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Abstract. Via the contour integral method, we establish several multidimensional Rogers–
Ramanujan type identities with parameters. As conclusions, some known formulas are
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1 Introduction

For any complex numbers x, q with |q| < 1 and nonnegative integer n, define the q-shifted
factorial to be

(x; q)∞ =

∞
∏

k=0

(1− xqk) and (x; q)n =
(x; q)∞
(xqn; q)∞

.

For simplicity, we usually adopt the compact notation

(x1, x2, . . . , xm; q)n = (x1; q)n(x2; q)n · · · (xm; q)n,

where m ∈ Z
+ and n ∈ Z

+ ∪ {0,∞}. Following Gasper and Rahman [8], define the basic
hypergeometric series as

r+1φr

[

a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]

=

∞
∑

k=0

(a1, a2, . . . , ar+1; q)k
(q, b1, . . . , br; q)k

zk.

The famous Rogers–Ramanujan identities are

∞
∑

k=0

qk
2

(q; q)k
=

1

(q, q4; q5)∞
, (1.1)

∞
∑

k=0

qk
2+k

(q; q)k
=

1

(q2, q3; q5)∞
. (1.2)

The corresponding author∗. Email Addresses: weichuanan78@163.com (C. Wei), 378075837@qq.com
(Y. Yu), ythainmc@163.com (G. Ruan).

1

http://arxiv.org/abs/2302.00357v2


In 2019, Kanade and Russell [10] proposed nine conjectured multidimensional Rogers–

Ramanujan type identities related to level 2 characters of the affine Lie algebra A
(2)
9 . Five

of them are confirmed by Bringmann, Jennings-Shaffer, and Mahlburg [4]. Rosengren [13]
proved all of the nine formulas by the contour integral method.

Recently, Uncu and Zudilin [15] proved the following two interesting identities:

∑

j, k≥0

qj
2+2jk+2k2

(q; q)j(q2; q2)k
=

(q3; q3)2∞
(q; q)∞(q6; q6)∞

, (1.3)

∑

j, k≥0

qj
2+2jk+2k2+j+2k

(q; q)j(q2; q2)k
=

(q6; q6)2∞
(q2; q2)∞(q3; q3)∞

. (1.4)

Ole Warnaar has pointed that (1.3) and (1.4) are instances of Bressoud’s results (cf. [3]).
Though the contour integral method, Wang [16] recovered (1.3) and (1.4) and Cao and
Wang [6, Theorem 3.8] found the following two formulas:

∑

j, k≥0

qj
2+2jk+2k2

(q; q)j(q2; q2)k
(−1)jxj+k = (qx; q2)∞, (1.5)

∑

j, k≥0

qj
2+2jk+2k2+k

(q; q)j(q2; q2)k
xj+2k = (−qx; q)∞, (1.6)

where x is an arbitrary complex number. More conclusions can be seen in the papers
[1, 5, 11, 12, 14]. Inspired by the works just mentioned, we shall establish the following
theorem.

Theorem 1.1. Let x, y be complex numbers. Then

∑

j, k≥0

qj
2+2jk+2k2−j−k

(q; q)j(q2; q2)k
xjy2k = (y; q)∞

∞
∑

k=0

(−x/y; q)k
(q; q)k(y; q)k

q(
k
2)yk. (1.7)

Choosing (x, y) = (q, q
1

2 ) in Theorem 1.1 and then calculating the series on the right-
hand side by Ramanujan’s formula (cf. [1, Entry 5.3.2]):

∞
∑

k=0

(−q; q2)k
(q; q)2k

qk
2

=
(q6; q6)2∞

(q; q)∞(q12; q12)∞
,

we catch hold of (1.3). Fixing (x, y) = (q2, q
3

2 ) in Theorem 1.1 and then evaluating the
series on the right-hand side by Ramanujan’s another formula (cf. [1, Entry 3.4.4]):

∞
∑

k=0

(−q; q2)k
(q; q)1+2k

qk
2+2k =

(q12; q12)∞(−q6; q6)∞
(q; q)∞(−q2; q2)∞

,

we get hold of (1.4).
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Taking (x, y) → (−qx,−q
1

2x
1

2 ) in Theorem 1.1 and then computing the series on the
right-hand side by Euler’s q-exponential formula (cf. [8, Appendix (II.2)]):

∞
∑

k=0

q(
k

2)zk

(q; q)k
= (−z; q)∞, (1.8)

we arrive at (1.5). Letting (x, y) → (qx,−qx) in Theorem 1.1, we are led to (1.6).
When x = 0, Theorem 1.1 produces the following special case of Berkovich and War-

naar [2, Equation (3.10)].

