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Abstract. Given a tree T , let q(T ) be the minimum number of distinct eigenvalues in
a symmetric matrix whose underlying graph is T . It is well known that q(T ) ≥ d(T )+1,
where d(T ) is the diameter of T , and a tree T is said to be diminimal if q(T ) = d(T )+1.
In this paper, we present families of diminimal trees of any fixed diameter. Our proof
is constructive, allowing us to compute, for any diminimal tree T of diameter d in
these families, a symmetric matrix M with underlying graph T whose spectrum has
exactly d+ 1 distinct eigenvalues.

1. Introduction

As described by Chu in an influential survey paper [7], inverse eigenvalue problems
are concerned with the reconstruction of a square matrix M assuming that we are given
total or partial information about its eigenvalues and/or eigenvectors. Chu points out
to two fundamental questions associated with this problem:

(1) Solvability, i.e., whether there exists a matrix M with the required eigenvalues
and/or eigenvectors. Such a matrix M is said to be a realization of the inverse
eigenvalue problem.

(2) Computability, i.e., whether, assuming that the problem has a solution, there is
an efficient procedure to compute (or to find a numerical approximation) of a
solution.

For the inverse eigenvalue problem to be nontrivial or to be meaningful in applications,
it is often the case that the sought-after matrix M needs to satisfy additional properties,
that is, the domain must be restricted to matrices in a pre-determined class.

In this paper, we consider classes of symmetric matrices that may be described in
terms of graphs. Note that any symmetric matrix M = (mij) ∈ Fn×n over a field F may
be associated with a simple graph G with vertex set [n] = {1, . . . , n} such that distinct
vertices i and j are adjacent if and only if mij 6= 0. We say that G is the underlying
graph of M . In fact, the matrix M itself may be viewed as a weighted version of G,
where each vertex i is assigned the weight mii ∈ F and each edge ij is assigned the
weight mij ∈ F. Often the focus is on matrices whose elements are in the field R of
real numbers (or on Hermitian matrices over the field C of complex numbers). We refer
to [4], and the references therein, for a more complete historical discussion of this type
of inverse eigenvalue problem, known under the acronym IEPG, the inverse eigenvalue
problem for a graph.

Given a graph G, let S(G) and H(G) be the sets of real symmetric matrices and of
complex Hermitian matrices whose underlying graph is G, respectively. An elementary
fact about these matrices is that their eigenvalues are real numbers, so that, for any
n-vertex graph G and any matrix M ∈ H(G), the eigenvalues of M may be written
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as λ1(M) ≤ · · · ≤ λn(M)∗. The multiset {λ1, . . . , λn} is called the spectrum of M and
is denoted by Spec(M), while DSpec(M) denotes the set of distinct eigenvalues of M .
The multiplicity mM(λ) of λ ∈ R as an eigenvalue of M is the number of occurrences
of λ in Spec(M)†.

A class of matrices that has been under intense scrutiny is the class of acyclic sym-
metric matrices, the class of matrices whose underlying graph is a connected acyclic
graph (that is, a tree). The study of acyclic symmetric matrices may be traced back
to Parter [17] and Wiener [18], and there has been growing interest on properties of
these matrices and of parameters associated with them starting with the systematic
work of Leal Duarte, Johnson and their collaborators, see for instance [11, 12, 15, 16].
One of the particularities of the acyclic case is that the inverse eigenvalue problem may
be reduced to symmetric matrices, in the sense that, for any tree T , a multiset of real
numbers is equal to the spectrum of a matrix in H(T ) if and only if it is equal to the
spectrum of a matrix in S(T ) (see [14, Corollary 2.6.3]).

Our paper deals with the possible number of distinct eigenvalues of acyclic symmetric
matrices. For an in-depth discussion of problems of this type, we refer to a comprehen-
sive book on this topic by Johnson and Saiago [14]. More precisely, given a tree T , we
wish to study the quantity

q(T ) = min{|DSpec(A)| : A ∈ S(T )}, (1)

the minimum number of distinct eigenvalues over all symmetric real matrices whose
underlying graph is T . An easy lower bound on this number may be given in terms of
the diameter of T , which we now define. As usual, let Pd denote a path on d vertices.
The distance dG(u, v) between two vertices u and v in a graph G = (V,E) is the length
(i.e. the number of edges d− 1) of a shortest path Pd connecting u and v in G, where
we say that d(u, v) = ∞ if u and v lie in different components of G. The diameter
diam(G) of G is defined as

diam(G) = max{d(u, v) : u, v ∈ V }‡.
The following result is proved in [Lemma 1][16].

Theorem 1.1. If T is a tree with diameter d and A ∈ S(T ), then q(T ) ≥ d+ 1.

The authors of [16] suspected that, for every tree T of diameter d, there exists a
matrix A ∈ S(T ) with exactly d+ 1 distinct eigenvalues. However, this turns out to be
false. Barioli and Fallat [3] constructed a tree T on 16 vertices such that diam(T ) = 6,
but q(T ) = 8. It is now known that q(T ) = d+ 1 for every tree T of diameter d if and
only if d ≤ 5 [14]. For diameter d ≥ 6, it is thus natural to characterize the trees T
for which q(T ) = diam(T ) + 1, which are known as diameter minimal (or diminimal,
for short). The set Dd of diminimal trees of any fixed dimension d is nonempty, as
we trivially have Pd+1 ∈ Dd. Johnson and Saiago [14] show that the families Dd are
infinite§ for every d.

One of the main tools used to address this problem in [14] is the construction of
trees using an operation called branch duplication [13]. This concept will be formally

∗When the matrix M is clear from context, we shall omit the explicit reference to M and simply
write λ1 ≤ · · · ≤ λn.

†It will be convenient to write mM (λ) = 0 when λ is not an eigenvalue of M .
‡We observe that in [14, 16] the value of the diameter corresponds to the number of vertices, rather

than edges, on the path connecting two vertices at maximum distance. As a consequence, what we
call diameter d is diameter d+ 1 in [14, 16]

§In the sense that the set of unlabelled trees of diameter d that are diminimal is infinite.



DIMINIMAL FAMILIES OF ARBITRARY DIAMETER 3

defined in Section 3, but the intuition is that, for any fixed positive integer d, there is
a finite set Sd of (unlabelled) trees of diameter d, called the seeds of diameter d, with
the property that any (unlabelled) tree of diameter d may be obtained from one of the
seeds of diameter d by a sequence of branch duplications. As it turns out, for any tree
T of diameter d there is a single seed of diameter d from which it can be obtained,
so that the seeds are precisely the trees that cannot be obtained from smaller trees
through branch duplication. To illustrate why this can be useful for our purposes, we
mention that Section 6.5 in [14] deals with q(T ) for trees of diameter d = 6, for which
the set S6 contains 12 seeds. Johnson and Saiago show that the families generated by
nine of these seeds consist entirely of diminimal trees, while, in each of the remaining
three families, at least one of the trees is not diminimal.

The main result in our paper is that, for any fixed d ≥ 4, there are at least two seeds
Sd and S ′d of diameter d such that the families T (Sd) and T (S ′d) generated by these
seeds consist entirely of diminimal trees. If d ≥ 5 is odd, there is a third seed S ′′d for
which this property holds. These seeds are formally defined in Definition 3.2, and they
are depicted in Figures 4a-4e for small values of d.

Theorem 1.2. Let d be a positive integer. Let T (Sd), T (S ′d) and T (S ′′d ) be the families
of trees of diameter d generated by the seeds Sd, S

′
d and S ′′d , respectively, where S ′d is

defined for d ≥ 4 and S ′′d for odd values of d ≥ 5. For every T ∈ T (Sd)∪T (S ′d)∪T (S ′′d ),
we have q(T ) = d+ 1.

The main additional tool in our proof of Theorem 1.2 is an algorithm by Jacobs
and Trevisan [10] that was proposed to solve a problem known as eigenvalue location
for matrices associated with graphs. A detailed discussion is deferred to Section 2,
but we can anticipate that it will have an important role in an inductive approach for
Theorem 1.2.

As a byproduct of our proof of Theorem 1.2 (see Theorem 4.4), we obtain a construc-
tive procedure that, given a tree T ∈ T (Sd)∪T (S ′d)∪T (S ′′d ), produces a symmetric ma-
trixA ∈ Rn×n with underlying tree T with the property that q(T ) = |DSpec(A)| = d+1.
This means that, in addition to exploring the existence of such a matrix, we also ad-
dress its computability. In particular, the procedure allows us to produce such a matrix
A with integral spectrum, i.e., with the property that its spectrum consists entirely of
integers. More generally, let

qint(T ) = min{|DSpec(A)| : A ∈ Sint(T )},
where Sint(T ) is the subset of S(T ) whose matrices are integral (i.e., have integral
spectrum). Clearly, we have q(T ) ≤ qint(T ) for any tree T . Our work implies that the
following holds for all trees T with diameter d ≤ 5 and for all T ∈ T (Sd)∪T (S ′d)∪T (S ′′d )
with d ≥ 6:

q(T ) = qint(T ).

It would be interesting to understand how these parameters relate for arbitrary trees.
We should mention that, even though the focus of this paper is on matrices associated
with trees, there has been a lot of research on the parameter q(G) for more general
graphs, see [1, 2, 4, 5, 8] for example.

Our paper is structured as follows. In the next two sections, we describe the main
ingredients used in our proofs. In Section 2, we present an algorithm that locates eigen-
values of trees, that is, an algorithm that for any real symmetric matrix M whose
underlying graph is a tree and for any given real interval I, finds the number of eigen-
values of M in I. We illustrate its usefulness by providing a short proof of the classical
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Parter-Wiener Theorem. In Section 3, we describe how trees of any fixed diameter d
can be constructed by a sequence of branch duplications starting with some irreducible
tree with diameter d, which is known as a seed.

The remaining sections deal with the proof of Theorem 1.2. In Section 4, we state
a technical tool (Theorem 4.4) that is the heart of the proof. Given d ≥ 1, it will
allow us to inductively define a set of real numbers (of size d + 1) that, for any tree
T ∈ T (Sd) with diameter d, is equal to the set of distinct eigenvalues in the spectrum
of a symmetric matrix M(T ) with underlying graph T . A set of this type will be
called strongly realizable because there are realizations of it for all trees in the class
under consideration. The existence of such a set immediately implies the validity of
Theorem 1.2 for seeds of type Sd.

