
Improved Exact and Heuristic Algorithms for Maximum Weight Clique

Roman Erhardt∗ Kathrin Hanauer† Nils Kriege†‡ Christian Schulz∗

Darren Strash§

Abstract

We propose improved exact and heuristic algorithms for

solving the maximum weight clique problem, a well-known

problem in graph theory with many applications. Our al-

gorithms interleave successful techniques from related work

with novel data reduction rules that use local graph struc-

ture to identify and remove vertices and edges while retain-

ing the optimal solution. We evaluate our algorithms on a

range of synthetic and real-world graphs, and find that they

outperform the current state of the art on most inputs. Our

data reductions always produce smaller reduced graphs than

existing data reductions alone. As a result, our exact algo-

rithm, MWCRedu, finds solutions orders of magnitude faster

on naturally weighted, medium-sized map labeling graphs

and random hyperbolic graphs. Our heuristic algorithm,

MWCPeel, outperforms its competitors on these instances, but

is slightly less effective on extremely dense or large instances.

1 Introduction

Finding cliques in graphs is a classic problem in graph
theory with many applications. In social networks,
group behavior can be predicted with the help of
cliques [47]. In biochemistry, cliques can be used to
study the interaction between molecules, which can in-
form drug discovery [33]. Vertex-weighted graphs, and
the analogous maximum weight clique problem (MWC),
can be used in an even wider variety of applications in-
cluding video object co-segmentation [51], coding the-
ory [52], combinatorial auctions [49], and genomics [4].

Solving the maximum (unweighted) clique problem
has been the subject of extensive research [9, 31, 41,
42, 48, 53], with the most effective solvers combining
branch-and-bound with MaxSAT reasoning for prun-
ing [30, 38]. However, state-of-the-art algorithms still
struggle to find solutions for certain instances in a rea-
sonable time limit. Indeed, there are still unsolved in-
stances, and recently closed instances have required over

∗Heidelberg University
†University of Vienna, Faculty of Computer Science, Vienna

Austria
‡University of Vienna, Research Network Data Science, Vi-

enna, Austria
§Department of Computer Science, Hamilton College

a year of computation [50]. Recent work has focused
on solving weighted variants of NP-hard graph prob-
lems [7, 29, 45], which are more difficult in practice.

One powerful technique for tackling NP-hard graph
problems is to use data reduction rules, which remove
or contract local graph structures, to reduce the input
instance to an equivalent, smaller instance. Originally
developed as a tool for parameterized algorithms [13],
data reduction rules have been effective in practice
for computing an (unweighted) maximum independent
set [11, 28, 39] / minimum vertex cover [2], maximum
clique [10, 43], and maximum k-plex [12, 25], as well as
solving graph coloring [32, 43] and clique cover prob-
lems [19, 40], among others [1]. However, recent work
has only scratched the surface for weighted problems.
Lamm et al. [29], Gellner et al. [17], and Gu et al. [20]
recently introduce an extensive collection of effective
data reductions for maximum weight independent set
problem (MWIS), and Wang et al. [45] perform data
reduction for weighted graph coloring.

However, to our knowledge, the only data reduction
rules for MWC remove vertices simply based on the
weight of a neighborhood or the largest weight of a
neighbor [7]. Thus, there is untapped potential for
reducing input instances further, making them more
amenable to exact solving. One strategy is to apply
MWIS reductions to the complement of the input;
however, MWIS reductions are most effective on large,
sparse instances and the complements of the graphs
considered here are dense and unlikely to fit in memory.

Our Results. We develop a suite of novel exact
and heuristic data reduction rules for MWC, with the
goal of reducing the number of vertices and edges in
the input graph while maintaining solution quality. To
the best of our knowledge our data reduction rules
are the first to exploit local graph structures for the
MWC problem. We also present data reduction rules
that are solely aimed at removing edges in a graph,
which to the best of our knowledge has not been done
before for similar problems. After reducing the graph,
we apply either heuristic or exact algorithms on the
remaining instance to obtain a solution to the original
input. We extend the recent reduce-and-peel framework

ar
X

iv
:2

30
2.

00
45

8v
1

 [
cs

.D
S]

 1
 F

eb
 2

02
3

introduced for the MIS and MWIS problems, engineering
methods for how and when to apply the reductions and
switch to the exact solver. Our experiments show that
our algorithms outperform the state of the art.

2 Preliminaries

2.1 Basic Concepts. We consider a simple,
weighted, undirected graph G = (V,E,w) with n = |V |
and m = |E|, where V = {1, . . . , n} is the set of vertices,
E ⊆ {{u, v} | u, v ∈ V } is the set of dyadic edges, and
w : V → R>0 is a function that assigns a positive real-
valued weight to each vertex. We extend w to sets, such
that for V ′ ⊆ V , w(V ′) =

∑
v∈V ′ w(v). The maximum

weight of V ′ is denoted by w∗(V ′) = maxv∈V ′ w(v).
Two vertices u and v are adjacent (also neighbors) if
{u, v} ∈ E. The (open) neighborhood N(v) of a vertex
v ∈ V is defined as N(v) = {u ∈ V | {u, v} ∈ E},
and its closed neighborhood is N [v] = N(v) ∪ {v}.
Both definitions extend straightforwardly to the
neighborhood N(V ′) of a set of vertices V ′ ⊂ V , i.e.,
N(V ′) = ∪v∈V ′N(v) \ V ′ and N [V ′] = N(V ′) ∪ V ′.
The degree of a vertex deg(v) is the number of its
neighbors deg(v) = |N(v)|, and ∆ := ∆(G) de-
notes the maximum degree maxv∈V deg(v). The
complement of G is defined as G = (V,E), where
E = {{u, v} | u, v ∈ V ∧ u 6= v ∧ {u, v} /∈ E} is the set
of edges not present in G. The density ρ := ρ(G) of
G is the ratio of the number of edges present to those
that could exist, ρ(G) = 2m

n(n−1) . The subgraph induced

by the subset V ′ ⊆ V is denoted by G[V ′] = (V ′, E′),
where E′ = {{vi, vj} ∈ E | vi, vj ∈ V ′}. A set
V ′ ⊆ V is called independent if for all pairs of
vertices u, v ∈ V ′, {u, v} 6∈ E.

A clique is a set Q ⊆ V where all vertices are pair-
wise adjacent. A clique in the complement graph G cor-
responds to an independent set in the original graph G
and vice-versa. The maximum weight clique problem
(MWC) consists in finding a clique of maximum weight.
If w ≡ 1, we obtain the maximum cardinality clique
problem (MCC) (more succinctly referred to as the max-
imum clique problem). The maximum independent set
problem (MIS) is that of finding an independent set of
maximum cardinality, whereas the maximum weight in-
dependent set problem (MWIS) asks for an independent
set of maximum total weight. The complement of an
independent set is a vertex cover, i.e. a subset C ⊆ V
such that every edge e ∈ E is incident to at least one
vertex in C. The minimum vertex cover problem, which
asks for a vertex cover with minimum cardinality, is thus
complementary to the maximum independent set prob-
lem. The maximum clique problem is also dual to the
maximum independent set problem and the minimum
vertex cover problem via the complement graph G. By

extension, the weighted versions of independent set and
clique are also dual to each other.

The vertex coloring problem asks to assign a color
label c ∈ Z to each vertex such that no two adjacent
vertices have the same label and the number of different
colors is minimal. All vertices in a clique must receive
different colors. Thus, if a graph has a vertex coloring
with k colors, any clique can have cardinality at most k.
All these problems are NP-hard.

2.2 Related Work. This paper is a summary and
extension the master thesis [14]. A lot of research has
been done for both the MCC and the MWC problem.
As our focus in this work is on the weighted version, we
only mention results for MWC and largely omit solvers
and results for the cardinality version unless they were
extended to the weighted case. A detailed review on
approaches for MCC can be found in Wu and Hao [48]
as well as in Abu-Khzam et al. [1] in the context of data
reductions.

2.2.1 Exact Solvers. Most exact solvers for the
MCC use a B&B framework [9], which maintains a
current clique C and a candidate set P = N(C) of
vertices for extending C. Fast solvers prune the search
space by quickly computing a tight upper bound on
the clique size that can be found by including vertices
from P into C. One successful technique to do so
is to compute a greedy heuristic vertex coloring on
G[P] and use the number of colors as an upper bound.
This approach was subsequently extended to MWC by
Kumlander [27] as follows: Given a valid vertex coloring
of G[P] that uses k colors and partitions V into color
classes D = D1 t D2 t · · · t Dk, an upper bound can
be computed as ub(D) =

∑k
j=1 w

∗(Dj), assuming each
color class contributes a vertex of maximum weight.

Fang et al. [15] were the first to implement the
idea of MaxSAT reasoning introduced by the MCC
solver MaxCLQ [31] for MWC. Jiang et al. [24] also
rely on MaxSAT reasoning and contributed an efficient
preprocessing step that computes an initial clique Ĉ
as well as a vertex branching ordering. It furthermore
computes a simple upper bound on the maximum weight
clique that each vertex v can be part of as w(N [v])
and removes v if w(N [v]) ≤ w(Ĉ). TSM-MWC [23]
refines the approach further with a two-stage MaxSAT
reasoning approach that applies less expensive MaxSAT
techniques to reduce the number of branching vertices
before exhaustively looking for disjoint conflicting soft
clauses. TSM-MWC currently achieves the best results for
a wide spectrum of graph instances, most notably large
sparse real-world graph instances, and is the current
state-of-the-art exact solver for maximum weight clique.