Corollary 1.2. Let y be a complex number. Then

∞
∑

k=0

q2k
2−ky2k

(q2; q2)k
= (y; q)∞

∞
∑

k=0

q(
k

2)yk

(q; q)k(y; q)k
.

Recall a generalization of (1.1) and (1.2) due to K. Garrett, Ismail, and Stanton [7]:

∞
∑

k=0

qk
2+mk

(q; q)k
=

(−1)mq−(
m

2 )Em−2(q)

(q, q4; q5)∞
−

(−1)mq−(
m

2 )Dm−2(q)

(q2, q3; q5)∞
, (1.9)

where m is an integer and the Schur polynomials Dm(q) and Em(q) are defined by

Dm(q) = Dm−1(q) + qmDm−2(q), D0(q) = 1, D1(q) = 1 + q,

Em(q) = Em−1 + qmEm−2(q), E0(q) = 1, E1(q) = 1.

Letting (q, y) → (q2, q1+2m) or (q2,−q1+2m) in Corollary 1.2 and using (1.9), we obtain
the following conclusion.

Corollary 1.3. Let m be an integer. Then

∞
∑

k=0

qk
2+2mk

(q2; q2)k(q1+2m; q2)k
=

(−1)mq2m−2m2

Em−2(q
4)

(q1+2m; q2)∞(q4, q16; q20)∞

−
(−1)mq2m−2m2

Dm−2(q
4)

(q1+2m; q2)∞(q8, q12; q20)∞
. (1.10)

Settingm = 0 or 1 in Corollary 1.3, we recover the two known results (cf. [14, Equations
(98) and (96)]):

∞
∑

k=0

qk
2

(q; q)2k
=

(q10, q8, q2; q10)∞(q14, q6; q20)∞
(q; q)∞

, (1.11)

∞
∑

k=0

qk
2+2k

(q; q)1+2k

=
(q10, q6, q4; q10)∞(q18, q2; q20)∞

(q; q)∞
. (1.12)

It should be pointed that Gu and Prodinger [9, Theorem 2.6] gave one-parameter gener-
alizations of (1.11) and (1.12), which are different from (1.10), several years ago.

Subsequently, we shall display the following triple-sum generalization of (1.5).

3



Theorem 1.4. Let x, y be complex numbers. Then

∑

j, k, ℓ≥0

(x; q)j(−x)k+2ℓyk+ℓ

(q; q)j(q; q)k(q2; q2)ℓ
qj+(

k
2)+(

j+k+2ℓ
2 ) = (qx, xy; q2)∞(−q; q)∞. (1.13)

When x = 1, Theorem 1.4 reduces to (1.5) thanks to the relation (cf. [8, P. 24]):

(q,−q,−q2; q2)∞ = 1,

which will be utilized without indication elsewhere.
Similarly, we shall give the following two triple-sum generalizations of (1.6).

Theorem 1.5. Let x, y be complex numbers. Then

∑

j, k, ℓ≥0

(x2y2; q2)kx
jy2j+2ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
(−1)j+kq(j+k+ℓ)(j+k+ℓ−1)+ℓ2+k

=
(q; q2)∞

2

{

(xy,−y; q)∞ + (−xy, y; q)∞
}

. (1.14)

Theorem 1.6. Let x, y be complex numbers. Then

∑

j, k, ℓ≥0

(x2y2; q2)kx
jy2j+2ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
(−1)j+kq(j+k+ℓ)(j+k+ℓ−1)+ℓ2+3k

=
(q; q2)∞

2(y/q − xy)

{

(xy,−y/q; q)∞ − (−xy, y/q; q)∞
}

. (1.15)

When xy = 1, Theorems 1.5 and 1.6 both become (1.6). From the two theorems, we
can also deduce some new multidimensional Rogers–Ramanujan type identities.

