1),

xi = [−(m+ a), na− 1]z (1 ≤ i ≤ p),

xi = [−(m+ a + 1), na− 1]z (p+ 1 < i ≤ ℓ).

Thus A ′′ = cH
p
ℓ−1(m+ a, a, n). Hence A ′′ ∈ IF with exponents

exp(cH p
ℓ−1(m+ a, a, n)) = (1, 0p, 1ℓ−p−1) + (0, (m+ a(ℓ+ n− 1))ℓ−1)

by the induction hypothesis since (ℓ, ℓ− p) > (ℓ− 1, ℓ− 1). Therefore, by the addition
part of Theorem 2.3, A = cH

p
ℓ (m, a, n) ∈ IF with the desired exponents.



40 P. MÜCKSCH, G. RÖHRLE, AND T. N. TRAN

Case 2. Now consider ℓ = p. We may assume further thatm = 0 since H ℓ
ℓ (m, a, n) =

H 0
ℓ (m− 1, a, n). The arrangement in question is B(n) := cH ℓ

ℓ (0, a, n) consisting of

z = 0,

xi − xj = [1− a, a]z (1 ≤ i < j ≤ ℓ),

xi = [0, na− 1]z (1 ≤ i ≤ ℓ).

We are going to show that B(n) belongs to IF with exponents (1, (a(ℓ + n − 1))ℓ)
by induction on n. The base case n = 1 was already shown in [Ath98, Thm. 3.3].
Now we show that for n ≥ 1 if B(n) ∈ IF then B(n + 1) ∈ IF with the desired

exponents. Let 0 ≤ k ≤ a and denote by Bk(n) the arrangement having the following
hyperplanes

z = 0,

xi − xj = [1− a, a]z (1 ≤ i < j ≤ ℓ),

xi = [0, na− 1 + k]z (1 ≤ i ≤ ℓ).

In particular, we have B0(n) = B(n), and Ba(n) = B(n + 1). Notice that for any
B0(n) ( D ⊆ Ba(n) and for any hyperplane H ∈ D of the form xd = sz for 1 ≤ d ≤ ℓ,
na ≤ s ≤ (n + 1)a − 1, the restriction DH is linearly equivalent to cH ℓ−d

ℓ−1 (s, a, 1).

Hence DH ∈ IF with exponents (1, 0ℓ−d, 1d−1) + (0, (s+ a(ℓ− 1))ℓ−1) by the induction
hypothesis on (ℓ, ℓ− p). Now, thanks to Theorem 2.3, adding ℓ of the hyperplanes in
B1(n) \B0(n) to B0(n) in the order H1, H2, . . . , Hℓ, where Hi denotes the hyperplane
xi = naz, implies that B1(n) ∈ IF with exponents (1, (a(ℓ + n − 1) + 1)ℓ). For fixed
0 ≤ k ≤ a − 1, adding the hyperplanes in Bk+1(n) \ Bk(n) to Bk(n), repeatedly, in
the order x1 = (na− 1 + k)z, x2 = (na− 1 + k)z, . . ., xℓ = (na− 1 + k)z, implies that
Bk+1(n) ∈ IF with exponents (1, (a(ℓ+n−1)+k)ℓ). The case k = a gives the desired
result for B(n + 1).
This completes the proof of the inductive freeness of A = cH

p
ℓ (m, a, n).

Finally, we show that A is ind-flag-accurate. We argue by induction on ℓ. When
ℓ = 1, it is obvious. Suppose ℓ ≥ 2. First consider the case p = ℓ and m = 0. By the
discussion above, A = B(n) = cH ℓ

ℓ (0, a, n) ∈ IF with exp(A ) = (1, (a(ℓ+ n− 1))ℓ).
Let K1, K2 ∈ A denote the hyperplanes xℓ = 0, xℓ = (na − 1)z, respectively. If
n = 1 then A K1 = cH ℓ−1

ℓ−1 (a, a, 1). If n > 1 then A K2 = cH ℓ−1
ℓ−1 (0, a, n + 1). Hence

both A K1,A K2 are ind-flag-accurate with exp(A K1) = (1, (aℓ)ℓ−1), and exp(A K2) =
(1, (a(ℓ+ n− 1))ℓ−1), by the induction hypothesis on ℓ. By Lemma 3.1, A is ind-flag-
accurate.
We can now assume 0 ≤ p ≤ ℓ − 1 since H ℓ

ℓ (m, a, n) = H 0
ℓ (m − 1, a, n). Then by

Case 1 in the proof of the inductive freeness of A , we have A H = cH
p
ℓ−1(m+ a, a, n),

whereH ∈ A denotes the hyperplane xp+1 = −(m+1)z. Hence A H is ind-flag-accurate
with exponents (1, 0p, 1ℓ−p−1) + (0, (m+ a(ℓ + n − 1))ℓ−1) by the induction hypothesis
on ℓ. By Lemma 3.1, A is ind-flag-accurate.
This completes the proof of the theorem. �

Remark 7.21. The cone over the extended Shi arrangement Shim(Aℓ) of type Aℓ

(Definition 5.1) is linearly equivalent to cH ℓ
ℓ (m,m, 1) hence it is ind-flag-accurate.
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Moreover, the inductive argument in the proof of Theorem 7.20 rederives the presence
of a simple root witness for the ind-flag-accuracy of c Shim(Aℓ), as in Theorem 5.7.

We are finally in a position to present the main result of this subsection.

