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Abstract

The entropy change that occurs upon mixing two fluids has remained an intriguing topic since the

dawn of statistical mechanics. In this work, we generalize the grand-isobaric ensemble to mixtures,

and develop a Monte Carlo algorithm for the rapid determination of entropy in these systems. A

key advantage of adiabatic ensembles is the direct connection they provide with entropy. Here, we

show how the entropy of a binary mixture A-B can be readily obtained in the adiabatic grand-

isobaric (µA, µB, P,R) ensemble, in which µA and µB denote the chemical potential of components

A and B, respectively, P is the pressure, and R is the heat (Ray) function, that corresponds to

the total energy of the system. This, in turn, allows for the evaluation of the entropy of mixing,

as well as of the Gibbs free energy of mixing. We also demonstrate that our approach performs

very well both on systems modeled with simple potentials and with complex many-body force

fields. Finally, this approach provides a direct route to the determination of the thermodynamic

properties of mixing, and allows for the efficient detection of departures from ideal behavior in

mixtures.
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I. INTRODUCTION

Entropy has intrigued thermodynamicists for centuries, and a full understanding of this

concept still remains elusive. Among other processes, mixing, and the associated entropy

of mixing, has challenged scientists since the inception of statistical mechanics, from Boltz-

mann’s early definition of entropy to the proposal of the Gibbs paradox. Several studies have

focused on the determination of the entropy of mixing for liquid mixtures over the years,

both experimentally and theoretically1–13. In binary mixtures of molecular compounds, three

factors are found to contribute to the excess entropy of mixing: (i) the relative volumes of

the molecules, (ii) the spatial distribution of molecules about a reference molecule, and (iii)

the non-random orientational distribution of molecule about a reference molecule2. On the

other hand, in binary mixtures of atomic fluids, the excess entropy of mixing only depends

on the free volume of each component. This has given rise to the concept of the combi-

natorial entropy of mixing14–16, which stems from the randomness in placing the atoms in

the system’s volume. Then, the theoretical entropy of mixing in excess of the combina-

torial entropy, or ideal entropy, is obtained from the reduced volumes of the two mixture

components. Other approaches include conventional solution theories, which have relied ex-

clusively on two features of the liquid mixtures. The first is the entropy of dispersion of the

two molecular species, generally evaluated using a lattice model17,18. The second comes from

the interactions between neighboring molecules and is found to depend on the difference in

interactions between pairs of like and unlike molecules. This approach has led to excellent

results for the synthesis and processing of high-entropy alloys19–22. It has also been shown

recently that the Shannon entropy can quantify the amount of disorder within a system. In

mixtures, the entropy of mixing is defined as the increase in disorder upon the transition

from a fully demixed state to an ideally mixed state23,24. This approach has enabled to

quantify the quality of mixing in polymers, and to design, control and asses optimal mixing

protocols23,25. The Shannon or information entropy can also be calculated through the pair

correlation functions26–29. Such an approach has been used recently to predict the entropy

of liquid aluminum, copper and aluminum-copper alloys30.

Here, we propose a different approach for the determination of the entropy of mixing.

To this end, we develop a method based on the adiabatic thermodynamics formalism to

derive a direct route to the entropy. This approach has been developed so far for single-
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component systems by Ray et al.31–38. For a binary mixture A-B, this leads to working in an

ensemble for which (µA, µB, P, R) are fixed. In this set, µA denotes the chemical potential

for the component A, µB the chemical potential for component B, P the pressure, and R the

heat or Ray function. We can then use the simple relationship S = R/T to gain access to

the entropy of the system. Another advantage of this ensemble is that pressure is an input

parameter, and that its calculation via, for instance, the virial expression is not needed in the

course of the simulations. This is especially interesting for systems modeled with complex

many-body potentials. We add that the determination of temperature is straightforward in

this adiabatic ensemble, as it stems from the equipartition principle. This provides a simple

and versatile framework and method to compute the entropy of mixing.

The paper is organized as follows. We first present the generalization of the adiabatic

grand-isobaric ensemble to the case of mixtures, the implementation of Monte Carlo sim-

ulations in this ensemble, as well as the models used in this work to model mixtures of

simple fluids and binary mixtures of liquid metals. We then discuss the results obtained in

the grand-isobaric ensemble for the Neon-Argon mixture, as well as copper-silver. In both

cases, we present results for the thermodynamic properties of mixing, including the entropy,

as well as the enthalpy and the Gibbs free energy of mixing. To assess accuracy, we compare

the results to the available experimental data and to results obtained with conventional

simulation methods in isothermal ensembles. We finally draw the main conclusions from

this work in the last section.

II. FORMALISM AND SIMULATION METHODS

A. Adiabatic ensemble framework

We start with a brief discussion of how the probability density, and thus the acceptance

probabilities used in Monte Carlo simulations, are obtained for adiabatic ensembles in the

case of single-component systems. In the microcanonical ensemble, the number of accessible

microstates39–42 is given by Ω(N, V,E) = ρ(E)δE, in which ρ(E) is the microcanonical

density of states and δE << E. To show how the probability density can be derived, we

start with the case of an ideal gas of N particles of mass m in a volume V , we have the
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following Hamiltonian

H =
3N∑
i=1

pi
2

2m
= K (1)

in which pi denotes the momentum of particle i and K the total kinetic energy for the

system. The phase space volume Ω can be defined as

Ω =
∫
...
∫
dq3N

∫
...
∫
dp1....dp3N (2)

for sets of coordinates and momenta such that 0 ≤ H(qi,pi) ≤ E. This gives, after integra-

tion over the position coordinates

Ω = V N
∫
...
∫
dp1....dp3N (3)

for sets of momenta such that 0 ≤
∑3N

i=1
p2i
2m
≤ E. As discussed in prior work43, Dirichlet’s

integral formula can be used to calculate this integral. We recall that Dirichlet’s integral

formula states that

I =
∫
...
∫
tα1−1
1 tα2−1

2 ...tαn−1
n dt1dt2...dtn

=
b
α1
1 b

α2
2 ...bαnn

β1β2...βn
× Γ(α1/β1)Γ(α2/β2)...Γ(αn/βn)

Γ(α1/β1+α2/β2+...+αn/βn+1)

(4)

in which ti, bi, βi are positive and such that

(t1/b1)β1 + (t2/b2)β2 + ...+ (tn/bn)βn ≤ 1 (5)

To solve Eq. 3, we use Eq. 4 with αi = 1, ti = pi, βi = 2, bi = (2mE)1/2, (i=1,2,...,3N) to

obtain

Ω =
23NV N(2mE)

3N/2
[Γ(1/2)]3N

23NΓ(3N/2 + 1)
(6)

and account for the fact that particles are indistinguishable, and that the phase space volume

is dimensionless, by dividing Eq. 6 by N ! and h3N

Ω =
V N

N !