Taking (x, y) → (−xqm, q−m) in Theorem 1.5, there is the following formula.

Corollary 1.7. Let x be a complex number and let m be a nonnegative integer. Then

∑

j, k, ℓ≥0

(x2; q2)k x
j(−1)k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+k−m(j+2ℓ)

= (−q−m; q)m(−x; q)∞. (1.16)

Letting (x, y) → (1, x
1

2 ), (q, x
1

2/q) or (1/q, qx
1

2 ) in Theorem 1.5, we find the following
three conclusions.

Corollary 1.8. Let x be a complex number. Then

∑

j, k, ℓ≥0

(x; q2)k x
j+ℓ(−1)j+k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+k = (q, x; q2)∞,

∑

j, k, ℓ≥0

(x; q2)k x
j+ℓ(−1)j+k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2−j+k−2ℓ = (q, x; q2)∞,

∑

j, k, ℓ≥0

(x; q2)k x
j+ℓ(−1)j+k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+j+k+2ℓ = (q, q2x; q2)∞.
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Taking (x, y) → (−xqm−1, q1−m) in Theorem 1.6, there holds the following formula.

Corollary 1.9. Let x be a complex number and let m be a nonnegative integer. Then

∑

j, k, ℓ≥0

(x2; q2)k x
j(−1)k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+3k−(m−1)(j+2ℓ)

=
(−q−m; q)m(−x; q)∞

q−m + x
. (1.17)

Letting (x, y) → (1, x
1

2 ) or (1/q2, q2x
1

2 ) in Theorem 1.6, we derive the following two
conclusions.

Corollary 1.10. Let x be a complex number. Then

∑

j, k, ℓ≥0

(x; q2)k x
j+ℓ(−1)j+k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+3k = (q3, x; q2)∞,

∑

j, k, ℓ≥0

(x; q2)k x
j+ℓ(−1)j+k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+2j+3k+4ℓ = (q3, q2x; q2)∞.

The rest of the paper is arranged as follows. In terms of the contour integral method,
we shall prove Theorems 1.1 in Section 2. The proof of Theorems 1.4-1.6 will be dis-
played in Section 3. According to the bisection method, we shall establish several new
multidimensional Rogers–Ramanujan type identities in Section 4.

2 Proof of Theorems 1.1

For the aim to prove Theorem 1.1, we need the following lemma (cf. [8, Equation (4.10.6)]).

Lemma 2.1. Assume that

P (z) =
(a1z, . . . , aAz, b1/z, . . . , bB/z; q)∞
(c1z, . . . , cAz, d1/z, . . . , dD/z; q)∞

has only simple poles and |a1 · · · aA/c1 · · · cA| < 1. Then
∮

P (z)
dz

2πiz
=

(b1c1, . . . , bBc1, a1/c1, . . . , aA/c1; q)∞
(q, d1c1, . . . , dDc1, c2/c1, . . . , cA/c1; q)∞

×

∞
∑

k=0

(d1c1, . . . , dDc1, qc1/a1, . . . , qc1/aA; q)k
(q, b1c1, . . . , bBc1, qc1/c2, . . . , qc1/cA; q)k

(

a1 · · · aA
c1 · · · cA

)k

+ idem(c1; c2, . . . , cA),

where the integration is over a positively oriented unit circle such that the origin and poles

of 1/(d1/z, . . . , dD/z; q)∞ lie inside the contour and the poles of 1/(c1z, . . . , cAz; q)∞ lie

outside the contour.
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Now we begin to prove Theorem 1.1.