Theorem 7.22. Let d,m ≥ 0, 1 ≤ k ≤ ℓ and 0 ≤ p ≤ ℓ. The cone over the arrange-
ment A

p,k
ℓ (m, d) in the Shi descendant matrix is ind-flag-accurate with exponents

exp
(
A

p,k
ℓ (m, d)

)
= (1, (ℓ+m+ d)p, (ℓ+m+ d+ 1)ℓ−p).

Proof. By Theorem 7.20, it suffices to prove that for any fixed 0 ≤ p ≤ ℓ the cone
A := cA

p,k
ℓ (m, d) for 2 ≤ k ≤ ℓ is ind-flag-accurate with exponents as above.

There are two cases: p ≤ ℓ+1−k and p > ℓ+1−k. Since the proofs are similar, we
give a proof only for the former. First note that by Proposition 7.16 the arrangement

B := cA
(
T k
ℓ [ℓ− k + 1], ψp,k

ℓ |[ℓ−k+1]

)
is given by

z = 0,

xi − xj = 0, z (1 ≤ i < j ≤ ℓ+ 1− k),

xi = [1−m− k, d]z (1 ≤ i ≤ p),

xi = [−m− k, d]z (p < i ≤ ℓ+ 1− k).

Hence

B = cA
p,1
ℓ+1−k(m+ k − 1, d),

which is ind-flag-accurate with exponents (1, (ℓ+m+ d)p, (ℓ+m+ d+ 1)ℓ+1−k−p), by
Theorem 7.20.
Thanks to Proposition 7.16, each isolated vertex n ∈ [ℓ − k + 2, ℓ] is simplicial in(
T k
ℓ [n], ψ

p,k
ℓ |[n]

)
with ψp,k

ℓ (n) = [−m − ℓ + n − 1, d]. By applying Corollary 7.5(i)

repeatedly to the k − 1 simplicial vertices ℓ, ℓ− 1, . . . , ℓ− k + 2 in this order, we get

A ∈ IF ⇔ B ∈ IF .

Thus the inductive freeness of A is clear. Moreover,

exp(A ) = (1, (ℓ+m+ d)p, (ℓ+m+ d+ 1)ℓ−p),

since |ψp,k
ℓ (n)|+ n− 1 = ℓ+m+ d+ 1.

Note that B is ind-flag-accurate, none of its exponents exceeds ℓ+m+ d+ 1. Upon
applying Corollary 7.5(ii) repeatedly to the k − 1 simplicial vertices ℓ− k + 2, . . . , ℓ in

this order, we know that for each n ∈ [ℓ−k+2, ℓ] the arrangement cA
(
T k
ℓ [n], ψ

p,k
ℓ |[n]

)

is ind-flag-accurate, none of its exponents exceeds ℓ +m + d + 1. In particular, A is
ind-flag-accurate. This completes the proof of the theorem. �

7.4. Catalan genealogy. In this subsection we show that the type A Catalan arrange-
ment can be regarded as the origin of a Catalan descendant sequence similar to the one
defined above in the setting of Shi genealogy in Section 7.3. Several results analogous
to ones from the previous subsection are obtained.
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Definition 7.23. Let 1 ≤ k ≤ ℓ and recall the digraphs Kk
ℓ and K̂k

ℓ from Definition
7.2. Fix ℓ pairs of integers ci ≤ di for 1 ≤ i ≤ ℓ. Let

R
k
ℓ := A

(
Kk

ℓ , ψ
k
ℓ

)
for 1 ≤ k ≤ ℓ

and

R̂
k
ℓ := A

(
K̂k

ℓ , ψ̂
k
ℓ

)
for 1 ≤ k ≤ ℓ− 1

be the ψ-digraphic arrangements defined by the following recurrence relation:

(i) R1
ℓ = A (K1

ℓ , ψ
1
ℓ ) with ψ

1
ℓ (i) = [ci, di] for each i ∈ [ℓ].

(ii) For k = 1, 2, . . . , ℓ − 1 the arrangement R̂k
ℓ is obtained from Rk

ℓ by applying
mutation w.r.t. the sink ℓ−k+1 of the induced subgraph

(
Kk

ℓ [ℓ− k + 1], ψk
ℓ |[ℓ−k+1]

)

of
(
Kk

ℓ , ψ
k
ℓ

)
by [ℓ−k+1], and keeping the isolated vertices i ∈ [ℓ−k+2, ℓ] with their

weights unchanged. The relation induces a bijection between the arrangements

Rk
ℓ and R̂k

ℓ , denoted by τℓ−k+1 : Rk
ℓ → R̂k

ℓ .

(iii) For k = 1, 2, . . . , ℓ−1 the arrangement R
k+1
ℓ is obtained from R̂k

ℓ by applying mu-

tation w.r.t. the source ℓ−k+1 of the induced subgraph
(
K̂k

ℓ [ℓ− k + 1], ψ̂k
ℓ |[ℓ−k+1]

)

of
(
K̂k

ℓ , ψ̂
k
ℓ

)
by [ℓ− k+1], and keeping the isolated vertices i ∈ [ℓ− k+2, ℓ] with

their weights unchanged. The relation induces a bijection between the arrange-

ments R̂k
ℓ and R

k+1
ℓ , denoted by ηℓ−k+1 : R̂k

ℓ → R
k+1
ℓ .

We call the arrangements Rk
ℓ , R̂k

ℓ Catalan descendants, and call the sequence

R
1
ℓ

τℓ−→ R̂
1
ℓ

ηℓ−→ R
2
ℓ

τℓ−1
−→ · · ·

τ2−→ R̂
ℓ−1
ℓ

η2
−→ R

ℓ
ℓ

a Catalan descendant sequence. The arrangements R1
ℓ , R̂1

ℓ , Rℓ
ℓ , R̂

ℓ−1
ℓ are called origin,

first descendant, end, penultimate descendant of the sequence, respectively.