(
2πm

h2

)3N/2
E3N/2

Γ(3N/2 + 1)
(7)

in which we use Γ(1/2) =
√
π. This yields the density of states ρ(E) by differentiating the

phase space volume with respect to E as

ρ(E) =
∂Ω

∂E
=
V N

N !

(
2πm

h2

)3N/2
E3N/2−1

Γ(3N/2)
(8)

As shown by Ray et al.32,38, this formalism can be generalized to other types of sys-

tems (such as, e.g., with Hamiltonian of the form H = K + U(q)), in which U(q) de-

notes a position-dependent potential energy) in the microcanonical ensemble, and to other
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adibabatic ensembles (such as, e.g., the adiabatic grand-isobaric ensemble (µ, P,R)). The

key here is to realize that the K = E for an ideal gas in a microcanonical ensemble be-

comes either K = E − U(q) for an interacting system in the microcanonical ensemble, or

K = R−PV +µN −U(q) for an interacting system in the adiabatic grand-isobaric ensem-

ble. The (µ, P,R) ensemble models an open adiabatically insulated system in contact with

a pressure reservoir and a chemical potential reservoir. Here the energy R is related to the

enthalpy H by R = H − µN .

We can then determine the acceptance probability acc(o → n) for the microcanonical

Monte Carlo method. Here a MC move is attempted from an “old” configuration o with a

set of positions denoted by q to a “new” configuration n with a set of positions denoted by

q′ yielding the following acceptance probability

acc(o→ n) = min
[
1, ρ(q′,N,V )

ρ(q,N,V )

]
= min

[
1, K

3N/2−1
n

K
3N/2−1
o

]
= min

[
1, (E−U(q′))3N/2−1

(E−U(q))3N/2−1

] (9)

Similarly, in the adiabatic grand-isobaric ensemble32,44, if the “old” configuration is de-

noted by (q, N, V ) and the “new” configuration by (q′, N ′, V ′), the acceptance probability

can be written as

acc(o→ n) = min
[
1, ρ(q′,N ′,V ′)

ρ(q,N,V )

]
= min

[
1, (bV ′)N

′
N !Γ(3N/2)K

3N′/2−1
n

(bV )NN ′!Γ(3N ′/2)K
3N/2−1
o

]
= min

[
1, (bV ′)N

′
N !Γ(3N/2)(R−PV ′+µN ′−U(q′))3N

′/2−1

(bV )NN ′!Γ(3N ′/2)(R−PV+µN−U(q))3N/2−1

] (10)

in which b = (2πm/h2)3/2. From a practical standpoint and to ensure high acceptance

probabilities, MC moves are split into 4 different categories, corresponding to translations,

insertions, deletions and volume changes. We extend the formalism to the case of mixtures,

and discuss in greater detail these acceptance probabilities for 2-component systems, in the

next section.

B. Adiabatic formalism for multi-component systems

In this section, we extend the adiabatic framework and the adiabatic grand-isobaric en-

semble to systems with multiple components. In line with the derivation for single component
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systems, we start with a mixture of ideal gases and determine the phase space volume and

probability density. For a mixture A-B of two ideal gases A and B, we have the following

Hamiltonian

H =

3NA∑
i=1

p2
i

2mA

+

3NB∑
j=1

p2
j

2mB

= K (11)

in which NA and NB denote the number of particles for the two components A and B, and

mA and mB their respective masses.

The phase space volume is given by

Ω = V NA+NB

∫
...

∫ 3NA∏
i

dpi

3NB∏
j

dpj (12)

As with single-component systems, we now use Dirichlet’s integral formula to calculate Ω.

In the case of the binary mixture A-B, we use Eq. 4 with the following parameters: αk = 1,

tk = pi, βk = 2, bk = (2mAE)1/2, k = 1, 2, ..., 3NA, αk = 1, tk = pj, βk = 2, bk = (2mBE)1/2,

k = 3NA + 1, ..., 3NA + 3NB, and carry out the integration over the following domain

3NA∑
i=1

(
pi

(2mAE)1/2

)2

+

3NB∑
j=1

(
pj

(2mBE)1/2

)2

≤ 1 (13)

This yields the following result for the phase space volume

Ω =
1

h3(NA+NB)NA!NB!
V NA+NB

(2πmA)3NA/2(2πmB)3NB/2

Γ[3(NA +NB)/2 + 1]
E3(NA+NB)/2 (14)

and for the probability density

ρ(E) =
1

h3(NA+NB)NA!NB!
V NA+NB

(2πmA)3NA/2(2πmB)3NB/2

Γ[3(NA +NB)/2]
E3(NA+NB)/2−1 (15)

The next step consists in generalizing this formalism to the adiabatic grand-isobaric

ensemble for the A-B mixture (µA, µB, P,R), i.e., with a kinetic energy K defined as K =

R−PV +µANA +µBNB−U(q), to obtain the equation analog to Eq. 10 for a binary mixture

A-B. This yields the general acceptance rule for a MC move from an old configuration o

defined by the set (q, NA, NB, V ) to a new configuration n with the set (q′, N ′A, N
′
B, V

′) as

acc(o→ n) = min
[
1,

ρ(q′,N ′A,N
′
B,V

′)

ρ(q,NA,NB,V )

]
= min

[
1, (bAV

′)N
′
A (bBV

′)N
′
BNA!NB!Γ(3(NA+NB)/2)K

3(N′A+N′B)/2−1
n

(bAV )NA (bBV )NBN ′A!N ′B!Γ(3(N ′A+N ′B)/2)K
3(NA+NB)/2−1
o

]
= min

[
1,

(bAV
′)N
′
A (bBV

′)N
′
BNA!NB!Γ(3(NA+NB)/2)(R−PV ′+µAN ′A+µBN

′
B−U(q′))3N

′/2−1

(bAV )NA (bBV )NBN ′A!N ′B!Γ(3(N ′A+N ′B)/2)(R−PV+µANA+µBNB−U(q))3N/2−1

]
(16)
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in which bA = (2πmA/h
2)3/2 and bB = (2πmB/h

2)3/2.

