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COVERING SHRINKING POLYNOMIALS BY QUASI

PROGRESSIONS

NORBERT HEGYVÁRI

Abstract. Erdős introduced the quantity S = T
∑

T

i=1
|Xi|, whereX1, . . . , XT are

arithmetic progressions that cover the squares up to N . He conjectured that S is

close to N , i.e. the square numbers cannot be covered ”economically” by arithmetic

progressions. Sárközy confirmed this conjecture and proved that S ≥ cN/ log2 N .

In this paper we extend this to shrinking polynomials and so-called {Xi} quasi

progressions.
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1. Introduction

A long-standing and challenging problem in combinatorial number theory is to

give an upper bound on the number of squares in any arithmetic progression. In

relation to this problem, Erdős posed the following question, which he formulated

as follows: Is it true that square numbers cannot be ”economically” covered by

arithmetic progressions? More precisely let Xi = {mij + ri}kij=1 ⊆ {1, 2 . . . , , N},
i = 1, 2, . . . , T be a system of arithmetic progressions such that

⋃T
i=1{mij+ ri}kij=1 ⊇

QN , where QN is the set of squares up to N , i.e. QN := {12, 22, 32, . . . , ⌊
√
N⌋2}. Let

F (QN) := min{Xi},T T
∑T

i=1 ki. Is it true that F (QN) > N1−ε, (ε > 0)?

Maybe this conjecture was motivated by the following two examples. When we

cover QN by arithmetic progression with length two (i.e. the squares are covered
1
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by piecewise), then T ∼
√
N , so T

∑T
i=1 ki ∼ 2N . The other example, when QN is

covered by the interval {1, 2, . . . , N}, then T = 1, so T
∑T

i=1 ki = N .

In [8] this conjecture was proved in a sharper form:

Theorem 1.1 (Sárközy). There exists an N0 such that for all N > N0 and

F (QN) >
1

700

N

log2 N
.

The purpose of this note is to investigate what happens if we ask quasi-progression

to efficiently cover shrinking polynomials (see Section 3). Quasi progression proper-

ties have been studied by several authors (see [2],[3] and [4]).

1.1. Erdős conjecture under some arithmetic constrain. We may ask, if we

restrict ourselves to some additively behaving mis modulus, what happens?

The following result shows that for ”good covering” the moduli must be highly

composite.

Theorem 1.2. Assume that K := max{τ(mi) : i = 1, 2, . . . T} and
⋃T

i=1{mij +

ri}kij=1 ⊇ QN where τ(x) is the divisor function. Then T
∑T

i=1 ki ≥ N
4K logN

.

Proof. In [5] I proved the following lemma:

Lemma 1.3. For every i ∈ [T ]

|QN ∩ {ri + jmi}kij=1| ≤ 2
√
K
√

ki log ki.

Proof of the lemma. Write shortly m = mi; r = ri; k = ki.

Let J := {j1 < j2 < · · · < jt} be the sequence of indices for which r + ijm ∈ Q,

r = 1, 2, . . . , t. Let J1 ⊆ J be the set of indices for which ijs+1
− ijs >

√

k
K log k

.

Clearly |J1| ≤ k/
√

k
K log k

=
√
K
√
k log k.

Now let J2 := J \ J1. For these indices we have ijs+1
− ijs ≤

√

k
K log k

and so

(1) ijs+1
m− ijsm = (r + ijs+1

m)− (r + ijsm) = x2 − y2 = (x− y)(x+ y)
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for some x, y. Fix the couple ijs+1
, ijs. Denote by M the number of pairs (x, y) for

which (1) holds. Then M ≤ τ(ijs+1
m− ijsm). Thus we have

|J2| ≤
∑

x≤
√

k
K log k

τ(mx) ≤ τ(m)
∑

x≤
√

k
K log k

τ(x) ≤ K
∑

x≤
√

k
K log k

τ(x)

using the fact that τ(mx) ≤ τ(m)τ(x). It is well-known that

∑

x≤
√

k
K log k

τ(x) ≤
√

k

K log k
log

(

√

k

K log k

)

≤
√

k log k

K
.

Finally

|J1|+ |J2| = |J | ≤
√
K
√

k log k +
√
K
√

k log k.