2.2.2 Heuristic Solvers. The general scheme of a
local search algorithm for MCC is as follows: A clique
C is constructed by starting with a single vertex and
repeatedly adding vertices that are adjacent to all ver-
tices in C using some evaluation function. Again, can-
didate vertices are those vertices that could potentially
be added to C. Once no more add operations can be
performed, some vertices can be removed in an attempt
to construct a larger clique.

Gendrau et al. [18] proposed two algorithms for
MCC based on this strategy: One is a deterministic
scheme which adds the vertex with the highest degree
first and when no further vertex can be added, the
vertex that results in the largest set of candidate vertices
is removed. The second algorithm randomly selects
which vertex to add to the current solution. Pullan [35]
proposed to include a swap operator in the main search
procedure. This operator looks for a vertex that is
connected to all but one vertex of the current candidate
clique C. Furthermore, the algorithm perturbs the
current candidate clique by adding a random vertex and
removing all non-adjacent vertices from the clique.

This algorithm has been extended to MWC by Pul-
lan [36] by adding a vertex which is randomly cho-
sen only among the vertices of highest weight. Wang
et al. [46] added a prohibition rule based on config-
uration checking. Cai [5] further improved this algo-
rithm by using a better strategy to decide which ver-
tex from the candidate set to add next. This strat-
egy works by randomly sampling k different candidate
vertices and choosing the best vertex with respect to
some benefit estimation function. Cai and Lin [7] com-
bined the algorithm with data reduction rules in their
solver FastWCLq. The reductions they use compute up-
per bounds for each vertex and remove a vertex if one
of the computed upper bounds is less than the weight
of the current best clique. Every time an improved so-
lution is found by local search, the reductions are reap-
plied, which in turn improves the chance of local search
finding the optimal solution.

SCCWalk4l [44] adopts the previously seen config-
uration checking strategies as well as data reductions.
The authors furthermore introduce a technique called
walk perturbation, which adds a random vertex to the
solution when the search stagnates and removes all ver-
tices from the candidate set that become invalid by this
perturbation. Cai et al. [8] improved FastWCLq fur-
ther to also apply a reduction-and-hill-climbing method
based on vertex coloring.

SCCWalk4l and FastWCLq are the current state-of-
the-art for heuristic MWC solvers, with the former being
especially dominant in small dense networks, such as
graphs from the DIMACS and BHOSLIB challenge [44],

and the latter showing the best results in large sparse
real-world networks [8].

3 Data Reductions

So far, only few reductions are known that can be used
for the MWC. However, especially for large instances,
applying exact data reductions is a very important
technique to decrease the problem size. In general,
reductions allow the classification of vertices as either
(1) part of a solution, (2) non-solution vertices, or (3)
deferred, i.e. the decision for this vertex depends on
additional information about neighboring vertices that
will be obtained later. We denote by K the resulting
reduced graph, where no reduction rule applies anymore.
In the following, we review existing and introduce a
large set of new reductions for the MWC.

3.1 Neighborhood Weight Reduction. A simple
but effective reduction often seen in literature [7, 8, 23,
24, 44] is based on the upper bound w(N [v]) for any
clique containing v ∈ V .

Reduction Rule 1. ([7]) Let Ĉ be the highest-weight
clique found so far and let v ∈ V s.t. w(N [v]) ≤ w(Ĉ).
Then v can be removed from the graph without reducing
the maximum solution weight.

The rule can be applied on a vertex v ∈ V in O(1)
time, given that the neighborhood weight is stored and
maintained throughout the reductions.

3.2 Largest-Weight Neighbor Reduction.
Cai et al. [7] tighten the neighborhood weight reduction
rule by either including or excluding the highest weight
vertex u∗ in the neighborhood.

Reduction Rule 2. ([7]) Let Ĉ be the highest-weight
clique found so far, let v ∈ V \ Ĉ, and let u∗ =
arg maxu∈N(v) w(u). If max{w(N [v])−w(u∗), w(N [v]∩
N [u∗])} ≤ w(Ĉ), then v can be removed from the graph
without reducing the maximum solution weight.

For applying the rule on a vertex v ∈ V , first its highest
weight neighbor u∗ is identified in O(deg(v)) and then
the intersection of their neighborhoods is computed in
O(min{deg(v),deg(u∗)}), resulting in overall O(deg(v))
time. Computing the intersection of neighborhoods is
a crucial operation for the application of this reduc-
tion rule as well as several others described in the fol-
lowing. The running time for computing N(u) ∩ N(v)
depends on the graph representation. Assuming con-
stant time for checking whether two vertices are ad-
jacent, we can iterate over the smaller set and iden-
tify those that are also adjacent to the other vertex in
O(min{deg(u),deg(v)}) time. For the application to

large sparse graphs we use an adjacency list and real-
ize the operation using indicators by iterating over the
neighbors of both vertices in O(deg(u) + deg(v)) time.

3.3 Twin Reduction. We now introduce our first
new data reduction rule, based on twins. Consider two
adjacent vertices u and v that share the same closed
neighborhood. Such vertices are called twins. If either
one of them is in the solution, then the other one must
also be in it. Figure 1 gives an illustration.

Reduction Rule 3. Let u, v ∈ V , u 6= v, and N [u] =
N [v]. Then u and v can be contracted to a new
vertex {u, v} with weight w({u, v}) = w(u) + w(v)
and N({u, v}) = N(u) ∩ N(v) without reducing the
maximum solution weight.

Proof. Suppose there is an optimal solution C∗ that,
w. l. o. g., contains u, but not v. Then it is always
possible to add v to the solution, as it is connected
to all neighbors of u, resulting in a solution of larger
weight. Hence, each optimal solution contains either
both u and v or neither.

To check the precondition for two vertices u, v ∈ V
where deg(u) = deg(v), the intersection of their neigh-
borhoods can be obtained in time O(deg(v)) using a
marking scheme.

3.4 Domination Reduction. Vertex u ∈ V is said
to dominate v ∈ V when N(v) ⊆ N(u). Furthermore, if
w(v) ≤ w(u), then a maximal clique containing u would
have a weight greater or equal to one that contains v.
This observation leads to the following reduction rule:

Reduction Rule 4. Let u, v ∈ V , {u, v} 6∈ E, N(v) ⊆
N(u), and w(v) ≤ w(u). Then, v can be removed
from the graph without reducing the maximum solution
weight.

Proof. Suppose there is an optimal solution C∗ that,
w. l. o. g., contains v, but not u. As u is adjacent to all
neighbors of v, it is always possible to substitute v with
u in the solution, resulting in a solution with at least
the same weight since w(v) ≤ w(u). As {u, v} 6∈ E, no
clique can contain both u and v. Hence, there is at least
one optimal solution that does not contain v.

Given v, we find vertices u with N(u) ⊇ N(v) as
follows: We choose x ∈ N(v) arbitrarily and iterate
over all u′ ∈ N(x). If {u′, v} 6∈ E, deg(u′) ≥ deg(v),
and w(u′) ≥ w(v), we test whether N(v) ⊆ N(u′) in
O(deg(v)) time. The approach identifies all vertices
u′ for a given vertex v satisfying the conditions of the
reduction rule of Lemma 4 in O(deg(v) ·∆) time.

We now introduce our first reduction that is de-
signed to remove edges from the graph. A similar re-
duction is applicable if u and v are adjacent. However,
simply removing v is not possible, as v may be part of
a clique containing u. Therefore, we add the weight of
u to v and then remove the edge {u, v}, thus preserv-
ing the best solution achievable by v and u being in the
same clique while reducing the graph at the same time.

Reduction Rule 5. Let u, v ∈ V , {v, u} ∈ E, and
N(v) ⊆ N [u]. Then, increasing w(v) to w′(v) =
w(v)+w(u) and removing the edge {u, v} from the graph
does not reduce the maximum solution weight.

Proof. Let C∗ be an optimal solution in the original
graph. Assume that C∗ contains v, but not u. Then u
can be added to C∗ leading to a higher weight, contra-
dicting the assumption that C∗ is optimal. Hence, if C∗

contains v, it also contains u. There are two cases left
to consider:
Case 1: If C∗ contains both u and v, then w(C∗) ≤
w(u) +w(v) +w(N(v) \ {u}) = w′(v) +w(N(v) \ {u}),
so there exists an equivalent solution only containing v
in the reduced graph.
Case 2: If C∗ contains u but not v, then w(C∗) ≤
w(u) + w(N(u)), and the same solution exists in the
reduced graph.

The reduction can be implemented analogously to the
twin reduction (Reduction Rule 3).

3.5 Edge Bounding Reduction. This rule is a nat-
ural extension to Reduction Rule 2, using the com-
puted bounds not only to decide whether a vertex
can be removed, but also the edge that connects
it with its highest-weight neighbor. Given a ver-
tex v ∈ V and its highest-weight neighbor u∗ ∈
N(v), let ubinc(v, u

∗) denote the including upper bound
w(v) + w(u∗) + w(N(v) ∩N(u∗)) and let ubexc be the
excluding upper bound w(N [v]) − w(u∗). Reduc-
tion Rule 2 states that v can be removed if both
ubinc(v, u

∗) ≤ w(Ĉ) and ubexc(v, u
∗) ≤ w(Ĉ), where Ĉ

is the currently best solution. The extension provided
by the edge bounding reduction is based on the obser-
vation that if ubexc(v, u

∗) > w(Ĉ), but ubinc(v, u
∗) ≤

w(Ĉ), it is possible to remove the edge {v, u∗}. We
extend this rule to apply to all neighbors of v:

Reduction Rule 6. Let v ∈ V , u ∈ N(v), and let Ĉ
be the best clique found so far. If ubinc(v, u) < w(Ĉ),
the edge {v, u} can be removed from the graph without
reducing the maximum solution weight.