From a practical standpoint, we carry out 4 different types of MC moves corresponding

to (i) the translation of a randomly chosen particle (either of type A or B), (ii) the insertion

of a particle of type A or B, (iii) the deletion of a particle of type A or B and (iv) a volume

change of the system. We provide below explicitly the acceptance rules for each type of

move for particles of type A only for conciseness in the case of MC moves of types (i)-(iii).

The acceptance rule for the translation of a randomly chosen particle of type A from an

old (o) configuration to a new (n) configuration is given by

acc(o→ n) = min

[
1,

(R− PV + µANA + µBNB − U(q′))3(NA+NB)/2−1

(R− PV + µANA + µBNB − U(q))3(NA+NB)/2−1

]
(17)

The acceptance rule for the insertion of a particle of type A at a random position in the

system is given by

acc(o→ n) = min

[
1,

bAV Γ(3(NA +NB)/2)

(NA + 1)Γ(3(NA +NB + 1)/2)

× [R− PV + µA(NA + 1) + µBNB − U(q′)]3(NA+NB+1)/2−1

[R− PV + µANA + µBNB − U(q)]3(NA+NB)/2−1

]
(18)

Similarly, the acceptance rule for the deletion of a particle randomly chosen among the

NA particles, can be written as

acc(o→ n) = min

[
1,

NAΓ(3(NA +NB)/2)

bAV Γ(3(NA +NB − 1)/2)

× [R− PV + µA(NA − 1) + µBNB − U(q′)]3(NA+NB−1)/2−1

[R− PV + µANA + µBNB − U(q)]3(NA+NB)/2−1

]
(19)

The acceptance rule for a random volume change of the system is given by

acc(o→ n) = min

[
1,
V ′(NA+NB)[R− PV ′ + µANA + µBNB − U(q′)]3(NA+NB)/2−1

V (NA+NB)[R− PV + µANA + µBNB − U(q)]3(NA+NB)/2−1

]
(20)

C. Models

We use the Lennard-Jones potential to model the interactions between Argon atoms using

the following expression

φ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(21)

where rij is the distance between atom i and atom j, ε and σ the parameters repre-

senting the negative well of depth and the distance for which the potential is equal to
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zero, respectively. Here, we choose the following set of parameters for our simulations

(ε/kB) = 115.17 K and σ = 3.38 Å45. We also use long-range corrections beyond a cut-

off at a distance 3σ.46. We also use a Lennard-Jones potential to carry out simulations

for systems composed of Neon atoms. More specifically, we use the following parameters

(ε/kB) = 33.89 K and σ = 2.79 Å45. As previously for Ar, we use the same cutoff and use

tail corrections beyond this distance. When we study Ar-Ne mixtures, we use the Lorentz-

Berthelot rules45,47 to determine the unlike interactions parameters. It gives the following

parameters: εAr−Ne =
√
εAr−ArεNe−Ne and σAr−Ne = σAr−Ar+σNe−Ne

2
with a cutoff at a dis-

tance of rcut = 8.37 Å beyond which tail corrections are applied.

As for the metals studied here, both copper and silver are modeled with an embedded-

atom (EAM) potential known as the quantum-corrected Sutton-Chen embedded atom model

(qSC-EAM)48–51. The qSC-EAM potential is composed of two terms: a two-body term and

a many-body term:

U =
1

2

N∑
i=1

∑
j 6=i

ε

(
a

rij

)n
− εC

N∑
i=1

√
ρi (22)

where rij is the distance between two atoms i and j and the density term ρi is given by

ρi =
∑
j 6=i

(
a

rij

)m
(23)

We use the parameters obtained by Luo et al.51 for Cu, with εCu = 0.57921 × 10−2 eV,

CCu = 84.843, aCu = 3.603 Å, nCu = 10, and mCu = 5 and for Ag, with εAg = 0.3945 ×

10−2 eV, CAg = 96.524, aAg = 4.0691 Å, nAg = 11, and mAg = 6. For each metal, the

cutoff distance is set to twice the lattice parameter as in previous work44. When looking at

the Cu-Ag mixtures, we use the following rules to determine the interactions between Cu

and Ag atoms52–56. εCu−Ag =
√
εCu−CuεAg−Ag, mCu−Ag =

mCu+mAg
2

, nCu−Ag =
nCu+nAg

2
and

aCu−Ag =
aCu+aAg

2
.

D. Simulation details

To determine the properties of mixing, we carry out two types of simulations in the

grand-isobaric adiabatic ensemble for single-component systems, and for two-component

systems. For single-component systems, we use (µ, P,R) simulations, in which µ is the
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chemical potential, P the pressure and R the Ray or heat function. The heat function

provides access to the entropy of the system through the relation R = TS. For an A-B

binary mixture, we carry out simulations in the (µA, µB, P, R) ensemble. Here, µA and µB

denote the chemical potentials for components A and component B, respectively. Since we

implement simulations in the grand-isobaric adiabatic ensemble within a Monte Carlo (MC)

framework, we perform the following types of MC moves with the attempt probabilities as

follows: (i) 33% of the attempted moves are random displacements of an atom, (ii) 33%

are insertions of atoms at random locations within the system, (iii) 33% are deletions of

randomly selected atoms, and (iv) 1% are random volume changes for the entire system.

For each set of conditions, we carry out two successive runs. We first perform a run of 108

MC steps to allow the system to relax and the simulation to converge toward equilibrium.

We then carry out a production run of 108 MC steps over which averages are calculated.

Statistical uncertainties are evaluated using the standard block averaging technique over

blocks of 5 × 107 MC steps. Finally, the average temperature of the system, < T >,

is evaluated through the equipartition principle. We use the following expression for the

kinetic energy K in a two-component system, K = R − PV + µANA + µBNB − U and

calculate the average temperature as < T >= 2<K>
3kB<NA+NB>

. This, in turn, allows for the

determination of the entropy of the system through the equation < S >= R/ < T >.