The solution of the recurrence relation from Definition 7.23 is given below.

Proposition 7.24. With the notation as in Definition 7.23, for each 1 ≤ k ≤ ℓ we
have ψk

ℓ (i) = ϕk
ℓ (i), where

ϕk
ℓ (i) := [1−min{ℓ− i+ 1, k}+ ci, di +min{ℓ− i+ 1, k} − 1] (1 ≤ i ≤ ℓ),

=

{
[1− k + ci, di + k − 1] (1 ≤ i ≤ ℓ− k + 1),

[−ℓ+ i+ ci, di + ℓ− i] (ℓ− k + 1 < i ≤ ℓ).

In addition, for each 1 ≤ k ≤ ℓ− 1 we have ψ̂k
ℓ (i) = ϕ̂k

ℓ (i), where

ϕ̂k
ℓ (i) :=

{
[−k + ci, di + k − 1] (1 ≤ i ≤ ℓ− k),

[−ℓ + i+ ci, di + ℓ− i] (ℓ− k < i ≤ ℓ).

Proof. It is clear that ψ1
ℓ = ϕ1

ℓ . Fix 1 ≤ k ≤ ℓ − 1 and set v := ℓ − k + 1. Each

vertex i ∈ [v + 1, ℓ] is isolated and its weight is the same in
(
Kk

ℓ , ϕ
k
ℓ

)
,
(
K̂k

ℓ , ϕ̂
k
ℓ

)
and

(
Kk+1

ℓ , ϕk+1
ℓ

)
given by ϕk

ℓ (i) = ϕ̂k
ℓ (i) = ϕk+1

ℓ (i) = [−ℓ+ i+ci, di]. It suffices to prove the

statement firstly after applying mutation to
(
Kk

ℓ [v], ϕ
k
ℓ |[v]

)
w.r.t. the sink v, when we
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obtain
(
K̂k

ℓ [v], ϕ̂
k
ℓ |[v]

)
, and secondly after applying mutation to

(
K̂k

ℓ [v], ϕ̂
k
ℓ |[v]

)
w.r.t. the

source v, after which we obtain
(
Kk+1

ℓ [v], ϕk+1
ℓ |[v]

)
. It is clear that (Kk

ℓ [v])
′ = K̂k

ℓ [v]

and (K̂k
ℓ [v])

′′ = Kk+1
ℓ [v]. Moreover,

(ϕk
ℓ |[v])

′(v) = [1− k + cv, dv + k − 1] = ϕ̂k
ℓ |[v](v),

(ϕ̂k
ℓ |[v])

′′(v) = [1− k + cv, dv + k − 1] = ϕk+1
ℓ |[v](v),

and for each i ∈ [ℓ− k]

(ϕk
ℓ |[v])

′(i) = [−k + ci, di + k − 1] = ϕ̂k
ℓ |[v](i),

(ϕ̂k
ℓ |[v])

′′(i) = [−k + ci, di + k] = ϕk+1
ℓ |[v](i).

Thus (ϕk
ℓ |[v])

′ = ϕ̂k
ℓ |[v] and (ϕ̂k

ℓ |[v])
′′ = ϕk+1

ℓ |[v], as desired. �

Now we define the protagonist of this subsection, a special class of Catalan descen-
dants.

Definition 7.25. Let m ≥ 0, c ≥ 1, 1 ≤ k ≤ ℓ, and 0 ≤ p ≤ ℓ be integers. Let

R
p,k
ℓ (c,m) := A (Kk

ℓ , ψ
p,k
ℓ ) for 1 ≤ k ≤ ℓ

and

R̂
p,k
ℓ (c,m) := A

(
K̂k

ℓ , ψ̂
p,k
ℓ

)
for 1 ≤ k ≤ ℓ− 1

be the Catalan descendants defined as follows: for each 0 ≤ p ≤ ℓ the arrangement
R

p,1
ℓ (c,m) consists of the hyperplanes

xi − xj = [−1, 1] (1 ≤ i < j ≤ ℓ),

xi = [−c,m] (1 ≤ i ≤ p),

xi = [−c,m+ 1] (p < i ≤ ℓ),

and R
p,1
ℓ (c,m) is the origin of the Catalan descendant sequence

R
p,1
ℓ (c,m)

τℓ−→ R̂
p,1
ℓ (c,m)

ηℓ−→ R
p,2
ℓ (c,m)

τℓ−1
−→ · · ·

τ2−→ R̂
p,ℓ−1
ℓ (c,m)

η2
−→ R

p,ℓ
ℓ (c,m).

Proposition 7.26. Fix 0 ≤ p ≤ ℓ. For fixed 1 ≤ k ≤ ℓ (resp., 1 ≤ k ≤ ℓ−1) each vertex

n ∈ [ℓ− k+2, ℓ] is isolated and simplicial in
(
Kk

ℓ [n], ψ
p,k
ℓ |[n]

)
(resp.,

(
K̂k

ℓ [n], ψ̂
p,k
ℓ |[n]

)
).

Proof. First we show the assertion for R
p,k
ℓ (c,m). By Proposition 7.24, if p ≤ ℓ − k,

then

ψp,k
ℓ (i) =





[1− c− k,m+ k − 1] (1 ≤ i ≤ p),

[1− c− k,m+ k] (p < i ≤ ℓ+ 1− k),

[−c− ℓ+ i,m+ ℓ+ 1− i] (ℓ+ 1− k < i ≤ ℓ).