Theorem 4.4 will then be proved by induction in Section 5. To conclude the paper,
Section 6 uses strongly realizable sets to give a proof of Theorem 1.2 for seeds of type
S ′d and S ′′d . Moreover, we explain how this may be used to obtain matrices with the
minimum number of distinct eigenvalues that satisfy additional properties, such as
having integral spectrum. An explicit construction is given in Section 7.

2. Eigenvalue location in trees

In a seminal paper [10], Jacobs and one of the current authors have proposed an
algorithm that, given a real symmetric matrix M whose underlying graph is a tree and
a real interval I, finds the number of eigenvalues of M in I. In fact, the work in [10]
was specifically concerned with eigenvalues of the adjacency matrix of an arbitrary
tree. However, the strategy could be extended in a natural way to arbitrary symmetric
matrices associated with trees. This more general algorithm, stated in Figure 1, appears
in [6].

The algorithm runs on a rooted tree, that is a tree T for which one of the vertices
r is distinguished as the root. Each neighbor of r is regarded as a child of r, and r is
called its parent. For each child c of r, all of its neighbors, except the parent, become its
children. This process continues until all vertices except r have parents. A vertex that
does not have children is called a leaf of the rooted tree. For the algorithm, the tree
T that underlies the input matrix M may be assigned an arbitrary root, but its vertex
set must be ordered bottom-up, that is, any vertex must appear after all its children.
In particular, the root is the last vertex in such an ordering.

The following theorem summarizes the way in which the algorithm will be applied.
Its proof is based on a property of matrix congruence known as Sylvester’s Law of
Inertia, we refer to [9] for details.

Theorem 2.1. Let M be a symmetric matrix of order n that corresponds to a weighted
tree T and let x be a real number. Given a bottom-up ordering of T , let D be the diagonal
matrix produced by Algorithm Diagonalize with entries T and x. The following hold:

(a) The number of positive entries in the diagonal of D is the number of eigenvalues
of M (including multiplicities) that are greater than −x.

(b) The number of negative entries in the diagonal of D is the number of eigenvalues
of M (including multiplicities) that are less than −x.

(c) The number of zeros in the diagonal of D is the multiplicity of −x as en eigen-
value of M .

An immediate consequence of this result is the well-known fact that the multiplicity
of the maximum and of the minimum eigenvalue of any tree is always equal to 1.
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Input: matrix M = (mij) with underlying tree T
Input: Bottom up ordering v1, . . . , vn of V (T )
Input: real number x
Output: diagonal matrix D = diag(d1, . . . , dn) congruent to M + xI

Algorithm Diagonalize(M,x)
initialize di := mii + x, for all i
for k = 1 to n

if vk is a leaf then continue

else if dc 6= 0 for all children c of vk then

dk := dk −
∑ (mck)

2

dc
, summing over all children of vk

else
select one child vj of vk for which dj = 0

dk := − (mjk)
2

2
dj := 2
if vk has a parent v`, remove the edge {vk, v`}.

end loop

Figure 1. Diagonalizing M + xI for a symmetric matrix M associated
with the tree T .

Theorem 2.2. Let T be a tree, let M ∈ S(T ), and consider λmin = min(Spec(M)) and
λmax = max(Spec(M)). Then, mM(λmin) = 1 = mM(λmax).

Proof. Let T be a tree and M ∈ S(T ). We prove the theorem for λmin, the proof for
λmax follows from the fact that λmax(M) = −λmin(−M).

Choose an arbitrary root v for T and fix a bottom-up ordering v1, . . . , vn = v of T .
Set x = −λmin and consider an application of Diagonalize(M,x). Because λmin is an
eigenvalue of M , at least one of the diagonal elements dj must be zero at the end of
the algorithm by Theorem 2.1(c).

We claim that vj = v, which implies the desired result. Assume for a contradiction
that vj 6= v, so that vj has a parent vk in T . Because dj is 0, at the time vk is
processed, it has a child with value 0. The algorithm assigns the positive value 2 to
one of the children vj′ of vk with this property and the negative value −(mj′k)

2/2 to vk.
These values cannot be modified in later steps. Theorem 2.1(b) implies that M has an
eigenvalue λ such that λ < λmin, a contradiction. �

Theorem 2.1 can also be used to give a short proof of a result attributed to Parter
and Wiener, see [14, Theorem 2.3.1]. We include the proof here to illustrate how our
proof method applies. Given a tree T and a matrix M(T ) for which T is the underlying
tree, we write M [T −v] to denote the submatrix of M obtained by deleting the row and
the column corresponding to a vertex v of T . More generally, if T ′ is a subgraph of T ,
we write M [T ′] for the submatrix of M induced by the rows and columns corresponding
to vertices of T ′.

Theorem 2.3 (Parter-Wiener Theorem). Let T be a tree, let M ∈ S(T ), and suppose
that λ ∈ R is such that mM(λ) ≥ 2. Then there is a vertex v of T of degree at least 3
such that mM [T−v](λ) = mM(λ) + 1. Moreover, λ occurs as an eigenvalue of M [Ti] for
at least three different components Ti of T − v.
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Proof. Let T be an n-vertex tree, M ∈ S(T ) and suppose that λ ∈ R is such that
mM(λ) ≥ 2.

Choose some vertex vn of V (T ) as the root of T and set x = −λ. Consider an appli-
cation of Diagonalize(M,x) with root vn. By Theorem 2.1(c), at least two diagonal
elements of the output matrix D must be 0. Fix a vertex vj that is farthest from the
root such that dj = 0, so that j < n. Let v = vk be the parent of vj. Let Ti be the
components of T − vk rooted in each of the children vk,i of vk, where i ∈ {1, . . . , `}. If
vk 6= vn, let T0 be the component of T − vk that contains vn (and assume it is rooted
at vn).

First note that ` ≥ 2. Indeed, if ` = 1, then vj would be the only child of vk. However,
since dj = 0, when the algorithm processes vk, it redefines dj as 2, contradicting our
assumption. In fact, this argument further implies that vj must have at least one sibling
vj′ to which the algorithm assigns value 0 as it processes vj′ , but then redefines it as 2.

Consider applications of Diagonalize(M [Ti], x) for i ∈ {1, . . . , `}. Our assumption
about the distance from vj to the root implies that 0 can only appear (as the final
value) at the root of each such application. On the other hand, the previous paragraph
ensures that 0 appears as the final value of at least two of the roots, namely vj and vj′ .

If 0 is the value of at least three of these roots, we conclude that vk has degree at
least three and that λ occurs as an eigenvalue of at least three components of T − v by
Theorem 2.1(b).

If 0 appears in exactly two of the roots, we conclude that vk 6= vn, as otherwise one of
the 0’s would be redefined as 2 when processing vn, and vn would be assigned a negative
value, contradicting the assumption that mM(λ) ≥ 2. The same considerations imply
that, when performing Diagonalize(M,x), there are initially two occurrences of 0 at
the children of vk, but, when the algorithm processes vk, it replaces one of the zeros by
2, vk gets a negative value and the edge between vk and its parent is deleted. Because
of this, the values assigned by Diagonalize(M,x) to the remaining vertices of T are
not affected by the values on vk’s branch, that is, they are exactly the values assigned
by Diagonalize(M [T0], x). In particular, 0 must appear at least once at the output of
Diagonalize(M [T0], x), thus λ is an eigenvalue of T0. Overall, λ occurs as an eigenvalue
of at least three components of T − v.

To conclude the proof, we still need to establish mM [T−v](λ) = mM(λ) + 1, where
v = vk. But this follows immediately from the argument above. Let s be the number of
times that 0 appears at children of vk (before vk is processed). After processing vk, one
of the zeros becomes 2 and the edge between vk and its parent (if it exists) is deleted,
so that mM(λ) = (s− 1) +mM [T0](λ) if vk 6= vn, and mM(λ) = s− 1 if vk = vn. On the
other hand, mM [T−v](λ) = s+mM [T0](λ) if vk 6= vn, and mM [T−v](λ) = s if vk = vn. �

The following result is proved with similar ideas.

Lemma 2.4. Let T be a tree and M ∈ S(T ). If v ∈ V (T ) is such that mM [T−v](λ) =
mM(λ) + 1, for some λ ∈ R, then the following holds when Algorithm Diagonalize is
performed for M and −λ with root v. There is a child vj of v such that, after processing
vj, the algorithm assigns value dj = 0.

Proof. Let T be a rooted tree and M ∈ S(T ). Let v ∈ V (T ) be such that mM [T−v](λ) =
mM(λ) + 1, for some λ ∈ R. Consider T rooted at v. Let T1, . . . , Tp be the connected
components of T − v rooted at the children v1, . . . , vp of v. By Theorem 2.1, mM(λ)
is given by the number of occurrences of 0 in the diagonal of the matrix produced by
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Diagonalize(M,−λ) with root v. Similarly, mM [T−v](λ) is the sum of the number of oc-
currences of 0 in the diagonal of the matrices Di produced by Diagonalize(M [Ti],−λ)
with root vi. By hypothesis, this sum is larger than mM(λ). In particular, one of the 0´s
assigned by Diagonalize(M [Ti],−λ) must lie on a vertex u that is assigned a nonzero
value by Diagonalize(M,−λ).

On the other hand, the value assigned by Diagonalize(M [Ti],−λ) with root vi to a
vertex w 6= vi is precisely the value assigned to w by Diagonalize(M,−λ) with root
v. As a consequence, the vertex u mentioned in the previous paragraph must be vj for
some j ∈ {1, . . . , p}. This means that, in an application of Diagonalize(M,−λ) with
root v, the algorithm assigns value dj = 0 to vj upon processing vj, and later redefines
the value of dj as 2 when processing its parent v. �

3. Trees of diameter d and branch decompositions

In this section, we shall describe an operation known as branch decomposition, which
allows us to view trees of diameter d as being generated by a finite number of such trees,
which are known as seeds.