�

Suppose now that some system of arithmetic progressions covers the squares up

to N , i.e.
⋃T

i=1{mij + ri}kij=1 ⊇ QN . Thus
√
N ≤

∑T
i=1 |QN ∩ {ri + jmi}kij=1|. Now

by Lemma 1.3 and the Cauchy inequality we get

N ≤ (

T
∑

i=1

|QN ∩ {ri + jmi}kij=1|)2 ≤ (

T
∑

i=1

2
√
K
√

ki log ki)
2 ≤

≤ (

T
∑

i=1

2
√
K
√

ki logN)2 ≤ 4KT

T
∑

i=1

ki logN

which implies that T
∑T

i=1 ki ≥ N
4K logN

as we wanted.

�

2. Covering by Quasi Progressions

In [3] Brown, Erdős and Freedman introduced the generalization of arithmetic

progressions. For k ≥ 1 let X = {x1 < x2 < · · · < xk}. The sequence X is said

to be a k-term quasi (or combinatorial) progression of order d (briefly CP-d) if the

diameter of the set of {xi+1 − xi : 1 ≤ i ≤ k − 1} is bounded by d.
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In this section we prove that QN can be covered with quasi-progressions far more

efficiently than with arithmetic progressions.

We will consider the case of d = 2, especially when xi+1 − xi ∈ {D,D + 1}, as
this is the most similar to arithmetic progression. In this case we write that X is

CP-{D,D + 1}

Definition. Let X1, X2, . . . , XT ⊆ {1, 2 . . . , , N} be a system of sequences, where

for each 1 ≤ i ≤ T , Xi is CP-{Di, Di + 1}. Assume that
⋃T

i=1Xi ⊇ QN . Let

G(QN) := min{Di},T T
∑T

i=1 |Xi|.

Theorem 2.1. We have

G(QN) < CN3/4 log2N,

where C =
4
√
3

2
23/4

23/4−1
, (log2N is the logarithm in base 2).

Proof. Let T = ⌊log2(N)⌋ and for every 1 ≤ i ≤ T let Ii := [N/2i, N/2i−1].

We cover first I1 (and since each Ii and Xi the treatment will be similar to I1 and

Xi respectively, we can briefly give a bound for G(QN )).

Let n2
1 < n2

2 < · · · < n2
k be the squares in I1 and let D1 = ⌊√n1⌋.

We have that
n2
2−n2

1

D1
≥ 2n1+1√

n1
≥ 2

√
n1 ≥ √

n1 + 1 ≥ D1 + 1 if n1 ≥ 1. Note that

∆ := n2
2 − n2

1 − ⌊n2
2−n2

1

D1
⌋D1 < D1 and ⌊n2

2−n2
1

D1
⌋ > D1.

Now we are going to define the elements of X1 in the interval [n2
1, n

2
2]. Let x1 = n2

1

and from the differences xi+1−xi (i = 1, 2, . . . ⌊n2
2−n2

1

D1
⌋) let ∆ be the number of D1+1

and ⌊n2
2−n2

1

D1
⌋ − ∆ be the number of D1. From the definition of X1 we obtain that

⌊n2
2−n2

1

D1
⌋th element is just n2

2.

Now consider the interval [n2
j , n

2
j+1], j ≥ 2. Since ⌊n2

j+1−n2
j

D1
⌋ > ⌊n2

2−n2
1

D1
⌋ we can

repeat the previous process; i.e. let n2
j+1 − n2

j − ⌊n2
j+1−n2

j

D1
⌋D1 be the number of the

consecutive differences D1 + 1, and let the rest be D1.
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Now we calculate the cardinality of the quasi-progression X1. N/2 ≤ n2
1, so

D1 = ⌊√n1⌋ >
√
n1 − 1 ≥ 4

√

N/2 − 1 > 4
√

N/3. Furthermore X1 ⊆ [N/2, N ], and

xi+1 − xi ≥ D1 for all i, hence |X1| ≤ N/2
D1

< N/2
4
√

N/3
=

4
√
3

2
N3/4.

The calculation for every Xi, i = 2, . . . , T is the same so we have

T

T
∑

i=1

|Xi| <
4
√
3

2

T
∑

i=1

(N

2i

)3/4

log2N <
4
√
3

2
N3/4

∞
∑

i=1

1

(23/4)i
log2N = CN3/4 log2N,

where C =
4
√
3

2
23/4

23/4−1
. �

Remark. The reason we can cover the squares ”well” is that we use a lot of Di + 1

in addition to Di. The above proof works even if we require that the number of

(Di + 1)s in each quasi-progression is at most N ε (in the sense that the squares are

”well” covered, i.e. G(QN) ≤ N1−c(ε), where 0 < c(ε) < 1).