Throughout the paper, we note as Ȳ the molar property for any extensive quantity Y . To

test the accuracy and reliability of the grand-isobaric adiabatic ensemble approach, we also

carry out MC simulations in the (N,P, T ) ensemble for single-component systems, as well

as in the (NA, NB, P, T ) ensemble for binary mixtures. For single-component systems, we

work with N = 500 atoms, and use the following probabilities for the various types of MC

moves: (i) 99% of attempted moves are translations of a single, randomly chosen, atom, and

(ii) 1% of attempted moves are random volume changes. For two-component systems, we

use a total number of atoms of NA +NB = 500 in the simulations, and carry out MC moves

with the same probabilities as for single-component systems.
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III. RESULTS AND DISCUSSION

A. The Argon-Neon system

1. Single-component systems

We first present results for the single-component systems, Ar and Ne. We perform 8

different (µ, P,R) simulations for which P and R are held constant. More specifically, in

the case of Ar, we vary µ between µ = −230 kJ/kg to µ = −550 kJ/kg along the isobar

P = 445 bar for a value of the heat function set to R/kB = 8× 105 K. For each value of µ,

we report the corresponding number of atoms < N >, temperature < T >, specific volume

V̄ = <V >
<N>

, enthalpy H̄ = <H>
<N>

, Ray energy R̄ = R
<N>

and entropy S̄ = <S>
<N>

. We present

our results in Table I.

µ (kJ/kg) < N > < T > (K) V̄ (cm3/g) H̄ (kJ/kg) R̄ (kJ/kg) S̄ (kJ/kg/K) S̄id (kJ/kg/K)

-230 1067.3 106.1 0.702 -74.11 155.9 1.469 2.139

-250 880.1 119.2 0.734 -60.94 189.1 1.586 2.186

-300 870.4 148.8 0.816 -31.84 268.2 1.803 2.277

-350 754.2 175.2 0.908 -5.69 344.3 1.968 2.349

-400 690.7 199.8 1.011 18.52 418.5 2.096 2,414

-450 654.4 223.1 1.124 41.06 491.0 2.203 2.470

-500 632.8 245.3 1.244 62.02 562.0 2.296 2.520

-550 618.9 266.8 1.367 81.39 631.4 2.366 2.567

TABLE I: Argon: (µ, P,R) simulation results along the P = 445 bar isobar and for R/kB =

8 × 105 K. S̄id indicates the value for the ideal gas entropy provided by the Sackur=Tetrode

equation.

Table I shows the results obtained for Argon. For instance, we find that for µ =

−250 kJ/kg, < T >= 119.2 K, V̄ = 0.734 cm3/g, H̄ = −60.94 kJ/kg, R̄ = 189.1 kJ/kg and

S̄ = 1.586 kJ/kg/K. This is in excellent agreement with the experimental data57, with, for

T = 120 K and P = 445 bar, a specific volume of 0.741 cm3/g, an enthalpy of −61.2 kJ/kg,

and an entropy of 1.585 kJ/kg/K. Table I shows that, as the chemical potential decreases, the

number of Ar atoms decreases, the temperature increases and the specific volume increases,
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FIG. 1: Argon along the P = 445 bar isobar: (a) Chemical potential µ as a function of the

temperature T , with a linear fit shown as a red line, (b) Enthalpy H̄ = <H>
<N> as a function of T ,

with a linear fit to the simulation results shown as a red line, (c) Entropy S̄ = <S>
<N> against < T >,

with a logarithmic fit to the simulation results shown in red.

meaning that the system becomes less and less dense. This is in line with the increase in

enthalpy and entropy, that result from the decreased number of interactions between Ar

atoms and the loss of organization in the system. Table I also provides the value taken by

the ideal gas entropy according to the Sackur-Tetrode equation

S̄id = kB ln

[(
2πmkBT

h2

)3/2
V e5/2

N

]
(24)

The ideal gas entropy S̄id is found to be larger than the molar entropy S̄. This results from

the attractive interactions that take place in liquid Argon. As shown in Table I, this effect

decreases as the density decreases or, equivalently, the specific volume increases, leading to

the narrowing of the gap between S̄id and S̄.

We show in Fig 1 the variation of the chemical potential, enthalpy, and entropy as

a function of T along the P = 445 bar isobar. We also provide in Fig 1 a linear

fit for µ(T ), µ(T ) (kJ/kg)= −15.692 − 1.963 × T . Given the thermodynamic relation
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µ = H̄ − T S̄, this gives an estimate for the average entropy over this temperature in-

terval of 1.963 kJ/kg/K in reasonable agreement with the range of experimental S̄ values

of 1.4 − 2.4 kJ/kg/K for this temperature interval57. We also show in Fig 1 a linear fit

for H̄(T ), with H̄(T ) (kJ/kg)= −177.13 + 0.976 × T , as well as a logarithmic fit for S̄(T ):

S̄(T ) (kJ/kg)= −3.307 + 1.019 ln(T ). To further assess the accuracy of the fits, we run

a separate (µ, P,R) simulation for the following set: µ = −233 kJ/kg, P = 445 bar and

R/kB = 8×105 K. We find T = 108.2 K, H̄ = −72.06 kJ/kg, and S̄ = 1.488 kJ/kg/K. These

results are in excellent agreement with the values found from the fits developed above, i.e.,

T = 110.78 K, H̄ = −69.05 kJ/kg, and S̄ = 1.489 kJ/kg/K. This confirms that the fits given

above capture the variation of thermodynamic properties in Argon for the thermodynamic

parameters studied in this work.

µ (kJ/kg) < N > < T > (K) V̄ (cm3/g) H̄ (kJ/kg) R̄ (kJ/kg) S̄ (kJ/kg/K) S̄id (kJ/kg/K)

-250 987.1 100.0 1.355 83.60 333.6 3.335 3.767

-300 813.9 114.6 1.512 104.62 404.6 3.530 3.896

-350 695.1 128.3 1.663 123.73 473.7 3.692 4.005

-400 608.1 141.7 1.806 141.49 541.5 3.821 4.100

-450 541.7 154.5 1.941 157.92 607.9 3.934 4.184

-500 488.7 167.1 2.076 173.86 673.9 4.032 4.260

-550 445.7 179.5 2.202 188.84 738.8 4.116 4.328

-600 409.9 191.3 2.328 203.27 803.3 4.199 4.390

TABLE II: Neon: (µ, P,R) simulation results along the P = 445 bar isobar and for R/kB =

8× 105 K.