If p > ℓ− k, then

ψp,k
ℓ (i) =





[1− c− k,m+ k − 1] (1 ≤ i ≤ ℓ+ 1− k),

[−c− ℓ+ i,m+ ℓ− i] (ℓ+ 1− k < i ≤ p),

[−c− ℓ+ i,m+ ℓ+ 1− i] (p < i ≤ ℓ).
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In either case for each i ∈ [ℓ+ 1− k], we have

ψp,k
ℓ (i) ) ψp,k

ℓ (ℓ+ 2− k) ) · · · ) ψp,k
ℓ (ℓ).

Now we apply Proposition 7.4.

The assertion for R̂
p,k
ℓ (c,m) is proved in a similar fashion. If p ≤ ℓ− k, then

ψ̂p,k
ℓ (i) =





[−c− k,m+ k − 1] (1 ≤ i ≤ p),

[−c− k,m+ k] (p < i ≤ ℓ− k),

[−c− ℓ + i,m+ ℓ+ 1− i] (ℓ− k < i ≤ ℓ).

If p > ℓ− k, then

ψ̂p,k
ℓ (i) =





[−c− k,m+ k − 1] (1 ≤ i ≤ ℓ− k),

[−c− ℓ+ i,m+ ℓ− i] (ℓ− k < i ≤ p),

[−c− ℓ+ i,m+ ℓ+ 1− i] (p < i ≤ ℓ).

This completes the proof of the proposition. �

Remark 7.27. It is easily seen from Proposition 7.26 that R
ℓ,k
ℓ (c,m+1) = R

0,k
ℓ (c,m)

for any 1 ≤ k ≤ ℓ, and R̂
ℓ,k
ℓ (c,m+ 1) = R̂

0,k
ℓ (c,m) for any 1 ≤ k ≤ ℓ− 1.

Analogous to the case of Shi descendants (Remark 7.19), the Catalan descendants

R
p,k
ℓ (c,m) and R̂

p,k
ℓ (c,m) in the same sequence from Definition 7.25 have free cones

with the same multiset of exponents. Again this fact can be deduced from [ATT21,
Thms. 3.1 and 4.1] by noting that the maps τℓ, ηℓ, . . . , τ2, η2 preserve both freeness
and characteristic polynomials. Thus the freeness and the exponents of the Catalan
descendants follow from the supersolvability of the ends of the corresponding sequences
(since they are nested N -Ish arrangements, see Proposition 7.28 below).

Our main result in this subsection asserts that the arrangements R
p,k
ℓ (c,m) and

R̂
p,k
ℓ (c,m) have ind-flag-accurate cones, which is given in Theorem 7.33 below. The

key point of the proof is the ind-flag-accuracy of the origin and first descendant of the
Catalan descendant sequences.
In case of the end R

p,ℓ
ℓ (c,m), the result follows from Lemma 7.8. We state that result

separately.

Proposition 7.28. Let 0 ≤ p ≤ ℓ. The arrangement R
p,ℓ
ℓ (c,m), consisting of the

hyperplanes

xi − xj = 0 (1 ≤ i < j ≤ ℓ),

xi = [−c− ℓ+ i,m+ ℓ− i] (1 ≤ i ≤ p),

xi = [−c− ℓ+ i,m+ ℓ+ 1− i] (p < i ≤ ℓ),

has supersolvable and ind-flag-accurate cone with exponents

exp
(
cR

p,ℓ
ℓ (c,m)

)
= (1, ℓ− p + 1, 2, 3, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ).

Next we study the ind-flag-accuracy of the origins in their sequence in analogy to
Theorem 7.20.
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Theorem 7.29. Let a,m ≥ 0, n, ℓ ≥ 1 and 0 ≤ p ≤ ℓ. Let E
p
ℓ (n, a,m) be the

arrangement consisting of the following hyperplanes:

xi − xj = [−a, a] (1 ≤ i < j ≤ ℓ),

xi = [−na,m] (1 ≤ i ≤ p),

xi = [−na,m+ 1] (p < i ≤ ℓ).

The cone over E
p
ℓ (n, a,m) is ind-flag-accurate with exponents

exp (cE p
ℓ (n, a,m)) = (1, ℓ− p+ 1, 2, 3, . . . , ℓ) + (0, (m+ a(ℓ+ n− 1))ℓ).

As a consequence, the origin R
p,1
ℓ (c,m) = E

p
ℓ (c, 1, m) of the Catalan descendant

sequence from Definition 7.25 has ind-flag-accurate cone with exponents

exp
(
cR

p,1
ℓ (c,m)

)
= (1, ℓ− p+ 1, 2, 3, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ).

Proof. To show inductive freeness of A := cE
p
ℓ (n, a,m), we use a similar argument to

the one from the proof of Theorem 7.20. Define the lexicographic order on

{(ℓ, ℓ− p) | 0 ≤ ℓ− p ≤ ℓ, ℓ ≥ 1}.

First we prove A ∈ IF with the desired exponents by induction on (ℓ, ℓ − p). When
ℓ = 1, it is obvious. Suppose ℓ ≥ 2.
Case 1. First consider 0 ≤ p ≤ ℓ − 1. Let H ∈ A denote the hyperplane xp+1 =

(m+ 1)z. Then A ′ = A \ {H} = cE
p+1
ℓ (n, a,m) ∈ IF with exponents

exp
(
cE

p+1
ℓ (n, a,m)

)
= (1, ℓ− p, 2, 3, . . . , ℓ) + (0, (m+ a(ℓ+ n− 1))ℓ),

by the induction hypothesis since, (ℓ, ℓ − p) > (ℓ, ℓ − p − 1). Moreover, A ′′ = A H

consists of the following hyperplanes

z = 0,

xi − xj = [−a, a]z (1 ≤ i < j ≤ ℓ, i 6= p+ 1, j 6= p+ 1),

xi = [−na,m+ a+ 1]z (1 ≤ i ≤ ℓ).