Proof. Heine’s transformation formulas of 2φ1 series (cf. [8, Appendix III.2 and III.3])
read

2φ1

[

a, b
c

; q, z

]

=
(c/a, az; q)∞
(c, z; q)∞

2φ1

[

abz/c, a
az

; q,
c

a

]

(2.1)

=
(abz/c; q)∞
(z; q)∞

2φ1

[

c/a, c/b
c

; q,
abz

c

]

. (2.2)

By means of (2.2), we have

2φ1

[

a, aq/c
aq/b

; q,
cq

abz

]

=
(q/z; q)∞

(cq/abz; q)∞
2φ1

[

q/b, c/b
aq/b

; q,
q

z

]

, (2.3)

2φ1

[

b, bq/c
bq/a

; q,
cq

abz

]

=
(q/z; q)∞

(cq/abz; q)∞
2φ1

[

q/a, c/a
bq/a

; q,
q

z

]

. (2.4)

Substituting (2.1), (2.3), and (2.4) into the three-term transformation formula of 2φ1

series (cf. [8, Appendix III.32]):

2φ1

[

a, b
c

; q, z

]

=
(b, c/a, az, q/az; q)∞
(c, b/a, z, q/z; q)∞

2φ1

[

a, aq/c
aq/b

; q,
cq

abz

]

+
(a, c/b, bz, q/bz; q)∞
(c, a/b, z, q/z; q)∞

2φ1

[

b, bq/c
bq/a

; q,
cq

abz

]

,

it is easy to show that

(c/a, az; q)∞ 2φ1

[

abz/c, a
az

; q,
c

a

]

=
(a, c/b, bz, q/bz; q)∞
(a/b, cq/abz; q)∞

2φ1

[

q/a, c/a
bq/a

; q,
q

z

]

+
(b, c/a, az, q/az; q)∞
(b/a, cq/abz; q)∞

2φ1

[

q/b, c/b
aq/b

; q,
q

z

]

.

Take (a, b, c, z) → (−x/y, x/y, 0,−y2/x) to obtain

(y; q)∞

∞
∑

k=0

(−x/y; q)k
(q; q)k(y; q)k

q(
k

2)yk

=
(y, x/y, q/y; q)∞

(−1; q)∞

∞
∑

k=0

(qy/x; q)k
(q2; q2)k

(

−
qx

y2

)k

+
(−y,−x/y,−q/y; q)∞

(−1; q)∞

∞
∑

k=0

(−qy/x; q)k
(q2; q2)k

(

−
qx

y2

)k

. (2.5)

6



Choose (A,B,D) = (2, 1, 0) and (a1, a2, b1, c1, c2) = (x, q, 1, y,−y) in Lemma 2.1 to gain

∮

(xz, q, qz, 1/z; q)∞
(y2z2; q2)∞

dz

2πiz

=
(y, x/y, q/y; q)∞

(−1; q)∞

∞
∑

k=0

(qy/x; q)k
(q2; q2)k

(

−
qx

y2

)k

+
(−y,−x/y,−q/y; q)∞

(−1; q)∞

∞
∑

k=0

(−qy/x; q)k
(q2; q2)k

(

−
qx

y2

)k

. (2.6)

The combination of (2.5) and (2.6) engenders

∮

(xz, q, qz, 1/z; q)∞
(y2z2; q2)∞

dz

2πiz
= (y; q)∞

∞
∑

k=0

(−x/y; q)k
(q; q)k(y; q)k

q(
k

2)yk. (2.7)

Recall Euler’s another q-exponential formula (cf. [8, Appendix (II.1)]) and Jacobi’s
product triple identity (cf. [8, Appendix (II.28)]) :

∞
∑

k=0

zk

(q; q)k
=

1

(z; q)∞
, (2.8)

∞
∑

k=−∞

q(
k

2)zk = (q,−z,−q/z; q)∞. (2.9)

Employing (1.8), (2.8), and (2.9), it is not difficult to understand that

∮

(xz, q, qz, 1/z; q)∞
(y2z2; q2)∞

dz

2πiz

=

∮ ∞
∑

j=0

q(
j
2)(−xz)j

(q; q)j

∞
∑

k=0

(yz)2k

(q2; q2)k

∞
∑

ℓ=−∞

q(
ℓ
2)(−1/z)ℓ

dz

2πiz

=
∑

j, k≥0

qj
2+2jk+2k2−j−k

(q; q)j(q2; q2)k
xjy2k. (2.10)

With the help of (2.7) and (2.10), we catch hold of (1.7).