Next, we turn to the second single-component system, Neon. We follow the same protocol

as for Argon and present in Table II the results obtained from (µ, P,R) simulations. We

observe the same general behavior as for Argon. As µ decreases, the number of Ne atoms

decreases, T increases and the specific volume increases. The main difference with Ar for

the set of thermodynamic conditions studied in this work is that the enthalpy is always

positive, which results from the fact that the system is a supercritical fluid under these

conditions. As for Argon, the results found with the (µ, P,R) method are in very good

agreement with those found using (N,P, T ) simulations. For instance, we find that for
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FIG. 2: Neon along the P = 445 bar isobar: (a) (µ, P,R) simulation results for µ against T , with

a linear fit shown in red, (b) Enthalpy H̄ = <H>
<N> against T , with a linear fit shown as a red line,

and (c) Entropy S̄ = <S>
<N> against < T >, with a logarithmic fit shown as a red solid line.

µ = −450 kJ/kg, < T >= 154.5 K, V̄ = 1.941 cm3/g and H̄ = 157.92 kJ/kg. This

is in excellent agreement with simulation results we obtain in the (N,P, T ) ensemble for

T = 154.5 K and P = 445 bar, with a specific volume estimated at 1.938 cm3/g and an

enthalpy of 157.97 kJ/kg. Table II also provides a comparison with the ideal gas entropy

obtained from the Sackur-Tetrode equation. Since, under the thermodynamic conditions

used in this work, Neon is a supercritical fluid, the interactions play a lesser role than for

Argon, which is a liquid under these thermodynamic conditions. As a result, the molar

entropy of Neon is found to be close to the ideal gas entropy under these conditions.

We also show in Fig 2 the variation of µ, H̄, and S̄ as a function of T along the P = 445 bar

isobar. As for Ar, we provide a linear fit for µ(T ): µ(T ) (kJ/kg)= 139.89−3.840×T , which

gives us an average entropy of 3.840 kJ/kg/K over the temperature interval. The linear

fit for H(T ) is given by H̄(T ) (kJ/kg)= −44.95 + 1.306 × T . Finally, a logarithmic fit for

S(T ) gives S̄(T ) (kJ/kg/K)= −2.751 + 1.325 ln(T ). To further assess the accuracy of the

fits, we perform a separate (µ, P,R) simulation with µ = −285 kJ/kg, P = 445 bar and

R/kB = 8× 105 K. We obtain < T >= 110.6 K, H̄ = 98.78 kJ/kg and S̄ = 3.471 kJ/kg/K.
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These results are in good agreement with the values from the above fits, i.e., T = 110.6 K,

µ = −284.8 kJ/kg, H̄ = 98.54 kJ/kg and S̄ = 3.483 kJ/kg/K, which confirms the validity

of the (µ, P,R) simulation method.

2. Thermodynamic properties for the Ar-Ne mixture

We now turn to the study of the Ar-Ne mixture, and run simulations in the

(µNe, µAr, P, R) ensemble. To better understand how simulations in this ensemble work,

we start by investigating the role played by R, the heat function or Ray energy, when two

components are present in the system. To this end, we hold µNe, µAr and P constant and

gradually vary R. Results are given in Table III. In this Table, the mole fraction in Ne

is calculated as < xNe >= <NNe>
<NNe>+<NAr>

, the temperature as < T >= 2<K>
3<Ntot>kB

, with

Ntot = NNe + NAr, and the density as < ρ >= mNe<NNe>+mAr<NAr>
<V >

. Datasets available for

comparison include the measurements by Streett58, as well as the reference model developed

by Tkaczuk et al.59.

R
kB

< NNe > < NAr > < xNe > < T > < ρ > H̄ S̄

(K) - - - K (g/cm3) (kJ/kg) (kJ/kg/K)

2× 105 106.5 106.0 0.501 110.8 1.128 -11.6 4.697

3× 105 159.7 159.1 0.501 110.9 1.129 -11.8 4.694

4× 105 212.2 212.9 0.499 110.9 1.130 -12.3 4.687

5× 105 266.4 264.7 0.502 110.8 1.128 -11.5 4.701

6× 105 318.6 319.0 0.500 110.8 1.130 -12.2 4.693

7× 105 372.4 371.4 0.501 110.8 1.129 -11.9 4.697

8× 105 425.5 424.5 0.501 110.8 1.129 -11.9 4.697

9× 105 478.9 477.4 0.500 110.9 1.129 -11.9 4.690

TABLE III: Ar-Ne mixture along the P = 445 bar isobar: (µNe, µAr, P,R) simulation results for

xNe = 0.5, i.e., for µNe = −203 kJ/kg and µAr = −330 kJ/kg, for different values of the heat

function R.

Results from Table III show that, at fixed P and for a given set of chemical potentials

(µNe, µAr), increasing the value of R leads to an increase in the number of atoms for the
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FIG. 3: Ar-Ne mixture. Ray function R in function of (a) the number of Ne atoms, < NNe >, (b)

the number of Ar atoms < NAr >, and (c) the total number of particles < Ntot >, present in the

xNe = 0.5 mixture.

two components of the mixture, < NNe > and < NAr >, and thus in the total number of

atoms in the system < Ntot >. For instance, multiplying by 5 the value of R leads to a

5-fold increase in < NNe > and < NAr >. Interestingly, we observe a linear dependence on

R for all numbers of atoms, < NNe >, < NAr > and < Ntot > (see Fig 3). This implies

that, once the (µNe, µAr, P, R) simulations have converged, and regardless of the value set

for R, the intensive thermodynamic properties all converge towards the same values. For

instance, for R/kB = 2 × 105 K, the system converges towards a temperature of 110.8 K

a density of 1.128 g/cm3, an enthalpy of −11.6 kJ/kg and an entropy of 4.697 kJ/kg/K.

For R/kB = 9× 105 K, the system reaches at convergence 110.9 K for < T >, 1.129 g/cm3

for < ρ >, −11.9 kJ/kg/K for < H̄ >, and 4.690 kJ/kg/K for < S̄ >. The sets of results

obtained for the these two R values are within the statistical uncertainty of the simulations,

which are of 0.5 K, 0.008g/cm3, 0.2 kJ/kg, and 0.15 kJ/kg/K for the temperature, density,

enthalpy, and entropy, respectively.

In the rest of the paper, we present results obtained from (µNe, µAr, P,R) simulations at
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P = 445 bar and R/kB = 3 × 105 K, as they are found from Table III to provide accurate

results for a reasonably small total number of atoms in the system. To obtain mixture

properties for mole fractions in Ne spanning the entire range from 0.1 to 0.9, we vary both

µNe and µAr and select conditions for which the temperature of the system has converged

towards < T >= 110.8± 0.5 K. We present the results in Table IV.