Thus A ′′ = cE 0
ℓ−1(n, a,m+ a). Hence A ′′ ∈ IF with exponents

exp
(
cE 0

ℓ−1(n, a,m+ a)
)
= (1, 2, 3, . . . , ℓ) + (0, (m+ a(ℓ+ n− 1))ℓ−1),

again by the induction hypothesis, since (ℓ, ℓ−p) > (ℓ−1, ℓ−1). Therefore, by Theorem
2.3, A = cE

p
ℓ (n, a,m) ∈ IF with the desired exponents.

Case 2. Now consider ℓ = p. We may assume further that m = 0 since E ℓ
ℓ (n, a,m) =

E 0
ℓ (n, a,m− 1). The arrangement in question is

B(n) := cE ℓ
ℓ (n, a, 0),

consisting of

z = 0,

xi − xj = [−a, a]z (1 ≤ i < j ≤ ℓ),

xi = [−na, 0]z (1 ≤ i ≤ ℓ).
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Let C be the cone over the type A extended Catalan arrangement, consisting of the
hyperplanes

z = 0,

xi − xj = [−a, a]z (1 ≤ i < j ≤ ℓ).

Note that C is inductively free with exponents (1, 0, aℓ + i)ℓ−1
i=1 , by our induction hy-

pothesis, since it is linearly equivalent to cE ℓ−1
ℓ−1 (1, a, a)×∅1 (via x1 − xi 7→ xi−1).

We are going to show that B(n) ∈ IF with exponents (1, a(ℓ + n − 1) + i)ℓi=1, by
induction on n. If n = 1, by Theorem 2.3, adding r of the hyperplanes xi = sz for
1 ≤ i ≤ ℓ, s ∈ [−a, 0] in any order to C produces an inductively free arrangement with
exponents (1, r, aℓ+ i)ℓ−1

i=1 . Indeed, the restriction to the last hyperplane added at each
step is linearly equivalent to cE ℓ−1

ℓ−1 (1, a, a). The case r = aℓ+ ℓ gives the desired result
for B(1).
Now we show that for n ≥ 1, if B(n) is inductively free, then so is B(n + 1) with

the desired exponents. It requires a more delicate order of addition of the hyperplanes.
Let 0 ≤ k ≤ a and denote by Bk(n) the arrangement having the following hyperplanes

z = 0,

xi − xj = [−a, a]z (1 ≤ i < j ≤ ℓ),

xi = [−(na + k), 0]z (1 ≤ i ≤ ℓ).

In particular, we have B0(n) = B(n), and Ba(n) = B(n + 1). Note that for any
B0(n) ( D ⊆ Ba(n) and for any hyperplane H ∈ D of the form xi = sz for some
−(na+a) ≤ s ≤ −(na+1), the restriction DH is linearly equivalent to cE ℓ−1

ℓ−1 (1, a,−s).

Hence DH ∈ IF with exponents (1,−(s+a)+aℓ+ i)ℓ−1
i=1 by the induction hypothesis on

(ℓ, ℓ−p). Now by Theorem 2.3, adding ℓ of the hyperplanes in B1(n)\B0(n) in any order
to B0(n) shows that B1(n) is inductively free with exponents (1, a(ℓ+n−1)+ i+1)ℓi=1.
Now, for fixed 0 ≤ k ≤ a− 1, adding the hyperplanes in Bk+1(n) \ Bk(n) in any order
to Bk(n), implies that Bk+1(n) is inductively free with exponents (1, a(ℓ+n− 1)+ i+
k + 1)ℓi=1. The case k = a− 1 gives the desired result for B(n+ 1).
This completes the proof of the inductive freeness of A = cE

p
ℓ (n, a,m).

Finally, we derive that A is ind-flag-accurate. We argue by induction on ℓ. When
ℓ = 1, the statement is obvious. Suppose ℓ ≥ 2. It suffices to consider 1 ≤ p ≤ ℓ, since
E ℓ
ℓ (n, a,m + 1) = E 0

ℓ (n, a,m). Let K ∈ A denote the hyperplane x1 = −naz. Then
the restriction A K consists of the following hyperplanes

z = 0,

xi − xj = [−a, a]z (2 ≤ i < j ≤ ℓ),

xi = [−(n + 1)a,m]z (2 ≤ i ≤ p),

xi = [−(n + 1)a,m+ 1]z (p + 1 ≤ i ≤ ℓ).

Thus A K = cE
p−1
ℓ−1 (n + 1, a,m). Hence A K is ind-flag-accurate by the induction hy-

pothesis with exponents

exp
(
cE

p−1
ℓ−1 (n + 1, a,m)

)
= (1, ℓ− p+ 1, 2, 3, . . . , ℓ− 1) + (0, (m+ a(ℓ+ n− 1))ℓ−1).
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Finally, thanks to Lemma 3.1, A is ind-flag-accurate. This completes the proof of the
theorem. �

Remark 7.30. We remark that in the cases p = 0, or p = 1, one may consider a
different restriction to deduce the ind-flag-accuracy of cE p

ℓ (n, a,m). Indeed, by Case
1 in the proof of Theorem 7.29 the restriction of cE p

ℓ (n, a,m) to the hyperplane given
by xp+1 = (m + 1)z is identical to cE 0

ℓ−1(n, a,m + a) whose multiset of exponents is

(1, m+ a(ℓ+ n− 1) + i+ 1)ℓ−1
i=1 .