Let d ≥ 1 be a fixed integer and let T (n)
d be the set of n-vertex trees with diameter

d, where n ≥ 3. Given a tree T ∈ T (n)
d , there is a natural way to consider it as a rooted

tree.

Definition 3.1 (Main root). Let T = (V,E) be a tree with diameter d.

(a) If d = 2k for some k ∈ N, then v ∈ V is the main root of T if it is the central
vertex of a maximum path P2k+1 in T .

(b) If d = 2k + 1 for some k ∈ N, then e ∈ E is the main edge of T if it is the
central edge of a maximum path P2k+2 in T . Each endpoint of e is called a main
root of T .

We note that the main root and the main edge are well defined. For (a), observe
that any two distinct copies Q1 and Q2 of P2k+1 in T must intersect in a vertex v
that is the central vertex of both, otherwise the path Q created by merging the two
longest subpaths of Q1 and Q2 joining v to a leaf would have more than 2k + 1 edges,
a contradiction. We may similarly argue that any two longest paths in a tree with odd
diameter share their central edge.

To prove Theorem 1.2, we will construct classes of trees of diameter d in a recursive
way. To this end, we define an operation on rooted trees. Let p ≥ 1 and consider
disjoint trees T0, T1, . . . , Tp rooted at vertices v0, v1, . . . , vp, respectively. We write T0�
(T1, . . . , Tp) for the tree with vertex set V =

⋃p
`=0 V (T`) and edge set E = ∪p`=1{v0v`}∪⋃p

`=0E(T`) and we write T = T0 � (T1, . . . , Tp) (see Figure 2 for p = 3). If p = 1, we
simplify the notation to T0 � (T1) = T0 � T1.

The height h(T ) of a rooted tree T is the distance of the root v to the farthest vertex
in T , i.e., h(T ) = max{d(v, u) : u ∈ V (T )}. Note that, when a tree T of diameter d is
rooted at a main root, then its height is h(T ) = dd

2
e.

As mentioned in the introduction, the authors of the book [14] consider families of
trees constructed by successive applications of operations called branch duplications.
Given a tree T , we say that Tj is a branch of T at a vertex v if Tj is a component of
T − v. We can view the branch as a rooted tree with root given by the neighbor of v.
An s-combinatorial branch duplication (CBD) of Tj at v results in a new tree where s
copies of Tj are appended to T at v (see Figure 3). A tree T ′ that is obtained from T
by a finite sequence of CBDs is called an unfolding of T . In this case, we also say that
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v0

T0

v1

T1

v2

T2

v3

T3

v1 v2 v3

v0

T0 � (T1, T2, T3)

Figure 2. The rooted tree T0 � (T1, T2, T3). The root of each tree is
denoted by a square.

T is a folding of T ′. It is easy to see that for T to be an unfolding of some other tree,
then T must contain a vertex v such that T−v has at least two isomorphic branches, by
which we mean that there is a root-preserving isomorphism between the two branches.

v1

v

Tree T of diameter 4
rooted at v.

v1

v

2-CBD of T1 (the
branch of T − v that
contains v1) at v.

Figure 3. An unfolding of a tree T .

In this paper (as was the case in [?]), we are interested in unfoldings that preserve
the diameter. For this reason, a CBD will be only performed on branches of T − v
that do not contain any main root of T (as the diameter would increase otherwise).
An (unlabelled) tree T of diameter d is said to be a seed if it cannot be folded into a
smaller tree of diameter d. The work in [13] shows that, for every positive integer d,
there is a finite number of seeds of diameter d. Moreover, every tree of diameter d is
an unfolding of precisely one of these seeds. For example, the path Pd+1 is the only
seed for trees of diameter d ≤ 3. For diameter 4 and 5 there are two and three seeds,
respectively, and for d = 6 there are twelve seeds.

Note that we can think of unfolding in terms of the operation �. Let T be a tree and
consider a branch Tj of T at a vertex v. Let vj be the root of Tj (i.e. the neighbor of v in

Tj). Define T0 = T −Tj, rooted at v. Let T
(i)
j be disjoint copies of Tj, for i ∈ {1, . . . , s},

whose roots are denoted v
(i)
j , respectively. It is clear that T0 � (Tj, T

(1)
j , . . . , T

(s)
j ) is an

s-CBD of Tj at v.
As mentioned in the introduction, given d, we are interested in three families of trees

of diameter d, namely the trees generated by seeds Sd, S
′
d and S ′′d . We formally define

them here in terms of the operation �. In the definition, it is convenient to construct
the seeds as trees that are rooted at a central vertex.

Definition 3.2. Let S0 = K1, S1 = P2 and S2 = P3 be the only trees with a single
vertex, two vertices and three vertices, respectively, and consider them as rooted trees
such that S2 is rooted at the central vertex. Let S ′4 = S0 � (S1, S1), S ′5 = (S0 � S1) �
(S0 � S1) and S ′′5 = (S0 � S1)� (S1 � S1). For k ≥ 2, define
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(i) S2k−1 = S2k−3 � S2k−3 and S2k = S2k−3 � (S2k−3, S2k−3);
(ii) S ′2k+2 = S2k−3 � (S2k−1, S2k−1) and S ′2k+3 = (S2k−3 � S2k−1)� (S2k−3 � S2k−1);

(iii) S ′′2k+3 = (S2k−3 � S2k−1)� (S2k−1 � S2k−1).

We observe that S3 is the only seed of diameter three, that S4 and S ′4 are the only
two seeds of diameter four and that S5, S

′
5 and S ′′5 are the only three seeds of diameter

five. In Figure 4, we depict Sd, S
′
d and S ′′d for d ∈ {6, 7}.

Seed S6 Seed S
′
6

Seed S7 Seed S
′
7

Seed S
′′
7

Figure 4. The seeds of Definition 3.2 for d ∈ {6, 7}.

It turns out that the entire class of trees that may be generated by unfoldings of
seeds in {Sd}d≥0 may also be generated recursively using the operation �.

Definition 3.3. Let T ∗ be the set of trees defined as follows:

(i) K1 is the single tree in T ∗ with height 0.
(ii) Let k, p be positive integers and consider trees T0, T1, . . . , Tp ∈ T ∗, rooted at a

main root, with height k − 1. Then T = T0 � (T1, . . . , Tp) ∈ T ∗.
Note that, for a tree T defined in (ii), the diameter is 2k−1 if p = 1 and the diameter

is 2k if p ≥ 2. We also observe that v0 ∈ T0 is the main root of T = T0 � (T1, . . . , Tp)
and the edge between T0 and T1 is the central edge of T = T0 � T1. It is clear that the
tree T generated by trees of height k in (ii) has height k+ 1 when it is rooted at a main
vertex.

Recall that, if S is a seed of diameter d, T (S) denotes the set of trees of diameter d
that are unfoldings of S.

Proposition 3.4. For any tree T of diameter d ≥ 0, we have T ∈ T ∗ if and only if
T ∈ T (Sd).

Proof. To show that any tree T ∈ T (Sd) lies in T ∗, we prove the following two claims:

1. Any seed Sd lies in T ∗.
2. Assume that T ∈ T ∗. Then any tree T ′ obtained from T by a CBD lies in T ∗.

For part 1, note that S0 ∈ T ∗ by Definition 3.3(i). We have S1 = S0 � S0 and S2 =
S0 � (S0 � S0), and therefore they are elements of height 1 in T ∗ by Definition 3.3(ii).
For larger values of d, we proceed inductively. Note that, for all k ≥ 2, the seed S2k−3
(viewed as the rooted tree of Definition 3.2) has height k−1. As a consequence, assuming
that S2k−3 ∈ T ∗, we have S2k−1 = S2k−3�S2k−3 and S2k = S2k−3� (S2k−3, S2k−3) in T ∗
by Definition 3.3(ii).

We now prove part 2. We proceed by induction on k. For each k ∈ N, we show that,
for any tree T ∈ T ∗ of diameter 2k− 1 or 2k, any CBD of a branch of T leads to a tree
T ′ in T ∗.
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The base case k = 1 is trivial, as all trees with diameter at most two lie in T ∗.
Suppose that the statement holds for all trees in T ∗ with diameter at most 2k, and fix
T = T0� (T1, . . . , Tp) ∈ T ∗ with diameter d ∈ {2k+ 1, 2k+ 2}. By Definition 3.3, each
Ti lies in T ∗ and has height k, so that its diameter is at most 2k.

Let T ′ be the tree produced by an s-CBD of a branch Uj of T at a vertex u.

Case 1. Assume that u 6= v0, so that u ∈ V (Ti) for some i ∈ {0, . . . , p}. By the induction
hypothesis, the tree T ′i produced by an s-CBD of Uj at u lies in T ∗. By the definition of
branch duplication, Ti and T ′i have the same height. We conclude that T ′ ∈ T ∗ because
T ′ = T0 � (T1, . . . , Ti−1, T

′
i , Ti+1, . . . , Tp), if i 6= 0, or T ′ = T ′0 � (T1, . . . , Tp), if i = 0.

Case 2. Assume that u = v0, so that either the chosen branch is equal to Ti for some
i ∈ {1, . . . , p} or the chosen branch is a branch in T0. In the latter case, we simply repeat
the argument of case 1 with T ′0 being produced by a CBD in T0. Otherwise, u = v0 and

Uj = Ti, so that T ′ ∈ T ∗ because T ′ = T0 � (T1, . . . , Ti, T
(1)
i , . . . , T

(s)
i , Ti+1, . . . , Tp).

To conclude the proof of Proposition 3.4, we must show that every tree T ∈ T ∗ with
diameter d lies in T (Sd). This will again be done by induction on k, the height of the
tree T ∈ T ∗ (viewed as a rooted tree with root at a main vertex).

For k = 1, the statement is trivially true, because S1 and S2 are the only seeds with
diameter 2k − 1 = 1 and 2k = 2, respectively. Suppose that for some k ∈ N every
T ∈ T ∗ of diameter 2k− 1 is an unfolding of S2k−1 and every T ∈ T ∗ of diameter 2k is
an unfolding of S2k.