< xNe > µNe(kJ/kg) µAr(kJ/kg) < NNe > < NAr > < T > (K) < ρ > (g/cm3)

0.1 -187 -251 37.2 316.5 110.5 1.361

0.2 -183 -267 67.9 275.3 110.3 1.320

0.3 -186 -285 98.9 235.9 110.3 1.268

0.4 -193 -307 128.8 195.9 110.8 1.202

0.5 -203 -330 159.7 159.1 110.9 1.129

0.6 -215 -356 188.2 126.1 110.9 1.049

0.7 -229 -386 217.5 94.5 110.7 0.963

0.8 -246 -424 247.8 62.3 110.9 0.866

0.9 -264 -478 282.1 30.6 110.6 0.770

TABLE IV: Ar-Ne mixture. Results from (µNe,µAr,P,R) simulations along the isobar P = 445 bar

with R/kB = 3× 105, and < T >= 110.8± 0.5 K

To assess the accuracy of the (µNe, µAr, P, R) simulations, we carry out a simulation in

the (NNe, NAr, P, T) ensemble at 110.8 K and P = 445 bar and for a mole fraction in Ne of

0.5. We find an average density of 1.13 g/cm3 in good agreement with the (µNe, µAr, P, R)

simulation results of 1.129 g/cm3. This is a first validation of the grand-isobaric adiabatic

ensemble for mixtures. By fitting the (µNe, µAr, P, R) simulation results, we obtain the

following equation for the density of the mixture

ρ (g/cm3) = 1.387− 0.183xNe − 0.838x2
Ne + 0.394x3

Ne − 0.093x4
Ne (25)

and test the fit against with the available experimental data under these conditions58 and

the results obtained from (NNe, NAr, P, T ) simulations. As shown in in Fig. 4, there is a

good agreement between the three sets of data over the entire range of compositions, which

shows that Eq. 25 provides an accurate model for the density of the Ne-Ar mixture.

We now examine the variations of the thermodynamic properties of the mixture as a
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FIG. 4: Density against the mole fraction in Ne xNe for the Ar-Ne mixture along the isobar

P = 445 bar. (NNe, NAr, P, T ) simulation results are shown as squares, while experimental data

are shown as diamonds. The experimental data58 are given for a temperature T = 110.78 K and

a pressure of P = 6500 psia or, equivalently, P = 448 bar.

function of the mole fraction in Ne. We focus in Fig. 5 on the plots for enthalpy H̄, product

−T S̄ and Gibbs free energy, calculated as Ḡ = H̄−T S̄. For a low xNe, the mixture exhibits

the signature of a liquid with a negative enthalpy. Then, as xNe increases, enthalpy increases

since Neon is a supercritical fluid under these conditions and is associated with a positive

enthalpy. On the other hand, we observe a non-monotonic behavior, with a maximum for

S̄ and thus a minimum for −T S̄ and for the Gibbs free energy Ḡ. We find that the entropy

reaches a maximum, and the Gibbs free energy a minimum, close to an equimolar fraction

for the two components of the mixture.

We now move on to the determination of the thermodynamic properties of mixing. For

any thermodynamic property Ȳ , we evaluate the property of mixing ∆Ȳmix from the property
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FIG. 5: Ne-Ar mixture at 110.8 K and 445 bar. (µNe, µAr, P,R) simulation results for the enthalpy

(green triangles), product −T S̄ (red circles) and Gibbs free energy (black circles) against xNe.

determined for the mixture Ȳm, and the properties for the single-component system ȲNe and

ȲAr, determined under the same conditions of T and P . Specifically, we obtain here

∆H̄mix = H̄m − xNeH̄Ne − xArH̄Ar

∆S̄mix = S̄m − xNeS̄Ne − xArS̄Ar
∆Ḡmix = Ḡm − xNeµNe − xArµAr

(26)

We report in Table V the results obtained from (µNe, µAr, P, R) simulations for the mix-

tures properties, as well as the thermodynamic properties of mixing, for different mole

fractions in Ne. We fit the simulation results to obtain the following equations for the

thermodynamic properties of mixing

∆H̄mix (kJ/kg) = 1.664− 218.26xNe + 478.90x2
Ne + 74.72x3

Ne − 338.65x4
Ne

∆S̄mix (kJ/kg/K) = 0.034 + 0.408xNe + 28.545x2
Ne − 51.101x3

Ne + 22.103x4
Ne

∆Ḡmix (kJ/kg) = −2.119− 263.46xNe − 2683.3x2
Ne + 5735.7x3

Ne − 2787.2x4
Ne

(27)
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(a)

(b)

FIG. 6: Variation of the thermodynamic properties of mixing, with in (a), (µNe, µAr, P,R) simu-

lation results for ∆Hmix (green triangles), T∆Smix (red squares) and ∆Gmix (black circles) as a

function of xNe. (NNe, NAr, P, T ) simulation results for ∆Hmix are shown as blue squares. In (b),

the excess entropy of mixing ∆SEmix (black squares) is compared to the entropy of mixing T∆Smix

(red squares).
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< xNe > H̄m ∆H̄mix S̄m ∆S̄mix Ḡm ∆Ḡmix

- (kJ/kg) (kJ/kg) (kJ/kg/K) (kJ/kg/K) (kJ/kg) (kJ/kg)

0.1 -72.33 -12.20 2.060 0.465 -300.51 -55.55

0.2 -71.83 -21.60 2.685 0.974 -369.26 -118.72

0.3 -63.19 -24.02 3.414 1.572 -441.38 -185.91

0.4 -42.48 -15.71 4.153 2.165 -502.57 -241.20

0.5 -11.79 0.92 4.691 2.537 -531.47 -265.35

0.6 21.34 18.03 4.899 2.555 -521.35 -250.22

0.7 51.39 29.63 4.773 2.212 -477.40 -201.60

0.8 75.67 32.45 4.420 1.605 -413.97 -132.55

0.9 90.78 22.26 3.957 0.844 -347.61 -62.11

TABLE V: Ar-Ne mixture at T = 110.8 K and P = 445 bar. (µNe, µAr, P.R) results for the

thermodynamic properties of the mixture Ȳm and the thermodynamic properties of mixing ∆Ȳmix.

Properties are given in kJ/kg for enthalpy and Gibbs free energy, and in kJ/kg/K for entropy.