We give some comments on the cone cCatm(Aℓ) over the extended Catalan arrange-
ment of type Aℓ. It was shown to be inductively free by Edelman and Reiner [ER96,
Thm. 3.2]. Recently, Tsujie and Nakashima [NT22, Cor. 4.2] proved that cCatm(Aℓ) is
even hereditarily inductively free i.e., every restriction of cCatm(Aℓ) is inductively free.
Our result below confirms the ind-flag-accuracy of cCatm(Aℓ), thanks to Theorem 7.29.

Corollary 7.31. The extended Catalan arrangement Catm(Aℓ) of type Aℓ (Definition
5.1) affinely equivalent to E ℓ

ℓ (1, m,m) or E 0
ℓ (1, m,m − 1) with m ≥ 1 has ind-flag-

accurate cone with exponents (1, m(ℓ+ 1) + i)ℓi=1.
Moreover, the inductive argument in the proof of Theorem 7.29 provides a simple

root witness for the ind-flag-accuracy of cCatm(Aℓ) as follows. Let H1, . . . , Hℓ denote
the hyperplanes x1 = −mz and xi−1 − xi = mz for 2 ≤ i ≤ ℓ in cE 0

ℓ (1, m,m − 1),

or equivalently xi − xi+1 = mz (1 ≤ i ≤ ℓ) in cCatm(Aℓ). Set Xi :=
⋂i

j=1Hj for
1 ≤ i ≤ ℓ − 1. Then Xℓ−1 ⊆ · · · ⊆ X1 is a witness for the ind-flag-accuracy of
cCatm(Aℓ).

Next we investigate the ind-flag-accuracy of the first descendants.

Theorem 7.32. Let m ≥ 0, c, ℓ ≥ 1 and 0 ≤ p ≤ ℓ. The first descendant R̂
p,1
ℓ (c,m) of

the Catalan descendant sequence from Definition 7.25 has ind-flag-accurate cone with
exponents

exp
(
cR̂

p,1
ℓ (c,m)

)
= (1, ℓ− p+ 1, 2, 3, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ).

Proof. First we derive the inductive freeness of A := cR̂
p,1
ℓ (c,m). Note that when

p = ℓ, the arrangement A = cR̂
ℓ,1
ℓ (c,m) consists of the hyperplanes

z = 0,

xi − xj = [−1, 1]z (1 ≤ i < j ≤ ℓ− 1),

xi − xℓ = [−1, 0]z (1 ≤ i ≤ ℓ− 1),

xi = [−c− 1, m]z (1 ≤ i ≤ ℓ− 1),

xℓ = [−c,m]z.

One may apply Proposition 2.8 to show that the subarrangement B ⊆ A consisting of

z = 0,

xi − xj = [−1, 1]z (1 ≤ i < j ≤ ℓ− 1),

xi = [−c− 1, m]z (1 ≤ i ≤ ℓ− 1),
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is a modular coatom of A . In graphical terms, the vertex ℓ is a source and a simplicial
vertex of the underlying digraph of A . Moreover, according to Theorem 7.29, we see
that B = ∅1 × cE ℓ−1

ℓ−1 (c+ 1, 1, m) is inductively free with exponents

exp(B) = (0, 1, 1, 2, 3, . . . , ℓ− 1) + (0, 0, (m+ ℓ+ c− 1)ℓ−1).

Note also that |A \ B| = m + 2ℓ + c − 1. Now applying Proposition 3.3(ii) allows us
to deduce that A ∈ IF with the desired exponents.
Suppose 0 ≤ p ≤ ℓ− 1. Define the lexicographic order on

{(ℓ, ℓ− p) | 1 ≤ ℓ− p ≤ ℓ, ℓ ≥ 1}.

We show A = cR̂
p,1
ℓ (c,m) ∈ IF with the desired exponents by induction on (ℓ, ℓ− p).

When ℓ = 1, it is obvious. Suppose ℓ ≥ 2.
Case 1. First let 0 ≤ p ≤ ℓ− 2. Then A consists of the hyperplanes

z = 0,

xi − xj = [−1, 1]z (1 ≤ i < j ≤ ℓ− 1),

xi − xℓ = [−1, 0]z (1 ≤ i ≤ ℓ− 1),

xi = [−c− 1, m]z (1 ≤ i ≤ p),

xi = [−c− 1, m+ 1]z (p < i ≤ ℓ− 1),

xℓ = [−c,m+ 1]z.

Let H ∈ A denote the hyperplane xp+1 = (m+ 1)z. Then A \ {H} = cR̂
p+1,1
ℓ (c,m) ∈

IF with exponents (1, ℓ−p, 2, 3, . . . , ℓ)+(0, (m+ℓ+c−1)ℓ), by the induction hypothesis.

Moreover, A H = cR̂
0,1
ℓ−1(c,m+ 1). Hence A H ∈ IF with exponents

exp
(
cR̂

0,1
ℓ−1(c,m+ 1)

)
= (1, 2, 3, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ−1),

by the induction hypothesis. Therefore, by Theorem 2.3, A ∈ IF with the desired
exponents.
Case 2. Now consider p = ℓ − 1. Then A is given by replacing the fourth and fifth

set of the hyperplanes in Case 1 by

xi = [−c− 1, m]z (1 ≤ i ≤ ℓ− 1).

Let K ∈ A denote the hyperplane xℓ = (m + 1)z. Then A \ {K} = cR̂
ℓ,1
ℓ (c,m) is

inductively free with exponents (1, 1, 2, 3, . . . , ℓ)+(0, (m+ℓ+c−1)ℓ), by the discussion
at the beginning. Moreover, A K = cE ℓ−1

ℓ−1 (c+1, 1, m+1). By Theorem 7.29, A K ∈ IF
with exponents (1, 2, 3, . . . , ℓ) + (0, (m + ℓ + c − 1)ℓ−1). Therefore, by Theorem 2.3,
A ∈ IF with the desired exponents.