For the induction step, first fix T ∈ T ∗ of diameter 2k + 1. Then, T = T0 � T1, for
some T0, T1 ∈ T ∗ of height k. By hypothesis, T0 and T1 may be folded until we arrive
at their respective seeds S(0) and S(1), respectively. There are three possibilities:

(i) S(0) = S2k−1 and S(1) = S2k−1. In this case, S(0) � S(1) = S2k−1 � S2k−1 = S2k+1

is a folding of T , as required.
(ii) S(0) = S2k−1 and S(1) = S2k (the case S(0) = S2k and S(1) = S2k−1 is analogous).

In this case,

S(0) � S(1) = S2k−1 � S2k

= S2k−1 � (S2k−3 � (S2k−3, S2k−3)) .

The pair (S2k−3, S2k−3) may be folded into a single occurrence of S2k−3 without
decreasing the diameter, so that we get

S2k−1 � (S2k−3 � S2k−3) = S2k−1 � S2k−1 = S2k+1,

as required.
(iii) S(0) = S2k and S(1) = S2k. This case is similar to case (ii), as

S(0) � S(1) = S2k � S2k

= (S2k−3 � (S2k−3, S2k−3))� (S2k−3 � (S2k−3, S2k−3)) .

In this case, we can fold each pair (S2k−3, S2k−3) into a single occurrence of
S2k−3, and the result follows as above.

To conclude the proof, assume that T ∈ T ∗ has diameter 2k + 2. Then, T =
T0 � (T1, . . . , Tp), p ≥ 2, for some T0, T1, . . . , Tp ∈ T ∗ of height k. Each Ti may be
folded down to S2k−1 or to S2k, according to its diameter. Each occurrence of S2k may
be replaced by S2k−3�(S2k−3, S2k−3), which can be folded to S2k−3�S2k−3 = S2k−1. This
means that we reach S2k−1� (S2k−1, · · · , S2k−1), where the vector contains at least two
terms. If it has more than two terms, additional terms may be removed by foldings of
branches S2k−1 without decreasing the diameter. When we reach S2k−1�(S2k−1, S2k−1),
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

V (T0) V (T1) V (T2) · · · V (Tp)

V (T0) M0 A01 A02 · · · A0p

V (T1) AT01 M1 0 · · · 0

V (T2) AT02 0 M2
. . .

...

...
...

...
. . . . . . 0

V (Tp) AT0p 0 0 . . . Mp


, where A0i =


vi

v0 δ 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 0 0



Figure 5. Matrix M as in the statement of Lemma 3.6. The rows and
columns of the matrix are ordered according to the tree Ti they come
from.

no further folding can be performed, as it would decrease the diameter. The result
follows because S2k−1 � (S2k−1, S2k−1) = S2k+2. �

The trees generated by unfoldings of the other seeds in Definition 3.2 may also be
described by decompositions involving the operation �, as described in the proposition
below. The arguments in the proof are quite similar to the ones used to prove Propo-
sition 3.4 and is therefore omitted. The interested reader finds the proof of item (ii) in
the appendix.

Proposition 3.5. Let T be a tree and k ≥ 1. The following hold:

(i) T ∈ T (S ′2k+2) if, and only if, there exist T1, . . . , Tp ∈ T ∗, p ≥ 2, of height k and
T0 ∈ T ∗ of height k − 1 such that T = T0 � (T1, . . . , Tp);

(ii) T ∈ T (S ′2k+3) if, and only if, there exist T1, . . . , Tp, T
′
1, . . . , T

′
q ∈ T ∗, p, q ≥ 1, of

height k and T0, T
′
0 ∈ T ∗ of height k − 1 such that T = (T0 � (T1, . . . , Tp)) �

(T ′0 � (T ′1, . . . , T
′
q));

(iii) T ∈ T (S ′′2k+3) if, and only if, there exist T1, . . . , Tp, T
′
0, . . . , T

′
q ∈ T ∗, p, q ≥ 1, of

height k and T0 ∈ T ∗ of height k − 1 such that T = (T0 � (T1, . . . , Tp))� (T ′0 �
(T ′1, . . . , T

′
q)).

To conclude this section, we present a useful connection between a symmetric matrix
M with underlying tree T = T0 � (T1, . . . , Tp) and induced submatrices corresponding
to the subtrees Ti.

Lemma 3.6. Let T0, . . . , Tp be rooted trees with roots v0, . . . , vp, respectively, where
p ≥ 1. Let T = T0 � (T1, . . . , Tp). Given Mi ∈ S(Ti), for i ∈ {0, . . . , p} and δ 6= 0,
let M be the matrix M = (mij) ∈ S(T ) where M [Ti] = Mi and mv0vi = δ for all
i ∈ {1, . . . , p} (see Figure 5). The following hold:

(i) λmin(M) < λ < λmax(M), for all λ ∈
⋃p
`=0 Spec(M`).

(ii) Given y > λ, for all λ ∈
⋃p
`=0 Spec(M`), there exists δ(y) > 0 such that

λmax(M) = y.
(iii) Given y < λ, for all λ ∈

⋃p
`=0 Spec(M`), there exists δ(y) > 0 such that

λmin(M) = y.

Proof. Let p ≥ 1 and let T0, . . . , Tp be rooted trees with roots v0, . . . , vp, respectively
for a given p ∈ N. Given Mi ∈ S(Ti) and δ 6= 0, define M ∈ S(T ), where T =
T0 � (T1, . . . , Tp), such that M [Ti] = Mi and mv0vi = δ for all i ∈ {1, . . . , p}.
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Consider β = max{λ ∈ Spec(Mi) : 0 ≤ i ≤ p}, so that β = λmax(M`) for some
0 ≤ ` ≤ p.

We start with part (i). First, assume that ` > 0. Since β = λmax(M`), Theorem 2.2
tells us that an application of Diagonalize(M [T`],−β) with root v` assigns negative
values to all vertices of T` except v`, for which the value is 0. This coincides with the
values assigned to these vertices in an application of Diagonalize(M,−β) with root
v0 before processing v0. Since v` is a child of v0 with value 0, when the algorithm
processes v0, it redefines dvj = 2 > 0 and dv0 < 0 for some child vj of v0 (possibly
j = `). Therefore, according to Theorem 2.1(a), β < λmax(M).

Next assume that β = λmax(M0) > λmax(Mi) for all i > 0. As in the previous case, an
application of Diagonalize(M [T0],−β) with root v0 assigns negative values to all ver-
tices of T0 except v0. Moreover, by Theorem 2.1(b), applying Diagonalize(M [Ti],−β)
to each Ti with root vi assigns negative values to all vertices of Ti. As before, all these
values coincide with the values assigned by an application of Diagonalize(M,−β) with
root v0.

When Diagonalize(M,−β) processes v0, it assigns the value

dv0 = (mv0v0 − β)−
∑

w∈CT0 (v0)

m2
v0w

dw
−

p∑
i=1

m2
v0vi

dvi
, (2)

where CT0(v0) denotes the neighborhood of v0 in T0. Also note that, when we run
Diagonalize(M [T0],−β) with root v0, we obtain the final permanent value

0 = (mv0v0 − β)−
∑

w∈CT0 (v0)

m2
v0w

dw
.

Thus, as dvi < 0 for 1 ≤ i ≤ p, equation (2) becomes

dv0 = −
p∑
i=1

m2
v0vi

dvi
> 0,

so that β < λmax(M) by Theorem 2.1(a).
To prove that λmin(M) < λ, for all λ ∈

⋃p
`=0 Spec(M`), it suffices to apply this result

to −M , as λmin(M) = −λmax(−M).
To prove part (ii), fix y > β. We run Diagonalize(M,−y) with root v0. Just before

we process v0, all its children have been assigned negative values. Then we have

dv0 = (mv0v0 − y)−
∑

w∈CT0 (v0)

m2
v0w

dw
−

p∑
i=1

δ2

dvi
. (3)

Moreover, when we run Diagonalize(M [T0],−y), it assigns final permanent value

0 > d(T0)v0
= (mv0v0 − y)−

∑
w∈CT0 (v0)

m2
v0w

dw
,

since y > β ≥ λmax(M0).
To obtain dv0 = 0 in (3) we can set

δ(y) =

√√√√√
(

(mv0v0 − y)−
∑

w∈CT0 (v0)
m2
v0w

dw

)
∑p

i=1
1
dvi

.
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The expression within the square root is positive because dvi < 0 for 1 ≤ i ≤ p.
Item (iii) may be derived from item (ii) by considering the matrix −M . �

4. Strongly realizable sets

In this section, we shall state the technical result that implies the validity of The-
orem 1.2, namely Theorem 4.4 below. This technical result allows us to inductively
define a set of real numbers (of size d + 1) that is equal to the distinct eigenvalues in
the spectrum of a symmetric matrix M(T ) whose underlying graph is a tree T ∈ T ∗
with diameter d.

Definition 4.1. Let T = (V,E) be a tree with main root v. Let M ∈ S(T ). For each
λ ∈ DSpec(M) we define

L(M,λ) = min
u∈V (T )

{d(v, u) : d̃u = 0},

where d̃u denotes the final value assigned to u by Diagonalize(M,−λ) with root v.

In the definition below, and in the remainder of the paper, we shall use the notation
{λ1 < · · · < λ`} to refer to a set {λ1, . . . , λ`} of real numbers such that λ1 < · · · < λ`.

Definition 4.2. Given k ∈ N, a set of real numbers A = {λ0 < · · · < λ2k} is said to be
strongly realizable in a family of rooted trees C = {Ti}i∈I, where I is a set of indices,
if the following holds for any T ∈ C of height k and root v. There exists M ∈ S(T )
satisfying:

(1) DSpec(M) ⊆ A;
(2) L(M,λ2i) = 0, 0 ≤ i ≤ k;
(3) mM [T−v](λ2i−1) = mM(λ2i−1) + 1, 1 ≤ i ≤ k.

A matrix M with the above properties is said to be a strong realization of A in C.

Note that, by this definition, the values λ0, λ2, . . . , λ2k must be in the spectrum of
M .