3 Proof of Theorems 1.4-1.6

For proving Theorems 1.4-1.6, we draw support on the following lemma (cf. [13, Proposi-
tion 3.2]).
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Lemma 3.1. Let a, b, c, t be complex numbers such that |t| < 1. Then

2φ1

[

a, b
c

; q, t

]

=
(q; q)∞
(c, t; q)∞

∮

(abz, cz, qz/t, t/z; q)∞
(az, bz, cz/t; q)∞

dz

2πiz
,

where the integral is over a positively oriented contour separating the origin from all poles

of the integrand.

Firstly, we start to prove Theorem 1.4.

Proof. Choosing (a, q) → (a2, q2) in the q-binomial theorem:

1φ0

[

a
−

; q, t

]

=
(at; q)∞
(t; q)∞

, (3.1)

it is routine to see that

2φ1

[

a,−a
−q

; q, t

]

=
(a2t; q2)∞
(t; q2)∞

.

Fix (a, b, c, t) = (y
1

2 ,−y
1

2 ,−q, x) in Lemma 3.1 and use the above identity to deduce

∮

(−yz,−qz, q, qz/x, x/z; q)∞
(yz2; q2)∞(−qz/x; q)∞

dz

2πiz
= (−q; q)∞(qx, yx; q2)∞. (3.2)

Via (1.8), (2.8), (2.9), and (3.1), we have

∮

(−yz,−qz, q, qz/x, x/z; q)∞
(yz2; q2)∞(−qz/x; q)∞

dz

2πiz

=

∮ ∞
∑

j=0

(x; q)j
(q; q)j

(

−
qz

x

)j
∞
∑

k=0

q(
k
2)(yz)k

(q; q)k

×
∞
∑

ℓ=0

(yz2)ℓ

(q2; q2)ℓ

∞
∑

m=−∞

(−1)mq(
m
2 )(x/z)m

dz

2πiz

=
∑

j, k, ℓ≥0

(x; q)j(−x)k+2ℓyk+ℓ

(q; q)j(q; q)k(q2; q2)ℓ
qj+(

k
2)+(

j+k+2ℓ
2 ). (3.3)

The combination of (3.2) with (3.3) gives (1.13).

Secondly, we plan to prove Theorem 1.5.

Proof. Replace t by −t in (3.1) to obtain

1φ0

[

a
−

; q, −t

]

=
(−at; q)∞
(−t; q)∞

. (3.4)
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The sum of (3.1) and (3.4) produces

2φ1

[

a, aq
q

; q2, t2
]

=
1

2

(at; q)∞
(t; q)∞

+
1

2

(−at; q)∞
(−t; q)∞

.

Take (q, a, b, c, t) → (q2, x, qx, q, y2) in Lemma 3.1 and utilize the last equation to gain
∮

(qx2z, qz, q2, q2z/y2, y2/z; q2)∞
(xz; q)∞(qz/y2; q2)∞

dz

2πiz
=

(q; q2)∞
2

{

(xy,−y; q)∞ + (−xy, y; q)∞
}

. (3.5)

Through (1.8), (2.8), (2.9), and (3.1), we arrive at
∮

(qx2z, qz, q2, q2z/y2, y2/z; q2)∞
(xz; q)∞(qz/y2; q2)∞

dz

2πiz

=

∮ ∞
∑

j=0

(xz)j

(q; q)j

∞
∑

k=0

(x2y2; q2)k
(q2; q2)k

(qz

y2

)k

×
∞
∑

ℓ=0

(−1)ℓq2(
ℓ
2)(qz)ℓ

(q2; q2)ℓ

∞
∑

m=−∞

(−1)mq2(
m

2 )(y2/z)m
dz

2πiz

=
∑

j, k, ℓ≥0

(x2y2; q2)kx
jy2j+2ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
(−1)j+kq(j+k+ℓ)(j+k+ℓ−1)+ℓ2+k. (3.6)

Substituting (3.6) into (3.5), we get hold of (1.14).

Thirdly, we shall prove Theorem 1.6.

Proof. The difference of (3.1) and (3.4) can be expressed as

2φ1

[

aq, aq2

q3
; q2, t2

]

=
1− q

2(1− a)t

{

(at; q)∞
(t; q)∞

−
(−at; q)∞
(−t; q)∞

}

.