This completes the proof of the inductive freeness of A = cR̂
p,1
ℓ (c,m).

Finally, we show that A is ind-flag-accurate. We argue by induction on ℓ. When
ℓ = 1, it is obvious. Suppose ℓ ≥ 2. It suffices to consider the case when 1 ≤ p ≤ ℓ,

since R̂
ℓ,1
ℓ (c,m+1) = R̂

0,1
ℓ (c,m) (see Remark 7.27). The proof is more straightforward

than the one above, as we do not have to distinguish between different values of p. Let
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F ∈ A denote the hyperplane x1 = −(c + 1)z. Then A F = cR̂
p−1
ℓ−1 (c + 1, m). Hence

A F is ind-flag-accurate with exponents

exp
(
cR̂

p−1
ℓ−1 (c+ 1, m)

)
= (1, ℓ− p + 1, 2, 3, . . . , ℓ− 1) + (0, (m+ ℓ+ c− 1)ℓ−1),

by the induction hypothesis. Owing to Lemma 3.1, A is ind-flag-accurate. This com-
pletes the proof of the theorem. �

We are now in a position to derive the main result of this subsection. We remark
that unlike in the case of Shi genealogy, the modular coatoms from simplicial isolated
vertices of the digraph do not automatically imply the ind-flag-accuracy of the Catalan
descendants. It is crucial to explicitly construct a witness.

Theorem 7.33. Let m ≥ 0, c ≥ 1, 1 ≤ k ≤ ℓ, and 0 ≤ p ≤ ℓ. The cones over the

Catalan descendants R
p,k
ℓ (c,m) and R̂

p,k
ℓ (c,m) are ind-flag-accurate with exponents

exp
(
cR

p,k
ℓ (c,m)

)
= exp

(
cR̂

p,k
ℓ (c,m)

)
= (1, ℓ−p+1, 2, 3, . . . , ℓ)+(0, (m+ℓ+c−1)ℓ).

Proof. By Theorems 7.29, 7.32, Remark 7.27 and Proposition 7.28, it suffices to prove

for any fixed 1 ≤ p ≤ ℓ and 2 ≤ k ≤ ℓ− 1 that the cones cRp,k
ℓ (c,m), cR̂p,k

ℓ (c,m) are
ind-flag-accurate with exponents (1, ℓ− p+ 1, 2, 3, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ). There
are two cases to consider, p ≤ ℓ − k versus p > ℓ − k. Since the proofs use a similar
method, we give an argument only for the former (which is the more difficult one).

First we show the assertion for A := cR
p,k
ℓ (c,m). Note that by Proposition 7.26 the

arrangement B := cA
(
Kk

ℓ [ℓ− k + 1], ψp,k
ℓ |[ℓ−k+1]

)
is given by

z = 0,

xi − xj = [−1, 1]z (1 ≤ i < j ≤ ℓ+ 1− k),

xi = [1− c− k,m+ k − 1]z (1 ≤ i ≤ p),

xi = [1− c− k,m+ k]z (p < i ≤ ℓ+ 1− k).

Hence

B = cR
p,1
ℓ+1−k(c+ k − 1, m+ k − 1),

is ind-flag-accurate with

exp(B) = (1, ℓ− p+ 1, k + 1, k + 2, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ−k+1),

by Theorem 7.29.
Owing to Proposition 7.26, each isolated vertex n ∈ [ℓ − k + 2, ℓ] is simplicial in(
Kk

ℓ [n], ψ
p,k
ℓ |[n]

)
with ψp,k

ℓ (n) = [−c− ℓ+ n,m+ ℓ+ 1− n]. Applying Corollary 7.5(i)

repeatedly to the k − 1 simplicial vertices ℓ, ℓ − 1, . . . , ℓ − k + 2 in this order, we are
able to deduce that

A ∈ IF ⇐⇒ B ∈ IF .

Thus the inductive freeness of A is clear. Moreover,

exp(A ) = (1, ℓ− p+ 1, 2, 3, . . . , ℓ) + (0, (m+ ℓ+ c− 1)ℓ),
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since the isolated vertices n ∈ [ℓ− k + 2, ℓ] contribute the exponents

|ψp,k
ℓ (n)|+ n− 1 = (m+ ℓ+ c− 1) + (ℓ− n+ 2)

with 2 ≤ ℓ− n + 2 ≤ k to exp(A ).
Now we demonstrate the ind-flag-accuracy of A . Note that unlike in the proof of

Theorem 7.22 for Shi descendants, we cannot appeal to Corollary 7.5(ii) here, since the

exponent (m+ ℓ+ c− 1)+ e in exp(B) for some k+1 ≤ e ≤ ℓ exceeds |ψp,k
ℓ (n)|+n− 1

for each n ∈ [ℓ− k + 2, ℓ]. We may overcome this difficulty by making use of a certain
witness for the ind-flag-accuracy of B hinted at in Theorem 7.29.
Define ℓ− k hyperplanes H1, . . . , Hℓ−k ∈ A as follows:

H1 : x1 = (1− c− k)z, Hj : xj−1 − xj = z (2 ≤ j ≤ ℓ− k).

For each 1 ≤ s ≤ ℓ− k, set

Xs :=
s⋂

j=1

Hj, and

Ms := {(1− c− k)− (j − 1) | 1 ≤ j ≤ s} = [2− c− k − s, 1− c− k].