We also plot in Fig. 6 the dependence of the thermodynamic properties of mixing as a

function of the mole fraction in Ne. We provide a comparison between the enthalpy of mixing

predicted by (N,P, T ) simulations for the corresponding mole fractions at T = 110.8 K and

P = 445 bar. The results show that there is a very good agreement between the simulations

results obtained from both sets of simulations, thereby providing another validation for the

(µNe, µAr, P, R) simulation method. (µNe, µAr, P, R) simulations have the advantage of also

providing the other thermodynamic properties of mixing, i.e. the entropy of mixing and the

Gibbs free energy of mixing.

Fig. 6(a) shows that the entropy of mixing exhibits a maximum for an equimolar mixture,

while the enthalpy of mixing remains close to 0 kJ/kg and only increases slightly with the Ne

mole fraction. This results in the presence of a minimum for the Gibbs free energy of mixing

for a mole fraction of 0.5. Overall, the plot shown in Fig. 6 is close to what is expected for

an ideal binary mixture. Indeed, ideal mixtures exhibit an enthalpy of mixing of 0 kJ/kg

and two terms of the same magnitude, and opposite signs, for the Gibbs free energy of

mixing and for the product of temperature by the entropy of mixing. Furthermore, for ideal

mixtures, the Gibbs free energy of mixing reaches a minimum for a mole fraction of 0.5,
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while the entropy of mixing reaches a maximum for a mole fraction of 0.5. Since we have

a mixture of two rare gases, it is reasonable to observe here a behavior that is qualitatively

similar to that of ideal mixtures. This confirms the ability of the (µNe, µAr, P,R) simulations

to yield the thermodynamic properties of mixing. We also examine in Fig. 6(b) the results

obtained for the excess entropy of mixing, defined as the entropy of the mixture minus the

ideal gas entropy of the two components for the mixture. The excess entropy of mixing is

small, less than 0.5 kJ/kg/K in absolute value, when compared to the entropy of mixing.

This means that intermolecular interactions contribute very little to the entropy of mixing

of Ne-Ar and that the main contribution to the entropy of mixing is thus combinatorial.

This is in line with the results obtained for the enthalpy of mixing, which show that the

magnitude of this term is small.

B. The Cu-Ag system

1. Single-component systems

We now turn to the study of metallic systems, and focus on the example of the Cu-Ag

mixture. We start by examining the results for single-component systems of Cu and Ag.

Table VI and Table VII show the results obtained for the two metals along the P = 1 bar

isobar. We first comment on the results for Cu (Table VI), and find that the specific volume

increases as the chemical potential decreases. This leads to fewer, and weaker, interactions

between Cu atoms and, in turn, to a decrease in enthalpy. This is confirmed by the increase

in temperature and entropy, which shows that the fluid is less and less organized as the

chemical potential decreases.

We show in Fig. 7, the variation of the chemical potential, enthalpy, and entropy as

a function of temperature. Fig. 7 demonstrates that there is a good agreement between

results obtained with (µ, P,R) simulations and results from Monte Carlo simulations in

the isothermal-isobaric ensemble (see middle panel of Fig 7). In line with the noble

gases systems, we fit the simulation results and obtain a linear fit for µ(T ). We obtain

µ(T ) (kJ/kg) = −4422.0− 1.426× T , yielding an estimate for the average entropy over the

temperature interval of 1.426 kJ/kg/K. For enthalpy and entropy, we obtain the following
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µ (kJ/kg) < T > (K) V̄ (cm3/g) H̄ (kJ/kg) R̄ (kJ/kg) S̄ (kJ/kg/K)

-6300 1306.1 0.129 -4585.23 1714.8 1.313

-6400 1385.6 0.131 -4541.45 1858.6 1.341

-6500 1455.7 0.132 -4506.60 1993.4 1.369

-6600 1535.2 0.133 -4466.60 2132.8 1.389

-6700 1602.2 0.135 -4431.64 2268.6 1.416

-6800 1680.0 0.136 -4392.88 2406.9 1.433

-6900 1737.5 0.137 -4363.18 2537.5 1.460

-7000 1809.7 0.138 -4329.20 2670.7 1.476

-7100 1873.9 0.139 -4299.75 2800.0 1.494

-7200 1937.5 0.141 -4263.77 2936.3 1.515

TABLE VI: Copper: (µ, P,R) simulation results along the P = 1 bar isobar, with R/kB = 8×105 K.

fits

H̄ (kJ/kg) = −5240.6 + 0.504× T

S̄ (kJ/kg/K) = −2.337 + 0.508 lnT
(28)

µ (kJ/kg) < T > (K) V̄ (cm3/g) H̄ (kJ/kg) R̄ (kJ/kg) S̄ (kJ/kg/K)

-3200 1133.4 0.112 -2258.59 941.4 0.831

-3300 1218.5 0.113 -2228.54 1071.5 0.879

-3400 1359.7 0.116 -2182.48 1218.0 0.896

-3500 1456.4 0.118 -2151.29 1348.6 0.926

-3600 1573.9 0.120 -2116.86 1483.2 0.942

-3700 1680.2 0.122 -2084.49 1615.7 0.962

-3800 1774.9 0.124 -2053.67 1746.2 0.984

-3900 1892.8 0.126 -2020.79 1878.0 0.992

-4000 1993.5 0.128 -1993.93 2006.8 1.007

TABLE VII: Silver: (µ, P,R) simulation results along the P = 1 bar isobar, with R/kB = 8×105 K.

Next, we turn to the results obtained for Ag and provide in Table VII the results obtained

from (µ, P,R) simulations. We then compare the results for the specific volume to reference
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FIG. 7: Copper along the P = 1 bar isobar. (a) Chemical potential against temperature, (b)

Enthalpy against temperature, and (c) Entropy against temperature. (µ, P,R) simulation results

are shown as black circles, (N,P, T ) simulation results are shown as blue squares, and fits to the

(µ, P,R) simulation results are shown as red lines.

data60 over the 1235 K-1600 K range and find a good agreement. For instance, at T =

1359.7 K, the reference data is of V̄ ref = 0.109 cm3/g to be compared to 0.116 cm3/g

predicted by the simulation, and at T = 1573.9 K, we have V̄ ref = 0.111 cm3/g to be

compared to 0.120 cm3/g for the simulation. We show in Fig. 8 plots of the chemical

potential, enthalpy, and entropy against temperature. As for copper, we observe a good

agreement between the enthalpy predicted by (µ, P,R) simulations and that obtained with

Monte Carlo (N,P, T ) simulations (see Fig 8). We then carry out the same analysis as above

and obtain the following linear fit for µ(T ) (kJ/kg) = −2161.0− 0.920× T , which provides

an estimate for the average entropy over the temperature interval of 0.920 kJ/kg/K. For

enthalpy and entropy, we obtain the following fits

H̄ (kJ/kg) = −2603.0 + 0.308× T

S̄ (kJ/kg/K) = −1.235 + 0.296 ln(T )
(29)
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FIG. 8: Silver along the P = 1 bar isobar. (Left panel) Chemical potential against temperature,

(Middle panel) Enthalpy against temperature, and (Right panel) Entropy against temperature.