In the next section we extend the result of Sárközy to the Erdős problem for a

wide class of polynomials.

3. covering shrinking polynomials by quasi progressions

A sub-sequence of prime numbers P ′ = {p1 < p2 < · · · < ps < . . . } is said to be

η−dense if there exists an η > 0 for which |P ′∩ [1, x]|/π(x) > η holds for every large

x.

Definition. Let f(x) ∈ Z[x]. We say that f is an (η, µ)−shrinking polynomial if

there is an η−dense sequence of primes P ′ = {p1 < p2 < · · · < ps < . . . } such that

for all i large enough, |f(Fpi)| < µpi (here f(Fpi) := {f(x) : x ∈ Fpi}). We say the f

is shrinking if for some 0 < η, µ ≤ 1 f is (η, µ)−shrinking polynomial

Clearly all functions f(x) = xn; n ≥ 2 are shrinking, since for 1 < d = g.c.d.(p−
1, n), |{xn : x ∈ {1, 2, . . . , p − 1} = p−1

d
, and π(x, 1, d) = (1 + o(1)) 1

φ(d)
x

lnx
, where

π(x, 1, d) denotes the number of primes ≡ 1 (mod d) which are less than or equal
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to x. Further example is the polynomial f(x) = x3 + x. In [6] it was proved

for any prime p > 2 the number of distinct residues in the form x3 + x (mod p) is

2p/3+O(
√
p log p). For a generic polynomial g(x) (i.e. where the integral coefficients

distributed uniformly and independently in Z) it is known that the number of distinct

residues represented by g(x) is p(1 − 1/2 + 1/3 − · · · − (−1)d/d!) + O(
√
p), where

d is the degree of g and p ≥ 2 prime (see [1]). Note that the sequence in the first

brackets tends to 1− 1/e as d → ∞.

The aim of the present section is to extend Erdős’ problem of covering shrinking

polynomials.

So let f be an (η, µ)−shrinking polynomial fN = f(N) ∩ {1, 2, . . . , N} and let

X1, X2, . . . , XT ⊆ {1, 2 . . . , , N} be a system of quasi progressions, where for each

1 ≤ i ≤ T , Xi is CP-{Di, Di + 1}. As we have seen in the previous section we

have to bound the number of (Di + 1)s. So we assume that for every 1 ≤ i ≤ T

(Di + 1) occurs at most logA N times for some A > 0. We will write that Xi is

CP-{Di, (Di + 1)logA N}.

Theorem 3.1. Let f be an (η, µ)−shrinking polynomial with degree d. Assume that
⋃T

i=1Xi ⊇ fN . Let HA,d(fN) := min∪T
i=1Xi⊇fN

T
∑T

i=1 |Xi|. We have

HA,d(fN) ≥ (1 + o(1))
C ′N2/d

logA+2N

where C ′ = (1−µ)2η2

200

Note that trivially T
∑

i |Xi| ≤ CN2/d; when fN is covered by singletons.

Proof. Assume that η, µ is fixed and N > N(η, µ) is large enough. Let X be a CP-

{D,D+1} quasi-progression where the number of gaps D+1 is at most M ≤ logAN .

Let I = {i1 < i2 < . . . iM} be the sequence of subscripts for which xij+1 − xij =

D + 1. Furthermore let I ′ ⊆ I be the sub-sequence of indices for which ij+1 − ij ≥
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log2N . Write Zij = {xij+1 < xij+2 < · · · < xij+1−1}. Note that Zij is an arithmetic

progression with difference D or D + 1 (and D + 1 can be only if A ≥ 2). Here we

assume that Zij is non-empty set. To do this, you need to have |X| ≥ logA+2N .

Actually we split X into not too short arithmetic progressions with difference D or

D + 1. In the sequel we assume that the difference is D, the argument completely

the same when the difference is D + 1.

From this point by some modification of the proof of Sárközy, we could extend his

result. For this we need the arithmetic form of the large sieve (see [7] p. 560):

Lemma 3.2. Let U ⊆ {1, 2, . . . ,M}. Denote by U(p, h) := |{u : u ∈ U ; u ≡ h

(mod p)}| we have

∑

p≤W

p

p−1
∑

h=0

∣

∣

∣
U(p, h)− 1

p
|U |

∣

∣

∣

2

≤ (M +W 2)|U |.