Then Xℓ−k ⊆ · · · ⊆ X2 ⊆ X1 ⊆ V ′ = Rℓ+1 and dimV ′(Xs) = ℓ+ 1− s.
We show that this flag is part of a witness for the ind-flag-accuracy of A . First we

show that each restriction A Xs is inductively free and compute its exponents.
If 1 ≤ s ≤ p then by the proof of the ind-flag-accuracy in Theorem 7.29, A Xs consists

of the hyperplanes

z = 0,

xi − xj = [−1, 1]z (s+ 1 ≤ i < j ≤ ℓ+ 1− k),

xi = [1− c− k − s,m+ k − 1]z (s+ 1 ≤ i ≤ p),

xi = [1− c− k − s,m+ k]z (p < i ≤ ℓ+ 1− k),

xi = (Ms ⊔ [−c− ℓ + i,m+ ℓ+ 1− i])z (ℓ+ 1− k < i ≤ ℓ).

Upon applying Corollary 7.5(i) repeatedly to the k−1 simplicial isolated vertices ℓ, ℓ−
1, . . . , ℓ− k + 2 in this order, we delineate that

A
Xs ∈ IF ⇐⇒ cR

p−s,1
ℓ+1−k−s(c+ k + s− 1, m+ k − 1) ∈ IF .

By Theorem 7.29, A Xs is indeed inductively free with

exp
(
A

Xs
)
= (1, ℓ− p+ 1, 2, . . . , k, k + 1, . . . , ℓ− s) + (0, (m+ ℓ+ c− 1)ℓ−k+1−s).

Note that the isolated vertices from [ℓ− k + 2, ℓ] continue to contribute the exponents
(m+ ℓ+ c− 1) + (ℓ− i+ 2) with 2 ≤ ℓ− i+ 2 ≤ k to exp

(
A Xs

)
.

If p < s ≤ ℓ − k then A Xs is given by replacing the third and fourth set of the
hyperplanes in the previous case by

xi = [1− c− k − s,m+ k]z (s+ 1 ≤ i ≤ ℓ+ 1− k).

Therefore, in this case

A
Xs ∈ IF ⇐⇒ cR

ℓ+1−k−s,1
ℓ+1−k−s (c+ k + s− 1, m+ k) ∈ IF .
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Again, by Theorem 7.29, A Xs is inductively free with

exp
(
A

Xs
)
= (1, 2, . . . , k, k + 1, . . . , ℓ− s+ 1) + (0, (m+ ℓ+ c− 1)ℓ−k+1−s).

A simple comparison of the exponents shows that the flag Xℓ−k ⊆ · · · ⊆ X2 ⊆ X1 ⊆
V ′ = Rℓ+1 is indeed part of a witness for the ind-flag-accuracy of A . Moreover, A Xℓ−k

is a strictly nested N -Ish arrangement hence is ind-flag-accurate, by Lemma 7.8.
By Lemma 3.1, we conclude that A is ind-flag-accurate. Note that the flag above can

be easily extended to a proper witness for A thanks to the construction of a witness
in Lemma 7.8. This completes the proof of the ind-flag-accuracy of A .

The proof of the assertion for cR̂p,k
ℓ (c,m) runs essentially along the same lines as the

argument above with the use of Theorem 7.32 in place of Theorem 7.29. �
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[CRS19] M. Cuntz, G. Röhrle, and A. Schauenburg, Arrangements of ideal type are inductively free,
Internat. J. Algebra Comput. 29 (2019), no. 5, 761–773. 5

[DGdO18] R. Duarte and A. Guedes de Oliveira, Between Shi and Ish, Discrete Math. 341 (2018),
no. 2, 388–399. 35

[DGdO19] , Partial parking functions, Discrete Math. 342 (2019), no. 2, 562–571. 35
[ER94] P. H. Edelman and V. Reiner, Free hyperplane arrangements between An−1 and Bn, Math.

Z. 215 (1994), no. 3, 347–365. 25
[ER96] , Free arrangements and rhombic tilings, Discrete Comput. Geom. 15 (1996), 307–

340 18, 47
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[Rö18] G. Röhrle, Divisionally free restrictions of reflection arrangements. Sém. Lothar. Combin.
77 ([2016-2018]), Art. B77e, 8 pp. 13

[Shi86] J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lecture Notes in Math-
ematics, vol. 1179, Springer, Berlin, 1986. 35

[Sta71] R. P. Stanley, Modular elements of geometric lattices, Algebra Univers. 1 (1971), 214–217.
12

[Sta72] , Supersolvable lattices, Algebra Univers. 2 (1972), 197–217. 12, 25



FLAG-ACCURATE ARRANGEMENTS 53

[Ter80a] H. Terao, Arrangements of hyperplanes and their freeness I, II, J. Fac. Sci. Univ. Tokyo 27
(1980), 293–320. 4, 8

[Ter80b] , Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad.
Ser. A Math. Sci. 56 (1980), no. 8, 389–392. 13

[TT22] T. N. Tran and S. Tsujie, MAT-free graphic arrangements and a characterization of strongly

chordal graphs by edge-labeling, 2022, arXiv:2204.08878. 26
[Yos04] M. Yoshinaga, Characterization of a free arrangement and conjecture of Edelman and

Reiner, Invent. Math. 157, no. 2, (2004) 449–454. 9, 18
[Zie89] G. M. Ziegler,Multiarrangements of hyperplanes and their freeness, Singularities (Iowa City,

IA, 1986). In: Contemporary Mathematics, vol. 90, pp. 345-359. American Mathematical
Society, Providence, RI, 1989. 9
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