Proof. The value ubinc(v, u) is an upper bound on the
weight of any clique containing both v and u. If a clique

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

{u, v}
w({u, v}) = w(u) + w(v)

G[V \ {v, p, q, r}]

p

q

r

v

G[V \ {v, p, q, r}]

p

q

r

∀x1, x2 ∈ N [v], {x1, x2} ∈ E

Figure 1: Twin reduction (left) and simplicial vertex removal reduction (right) for MWC.

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

w(v)
N(v)

≤
⊆
w(u)
N(u)

u

G[V \ {u, v, p, q, r}]

p q r

u v

G[V \ {u, v, p, q, r}]

p q r

v

N(v)⊆N(u)

u

w′(v) = w(v) + w(u)

Figure 2: Domination reduction for MWC by applying Reduction Rule 4 (left) and Reduction Rule 5 (right).

Ĉ with weight w(Ĉ) > ubinc(v, u) is known, then there
is at least one optimal solution C∗ that does not contain
both v and u. The edge {v, u} is thus irrelevant in the
search for a solution of higher weight.

Given an edge {v, u}, the time complexity is
O(min{deg(v),deg(u)}), as with Reduction Rule 2.

3.6 Simplicial Vertex Removal Reduction. A
vertex v is called simplicial if its closed neighborhood
forms a clique Cv, i.e. ∀x1, x2 ∈ N [v], {x1, x2} ∈ E.
Simplicial vertices may be removed before applying a
maximum weight clique solver as well: Once a simplex
v has been identified, the largest clique it can be part
of is Cv with w(Cv) = w(N [v]). If this weight is
larger than the currently known highest-weight clique,
the lower bound is updated.

Reduction Rule 7. Let v ∈ V be a simplicial vertex
and let Ĉ be the best clique found so far. Only if
w(N [v]) > w(Ĉ), set Ĉ = N [v]. In any case, removing
v from the graph then does not reduce the maximum
solution weight.

Proof. If w(N [v]) ≤ w(Ĉ), v cannot be part of a strictly
better solution. Otherwise, if w(N [v]) > w(Ĉ), the
same holds after the currently best solution has updated
to Ĉ = N [v].

Testing the adjacency of each pair of vertices in N [v]
takes O

(
deg(v)2

)
in the worst case.

Algorithm 1 Reduce graph G via data reductions and
improve clique Ĉ, using vertex degree limits if lim is set.

Reduce(G = (V,E,w), Ĉ, lim)
if lim then set vertex degree limit to 0.1∆

initialize Di for each reduction rule ri
repeat

for all reductions ri do
if ri is not paused and Di 6= ∅ then

apply ri on all vertices in Di . Section 3.7
update Di

if reduction rate not achieved then
pause ri

update Ĉ via local search . Section 4.1
else if ri paused ∧ G reduced enough then

unpause ri . Section 3.7

if lim and all reductions paused then
increase limit on vertex degrees, update Di’s

until all reductions paused and degree unlimited
return G, Ĉ

Observe that in contrast to the other reductions,
the simplicial Vertex reduction may directly improve
the currently best solution Ĉ.

3.7 Applying the Reductions. For applying the
exact reduction rules proposed in this section, an
adapted version of the strategy from Hespe et al. [22]
that entails both dependency checking and reduction
tracking is used. Specifically, the set of reductions {ri}

is iterated, where each rule ri is tried on its set of vi-
able vertices Di, which is initially set to Di = V . After
preliminary experiments, we settled on the following or-
der of reductions: neighborhood weight, twin, simplicial
vertex, edge bounding (which includes largest-weight
neighbor), domination case 1, and domination case 2.
Every time a rule ri fails to reduce a vertex, i.e. to
remove it from the graph, this vertex is removed from
the set of viable candidates Di. Otherwise, the set of
each rule rj is updated to Dj = Dj ∪N(v) and the ap-
plicable vertices or edges are removed from the graph.
This minimizes redundant computations without affect-
ing the final size of the reduced graph [22].

Reduction tracking aims at tracking the effective-
ness of reductions. Slightly different from the original
strategy, reduction tracking is implemented by pausing
a reduction once it fails to achieve a reduction rate of
at least 1 % of the current number of vertices or edges
per second, until other reductions reduced the graph by
that amount. Reduction tracking is checked both in be-
tween the application of different reduction rules as well
as periodically during the iteration over candidate ver-
tices, in order to prevent single reductions to delay the
solver and allow either more efficient reductions or the
exact solver to take over. Another addition to the strat-
egy by Hespe et al. is to set a dynamic limitation on the
degree of vertices that are tried in the reductions. The
limit is set to 10 % of the highest degree initially and
is increased by 10 % whenever the reductions have been
exhaustively applied in the previous level. This guaran-
tees that reductions applicable on low degree vertices,
which are typically more efficient, are applied first. The
loop terminates once the degree is no longer limited and
all reductions are paused, at which point we run either
an exact or heuristic solver on the reduced graph.

4 MWCRedu: A New Exact Algorithm

Our exact algorithm MWCRedu works in two stages: First,
the set of exact reduction rules from Section 3 is used to
reduce the graph. Second, the reduced graph is passed
to an exact B&B solver to compute the final solution.

4.1 Computing a Lower Bound. Reduction
Rules 1, 2 and 6 depend on the currently best so-
lution Ĉ to be applicable. For computing bounds,
fast heuristics are generally preferred, since spending
more time on improving the initial solution typically
gives diminishing returns. A well-suited heuristic for
computing an initial lower bound is the one employed in
Jiang et al. [24]: Repeatedly remove the vertex with the
smallest vertex degree from the graph until all remain-
ing vertices are pairwise adjacent and form the initial
clique Ĉ, which yields an initial lower bound of w(Ĉ).

Afterwards, Ĉ is continuously improved by the
simplicial vertex reduction (Reduction Rule 7) and the
local search algorithm from FastWCLq [8], the latter
being applied on the reduced graph in between checking
each reduction rule. Subsequently, Ĉ provides the lower
bound in the Reduction Rules 1, 2 and 6, and it also
serves as the initial solution for the solver that is applied
on the reduced graph. Algorithm 1 gives an outline.

4.2 Branch and Bound. The reduced graph is
solved using the branch and bound paradigm. As the
procedure has exponential time complexity, it is impor-
tant to choose a good ordering and to reduce the set
of branching vertices by computing tight upper bounds.
We use the same ordering as Jiang et al. [24], i.e. the
ordering of the vertices is given as v1 < v2 < ... < vn,
where v1 has the smallest vertex degree, v2 has the
smallest vertex degree after v1 is removed, etc. Such an
ordering is called a degeneracy ordering of the graph.

To compute tight upper bounds and reduce the
set of branching vertices, we apply efficient MIS- and
MaxSAT-based approaches from [24, 23] throughout the
search. Recall from Section 2.2 that for any vertex
coloring that partitions V into color classes D = D1 t
D2t · · ·tDk, each color class forms an independent set
and ub(D) =

∑k
j=1 w

∗(Dj) is an upper bound on the
maximum clique weight. The set of branching vertices
is then further reduced via the two-stage MaxSAT
reasoning approach from TSM-MWC [23].

In the first stage, which the authors refer to as bi-
nary MaxSAT reasoning, the set of branching vertices
is reduced by inserting as many vertices as possible

into the independent sets s.t.
∑k′

j=1 w
∗(Dj) ≤ w(Ĉ).

As these vertices cannot form a clique with a weight
larger than w(Ĉ) by themselves, they can be removed
from the set of branching vertices. If a vertex vi ∈
V has neighbors in all existing independent sets but
ub + w(vi) ≤ w(Ĉ) holds, it is inserted as a new inde-
pendent set. Otherwise we try to split its weight among
independent sets that do not contain any of its neigh-
bors by adding vi with weight w∗(Sj) into independent
Sj and updating the weight to w(vi) = w(vi) − w∗(Sj)
for j = 1, 2, ..., k′, until its remaining weight is given as

δ = w(vi)−
∑k′

j=1 w
∗(Sj). If δ > 0 and ub + δ ≤ w(Ĉ),

vi is inserted as a new independent set with weight δ,
otherwise the weight splitting procedure is undone and
vi is kept in the set of branching vertices.

In the second stage, called ordered MaxSAT rea-
soning, the set of branching vertices is reduced further
by detecting disjoint conflicting subsets of independent
sets. Firstly, the weight of a branching vertex vi is again
split among the independent sets {S1, S2, ..., Sk′} that
do not contain any of its neighbors, resulting in the re-

maining weight w(vi) = δ > 0, since the vertex was
not removed from the set of branching vertices in the
first stage. After that, the algorithm tries to find a set
of independent sets {U1, U2, ..., Ur} that each contain
exactly one neighbor u of vi. It then looks for an in-
dependent set Dq s.t. Dq ∩ N(vi) ∩ N(u) = ∅ for any
Uj , proving that the sets {{vi}, Uj , Dq} are conflicting.
In this case, ub can be further improved to ub + δ − β,
where β = min(δ, w∗(Uj), w

∗(Dq)) [23].
Finally, if after considering all Uj ∈ {U1, U2, ..., Ur}

ub is still higher than the lower bound, ub is reduced
by identifying conflicting subsets via unit propagation
as first implemented for maximum weight clique [15].
Unit propagation works from the idea that clauses with
more literals are more likely to be satisfied and are
thus considered weaker clauses. A unit clause is thus
the strongest clause since it only has one possibility
of evaluating to true. The algorithm repeatedly sat-
isfies such a clause, removing all occurrences of the con-
tained literal from the other clauses. If an empty clause
remains, the set of clauses is identified as conflicting.
Each time a set of conflicting clauses {S0, S1, ..., Sr}
is identified, the upper bound can be reduced by δ =
min{w∗(S1), . . . , w∗(Sr)}. To tighten the bound fur-
ther, each Sj (0 ≤ j ≤ r) is split into S′j and S′′j so that
w∗(S′j) = δ and w∗(S′′j) = w∗(Sj)− δ. S′j then repre-
sents the conflicting subset found so far, whereas further
conflicts can be deduced from S′′j [15].