(µ, P,R) simulation results are shown as black circles, (N,P, T ) simulation results are shown as

blue squares, and fits to the (µ, P,R) simulation results are shown as red lines.

2. Thermodynamic properties of the Cu-Ag mixture

We then examine the properties for the Cu-Ag mixture. To this end, we carry out

(µCu, µAg, P, R) simulations for the mixture for conditions corresponding to P = 1 bar and

an average temperature of 1400 ± 20 K, and fit the simulation results to determine a series

of equations modeling the properties of the mixture as a function of the mole fraction in

copper. We start with the density of the system, and obtain the following equation from

the simulation results

ρ (g/cm3) = 8.548 + 0.278xCu − 2.614x2
Cu + 2.639x3

Cu − 1.221x4
Cu (30)

and test the fit against the results obtained from (NCu, NAg, P, T ) simulation results. The

results are shown in Fig. 9. They are found to be in very good agreement with one another

over the entire range of compositions, thereby establishing that Eq. 30 provides an accurate

model for the density of the Cu-Ag mixture.
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FIG. 9: Density of the Cu-Ag mixture at 1 bar and 1400 K. The black line is a plot of Eq. 30,

obtained from (µCu, µAg, P,R) simulation results, while the open red squares are (NCu, NAg, P, T )

simulation results.

Next, we determine the corresponding equations for the thermodynamic properties of

mixing using Eq. 26. To this end, we take the (µCu, µAg, P, R) simulation results for the

mixture, i.e., < H̄m > and < S̄m > and calculate < Ḡm >=< H̄m > −T < S̄m >. Then, we

subtract the value for H̄ and S̄ obtained for the single-component systems under the same

conditions of pressure and temperature. These are provided by Eq. 28 for Cu as H̄Cu =

−4535.0 kJ/kg and S̄Cu = 1.343 kJ/kg/K and by Eq. 29 for Ag as H̄Ag = −2171.8 kJ/kg and

S̄Ag = 0.909 kJ/kg/K. We obtain the following equations for the thermodynamic properties

of mixing

∆H̄mix (kJ/kg) = 0.532− 403.75xCu − 38825x2
Cu + 71068x3

Cu − 31847x4
Cu

∆S̄mix (kJ/kg/K) = 0.504xCu + 13.503x2
Cu − 26.369x3

Cu + 12.365x4
Cu

∆Ḡmix (kJ/kg) = 0.982− 1109.8xCu − 57729x2
Cu + 107984x3

Cu − 49158x4
Cu

(31)
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FIG. 10: Thermodynamic properties of mixing for the Cu-Ag mixture at 1 bar and 1400 K. The

black line is a plot of Eq. 31, obtained from (µCu, µAg, P,R) simulation results, while the open blue

squares are (NCu, NAg, P, T ) simulation results.

We plot in Fig. 10 the resulting fits, as well as a comparison with results obtained from a

series of (NCu, NAg, P, T ) simulations as we vary the composition of the mixture at P = 1 bar

and T = 1400 K. As shown in Fig. 10, there is an excellent agreement for ∆H̄m between

the fits to the (µCu, µAg, P, R) results of Eq. 31 and the (NCu, NAg, P, T ) simulation results.

This validates the extension of the method proposed in this work for mixtures, and its

applicability to many-body force fields. Furthermore, the results obtained from both sets of

simulation indicate that the behavior of the Cu-Ag mixture departs from that observed for

ideal mixtures. Specifically, the enthalpy of mixing takes values that are of the same order

as the other two terms, ∆Ḡm and T∆S̄m. In other words, the enthalpy of mixing is not

negligible any longer as one would expect for an ideal mixture. Furthermore, the minima for

∆H̄m and ∆Ḡm, and the maximum for T∆S̄m, are reached for a mole fraction in Ne that

26



is now about 0.55, and not 0.5 any longer as for an ideal mixture. This departure can be

interpreted as stemming from the strong cohesive interactions, and of dramatically different

magnitudes, that take place between Cu and Ag atoms. It also illustrates one of the key

advantages of the (µCu, µAg, P, R) method, as it provides direct access to all three quantities,

G, H and S, during a simulation run.

IV. CONCLUSIONS

In this work, we extend the adiabatic formalism to multicomponent systems and, more

specifically, to the adiabatic grand-isobaric ensemble. Then, we develop an implementation

of simulations in the adiabatic grand-isobaric ensemble within a Monte Carlo framework and

apply the new approach to binary mixtures of noble gases and of metals. We show that this

method has two very significant advantages. First, we now have direct access to the entropy

of the mixture through the relation R = ST . Second, the calculation of the pressure through

the virial relation is not required here, since pressure is an input parameter in simulations

in the adiabatic grand-isobaric ensemble. This alleviates the need for the computation

of pressure, and its increased complexity when many-body terms are included. This new

approach is thus particularly well suited for the determination of the entropy of mixing, an

issue that has drawn considerable interest since the dawn of statistical mechanics, and of the

other thermodynamic properties of mixing, including the enthalpy of mixing and the Gibbs

free energy of mixing. We assess the accuracy of the method through comparisons with

the available experimental data on mixtures of ideal gases, and with results obtained from

conventional simulations performed in the isothermal-isobaric ensemble. This new approach

allows us to recover the ideal behavior expected for mixtures of noble gases. Furthermore,

simulations in the adiabatic grand-isobaric ensemble sheds light on the departure from the

ideal behavior observed in binary metallic mixtures. Specifically, in the case of the Cu-Ag

mixture, we observe a shift in the maximum for the entropy of mixing towards a greater

Cu content than the ideal value of 0.5, and a strong contribution of the enthalpy of mixing

to the Gibbs free energy of mixing. This results also shows the versatility of the adiabatic

grand-isobaric approach, and its applicability to systems modeled with many-body force

fields. The extension of the method to molecular fluids is currently under way.
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