Example 4.3. We show that the set {λ0, . . . , λ4} = {−2,−1, 0, 1, 3} is strongly real-
izable in T ∗. To this end, we need to show that the following holds for any T ∈ T ∗
with diameter d ∈ {3, 4}. If d = 3, there must be a matrix M with underlying tree
T whose spectrum contains −2, 0, 3 and at least one of the elements −1 and 1. For
d = 4, the set of distinct eigenvalues must be equal to {−2,−1, 0, 1, 3}. Moreover,
conditions (2) and (3) must hold in both cases. Weights that satisfy these properties
are given in Figure 6. Note that the diameter is equal to 3 if p = 1 and equal to 4 if
p ≥ 2. The properties (1)-(3) may be easily checked by applying Diagonalize(M,−λ)
for values of λ in this set. We may further verify that mM(−2) = 1, mM(−1) = p− 1,
mM(0) = 1− p+

∑p
i=1 ti, mM(1) = t0 + p− 1 and mM(3) = 1, so that the multiplicities

add up to |V (T )|. Observe that λ = −1 is an eigenvalue of M if and only if the diameter
is 4.

The main technical result in this section is the following. It states that, for every
k ∈ N, there exists a set of real numbers Ck = {λ0 < λ1 < · · · < λ2k+1} such that the

subsets C
(0)
k = {λ0 < λ1 < · · · < λ2k} and C

(1)
k = {λ1 < λ2 < · · · < λ2k+1} are both

strongly realizable in T ∗. Moreover, as long as θ, δ > 0 are sufficiently small, the sets
{λ0 + θ < λ1 < · · · < λ2k} and {λ1 < · · · < λ2k < λ2k+1 + δ} must also be strongly
realizable in T ∗.
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0 0

0

0 0

0

1

1

1

1√
t0

1√
t0

t0

1√
t1

1√
t1

t1

1√
tp

1√
tp

tp

2√
p

2√
p

Figure 6. A weighted tree of diameter 4 with spectrum {−2,−1, 0, 1, 3}
that satisfies (2) and (3). Note that choosing p ≥ 2 and ti ≥ 1 for all
i ∈ {0, . . . , p} produces all possible trees in T ∗.

Theorem 4.4. Let α < β be real numbers. For every k ∈ N, there exists a set of real
numbers Ck = {λ0 < λ1 < · · · < λ2k+1}, where λk = α and λk+1 = β, such that the
following holds for every T ∈ T ∗ with height k, diameter d and main root v. There

exist matrices M
(k)
1 ,M

(k)
2 ∈ S(T ) satisfying the following:

(i) DSpec(M
(k)
1 ) = {λ0, . . . , λ2k}, if d = 2k; DSpec(M

(k)
1 ) = {λ0, . . . , λ2k} \ {λ1}, if

d = 2k − 1;

(ii) DSpec(M
(k)
2 ) = {λ1, . . . , λ2k+1}, if d = 2k; DSpec(M

(k)
2 ) = {λ1, . . . , λ2k+1} \

{λ2k}, if d = 2k − 1;

(iii) L(M
(k)
1 , λ2i) = 0 = L(M

(k)
2 , λ2i+1), for i ∈ {0, . . . , k};

(iv) m
M

(k)
1 [T−v](λ2i−1) = m

M
(k)
1

(λ2i−1) + 1 and m
M

(k)
2 [T−v](λ2i) = m

M
(k)
2

(λ2i) + 1, for

i ∈ {1, . . . , k}.
Moreover, the following are satisfied.

(v) Let yk = β−α
2k−1 . For all θ ∈ (0, yk), there exists M

(k)
1,θ such that

DSpec(M
(k)
1,θ ) ⊆ {λ0 + θ, λ1, . . . , λ2k},

L(M
(k)
1,θ , λ0 + θ) = 0, and, for all i ∈ {1, . . . , k}, we have L(M

(k)
1,θ , λ2i) = 0 and

m
M

(k)
1,θ [T−v]

(λ2i−1) = m
M

(k)
1,θ

(λ2i−1) + 1.

(vi) For all δ ∈ (0, yk), there exists M
(k)
2,δ such that

DSpec(M
(k)
2,δ ) ⊆ {λ1, . . . , λ2k, λ2k+1 + δ},

L(M
(k)
2,δ , λ2k+1 + δ) = 0, and, for all i ∈ {1, . . . , k}, we have L(M

(k)
2,δ , λ2i−1) = 0

and m
M

(k)
2,δ [T−v]

(λ2i) = m
M

(k)
2,δ

(λ2i) + 1.

We emphasize that, in our proof of Theorem 4.4, the set Ck does depend on k, in
the sense that Ck+1 is not obtained from Ck by the inclusion of two new elements. The
proof of Theorem 4.4 will be the subject of the next section. We now observe that it
immediately implies that Theorem 1.2 holds for trees in T ∗.
Proof of Theorem 1.2 for trees in T ∗. Let T ∈ T ∗ with diameter d. Theorem 4.4(i)
tells us that it admits a matrix M(T ) with d+1 distinct eigenvalues that is a realization
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of a set of d+ 1 real numbers (Ck \ {λ2k+1}, if d = 2k; Ck \ {λ1, λ2k+1}, if d = 2k − 1).
By Theorem 1.1, we deduce that q(T ) = d+ 1. �

5. Proof of Theorem 4.4

Theorem 4.4 will be proved by induction. One of the main ingredients for the step
of induction is the following result, which gives a construction that allows us to extend
the spectra of a set of matrices to a larger matrix in terms of the operation �.

Lemma 5.1. Let C1 and C2 be two families of rooted trees. Let k1 and k2 be nonnegative
integers and assume that A1 = {λ0 < · · · < λ2k1} and A2 = {µ0 < · · · < µ2k2} are two
strongly realizable sets in C1 and C2, respectively, such that (A1 ∪ A2) \ (A1 ∩ A2) =
{a, b}, with a = min{λ0, µ0} and b = max{λ2k1 , µ2k2}. Suppose that there is a partition
A1 ∩ A2 = Λ1 ∪ Λ2 with the following property. For any trees T1 ∈ C1 and T2 ∈ C2
with height k1 and k2 and root v1 and v2, respectively, assume that there exist a strong
realization M1(T1) of A1 and a strong realization M2(T2) of A2 such that

(i) For all λ ∈ Λ1, we have L(M1(T1), λ) = 0 and mM2[T2−v2](λ) = mM2(T2)(λ) + 1.
(ii) For all λ ∈ Λ2, we have L(M2(T2), λ) = 0 and mM1[T1−v1](λ) = mM1(T1)(λ) + 1.

Then the following holds for a tree T = T0 � (T1, . . . , Tp) with main root v0, where
T1, . . . , Tp ∈ C1, p ≥ 1, have height k1, and T0 ∈ C2 has height k2. Consider a matrix
M ∈ S(T ) for which M [T0] = M2(T0) and M [Ti] = M1(Ti), 1 ≤ i ≤ p (see Figure 7).
Then there exist λmin, λmax ∈ R such that the following hold:

(a) DSpec(M) =


(A1 ∩ A2) ∪ {λmin, a, b, λmax}, if p > 1 and a, b ∈ A1,

(A1 ∩ A2) ∪ {λmin, a, λmax}, if p > 1 and {a} = A1 ∩ {a, b},
(A1 ∩ A2) ∪ {λmin, b, λmax}, if p > 1 and {b} = A1 ∩ {a, b},
(A1 ∩ A2) ∪ {λmin, λmax}, if p = 1 or (p ≥ 1 and a, b ∈ A2);

(b) For λ ∈ A1 ∩ A2,

mM(λ) = mM2(T0)(λ) +

p∑
i=1

mM1(Ti)(λ);

(c) L(M,λ) = 0 for all λ ∈ Λ2;
(d) mM [T−v0](λ) = mM(λ) + 1, for all λ ∈ Λ1;
(e) For x ∈ {a, b},

mM(x) =

{
p− 1 and mM [T−v0](x) = mM(x) + 1, if x ∈ A1

0, if x ∈ A2;

(f) λmax + λmin = a+ b.

Proof. Let C1 and C2 be two families of rooted trees. Fix k1, k2, A1, A2, and Λ1,Λ2

satisfying the conditions of the lemma.
Let T = T0 � (T1, . . . , Tp), where T1, . . . , Tp ∈ C1, p ≥ 1, have height k1, and T0 ∈ C2

has height k2. Let v0, . . . , vp be the root of T0, . . . , Tp, respectively, and let w1, . . . , wq
be the children of v0 in T0.

Let M be a matrix as defined in the statement of the lemma, depicted in Figure 7.
Note that the entries associated with edges of the form v0vi, where i > 0, have not been
assigned any particular values.
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

V (T0) V (T1) V (T2) V (Tp)

V (T0) M2(T0) A01 A02 · · · A0p

V (T1) AT01 M1(T1) 0 · · · 0

V (T2) AT02 0 M1(T2)
. . .

...

...
...

. . . . . . 0

V (Tp) AT0p 0 0 . . . M1(Tp)


, where A0i =


vi

v0 ∗ 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 0 0



Figure 7. The matrix M given in the statement of Lemma 5.1. The
rows and columns of the matrix are ordered according to the tree Ti they
come from.

Let n = |V (T )|. Clearly,

n =

p∑
i=0

|V (Ti)|

=

2k2∑
j=0

mM2(T0)(µj) +

p∑
i=1

2k1∑
j=0

mM1(Ti)(λj)

(∗)
= pδa1 + pδb1 +

∑
λ∈A1∩A2

(
mM2(T0)(λ) +

p∑
i=1

mM1(Ti)(λ)

)
. (4)

In (*), δa1 = 1 if a ∈ A1 and δa1 = 0 otherwise, while δb1 = 1 if b ∈ A1, δb1 = 0
otherwise. The term pδa1 + pδb1 comes from the multiplicity of a and b as eigenvalues of
M , which is equal to one for the corresponding trees because the least and the greatest
eigenvalues have multiplicity 1 by Theorem 2.2.

We use the algorithm of Section 2 to compute the spectrum of M . First, we prove
parts (b), (c) and (d) for elements λ ∈ A1 ∩ A2 = Λ1 ∪ Λ2. Consider an application
of Diagonalize(M,−λ) with root v0. Before v0 is processed, everything happens as
if we had processed Diagonalize(M2(T0),−λ) and Diagonalize(M1(Ti),−λ), for i ∈
{1, . . . , p}. When we process the main root v0 we have two cases according to whether
λ ∈ Λ1 or λ ∈ Λ2.