The procedure is run at every branch of the solver
in order to reduce the amount of work to be done.
The algorithm terminates when all branches are either
explored or pruned or when the time limit is reached,
in which case the best solution found is reported.

5 MWCPeel: A New Heuristic Algorithm

For our new heuristic algorithm MWCPeel, we investigate
vertex peeling techniques, which remove vertices from
the graph that are assigned the lowest scores by some
heuristic rule. This rule must therefore capture the
likelihood of a vertex belonging to the solution as well
as possible. Using the vertex degree is an obvious choice
for MCC, since a vertex with a high degree is more
likely to form a large clique. Furthermore, a vertex v
cannot be part of a clique larger than deg(v). For the
measure to remain an upper bound in the context of
MWC, the weight of the neighborhood of each vertex is
taken into account. The resulting simple and intuitive
scoring measure w(N [v]) is used in our peeling step.

Overall, our heuristic solver works similarly to
the exact approach MWCRedu described in Section 4,
but implements the peeling reduction on top of the
previously introduced exact reductions: We first run
exact reductions exhaustively. On the reduced graph,

Algorithm 2 Heuristic Solver MWCPeel

MWCPeel(G = (V,E,w))
compute initial clique Ĉ . Section 4.1
repeat . Algorithm 1
G, Ĉ ← Reduce(G, Ĉ, isFirstIteration)
N ← #vertices to peel off . Section 5.1
remove N vertices v with lowest score w(N [v])

until stopping criteria met . Section 5.2
return TSM-MWC(G, Ĉ)

we apply our peeling strategy that removes vertices that
are unlikely to be part of a large clique. We repeat the
process until the remaining graph is small or the scores
of the peeling reductions are not sufficiently large, and
then apply the exact algorithm on the remaining graph.
Algorithm 2 gives an overview.

5.1 Peeling Strategy. Chang et al. [11] introduced
a reduce-and-peel heuristic technique to repeatedly re-
move the minimum degree vertex from a graph, adding
it to a growing independent set. For MWC, a straightfor-
ward approach is to remove the vertices with the lowest
score and exclude them from the solution. More pre-
cisely, we remove a fixed percentage of the currently
remaining vertices in each peeling step. The number of
vertices to be peeled off in one step, N , is dynamically
determined as follows:

N =

{
0.1n if n > 50,000,

max{0.01n, 0.01
50,000n} otherwise,

where n always refers to the current number of vertices
and the threshold of 50,000 has proven itself suitable in
preliminary experiments. Without the differentiation
between larger and smaller graphs, the exact reductions
would often be reapplied on many vertices, which would
significantly slow down the solver. Furthermore, as the
vertex degrees often follow a power-law distribution in
real-world graph instances [21], the size of the optimal
solution makes up a smaller portion of the graph for
large graphs. After each peeling step, the viable
candidate sets are updated and exact reductions are
applied again.

5.2 Stopping Criteria. Another important decision
is when to stop applying the peeling reduction; stopping
too early could result in a much higher running time
for the solver applied on the reduced graph, whereas
stopping late might negatively impact the solution
quality. Since the optimal amount of vertices to reduce
is highly dependent on the graph structure, a static
stopping criterion is unlikely to be a good strategy.
For this reason, we employ a dynamic strategy that

works by comparing the current computed score with
previously computed scores.

The first stopping criterion is the deterioration of
the maximum score value below a certain threshold rel-
ative to the total maximum score value. This indicates
that the peeling reduction begins to reduce the maxi-
mum solution.

A second stopping criterion takes effect if the differ-
ence between the minimum and maximum score shrinks
below a certain threshold. This shows that the scoring
model can no longer clearly distinguish high quality ver-
tices from low quality vertices.

We set both thresholds to 90 % to achieve a good
balance between speed-up and solution quality. As a
fail-safe, a backup of the current graph state is created
before applying the heuristic reduction, which can be
reloaded in the case the graph is reduced to zero. After
the reduction procedure, the branch-and-bound solver is
applied on the reduced graph to obtain the final result.

6 Experimental Evaluation

We implemented our new solvers MWCRedu and MWCPeel

and evaluate them against the state-of-the-art solvers in
their class on an extensive and diverse set of instances.
More precisely, we compare our exact solver MWCRedu

with the currently best exact solver TSM-MWC on each
dataset, and our heuristic solver MWCPeel with the cur-
rently best heuristic solvers FastWCLq and SCCWalk4l.

Methodology. The experiments were run on an
Intel Xeon Silver 4216 CPU @2.10GHz with 16 cores
under Linux with 95 GB of RAM. All solvers are
implemented in C/C++ and compiled using GNU g++

with full optimization (-O3). Each solver was executed
on up to 16 graph instances in parallel. As the solvers
were run exclusively on the machine, there is no relevant
difference to solving the graph instances sequentially.
We always report the solution quality w(Ĉ) and the
time to find that solution tsol. For exact solvers, we
additionally give the time needed to prove optimality
of the solution tprv. Solvers that use random number
generation are run five times with different seeds and
we report their average solutions to better capture their
general performance. If an exact algorithm did not
finish within a time limit of 3,600 seconds, it is halted
and the best solution found so far is output. Heuristic
algorithms are stopped after 1,000 seconds.

Instances. We evaluate our algorithms on a broad
selection of graphs, covering different sizes, densities,
weightings and areas of application. Some of the
graphs are originally unweighted and thus were assigned
weights artificially. For each unweighted graph, weights

104 105 106

#nodes in original graph

0

20

40

60

80

100

#n
od

es
 in

 re
du

ce
d

gr
ap

h,
re

la
tiv

e
to

 o
rig

in
al

 [%
]

old rules
old + new rules

Figure 3: Original graph sizes and reduced graph sizes
for old and old + new reductions.

are drawn uniformly from the range [1, 200].1

We compiled four sets of instances, with 58 in-
stances altogether: OSM contains 12 naturally-weighted
map labeling instances from Cai et al. [6], gener-
ated from OpenStreetMap data using the technique of
Barth et al. [3]. The 10 instances in REP are real-world
graphs from the network data repository [37], and the
23 instances in DIMACS were taken from the second DI-
MACS implementation challenge [26]. Moreover, we use
13 random hyperbolic graphs (RHG). These are randomly
generated graphs such that the vertex degrees follow a
power-law distribution [34] and were generated by the
KaGen framework [16]. We varied the power-law expo-
nent between 1.75 and 2.25 and chose the average degree
between 100 and 500. For REP, DIMACS, and RHG, we as-
signed artificial weights as described above. See Table 8
in Appendix D for detailed per-instance statistics.

6.1 Impact of New Data Reduction Rules. We
first investigate the impact of the reduction rules on the
instances and compare the effect of adding our “new”
rules to the “old” ones that are described in current
literature. Table 3 shows reduced graph sizes on all
instances, and Table 1 shows reduced graph sizes for a
subset of instances.

On the DIMACS instances, the new data reduction
rules do not help to compute smaller reduced graphs
(hence they are excluded from the table). This is
expected as these instances are dense and data reduction
rules tend to work well on sparse instances. On the other
instances, reduced graphs are significantly smaller when
the new data reduction rules are employed additionally.

The largest reduction in the REP instance set is
observed on web-wikipedia link it, where the new
reduction rules result in an empty reduced graph, i.e.,
the instance is fully solved by the reductions only. The

1Other weight distributions such as power-law and exponential
gave similar results and were excluded due to space constraints.

Reduced Graph Size

old+new reductions old reductions only

Graph absolute % of n0 absolute % of n0

REP

bio-human-gene1 3,915 17.57 4,485 20.13
sc-TSOPF-RS-b2383 16,123 42.29 37,737 98.99
soc-orkut 1,264,963 42.21 1,521,404 50.76
web-wikipedia link it 0 0.00 1,214 0.04
web-wikipedia-growth 83,724 4.48 637,483 34.08

RHG

rhg 250k 100 1.75 7 0.00 1,061 0.42
rhg 500k 500 2.25 0 0.00 1,761 0.35
rhg 750k 250 2.25 15 0.00 1,062 0.14
rhg 750k 500 1.75 4,445 0.59 7,341 0.98
rhg 750k 500 2.25 12 0.00 2,651 0.35

OSM

district-of-columbia-AM2 0 0.00 759 5.58
greenland-AM3 0 0.00 1,768 35.46
idaho-AM3 0 0.00 2,293 56.42
massachusetts-AM3 0 0.00 802 21.66
virginia-AM3 0 0.00 907 14.66

Table 1: Selected instances and reduced graph sizes (number of nodes) when both old and new data reductions
rules are applied vs. reduced graph sizes obtained when only running reductions from the current literature.
Smaller is better. n0 refers to the initial number of nodes.

biggest improvement occurred on sc-TSOPF-RS-b2383,
where the old rules were barely effective and reduced the
number of nodes by only roughly 1 %. In combination
with the new rules, however, the computed reduced
graph contains only 42.29 % of the nodes of the original
instance. On all instances, using the new rules in
addition to the old ones always resulted in smaller
reduced graphs than when just using the old ones. On
average, the old rules alone reduced the graph size
by about 67 %, which improved to over 80 % when
combined with our new rules.