For some fixed ij let U = {t : xt ∈ Zij ∩ fN}, M = s = |Zij |, and W =
√
s. We

are going to give an upper bound for U , so without loss of generality we can assume

that U >
√

2
(1−µ)η

(i.e. U is larger than a fixed constant).

Now we use the large sieve in the form
∑

p≤√
s p

∑p−1
h=0

∣

∣

∣
U(p, h)− 1

p
|U |

∣

∣

∣

2

≤ 2s|U |.
Now we are going to sieve just for the primes for which f is shrinking, i.e. if

√
s > x0 and then there is an η−dense sequence of primes p1 < p2 < · · · < pt ≤

√
s

such that for all i, |f(Fpi)| < µpi. Write I = {p1 < p2 < · · · < pt}. Here t ≥ ηπ(
√
s).

Since f is (η, µ)-shrinking we conclude that for every 1 ≤ i ≤ t the number of

resides h modulo pi for which U(h, pi) = 0 is at least (1−µ)pi. Furthermore we have

to leave those p from I for which p|D. Clearly it is ω(D) (the number of distinct

prime factors ofD) which is at most (1+o(1)) logN/ log logN . Denote the remaining

set by I ′. We have

∑

p≤√
s

p

p−1
∑

h=0

∣

∣

∣
U(p, h)− 1

p
|U |

∣

∣

∣

2

≥
∑

p∈I′

p(1− µ)p
∣

∣

∣

1

p
|U |

∣

∣

∣

2

=
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= (1− µ)|U |2(ηπ(
√
s)− (1 + o(1)) logN/ log logN) >

(1− µ)η

5
|U |2

√
s

log s
,

since we assume that s = |Xj| ≥ log2 N and U >
√

2
(1−µ)η

. Comparing the left and

right hand side of the sieve inequality we get

|U | ≤ 10

(1− µ)η

√
s log s.

Now we are going to estimate the number of values of f in X . Write X = ∪ij∈I′Zij ∪
(X \ ∪ij∈I′Zij ). By the definition of I ′, the number of values of f is at most |X \
∪ij∈I′Zij | ≤ logA N · log2N = logA+2N .

The number of values of f in the rest of X can be calculated by

10

(1− µ)η

∑

ij∈I′

√

|Zij | log |Zij |+ logA+2N ≤ 20

(1− µ)η

√

logA N
∑

ij∈I′

|Zij | logN ≤

≤ 20

(1− µ)η

√

|X| logA/2+1N

since the function
√
x is concave function (the estimation comes from the Jensen

inequality).

Now we complete the proof of the theorem. Since the degree of f is d thus |fN | ≥
(1 + o(1))N1/d. Assume that the union of X1, X2, . . . , XT covers fN , and for every

1 ≤ i ≤ T , Xi is CP-{Di, (Di + 1)logA N} quasi progression. Write X ′
i = Xi ∩ fN .

The above sieving estimation can only be used for ”long” quasi-progressions, so we

divide the sum
∑

i |X ′
i| into two parts. We have

(1 + o(1))N2/d ≤
(

T
∑

i=1

|X ′
i|
)2 ≤ 2

(

∑

|Xi|≤logA+2 N

|X ′
i|
)2

+ 2
(

∑

|Xi|>logA+2 2N

|X ′
i|
)2

since (a + b)2 ≤ 2a2 + 2b2. Let T1 be the number of terms in the first sum and

T2 = T − T1. Then (
∑

|Xi|≤logA+2 N |X ′
i|)2 ≤ T1 log

A+2N(
∑

|Xi|≤logA+2 N |Xi|). By the
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Cauchy inequality the second sum can be estimated as

(

∑

|Xi|>logA+2 N

|X ′
i|
)2 ≤ T2

∑

|Xi|>logA+2 N

|X ′
i|2 ≤ T2

400

(1− µ)2η2

∑

|Xi|>logA+2 N

|Xi| logA+2N.

Putting everything together we get

(1+o(1))N2/d ≤ 2T1 log
A+2N

∑

|Xi|≤logA+2 N

|Xi|+T2
200

(1− µ)2η2

∑

|Xi|>logA+2 N

|Xi| logA+2N ≤

≤ 200

(1− µ)2η2
logA+2N

(

T1

∑

|Xi|≤logA+2 N

|Xi|+ T2

∑

|Xi|>logA+2 N

|Xi|
)

=
200

(1− µ)2η2
logA+2N

(

T

T
∑

i=1

|Xi|
)

.

Rearranging the inequality we obtain the statement. �
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