Let (q, a, b, c, t) → (q2, q2x, q3x, q3, y2/q2) in Lemma 3.1 and employ the upper formula to
derive

∮

(q5x2z, q3z, q2, q4z/y2, y2/zq2; q2)∞
(q2xz; q)∞(q5z/y2; q2)∞

dz

2πiz

=
(q; q2)∞

2(y/q − xy)

{

(xy,−y/q; q)∞ − (−xy, y/q; q)∞
}

. (3.7)

In terms of (1.8), (2.8), (2.9), and (3.1), there is
∮

(q5x2z, q3z, q2, q4z/y2, y2/zq2; q2)∞
(q2xz; q)∞(q5z/y2; q2)∞

dz

2πiz

=

∮ ∞
∑

j=0

(q2xz)j

(q; q)j

∞
∑

k=0

(x2y2; q2)k
(q2; q2)k

(q5z

y2

)k
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×

∞
∑

ℓ=0

(−1)ℓq2(
ℓ
2)(q3z)ℓ

(q2; q2)ℓ

∞
∑

m=−∞

(−1)mq2(
m

2 )(y2/zq2)m
dz

2πiz

=
∑

j, k, ℓ≥0

(x2y2; q2)kx
jy2j+2ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
(−1)j+kq(j+k+ℓ)(j+k+ℓ−1)+ℓ2+3k. (3.8)

Substituting (3.8) into (3.7), we are led to (1.15).

4 The bisection method and multidimensional Rogers–

Ramanujan type identities

In this section, we shall use the bisection method to establish several new multidimensional
Rogers–Ramanujan type identities.

Theorem 4.1.

∑

j, k≥0

q4j
2+4jk+2k2−j

(q; q)2j(q2; q2)k
=

(q8,−q3,−q5; q8)∞
(q2; q2)∞

, (4.1)

∑

j, k≥0

q4j
2+4jk+2k2+3j+2k

(q; q)1+2j(q2; q2)k
=

(q8,−q,−q7; q8)∞
(q2; q2)∞

. (4.2)

Proof. Replace x by −x in (1.6) to achieve

∑

j, k≥0

qj
2+2jk+2k2+k

(q; q)j(q2; q2)k
(−1)jxj+2k = (qx; q)∞. (4.3)

The sum of (1.6) and (4.3) creates

∑

j, k≥0

q4j
2+4jk+2k2+k

(q; q)2j(q2; q2)k
x2j+2k =

1

2

{

(−qx; q)∞ + (qx; q)∞

}

. (4.4)

Notice a known relation (cf. [16, Equations (1.2a)]):

(−q; q2)∞ + (q; q2)∞ =
2

(q4; q4)∞
(q16,−q6,−q10; q16)∞. (4.5)

Combing the x = q−
1

2 case of (4.4) and (4.5), we obtain (4.1).
The difference of (1.6) and (4.3) engenders

∑

j, k≥0

q4j
2+4jk+2k2+4j+3k+1

(q; q)1+2j(q2; q2)k
x1+2j+2k =

1

2

{

(−qx; q)∞ − (qx; q)∞

}

. (4.6)
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Notice another known relation (cf. [16, Equations (1.2b)]):

(−q; q2)∞ − (q; q2)∞ =
2q

(q4; q4)∞
(q16,−q2,−q14; q16)∞. (4.7)

Combing the x = q−
1

2 case of (4.6) with (4.7), we discover (4.2).

Theorem 4.2. Let m be a nonnegative integer. Then

∑

j, k, ℓ≥0

(q; q2)k(−1)k

(q; q)2j(q2; q2)k(q2; q2)ℓ
q(2j+k+ℓ)(2j+k+ℓ−1)+ℓ2+j+k−2m(j+ℓ)

=
(−q−m; q)m(q

8,−q3,−q5; q8)∞
(q2; q2)∞

, (4.8)

∑

j, k, ℓ≥0

(q; q2)k(−1)k

(q; q)1+2j(q2; q2)k(q2; q2)ℓ
q(1+2j+k+ℓ)(2j+k+ℓ)+ℓ2+j+k−m(1+2j+2ℓ)

=
(−q−m; q)m(q

8,−q,−q7; q8)∞
(q2; q2)∞

. (4.9)

Proof. Replace x by −x in (1.16) to gain

∑

j, k, ℓ≥0

(x2; q2)k (−x)j(−1)k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+k−m(j+2ℓ)

= (−q−m; q)m(x; q)∞. (4.10)

According to (4.5) and the x = q
1

2 case of the sum of (1.16) and (4.10), we catch hold of

(4.8). In accordance with (4.7) and the x = q
1

2 case of the difference of (1.16) and (4.10),
we can verify (4.9).