The new rules also work very well on the RHG

instances and consistently produced smaller reduced
graphs than when just using the old ones. Generally,
the reductions are very efficient on these instances. If
using only the old rules, the resulting reduced graphs are
reduced to between 0.14 % and 1.64 % of the original
graph sizes. Combined with the new rules, the range
is between 0 % and 0.59 %. Two RHG instances were
reduced to zero nodes when using the new rules in
addition to the old ones. On average, the reduced
graphs obtained by old and new rules together were only
0.05 % of the original graph sizes, whereas the average

for the old rules alone was more than ten times larger.
The new and old rules together computed empty

reduced graphs on all OSM instances, which never hap-
pened when using only the rules from the literature.
On average, the old rules reduced the number of ver-
tices down to 25.4 %, where the range is relatively large
and between 5.58 % on district-of-columbia-AM2

and 56.42 % on idaho-AM3.
In summary, our new reduction rules distinctly

and consistently produce smaller reduced graphs on all
REP, RHG, and OSM instances and even compute empty
reduced graphs on 15 instances, which the old ones alone
never accomplished on any instance of our collection.
Figure 3 summarizes this visually.

6.2 Exact Algorithms. We discuss the aggregated
results for each of the four instance sets (see Table 2).

Our algorithm MWCRedu is more than an order of
magnitude faster in the geometric mean than TSM-MWC

on the OSM instances (Table 4), both with respect to
time to find the solution tsol and to prove optimality
tprv. It is also consistently faster than TSM-MWC on each
of the twelve instances in the set. As both are exact

tsol tprv w(Ĉ)

Instance Set TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

Exact Results

DIMACS 1,106.99 946.34 1,714.98 1,650.88 6,460 6,587
REP 117.15 134.60 190.45 259.14 14,092 14,321
RHG 95.93 14.55 128.16 17.73 106,210 106,781
OSM 27.62 1.55 31.01 2.43 537,149 542,993

136.15 41.14 189.82 65.55 47,738 48,359

tsol w(Ĉ)

Instance Set FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

Heuristic Results

DIMACS 193.11 4.46 91.31 6,792 6,968 6,547
REP 190.36 345.88 52.12 14,190 9,382 14,056
RHG 40.36 513.37 10.69 106,781 63,647 106,731
OSM 4.45 64.29 1.45 542,993 528,956 542,993

50.68 84.49 16.49 48,620 38,516 48,056

Table 2: Overview of results for exact (top) and heuristic (bottom) algorithms as geometric mean per graph set.

algorithms, the solution weights are identical except for
two cases, where TSM-MWC failed to find the optimal
solution within the time limit and stopped prematurely
with a worse result. Thus, MWCRedu dominates here.

On DIMACS (Table 4), no major difference in perfor-
mance between the two solvers is observable. MWCRedu

was able to finish on nine of the 23 instances within
the time limit, whereas TSM-MWC finished on only eight
instances. The running times generally lie very close
together, and the solution weights are identical except
for seven cases. The reason for the similar behavior
is that none of the new exact reductions employed by
MWCRedu is able to remove vertices or edges for any in-
stance in this set. Thus, the solver quickly proceeds to
apply the B&B solver, which uses the same techniques
as TSM-MWC. The overhead from applying the reduction
rules is only notable for the easier instances. On aver-
age over those instances, where both finished regularly,
MWCRedu performs slightly better, which is likely due
to better initial solutions obtained from running local
search during the reduction phase.

On the REP instances (Table 5), the results are
mixed. MWCRedu and TSM-MWC both outperform the
respective other algorithm for some instances. On
three instances, TSM-MWC failed to prove optimality of a
solution and terminated with a suboptimal result twice.
TSM-MWC is very efficient for large instances with more
than 1 000 000 vertices, whereas MWCRedu outperforms
TSM-MWC on the smaller, more dense biology graphs.

On RHG (Table 5), MWCRedu outperforms its competi-
tor TSM-MWC clearly. While TSM-MWC runs into a time-
out twice and terminates with a suboptimal solution,
MWCRedu always finishes regularly and is the faster algo-
rithm except on one instance. Its dominance in running
time is pronounced and up to two orders of magnitude.
The reason for MWCRedu’s good performance is likely the
structure of the instances, which allows it to remove
most vertices quickly using very efficient reductions.

In summary, MWCRedu is clearly the better algo-
rithm on the OSM and RHG instances and on par with
TSM-MWC on the DIMACS graphs. On instances that are
small and dense, such as in the REP set, TSM-MWC may be
the faster algorithm, whereas MWCRedu can play out its
strengths on very large ones. Notably, MWCRedu finished
within the time limit on the same instances as TSM-MWC
plus some more, making it the more reliable candidate.

6.3 Heuristic Algorithms. We now compare our
heuristic solver MWCPeel against the state-of-the-art
solvers FastWCLq and SCCWalk4l and discuss the dif-
ferences on each of the four instance sets. Aggregated
results are presented in Table 2.

As shown in Table 6, MWCPeel performs best for 11
out of 12 OSM instances. Both MWCPeel and FastWCLq

find the optimal solution to all instances.
For the DIMACS graphs (Table 6), SCCWalk4l clearly

dominates its competitors. Between FastWCLq and
MWCPeel, FastWCLq mostly computes slightly higher

weight solutions, though it takes longer to compute
them. Looking at the instances where TSM-MWC fails to
find the optimal solution, both FastWCLq and MWCPeel

achieve higher weight solutions in a much smaller
amount of time for most of them.

As shown in Table 7, performance on REP graphs
is very competitive among the heuristic solvers. While
all algorithms compute the best solution an approxi-
mately equal amount of times, the solution quality of
SCCWalk4l is the lowest on average. Taking speed into
account, MWCPeel shows a good performance in com-
parison. On average, MWCPeel is a factor 3.7 faster than
the second fastest algorithm FastWCLq which comput-
ing 0.9% better solutions on average than MWCPeel. It
should be noted, however, that our exact solver MWCPeel
computes even higher weight solutions than FastWCLq,
while also being faster on average.

The results for RHG are presented in Table 7. Here,
MWCPeel outperforms the other solvers in 31 out of 39
instances. While FastWCLq sometimes finds a slightly
higher weight solution than MWCPeel, it has a higher
running time on average (a factor 3.8). SCCWalk4l is
clearly outperformed both in speed and solution quality.

7 Conclusion

We presented an exact algorithm called MWCRedu and a
heuristic algorithm called MWCPeel for solving the max-
imum weight clique problem. Our algorithms interleave
successful techniques from related work with novel data
reduction rules that use local graph structures to iden-
tify and remove vertices and edges while maintaining
the optimal solution. In experiments on a large range
of graphs, we find that they outperform the current
state-of-the-art solvers on most inputs. In particular,
MWCRedu is faster by orders of magnitude on naturally
weighted, medium-sized street network graphs and ran-
dom hyperbolic graphs. MWCPeel outperforms its com-
petitors on these instances, but is slightly less effective
on extremely dense or large instances. In future work,
we want to consider parallelization of our approaches.
Given the good results of our algorithms, we plan to
release them as open source.
Acknowledgments. We acknowledge support by DFG
grant SCHU 2567/3-1. N. K. was supported by the
Vienna Science and Technology Fund (WWTF) through
project VRG19-009.

References

[1] Faisal N. Abu-Khzam, Sebastian Lamm, Matthias
Mnich, Alexander Noe, Christian Schulz, and Darren
Strash. Recent advances in practical data reduction.
In Hannah Bast, Claudius Korzen, Ulrich Meyer, and

Manuel Penschuck, editors, Algorithms for Big Data:
DFG Priority Program 1736, pages 97–133. Springer
Nature Switzerland, Cham, 2022.

[2] T. Akiba and Y. Iwata. Branch-and-reduce exponen-
tial/FPT algorithms in practice: A case study of vertex
cover. Theor. Comput. Sci., 609, Part 1:211–225, 2016.

[3] Lukas Barth, Benjamin Niedermann, Martin
Nöllenburg, and Darren Strash. Temporal map
labeling: a new unified framework with experiments.
In Siva Ravada, Mohammed Eunus Ali, Shawn D.
Newsam, Matthias Renz, and Goce Trajcevski, ed-
itors, Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, GIS 2016, Burlingame, Cali-
fornia, USA, October 31 - November 3, 2016, pages
23:1–23:10. ACM, 2016.

[4] Sergiy Butenko and Wilbert E Wilhelm. Clique-
detection models in computational biochemistry and
genomics. European Journal of Operational Research,
173(1):1–17, 2006.

[5] Shaowei Cai. Balance between complexity and qual-
ity: Local search for minimum vertex cover in massive
graphs. In Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, 2015.

[6] Shaowei Cai, Wenying Hou, Jinkun Lin, and Yuanjie
Li. Improving local search for minimum weight ver-
tex cover by dynamic strategies. In Proceedings of the
Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI-18, pages 1412–1418. Inter-
national Joint Conferences on Artificial Intelligence Or-
ganization, 7 2018.

[7] Shaowei Cai and Jinkun Lin. Fast solving maximum
weight clique problem in massive graphs. In IJCAI,
pages 568–574, 2016.

[8] Shaowei Cai, Jinkun Lin, Yiyuan Wang, and Darren
Strash. A semi-exact algorithm for quickly computing
a maximum weight clique in large sparse graphs. Jour-
nal of Artificial Intelligence Research, 72:39–67, 2021.