If λ ∈ Λ2, we have mM1[Ti−vi](λ) = mM1(Ti)(λ) + 1, and L(M2(T0), λ) = 0. By
Lemma 2.4, each vi, i ∈ {1, . . . , p} has a child ui for which Diagonalize(M,−λ) assigns
dui = 0 (before processing vi). Then, when vi is processed, it is assigned a negative
value, one of its children with value 0 (possibly ui) is assigned value 2, and the edge
connecting vi to v0 is deleted. So, processing v0 in Diagonalize(M,−λ) is the same as
processing v0 in Diagonalize(M2,−λ). In particular, dv0 = 0, since L(M2(T0), λ) = 0
by hypothesis. Combining these arguments, we see that the multiplicity of λ as an
eigenvalue of M satisfies

mM(λ) = mM2(T0)(λ) +

p∑
i=1

mM1(Ti)(λ).

We have seen that L(M,λ) = 0.
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Next suppose λ ∈ Λ1, so that L(M1(Ti), λ) = 0, for all i ∈ {1, . . . , p}, andmM2[T0−v0](λ) =
mM2(λ)+1. In this case, if we consider Diagonalize(M,−λ) just before it processes the
root v0, we have dvi = 0 for all i ∈ {1, . . . , p}, and by Lemma 2.4 there is s ∈ {1, . . . , p},
such that the algorithm assigns dws = 0 before processing v0. Then, when we process
v0, we may suppose that the algorithm assigns dws = 2 and dv0 < 0, and that all of the
remaining children with value 0 are not modified. This also implies that

mM(λ) = mM2(T0)(λ) +

p∑
i=1

mM1(Ti)(λ).

Moreover, it is clear that L(M,λ) = 1 and that mM [T−v0](λ) = mM(λ) + 1.
Next we prove (e). First assume that x = a ∈ A1. Since it is the least eigenvalue of

M1(Ti) for all i, when applying Diagonalize(M1(Ti),−x), we get dv1 = · · · = dvp = 0,
while all other vertices in these trees are assigned a positive value (see Theorem 2.2).
Also, since x < λmin(M2(T0)), Diagonalize(M2(T0),−x) assigns positive values to all
entries. After processing v0, one of the value dvi above becomes 2, while v0 is assigned
a negative value. By Theorem 2.1, this means that mM(x) = p− 1 and that there is a
single eigenvalue less than it. In particular, if p = 1, x is not an eigenvalue of M , but
satisfies mM [T−v0](x) = mM(x) + 1. For p ≥ 2, we get L(M,x) = 1. The case b ∈ A1 is
analogous, with the least eigenvalue being replaced by the greatest eigenvalue.

If x = a ∈ A2, then when we apply Diagonalize(M(T ),−x), all vertices v except v0
are assigned a positive value. When processing v0, the algorithm produces

dv0 = d(T0)v0
−

p∑
i=1

m2
v0vi

dvi
. (5)

Since L(M [T0], x) = 0 by hypothesis, we have d
(T0)
v0 = 0. So the expression in (5) is

negative. Theorem 2.1 implies that |V (T )|− 1 eigenvalues of M are greater than x and
one eigenvalue is less than x.

To prove part (a), summing the multiplicities, we obtain

mM(a) + mM(b) +
∑

λ∈A1∩A2

mM(λ)

= (p− 1)δa1 + (p− 1)δb1 +
∑

λ∈A1∩A2

(
mM2(T0)(λ) +

p∑
i=1

mM1(Ti)(λ)

)
(4)
= n− 2.

This means that there are only two eigenvalues in Spec(M), namely λmax(M) and
λmin(M), establishing (a).

Finally, we prove (f) using an argument based on the trace of a matrix. (Recall that
the trace tr(M) of a square matrix M is the sum of its diagonal elements; equivalently,
it is the sum of its eigenvalues.) By our conclusions in (b) and (e) above, tr(M) =
tr(M2(T0)) +

∑p
i=1 tr(M1(Ti)), we have

λmax + λmin = a+ b, (6)

as required. �

We are now ready to prove Theorem 4.4.
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Proof of Theorem 4.4. We proceed by induction on k. For k = 1, let α < β ∈ R and

consider the set of real numbers C1 = {2α−β, α, β, 2β−α} = {λ(1)0 < λ
(1)
1 < λ

(1)
2 < λ

(1)
3 }.

Let T ∈ T ∗ be a tree of diameter d ∈ {1, 2} = {2k − 1, 2k} with main root v0.

We define M
(1)
1 (T ) := M

(1)
1 as follows: set all diagonal values of M

(1)
1 as α. By

Lemma 3.6(ii), we may assign weights to the edges between v0 and its children such

that β is the maximum eigenvalue of M
(1)
1 .

Applying Diagonalize(M
(1)
1 ,−α), it is easy to see that m

M
(1)
1

(α) = |V (T )| − 2 (in

particular, this number is 0 if T has diameter 1) and that m
M

(1)
1 [T−v0]

(α) = m
M

(1)
1

(α)+1.

As a consequence, L(M
(1)
1 , α) = 1 if α is an eigenvalue of M . Moreover, by Theorem 2.1,

the two remaining eigenvalues must be λmin(M
(1)
1 ) and λmax(M

(1)
1 ) = β. Considering

the trace of M
(1)
1 , we obtain

λmin + (|V (T )| − 2)α + β = |V (T )| · α.

This shows that λmin = 2α − β, so that DSpec(M
(1)
1 ) ⊆ {λ(1)0 , λ

(1)
1 , λ

(1)
2 }. By our

proof of Theorem 2.2, we know that L(M
(1)
1 , λ0) = L(M

(1)
1 , λ2) = 0. This shows that

{λ(1)0 , λ
(1)
1 , λ

(1)
2 } is strongly realizable for trees of height 1 in T ∗.

Next define M
(1)
2 (T ) := M

(1)
2 as follows: set all diagonal values of M

(1)
2 as β and, by

Lemma 3.6(iii), define the weights of the edges between v0 and its children such that α

is the minimum eigenvalue of M
(1)
2 .

Applying Diagonalize(M
(1)
2 ,−β), we again see that m

M
(1)
2

(β) = |V (T )| − 2, that

m
M

(1)
2 [T−v0]

(β) = m
M

(1)
2

(β)+1 and that the remaining two eigenvalues are λmin(M
(1)
2 ) =

α and λmax(M
(1)
2 ). Considering the trace of M

(1)
2 , we obtain λmax(M

(1)
2 ) = 2β − α,

so that DSpec(M
(1)
2 ) ⊆ {λ(1)1 , λ

(1)
2 , λ

(1)
3 }. Here L(M

(1)
2 , λ

(1)
1 ) = L(M

(1)
2 , λ

(1)
3 ) = 0. As a

consequence, {λ(1)1 , λ
(1)
2 , λ

(1)
3 } is strongly realizable for trees of height 1 in T ∗.

So far, we have shown that items (i)-(iv) hold for the base of induction.
To prove (v), let y1 = β − α = β−α

21−1 . Fix θ such that 0 < θ < y1. Observe that this

interval is not empty, since β > α. We define M
(1)
1,θ ∈ S(T ) as follows: the diagonal

entries of M
(1)
1,θ are the same as M

(1)
1 , except for the entry corresponding to v0, which

is α + θ. To ensure that the greatest eigenvalue of M
(1)
1,θ is equal to β, the weight

ω assigned to the edges between v0 and its children is defined by the solution of the

following equation obtained by applying Diagonalize(M
(1)
1,θ ,−β) with root v0:

0 = (α + θ − β)−
∑
w 6=v0

ω2

α− β
. (7)

Note that −
∑

w 6=v0
ω2

α−β is positive, so (7) has a real solution ω if, and only if, α+θ−β <
0, which is true since θ < β−α. As in the previous case, α has multiplicity |V (T )|−2 and

m
M

(1)
1,θ [T−v0]

(α) = m
M

(1)
1,θ

(α) + 1. So far, we have DSpec(M
(1)
1,θ ) ⊆ {λmin(M

(1)
1,θ ), λ

(1)
1 , λ

(1)
2 }.

Finally, note that

λ
(1)
0 + (|V | − 2)α + β = tr(M

(1)
1 ) = tr(M

(1)
1,θ )− θ = λmin(M

(1)
1,θ ) + (|V | − 2)α + β − θ,

from which we obtain λmin(M
(1)
1,θ ) = λ

(1)
0 + θ. As in the previous case, L(M

(1)
1,θ , λ

(1)
2 ) = 0

and L(M
(1)
1,θ , λ

(1)
0 + θ) = 0.
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To prove (vi), fix δ such that β − α > δ > 0 > α − β. We define M
(1)
2,δ ∈ S(T )

as follows: the diagonal entries of M
(1)
2,δ are the same of M

(1)
2 , except for the entry

corresponding to v0 which is β+ δ. To ensure that α is the least eigenvalue of M
(1)
2,δ , the

weight ω assigned to the edges between v0 and its children is defined by the solution of

the following equation obtained by applying Diagonalize(M
(1)
2,δ ,−α) with root v0:

0 = (β + δ − α)−
∑
w 6=v0

ω2

β − α
. (8)

Note that −
∑

w 6=v0
ω2

β−α is negative, so (8) has a real solution ω if, and only if, β+δ−α >
0, which is true since δ > α − β. As in the case of M

(1)
2 , λ

(1)
2 = β has multiplic-

ity |V (T )| − 2 and m
M

(1)
2,δ [T−v0]

(β) = m
M

(1)
2,δ

(β) + 1. So far, we have DSpec(M
(1)
2,δ ) ⊆

{λ(1)1 , λ
(1)
2 , λmax(M

(1)
2,δ )}. Finally, note that

α + (|V | − 2)β + λ
(1)
3 = tr(M

(1)
2 ) = tr(M

(1)
2,δ )− δ = α + (|V | − 2)β + λmax(M

(1)
2,δ )− δ,

from which we obtain λmax(M
(1)
2,δ ) = λ

(1)
3 + δ. As in the previous case, L(M

(1)
2,δ , λ

(1)
1 ) = 0

and L(M
(1)
2,δ , λ

(1)
3 + δ) = 0.