Theorem 4.3.

∑

j, k, ℓ≥0

(q−1; q2)k(−1)k

(q; q)2j(q2; q2)k(q2; q2)ℓ
q(2j+k+ℓ)(2j+k+ℓ−1)+ℓ2+j+3k+2ℓ

=
(q8,−q3,−q5; q8)∞

(q2; q2)∞
, (4.11)

∑

j, k, ℓ≥0

(q−1; q2)k(−1)k

(q; q)1+2j(q2; q2)k(q2; q2)ℓ
q(1+2j+k+ℓ)(2j+k+ℓ)+ℓ2+j+3k+2ℓ

=
(q8,−q,−q7; q8)∞

(q2; q2)∞
. (4.12)

Proof. The m = 0 case of (1.17) can be written as

∑

j, k, ℓ≥0

(x2; q2)k x
j(−1)k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+j+3k+2ℓ = (−qx; q)∞. (4.13)
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Replacing x by −x in (4.13), we have

∑

j, k, ℓ≥0

(x2; q2)k (−x)j(−1)k

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+j+3k+2ℓ = (qx; q)∞. (4.14)

Via (4.5) and the x = q−
1

2 case of the sum of (4.13) and (4.14), we find (4.11). Through

(4.7) and the x = q−
1

2 case of the difference of (4.13) and (4.14), we can confirm (4.12).

Theorem 4.4. Let x be a complex number. Then

∑

j, k, ℓ≥0

(x; q2)k(−1)kx−ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+j+k+2ℓ

=
(−qx,−q3/x; q4)∞

(q2; q4)∞
, (4.15)

∑

j, k, ℓ≥0

(x; q2)k(−1)kx−ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+2j+3k+4ℓ

=
(−q3x,−q5/x; q4)∞

(q2; q4)∞
. (4.16)

Proof. Choosing (x, y) → (−x/q, q/x
1

2 ) in (1.14) and using (2.9), we obtain

∑

j, k, ℓ≥0

(x; q2)k(−1)kx−ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+j+k+2ℓ

=
(q; q2)∞

2

{

(−x
1

2 ,−q/x
1

2 ; q)∞ + (x
1

2 , q/x
1

2 ; q)∞

}

=
(q; q2)∞
2(q; q)∞

{

∞
∑

n=−∞

q(
k
2)x

k
2 +

∞
∑

n=−∞

(−1)kq(
k
2)x

k
2

}

=
1

(q2; q2)∞

∞
∑

n=−∞

q(
2k
2 )xk

=
(−qx,−q3/x; q4)∞

(q2; q4)∞
.

So we get hold of (4.15).

Taking (x, y) → (−x/q2, q2/x
1

2 ) in (1.15) and utilizing (2.9), we achieve

∑

j, k, ℓ≥0

(x; q2)k(−1)kx−ℓ

(q; q)j(q2; q2)k(q2; q2)ℓ
q(j+k+ℓ)(j+k+ℓ−1)+ℓ2+2j+3k+4ℓ

=
(q; q2)∞

2(q/x
1

2 + x
1

2 )

{

(−x
1

2 ,−q/x
1

2 ; q)∞ − (x
1

2 , q/x
1

2 ; q)∞

}
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=
(q; q2)∞

2(q/x
1

2 + x
1

2 )(q; q)∞

{

∞
∑

n=−∞

q(
k
2)x

k
2 −

∞
∑

n=−∞

(−1)kq(
k
2)x

k
2

}

=
1

(q/x
1

2 + x
1

2 )(q2; q2)∞

∞
∑

n=−∞

q(
1+2k

2 )x
1+2k

2

=
(−q3x,−q5/x; q4)∞

(q2; q4)∞
.

Therefore, we complete the proof of (4.16).
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