[9] Randy Carraghan and Panos M Pardalos. An exact
algorithm for the maximum clique problem. Operations
Research Letters, 9(6):375–382, 1990.

[10] Lijun Chang. Efficient maximum clique computation
and enumeration over large sparse graphs. VLDB J.,
29(5):999–1022, 2020.

[11] Lijun Chang, Wei Li, and Wenjie Zhang. Comput-
ing a near-maximum independent set in linear time by
reducing-peeling. In Proceedings of the 2017 ACM In-
ternational Conference on Management of Data, pages
1181–1196, 2017.

[12] Alessio Conte, Donatella Firmani, Maurizio Patrig-
nani, and Riccardo Torlone. A meta-algorithm for find-
ing large k-plexes. Knowl. Inf. Syst., 63(7):1745–1769,
2021.

[13] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel
Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal
Pilipczuk, and Saket Saurabh. Parameterized Algo-
rithms. Springer, 2015.

[14] R. Erhardt. Engineering Algorithms for the Weighted

Maximum Clique Problem. Master’s Thesis, Heidel-
berg University, 2022.

[15] Zhiwen Fang, Chu-Min Li, and Ke Xu. An exact al-
gorithm based on maxsat reasoning for the maximum
weight clique problem. Journal of Artificial Intelli-
gence Research, 55:799–833, 2016.

[16] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel
Penschuck, Peter Sanders, Christian Schulz, Dar-
ren Strash, and Moritz von Looz. Communication-
free massively distributed graph generation. Journal
of Parallel and Distributed Computing, 131:200–217,
2019.

[17] Alexander Gellner, Sebastian Lamm, Christian Schulz,
Darren Strash, and Bogdán Zaválnij. Boosting data
reduction for the maximum weight independent set
problem using increasing transformations. In 2021
Proceedings of the Workshop on Algorithm Engineering
and Experiments (ALENEX), pages 128–142. SIAM,
2021.

[18] Michel Gendreau, Patrick Soriano, and Louis Sal-
vail. Solving the maximum clique problem using a
tabu search approach. Annals of operations research,
41(4):385–403, 1993.

[19] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf
Niedermeier. Data reduction and exact algorithms for
clique cover. ACM J. Exp. Algorithmics, 13, feb 2009.

[20] Jiewei Gu, Weiguo Zheng, Yuzheng Cai, and Peng
Peng. Towards computing a near-maximum weighted
independent set on massive graphs. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, KDD ’21, pages 467—-477,
New York, NY, USA, 2021. Association for Computing
Machinery.

[21] Luca Gugelmann, Konstantinos Panagiotou, and Ueli
Peter. Random hyperbolic graphs: degree sequence
and clustering. In International Colloquium on Au-
tomata, Languages, and Programming, pages 573–585.
Springer, 2012.

[22] Demian Hespe, Christian Schulz, and Darren Strash.
Scalable kernelization for maximum independent sets.
Journal of Experimental Algorithmics (JEA), 24:1–22,
2019.

[23] Hua Jiang, Chu-Min Li, Yanli Liu, and Felip Manya. A
two-stage maxsat reasoning approach for the maximum
weight clique problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[24] Hua Jiang, Chu-Min Li, and Felip Manya. An exact
algorithm for the maximum weight clique problem in
large graphs. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

[25] Hua Jiang, Dongming Zhu, Zhichao Xie, Shaowen Yao,
and Zhang-Hua Fu. A new upper bound based on ver-
tex partitioning for the maximum k-plex problem. In
Zhi-Hua Zhou, editor, Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-21, pages 1689–1696. International Joint Con-
ferences on Artificial Intelligence Organization, 8 2021.
Main Track.

[26] David S Johnson and Michael A Trick. Cliques, col-
oring, and satisfiability: second DIMACS implementa-
tion challenge, October 11-13, 1993, volume 26. Amer-
ican Mathematical Soc., 1996.

[27] Deniss Kumlander. A new exact algorithm for the
maximum-weight clique problem based on a heuris-
tic vertex-coloring and a backtrack search. In Proc.
5th Int’l Conf. on Modelling, Computation and Opti-
mization in Information Systems and Management Sci-
ences, pages 202–208, 2004.

[28] Sebastian Lamm, Peter Sanders, Christian Schulz,
Darren Strash, and Renato F. Werneck. Finding
near-optimal independent sets at scale. J. Heuristics,
23(4):207–229, 2017.

[29] Sebastian Lamm, Christian Schulz, Darren Strash,
Robert Williger, and Huashuo Zhang. Exactly solving
the maximum weight independent set problem on
large real-world graphs. In 2019 Proceedings of the
Twenty-First Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 144–158. SIAM, 2019.

[30] Chu-Min Li, Hua Jiang, and Felip Manyà. On min-
imization of the number of branches in branch-and-
bound algorithms for the maximum clique problem.
Computers & Operations Research, 84:1–15, 2017.

[31] Chu-Min Li and Zhe Quan. An efficient branch-and-
bound algorithm based on maxsat for the maximum
clique problem. In Twenty-fourth AAAI conference on
artificial intelligence, 2010.

[32] Jinkun Lin, Shaowei Cai, Chuan Luo, and Kaile Su. A
reduction based method for coloring very large graphs.
In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pages
517–523, 2017.

[33] Ingo Muegge and Matthias Rarey. Small molecule
docking and scoring. Reviews in computational chem-
istry, 17:1–60, 2001.

[34] Manuel Penschuck, Ulrik Brandes, Michael Hamann,
Sebastian Lamm, Ulrich Meyer, Ilya Safro, Pe-
ter Sanders, and Christian Schulz. Recent ad-
vances in scalable network generation. arXiv preprint
arXiv:2003.00736, 2020.

[35] Wayne Pullan. Phased local search for the maximum
clique problem. Journal of Combinatorial Optimiza-
tion, 12(3):303–323, 2006.

[36] Wayne Pullan. Approximating the maximum ver-
tex/edge weighted clique using local search. Journal
of Heuristics, 14(2):117–134, 2008.

[37] Ryan A. Rossi and Nesreen K. Ahmed. The network
data repository with interactive graph analytics and
visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[38] Pablo San Segundo, Fabio Furini, David Álvarez, and
Panos M. Pardalos. CliSAT: A new exact algorithm
for hard maximum clique problems. European Journal
of Operational Research, 2022.

[39] Darren Strash. On the power of simple reductions for
the maximum independent set problem. In Thang N.
Dinh and My T. Thai, editors, Computing and Com-

binatorics - 22nd International Conference, COCOON
2016, Ho Chi Minh City, Vietnam, August 2-4, 2016,
Proceedings, volume 9797 of Lecture Notes in Computer
Science, pages 345–356. Springer, 2016.

[40] Darren Strash and Louise Thompson. Effective Data
Reduction for the Vertex Clique Cover Problem, pages
41–53. SIAM, 2022.

[41] Etsuji Tomita and Tomokazu Seki. An efficient branch-
and-bound algorithm for finding a maximum clique. In
International conference on discrete mathematics and
theoretical computer science, pages 278–289. Springer,
2003.

[42] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya
Takahashi, and Mitsuo Wakatsuki. A simple and faster
branch-and-bound algorithm for finding a maximum
clique. In International Workshop on Algorithms and
Computation, pages 191–203. Springer, 2010.

[43] Anurag Verma, Austin Buchanan, and Sergiy Butenko.
Solving the maximum clique and vertex coloring prob-
lems on very large sparse networks. INFORMS Journal
on Computing, 27(1):164–177, 2015.

[44] Yiyuan Wang, Shaowei Cai, Jiejiang Chen, and Ming-
hao Yin. Sccwalk: An efficient local search algorithm
and its improvements for maximum weight clique prob-
lem. Artificial Intelligence, 280:103230, 2020.

[45] Yiyuan Wang, Shaowei Cai, Shiwei Pan, Ximing
Li, and Monghao Yin. Reduction and local search
for weighted graph coloring problem. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(03):2433–02441, Apr. 2020.

[46] Yiyuan Wang, Shaowei Cai, and Minghao Yin. Two
efficient local search algorithms for maximum weight
clique problem. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

[47] Stanley Wasserman, Katherine Faust, et al. Social
network analysis: Methods and applications. 1994.

[48] Qinghua Wu and Jin-Kao Hao. A review on algorithms
for maximum clique problems. European Journal of
Operational Research, 242(3):693–709, 2015.

[49] Qinghua Wu and Jin-Kao Hao. Solving the winner
determination problem via a weighted maximum clique
heuristic. Expert Systems with Applications, 42(1):355–
365, 2015.

[50] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. Scal-
able maximum clique computation using mapreduce.
In 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pages 74–85, 2013.

[51] Dong Zhang, Omar Javed, and Mubarak Shah. Video
object co-segmentation by regulated maximum weight
cliques. In European Conference on Computer Vision,
pages 551–566. Springer, 2014.

[52] Hootan Zhian, Masoud Sabaei, Nastooh Taheri Ja-
van, and Omid Tavallaie. Increasing coding opportuni-
ties using maximum-weight clique. In 2013 5th Com-
puter Science and Electronic Engineering Conference
(CEEC), pages 168–173. IEEE, 2013.

[53] Patric R.J. Österg̊ard. A fast algorithm for the max-
imum clique problem. Discrete Applied Mathematics,

120(1):197–207, 2002. Special Issue devoted to the 6th
Twente Workshop on Graphs and Combinatorial Op-
timization.