Now, suppose by induction that for some k ∈ N we have a set Ck = {λ(k)0 < λ
(k)
1 <

· · · < λ
(k)
2k+1} such that, for every T ′ ∈ T ∗ with height k and diameter d ∈ {2k −

1, 2k}, there exist M
(k)
1 = M

(k)
1 (T ′),M

(k)
2 = M

(k)
2 (T ′) ∈ S(T ′) satisfying the following

properties:

(i) DSpec(M
(k)
1 ) = {λ(k)0 , . . . , λ

(k)
2k }, if d = 2k; DSpec(M

(k)
1 ) = {λ(k)0 , . . . , λ

(k)
2k } \

{λ(k)1 }, if d = 2k − 1;

(ii) DSpec(M
(k)
2 ) = {λ(k)1 , . . . , λ

(k)
2k+1}, if d = 2k; DSpec(M

(k)
2 ) = {λ(k)1 , . . . , λ

(k)
2k+1} \

{λ(k)2k }, if d = 2k − 1;

(iii) L(M
(k)
1 , λ

(k)
2i ) = 0 = L(M

(k)
2 , λ

(k)
2i+1), for i ∈ {0, . . . , k};

(iv) m
M

(k)
1 [T ′−v](λ

(k)
2i−1) = m

M
(k)
1

(λ
(k)
2i−1) + 1 and m

M
(k)
2 [T ′−v](λ

(k)
2i ) = m

M
(k)
2

(λ
(k)
2i ) + 1,

for i ∈ {1, . . . , k};
Moreover, the following hold:

(v) Let yk = β−α
2k−1 . For all θ ∈ (0, yk), there exists M

(k)
1,θ such that

DSpec(M
(k)
1,θ ) ⊆ {λ(k)0 + θ, λ

(k)
1 , . . . , λ

(k)
2k },

L(M
(k)
1,θ , λ

(k)
0 + θ) = 0, and, for all i ∈ {1, . . . , k}, we have L(M

(k)
1,θ , λ

(k)
2i ) = 0 and

m
M

(k)
1,θ [T

′−v](λ
(k)
2i−1) = m

M
(k)
1,θ

(λ
(k)
2i−1) + 1.

(vi) For all δ ∈ (0, yk), there exists M
(k)
2,δ such that

DSpec(M
(k)
2,δ ) ⊆ {λ(k)1 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δ},

L(M
(k)
2,δ , λ

(k)
2k+1 + δ) = 0, and, for all i ∈ {1, . . . , k}, we have L(M

(k)
2,δ , λ

(k)
2i−1) = 0

and m
M

(k)
2,δ [T

′−v](λ
(k)
2i ) = m

M
(k)
2,δ

(λ
(k)
2i ) + 1.
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Fix δk = β−α
2k
∈ (0, yk) and θk = β−α

2k
∈ (0, yk). Consider the set

Ck+1 = {λ(k+1)
0 < λ

(k+1)
1 < λ

(k+1)
2 < · · · < λ

(k+1)
2k+1 < λ

(k+1)
2k+2 < λ

(k+1)
2k+3 }

= {λ(k)0 − δk < λ
(k)
0 < λ

(k)
1 < · · · < λ

(k)
2k < λ

(k)
2k+1 + δk < λ

(k)
2k+1 + δk + θk} (9)

of cardinality 2k + 4. We show that Ck+1 satisfies the required properties.
Let T ∈ T ∗ (rooted at a main root) with height k+1 and diameter d ∈ {2k+1, 2k+2}.

This means that T = T0 � (T1, . . . , Tp), where p ≥ 1, and that each Ti ∈ T ∗ has height
k and main root vi, for all i ∈ {0, . . . , p}. Recall that T has diameter 2k+ 1 if and only
if p = 1.

First, we define a matrix M
(k+1)
1 = M

(k+1)
1 (T ) with the structure of Figure 7, where

M
(k+1)
1 [T0] = M

(k)
2 (T0) and M

(k+1)
1 [Ti] = M

(k)
1 (Ti) for all i ∈ {1, . . . , p} are defined

using the induction hypothesis. By parts (i) and (ii) of the induction hypothesis and

Lemma 3.6, we can define the weights on the edges v0vi so that λ
(k+1)
2k+2 = λ

(k)
2k+1 + δk is

the maximum eigenvalue of M
(k+1)
1 .

We wish to apply Lemma 5.1. By parts (i) to (iv) of the induction hypothesis, the

hypotheses of the lemma are satisfied for A1 = {λ(k)0 , . . . , λ
(k)
2k }, A2 = {λ(k)1 , . . . , λ

(k)
2k+1},

C1 = C2 = T ∗, Λ1 = {λ(k)2 , λ
(k)
4 , . . . , λ

(k)
2k } and Λ2 = {λ(k)1 , λ

(k)
3 , . . . , λ

(k)
2k−1}. Observe that

a = λ
(k)
0 ∈ A1 and b = λ

(k)
2k+1 ∈ A2.

Given our choice of maximum eigenvalue, Lemma 5.1(a)immediately implies that

DSpec(M
(k+1)
1 ) =

{
{λmin, λ

(k)
0 , λ

(k)
1 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δk}, if d = 2k + 2,

{λmin, λ
(k)
1 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δk}, if d = 2k + 1,

(10)

⊆ {λmin, λ
(k+1)
1 , . . . , λ

(k+1)
2k+2 }.

Moreover, λmin = λ
(k)
0 − δk = λ

(k+1)
0 by Lemma 5.1(f). Therefore (i) is satisfied for

M
(k+1)
1 . We also obtain (iii) and (iv) by Lemma 5.1.

Next, define M
(k+1)
2 = M

(k+1)
2 (T ) with the structure of Figure 7, where M

(k+1)
2 [T0] =

M
(k)
1,θk

(T0) and M
(k+1)
2 [Ti] = M

(k)
2,δk

(Ti) are defined based on the induction hypothesis.

By Lemma 3.6, we can define the weights on the edges v0vi so that λ
(k+1)
1 = λ

(k)
0 is

the minimum eigenvalue of M
(k+1)
2 . The induction hypothesis ensures that the hy-

potheses of Lemma 5.1 are satisfied for A1 = {λ(k)1 , . . . , λ
(k)
2k , λ

(k)
2k+1 + δk}, A2 = {λ(k)0 +

θk, λ
(k)
1 , . . . , λ

(k)
2k }, C1 = C2 = T ∗, Λ1 = {λ(k)1 , λ

(k)
3 , . . . , λ

(k)
2k−1} and Λ2 = {λ(k)2 , λ

(k)
4 , . . . , λ

(k)
2k }.

Observe that a = λ
(k)
0 + θk ∈ A2 and b = λ

(k)
2k+1 + δk ∈ A1.

Furthermore, Lemma 5.1(a) ensures that

DSpec(M
(k+1)
2 ) =

{
{λ(k)0 , λ

(k)
1 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δk, λmax}, if d = 2k + 2,

{λ(k)0 , λ
(k)
1 , . . . , λ

(k)
2k , λmax}, if d = 2k + 1.

(11)

⊆ {λ(k+1)
1 , λ

(k+1)
2 , . . . , λ

(k+1)
2k+2 , λmax}

We have λmax = λ2k+1 + δk + θk = λ
(k+1)
2k+3 by Lemma 5.1(f), proving (ii) for M

(k+1)
2 .

Items (iii) and (iv) also hold by Lemma 5.1.
It remains to prove (v) and (vi). We start with (v). Let yk+1 = δk = β−α

2k
and let

θ ∈ (0, yk+1). Notice that, since 0 < θ < δk < yk, item (vi) of the induction hypothesis

applies to M
(k)
2,θ (T0).



DIMINIMAL FAMILIES OF ARBITRARY DIAMETER 21

We define a matrix M
(k+1)
1,θ = M

(k+1)
1,θ (T ) with the structure of Figure 7, where the

induction hypothesis gives us M
(k+1)
1,θ [T0] = M

(k)
2,θ (T0), M

(k+1)
1,θ [Ti] = M

(k)
1 (Ti) for all

i ∈ {1, . . . , p}. By Lemma 3.6 we can define the weights on the edges v0vi such that

λ
(k+1)
2k+2 = λ

(k)
2k+1+δk is the maximum eigenvalue ofM

(k+1)
1,θ , since λ

(k)
2k+1+δk > λ

(k)
2k+1+θ. We

again apply Lemma 5.1, this time for A1 = {λ(k)0 , . . . , λ
(k)
2k }, A2 = {λ(k)1 , . . . , λ

(k)
2k , λ

(k)
2k+1+

θ}, C1 = C2 = T ∗, Λ1 = {λ(k)2 , λ
(k)
4 , . . . , λ

(k)
2k } and Λ2 = {λ(k)1 , λ

(k)
3 , . . . , λ

(k)
2k−1}. Observe

that a = λ
(k)
0 ∈ A1 and b = λ

(k)
2k+1 + θ ∈ A2.

Part (f) of Lemma 5.1 implies that λmin = λ
(k)
0 − δk + θ. Part (a) gives

DSpec(M
(k+1)
1,θ ) =

{
{λ(k)0 − δk + θ, λ

(k)
0 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δk}, if d = 2k + 2,

{λ(k)0 − δk + θ, λ
(k)
1 , . . . , λ

(k)
2k , λ2k+1 + δ

(k)
k }, if d = 2k + 1.

⊆ {λ(k+1)
0 + θ, λ

(k+1)
1 , . . . , λ

(k+1)
2k+2 }. (12)

The other properties of part (v) also follow from Lemma 5.1.
For (vi), let zk+1 = yk − θk = β−α

2k−1 − β−α
2k

= β−α
2k

and fix δ ∈ (0, zk+1). This gives
0 < δ < yk+1 ≤ yk − θk, so that δ + θk < yk and items (v) and (vi) of the induction

hypothesis apply to M
(k)
1,θk+δ

(T0) and M
(k)
2,δk

(Ti).