A Reduced Graph Sizes

Reduced Graph Size

old+new reductions old reductions only

Graph absolute % of n0 absolute % of n0

REP

aff-digg 74,864 8.58 131,624 15.08
bio-human-gene1 3,915 17.57 4,485 20.13
bio-human-gene2 3,353 23.38 3,787 26.41
bio-mouse-gene 4,840 10.73 13,888 30.79
sc-TSOPF-RS-b2383 16,123 42.29 37,737 98.99
soc-flickr-und 9,465 0.55 46,728 2.72
soc-orkut 1,264,963 42.21 1,521,404 50.76
soc-orkut-dir 1,360,796 44.29 1,736,368 56.51
web-wikipedia link it 0 0.00 1,214 0.04
web-wikipedia-growth 83,724 4.48 637,483 34.08

arithmetic mean 19.41 33.55

RHG

rhg 250k 100 1.75 7 0.00 1,061 0.42
rhg 250k 100 2.25 62 0.02 782 0.31
rhg 250k 250 1.75 11 0.00 2,170 0.87
rhg 250k 250 2.25 14 0.01 983 0.39
rhg 250k 500 1.75 32 0.01 4,103 1.64
rhg 250k 500 2.25 39 0.02 1,250 0.50
rhg 500k 250 1.75 2 0.00 3,782 0.76
rhg 500k 250 2.25 122 0.02 1,138 0.23
rhg 500k 500 2.25 0 0.00 1,761 0.35
rhg 750k 250 1.75 0 0.00 4,365 0.58
rhg 750k 250 2.25 15 0.00 1,062 0.14
rhg 750k 500 1.75 4,445 0.59 7,341 0.98
rhg 750k 500 2.25 12 0.00 2,651 0.35

arithmetic mean 0.05 0.58

OSM

district-of-columbia-AM2 0 0.00 759 5.58
district-of-columbia-AM3 0 0.00 1,513 3.27
greenland-AM3 0 0.00 1,768 35.46
hawaii-AM3 0 0.00 11,130 39.74
idaho-AM3 0 0.00 2,293 56.42
kentucky-AM3 0 0.00 9,447 49.47
massachusetts-AM3 0 0.00 802 21.66
oregon-AM3 0 0.00 1,662 29.74
rhode-AM3 0 0.00 2,913 19.26
vermont-AM3 0 0.00 498 14.49
virginia-AM3 0 0.00 907 14.66
washington-AM3 0 0.00 1,503 15.00

arithmetic mean 0.00 25.40

Table 3: Reduced graph sizes (number of nodes) with when both old and new data reductions rules are applied
vs. reduced graph sizes obtained when only running reductions from the current literature. n0 refers to the initial
number of nodes. Smaller is better. On the DIMACS instances reduced graph sizes did not change.

B Detailed Results for Exact Algorithms

tsol tprv w(Ĉ)

Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

OSM Exact Results

district-of-col-AM2 0.80 0.15 0.88 0.21 235,777 235,777
district-of-col-AM3 1,937.83 5.64 1,938.06 6.52 545,969 545,969
greenland-AM3 10.31 0.82 11.91 3.30 604,575 604,575
hawaii-AM3 3,598.87 30.88 - 54.68 1,110,978 1,229,741
idaho-AM3 218.66 4.47 220.42 5.55 1,101,721 1,101,721
kentucky-AM3 3,580.19 114.09 - 144.51 1,808,419 1,860,308
massachusetts-AM3 0.81 0.03 1.01 0.13 115,636 115,636
oregon-AM3 8.93 1.70 11.07 2.47 557,634 557,634
rhode-island-AM3 81.30 11.03 93.69 18.40 1,162,925 1,162,925
vermont-AM3 4.57 0.49 4.90 0.56 604,213 604,213
virginia-AM3 0.13 0.06 0.21 0.06 207,457 207,457
washington-AM3 12.22 1.01 12.75 1.06 356,314 356,314

Geo. Mean 27.62 1.55 31.01 2.43 537,149 542,993

tsol tprv w(Ĉ)

Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

DIMACS Exact Results

brock800 1 1,122.28 1,191.32 2,667.43 2,820.98 3,006 3,006
brock800 2 2,601.19 2,752.57 3,111.08 3,285.93 3,074 3,074
brock800 3 1,318.78 1,400.10 2,735.77 2,896.13 2,984 2,984
brock800 4 2,019.67 2,137.40 - - 3,059 3,059
C1000.9 2,889.65 1,429.16 - - 7,338 7,459
C2000.5 1,867.49 1,908.40 - - 2,395 2,395
C2000.9 2,248.93 697.11 - - 7,898 8,284
C4000.5 2,804.98 2,488.93 - - 2,460 2,437
C500.9 2,716.53 2,611.48 - - 6,789 6,789
gen400 p0.9 55 2,359.72 2,378.30 - - 6,654 6,654
gen400 p0.9 65 2,768.34 2,772.78 - - 6,535 6,535
gen400 p0.9 75 1,420.53 1,388.95 2,522.75 2,511.52 7,492 7,492
hamming10-4 3,110.88 3,018.87 - - 5,205 5,125
johnson32-2-4 1,983.31 2,070.46 - - 2,935 2,935
keller5 2,801.07 2,821.09 - - 3,807 3,827
keller6 2,569.15 2,301.13 - - 5,617 6,175
MANN a27 2.67 2.09 2.81 2.14 17,866 17,866
MANN a45 121.72 59.03 126.40 63.31 49,459 49,459
MANN a81 3,599.91 1,922.82 - 3,116.00 118,898 161,903
p hat1000-3 2,177.09 2,068.98 - - 8,261 8,261
p hat1500-2 952.79 902.21 2,491.91 2,371.21 7,556 7,556
p hat1500-3 1,212.92 1,111.24 - - 10,796 10,796
sanr400 0.7 11.86 12.69 26.63 28.43 2,926 2,926

Geo. Mean 1,106.99 946.34 1,714.98 1,650.88 6,460 6,587

Table 4: OSM and DIMACS exact results for each graph and the geometric mean.

tsol tprv w(Ĉ)

Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

REP Exact Results

aff-digg 16.55 45.40 244.04 273.67 3,829 3,829
bio-human-gene1 3,598.98 2,010.82 - 3,327.65 136,325 136,692
bio-human-gene2 2,298.36 474.49 - 1,380.66 131,904 131,904
bio-mouse-gene 1,789.70 198.47 - 240.97 50,785 59,476
sc-TSOPF-RS-b2383 9.70 27.59 9.70 365.22 913 913
soc-flickr-und 35.10 133.73 74.52 162.42 10,847 10,847
soc-orkut 56.42 135.79 67.48 144.89 5,832 5,832
soc-orkut-dir 46.26 116.30 60.22 128.33 5,261 5,261
web-wiki link it 170.90 45.99 171.08 46.15 87,175 87,175
web-wiki-growth 13.09 84.77 17.30 88.57 3,334 3,334

Geo. Mean 117.15 134.60 190.45 259.14 14,092 14,321

tsol tprv w(Ĉ)

Graph TSM-MWC MWCRedu TSM-MWC MWCRedu TSM-MWC MWCRedu

RHG Exact Results

rhg 25k 100 1.75 94.71 2.26 94.91 2.72 99,839 99,839
rhg 250k 100 2.25 2.53 2.02 2.75 2.10 37,947 37,947
rhg 250k 250 1.75 101.48 4.74 107.14 4.76 112,769 112,769
rhg 250k 250 2.25 21.87 4.53 22.60 4.66 71,001 71,001
rhg 250k 500 1.75 1,079.84 35.47 1,092.32 38.43 137,234 137,234
rhg 250k 500 2.25 51.02 9.05 52.12 9.25 102,364 102,364
rhg 500k 250 1.75 3,093.33 37.09 - 37.70 130,973 131,559
rhg 500k 250 2.25 88.77 11.36 89.79 11.71 88,512 88,512
rhg 500k 500 2.25 43.49 15.11 47.06 21.09 122,781 122,781
rhg 750k 250 1.75 3,599.25 33.80 - 55.44 150,676 160,845
rhg 750k 250 2.25 132.25 18.15 132.43 18.33 96,362 96,362
rhg 750k 500 1.75 9.74 311.73 226.52 1,173.96 207,197 207,197
rhg 750k 500 2.25 35.91 34.13 49.39 34.19 119,936 119,936

Geo. Mean 95.93 14.55 128.16 17.73 106,210 106,781

Table 5: REP and RHG exact results for each graph and the geometric mean.

C Detailed Results for Heuristic Algorithms

tsol w(Ĉ)

Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

OSM Heuristic Results

district-of-columbia-AM2 0.32 4.91 0.16 235,777 234,219 235,777
district-of-columbia-AM3 16.87 208.46 5.26 545,969 545,969 545,969
greenland-AM3 2.96 39.33 0.85 604,575 604,575 604,575
hawaii-AM3 86.47 727.42 29.82 1,229,741 1,224,690 1,229,741
idaho-AM3 15.76 162.51 4.29 1,101,721 1,098,044 1,101,721
kentucky-AM3 374.57 997.09 102.17 1,860,308 1,437,770 1,860,308
massachusetts-AM3 0.25 50.59 0.03 115,636 113,381 115,636
oregon-AM3 6.06 239.62 1.72 557,634 546,314 557,634
rhode-island-AM3 34.16 252.86 9.34 1,162,925 1,162,920 1,162,925
vermont-AM3 0.37 2.32 0.39 604,213 602,793 604,213
virginia-AM3 0.20 6.38 0.05 207,457 207,457 207,457
washington-AM3 1.88 23.11 0.96 356,314 356,314 356,314

Geo. Mean 4.45 64.29 1.45 542,993 528,956 542,993

tsol w(Ĉ)

Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

DIMACS Heuristic Results

brock800 1 150.98 0.33 45.67 3,000 3,006 2,886
brock800 2 163.22 73.82 59.84 3,024 3,074 2,935
brock800 3 127.04 0.36 37.69 2,984 2,984 2,912
brock800 4 230.35 98.56 48.01 3,007 3,059 2,887
C1000.9 409.16 1.45 262.85 8,693 9,058 7,779
C2000.5 404.03 8.25 536.78 2,426 2,467 2,390
C2000.9 351.96 105.48 123.18 9,822 10,874 8,603
C4000.5 375.71 82.45 638.30 2,580 2,787 2,472
C500.9 251.22 0.28 474.51 7,277 7,313 6,964
gen400 p0.9 55 169.17 0.09 50.16 6,781 6,781 6,614
gen400 p0.9 65 312.92 0.28 59.97 6,869 6,881 6,654
gen400 p0.9 75 104.98 84.15 10.78 7,547 7,551 7,261
hamming10-4 287.81 1.42 527.12 5,727 5,917 5,279
johnson32-2-4 459.61 0.06 537.90 3,004 3,042 3,020
keller5 390.66 2.14 326.39 3,811 3,851 3,545
keller6 347.22 216.10 400.16 6,727 8,412 6,103
MANN a27 16.84 168.23 1.63 17,866 17,864 17,710
MANN a45 79.35 43.89 93.78 49,459 49,459 49,312
MANN a81 180.29 376.13 7.17 161,903 161,895 161,648
p hat1000-3 375.61 0.51 404.89 8,248 8,295 8,223
p hat1500-2 423.40 1.22 475.25 7,519 7,556 7,546
p hat1500-3 356.96 4.08 206.37 10,725 10,926 10,801
sanr400 0.7 6.94 0.06 0.91 2,926 2,926 2,874

193.11 4.46 91.31 6,792 6,968 6,547

Table 6: OSM and DIMACS heuristic results for each graph and the geometric mean.

tsol w(Ĉ)

Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

REP Heuristic Results

aff-digg 240.01 30.73 47.68 3,514 3,829 3,829
bio-human-gene1 719.13 640.92 493.36 136,581 136,647 136,713
bio-human-gene2 457.56 534.75 89.59 131,763 131,862 131,904
bio-mouse-gene 593.17 412.13 13.43 59,439 59,473 59,146
sc-TSOPF-RS-b2383 33.02 243.56 1.43 913 900 870
soc-flickr-und 601.63 252.98 44.40 10,806 8,968 10,847
soc-orkut 135.88 526.16 183.51 5,832 4,552 5,582
soc-orkut-dir 157.93 521.46 185.02 5,261 4,080 5,116
web-wikipedia link it 71.06 972.97 36.59 87,175 2,903 87,175
web-wikipedia-growth 44.03 343.25 66.06 3,334 2,960 3,136

Geo. Mean 190.36 345.88 52.12 14,190 9,382 14,056

tsol w(Ĉ)

Graph FastWCLq SCCWalk4l MWCPeel FastWCLq SCCWalk4l MWCPeel

RHG Heuristic Results

rhg 250k 100 1.75 10.56 134.23 2.67 99,839 99,839 99,839
rhg 250k 100 2.25 2.76 59.67 2.09 37,947 37,947 37,947
rhg 250k 250 1.75 42.01 501.91 4.24 112,769 112,074 112,756
rhg 250k 250 2.25 9.82 204.35 4.58 71,001 71,001 71,001
rhg 250k 500 1.75 125.03 869.09 18.39 137,234 86,773 136,884
rhg 250k 500 2.25 36.98 624.17 10.15 102,364 100,087 102,364
rhg 500k 250 1.75 90.36 854.58 22.69 131,559 67,352 131,100
rhg 500k 250 2.25 22.04 647.54 11.40 88,512 85,244 88,512
rhg 500k 500 2.25 71.83 995.47 15.33 122,781 46,201 122,781
rhg 750k 250 1.75 122.79 998.01 22.72 160,845 36,006 160,845
rhg 750k 250 2.25 28.23 687.98 17.00 96,362 95,558 96,362
rhg 750k 500 1.75 375.30 1,017.89 21.41 207,197 27,079 207,197
rhg 750k 500 2.25 72.82 1,002.84 36.00 119,936 43,470 119,936

Geo. Mean 40.36 513.37 10.69 106,781 63,647 106,731

Table 7: REP and RHG heuristic results for each graph and the geometric mean.

D Detailed Properties of Instances

Dataset Instance |V | |E| ρ

DIMACS brock800 1 800 207,505 6.49× 10−1

brock800 2 800 208,166 6.51× 10−1

brock800 3 800 207,333 6.49× 10−1

brock800 4 800 207,643 6.50× 10−1

C1000.9 1,000 450,079 9.01× 10−1

C2000.5 2,000 999,836 5.00× 10−1

C2000.9 2,000 1,799,532 9.00× 10−1

C4000.5 4,000 4,000,268 5.00× 10−1

C500.9 500 112,332 9.00× 10−1

gen400 p0.9 55 400 71,820 9× 10−1

gen400 p0.9 65 400 71,820 9× 10−1

gen400 p0.9 75 400 71,820 9× 10−1

hamming10-4 1,024 434,176 8.29× 10−1

johnson32-2-4 496 107,880 8.79× 10−1

keller5 776 225,990 7.52× 10−1

keller6 3,361 4,619,898 8.18× 10−1

MANN a27 378 70,551 9.90× 10−1

MANN a45 1,035 533,115 9.96× 10−1

MANN a81 3,321 5,506,380 9.99× 10−1

p hat1000-3 1,000 371,746 7.44× 10−1

p hat1500-2 1,500 568,960 5.06× 10−1

p hat1500-3 1,500 847,244 7.54× 10−1

sanr400 0.7 400 55,869 7.00× 10−1

OSM district-of-columbia-AM2 13,597 1,609,795 8.05× 10−2

district-of-columbia-AM3 46,221 27,729,137 1.93× 10−1

greenland-AM3 4,986 3,652,361 1.74× 10−2

hawaii-AM3 28,006 49,444,921 1.87× 10−1

idaho-AM3 4,064 3,924,080 4.75× 10−1

kentucky-AM3 19,095 59,533,630 2.94× 10−1

massachusetts-AM3 3,703 551,491 1.10× 10−1

oregon-AM3 5,588 2,912,701 2.60× 10−2

rhode-island-AM3 15,124 12,622,219 1.26× 10−1

vermont-AM3 3,436 1,136,164 3.27× 10−1

virginia-AM3 6,185 665,903 3.48× 10−2

washington-AM3 10,022 2,346,213 4.67× 10−2

REP aff-digg 872,622 22,501,699 5.91× 10−5

bio-human-gene1 22,283 12,323,680 4.96× 10−2

bio-human-gene2 14,340 9,027,024 8.78× 10−2

bio-mouse-gene 45,101 14,461,095 1.42× 10−2

sc-TSOPF-RS-b2383 38,121 16,115,324 2.22× 10−2

soc-flickr-und 1,715,256 15,555,040 1.06× 10−5

soc-orkut 3,072,442 117,185,082 2.48× 10−5

soc-orkut-dir 2,997,167 106,349,208 2.37× 10−5

web-wikipedia link it 2,936,414 86,754,663 2.01× 10−5

web-wikipedia-growth 1,870,710 36,532,530 2.09× 10−5

RHG rhg 250k 100 1.75 250,000 7,755,473 2.48× 10−4

rhg 250k 100 2.25 250,000 10,546,938 3.38× 10−4

rhg 250k 250 1.75 250,000 17,828,988 5.71× 10−4

rhg 250k 250 2.25 250,000 24,036,880 7.69× 10−4

rhg 250k 500 1.75 250,000 35,161,098 1.13× 10−3

rhg 250k 500 2.25 250,000 47,230,197 1.51× 10−3

rhg 500k 250 1.75 500,000 35,493,799 2.84× 10−4

rhg 500k 250 2.25 500,000 49,954,694 4.00× 10−4

rhg 500k 500 2.25 500,000 92,901,492 7.43× 10−4

rhg 750k 250 1.75 750,000 53,201,080 1.89× 10−4

rhg 750k 250 2.25 750,000 73,667,026 2.62× 10−4

rhg 750k 500 1.75 750,000 102,363,505 3.64× 10−4

rhg 750k 500 2.25 750,000 139,633,569 4.96× 10−4

Table 8: Instance Properties

	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts.
	2.2 Related Work.
	2.2.1 Exact Solvers.
	2.2.2 Heuristic Solvers.

	3 Data Reductions
	3.1 Neighborhood Weight Reduction.
	3.2 Largest-Weight Neighbor Reduction.
	3.3 Twin Reduction.
	3.4 Domination Reduction.
	3.5 Edge Bounding Reduction.
	3.6 Simplicial Vertex Removal Reduction.
	3.7 Applying the Reductions.

	4 MWCRedu: A New Exact Algorithm
	4.1 Computing a Lower Bound.
	4.2 Branch and Bound.

	5 MWCPeel: A New Heuristic Algorithm
	5.1 Peeling Strategy.
	5.2 Stopping Criteria.

	6 Experimental Evaluation
	6.1 Impact of New Data Reduction Rules.
	6.2 Exact Algorithms.
	6.3 Heuristic Algorithms.

	7 Conclusion
	A Reduced Graph Sizes
	B Detailed Results for Exact Algorithms
	C Detailed Results for Heuristic Algorithms
	D Detailed Properties of Instances