Let M
(k+1)
2,δ = M

(k+1)
2,δ (T ) with the structure of Figure 7, where we use the in-

duction hypothesis to define M
(k+1)
2,δ [T0] = M

(k)
1,θk+δ

(T0) and M
(k+1)
2,δ [Ti] = M

(k)
2,δk

(Ti).

By Lemma 3.6 we can define the weights on the edges v0vi such that λ
(k+1)
1 = λ

(k)
0

is the minimum eigenvalue of M
(k+1)
2,δ . We apply Lemma 5.1 once more, for A1 =

{λ(k)1 , . . . , λ
(k)
2k , λ

(k)
2k+1 + δk}, A2 = {λ(k)0 + θk + δ, λ

(k)
1 , . . . , λ

(k)
2k }, C1 = C2 = T ∗, Λ1 =

{λ(k)1 , λ
(k)
3 , . . . , λ

(k)
2k−1} and Λ2 = {λ(k)2 , λ

(k)
4 , . . . , λ

(k)
2k }. Observe that a = λ

(k)
0 +θk+δ ∈ A2

and b = λ
(k)
2k+1 + δk ∈ A1.

Given our choice of λmin, we have λmax = λ
(k)
2k+1 + δk + θk + δ = λ

(k+1)
2k+3 + δ by Lemma

5.1(f). Lemma 5.1(a) gives

DSpec(M
(k+1)
2,δ ) =

{
{λ(k)0 , λ

(k)
1 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δk, λ

(k)
2k+1 + δk + θk + δ}, if d = 2k + 2,

{λ(k)0 , λ
(k)
1 , . . . , λ

(k)
2k , λ

(k)
2k+1 + δk + θk + δ}, if d = 2k + 1.

⊆ {λ(k+1)
1 , . . . , λ

(k+1)
2k+2 , λ

(k+1)
2k+3 + δ}. (13)

The other properties of part (vi) also follow from Lemma 5.1.
This concludes the step of induction, establishing Theorem 4.4. �

Remark 5.2. Note that the proof of Theorem 4.4 shows how the sets Ck and Ck+1 relate
to each other. Indeed, if Ck = {λ0, . . . , λ2k+1} then Ck+1 = {λ0−δk, λ0, . . . , λ2k, λ2k+1 +
δk, λ2k+1 + δk + θk}

6. Proof of Theorem 1.2 for other seeds

To conclude the proof of Theorem 1.2, we prove it for unfoldings of the seeds S ′d and
S ′′d .

Proof of Theorem 1.2. Let T be an unfolding of S ′d or S ′′d for some d ≥ 4. Assume
that d ∈ {2k + 2, 2k + 3} for some k ≥ 1. Given arbitrary α < β, we apply The-
orem 4.4 (see also Remark 5.2) to obtain sets Ck−1 = {λ0, . . . , λ2k−1} and Ck =
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{λ0−δk−1, λ0, . . . , λ2k−2, λ2k−1+δk−1, λ2k−1+δk−1+θk−1} that satisfy conditions (i)-(vi)
for trees T ∗ ∈ T ∗ of height k − 1 and k, respectively.

In our construction, we consider each of the three possibilities for seeds S ′d and S ′′d in
Definition 3.2.

Case 1: If d = 2k+2 for some k ≥ 1 and T is an unfolding of S ′d, by Proposition 3.5(i),
there exist T0 ∈ T ∗ of height k − 1 and T1, . . . , Tp ∈ T ∗ of height k, for some p ≥ 2,
such that T = T0 � (T1, . . . , Tp).

We define a matrix M ∈ S(T ) as follows: M [T0] = M
(k−1)
1 (T0) and M [Ti] = M

(k)
1 (Ti),

for i ∈ {1, . . . , p}, where M1 denotes a matrix that satisfies (i) in Theorem 4.4. To
compute the spectrum of M we apply Lemma 5.1. To this end, let C1 = C2 = T ∗
(where each tree is rooted at a main root). Let k1 = k − 1, k2 = k, and consider
A1 = Ck \ {λ2k−1 + δk−1 + θk−1} and A2 = Ck−1 \ {λ2k−1}. Note that A1 ∩ A2 =
{λ0, . . . , λ2k−2} and that (A1 ∪ A2) \ (A1 ∩ A2) = {λ0 − δk−1, λ2k−1 + δk−1}, so a =
λ0 − δk−1, b = λ2k−1 + δk−1. Set Λ1 = {λ1, λ3, . . . , λ2k−3} and Λ2 = {λ0, λ2, . . . , λ2k−2}.
By Theorem 4.4(i), M

(k−1)
1 (T0) is a strong realization of A1 and M

(k)
1 (Ti) is a strong

realization of A2 for each i ≥ 1. By Theorem 4.4(iii) and (iv)¶, the following hold:

(I) For all λ ∈ Λ1, L(M
(k)
1 (Ti), λ) = 0 and m

M
(k−1)
1 [T0−v0]

(λ) = m
M

(k−1)
1

(λ) + 1.

(II) For all λ ∈ Λ2, L(M
(k−1)
1 (T0), λ) = 0 and m

M
(k)
1 [Ti−vi]

(λ) = m
M

(k)
1 (Ti)

(λ) + 1.

Having verified the hypotheses, we are now ready to apply Lemma 5.1. Since p > 1
and a, b ∈ A1, Lemma 5.1(a) tells us that there exist λmin, λmax ∈ R such that

DSpec(M) = {λmin, λ0 − δk−1, λ0, . . . , λ2k−2, λ2k−1 + δk−1, λmax}. (14)

In particular, |DSpec(M)| = 2k + 3 = d+ 1, so that q(T ) = d+ 1 in this case.

Case 2: If d = 2k + 3 and T is an unfolding of S ′d, by Proposition 3.5(ii), there exist
T1, . . . , Tp, T

′
1, . . . , T

′
q ∈ T ∗, p, q ≥ 1, of height k and T0, T

′
0 ∈ T ∗ of height k − 1 such

that T = (T0 � (T1, . . . , Tp))� (T ′0 � (T ′1, . . . , T
′
q)).

We define the matrix M ∈ S(T ) in two parts. For the part that is related to

T̃ = T0� (T1, . . . , Tp), set M [T0] = M
(k−1)
1 (T0) and M [Ti] = M

(k)
1 (Ti) for i ∈ {1, . . . , p},

where M1 denotes a matrix that satisfies (i) in Theorem 4.4. By Lemma 3.6, we define
the weights on the edges v0vi so that λ2k−1 + δk−1 + θk−1 is the maximum eigenvalue of
M [T̃ ]. Note that, for M [T̃ ], the hypotheses of Lemma 5.1 are satisfied for the same sets
A1, A2, Λ1, Λ2 defined in case 1 (for the same reasons). Then, by Lemma 5.1, there

exist λ̃min, λ̃max = λ2k−1 + δk−1 + θk−1 ∈ R such that

DSpec(M [T̃ ]) ⊆ {λ̃min, λ0 − δk−1, λ0, . . . , λ2k−2, λ2k−1 + δk−1, λ2k−1 + δk−1 + θk−1}.

Moreover, λ̃min, λ0, . . . , λ2k−2, λ2k−1 +δk−1 +θk−1 satisfy Lemma 5.1(c), while the values
λ0 − δk−1, λ1, . . . , λ2k−3, λ2k−1 + δk−1 satisfy Lemma 5.1(d).

For the part that is related to T̃ ′ = T ′0� (T ′1, . . . , T
′
p), we set M [T ′0] = M

(k−1)
2,δk−1

(T ′0) and

M [T ′i ] = M
(k)
2 (T ′i ) for all i ∈ {1, . . . , q}, where M2 denotes the matrix that satisfies (ii)

and M2,δ denotes the matrix that satisfies (vi) in Theorem 4.4. By Lemma 3.6, we may
define the weights on the edges {v′0, v′i} such that λ0 − δk−1 is the minimum eigenvalue
of M [T̃ ′]. To compute the spectrum of M [T̃ ′] we apply Lemma 5.1. To this end, let

¶Note that the same elements of A1 ∩ A2 play different roles with respect to M
(k−1)
1 (T0) and

M
(k)
1 (Ti), as the eigenvalues with even index with respect to the first matrix have odd index with

respect to the second, and vice-versa.
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C1 = C2 = T ∗ (where each tree is rooted at a main root). Let k1 = k − 1, k2 = k, and
consider A1 = Ck\{λ0−δk−1} and A2 = (Ck−1∪{λ2k−1+δk−1})\{λ0, λ2k−1}. Note that
A1∩A2 = {λ1, . . . , λ2k−2, λ2k−1 + δk−1}, that (A1∪A2)\ (A1∩A2) = {λ0, λ2k−1 + δk−1 +
θk−1}, and hence a = λ0, b = λ2k−1 + δk−1 + θk−1. Set Λ1 = {λ2, λ4, . . . , λ2k−2} and

Λ2 = {λ1, λ3, . . . , λ2k−1 + δk−1}. By Theorem 4.4(vi), M
(k−1)
2,δk−1

(T ′0) is a strong realization

of A2 and M
(k)
2 (T ′i ) is a strong realization of A1 for any i ≥ 1. By Theorem 4.4(iii), (iv)

and (vi), the following hold:

(I) For all λ ∈ Λ1, L(M
(k)
2 (T ′i ), λ) = 0 and

m
M

(k−1)
2,δk−1

[T ′0−v′0]
(λ) = m

M
(k−1)
2,δk−1

(T ′0)
(λ) + 1.

(II) For all λ ∈ Λ2, L(M
(k−1)
2,δk−1

(T ′0), λ) = 0 and m
M

(k)
2 [T ′i−v′i]

(λ) = m
M

(k)
2 (T ′i )

(λ) + 1.

Having verified the hypotheses, we are now ready to apply Lemma 5.1. Lemma 5.1(a)

tells us that there exist λ̃′min = λ0 − δk−1, λ̃′max ∈ R such that

DSpec(M [T̃ ′]) ⊆ {λ0−δk−1, λ0, . . . , λ2k−2, λ2k−1+δk−1, λ2k−1+δk−1+θk−1, λ̃
′
max}. (15)

Moreover, λ0 − δk−1, λ1, . . . , λ2k−1 + δk−1, λ̃
′
max satisfy Lemma 5.1(c), while the values

λ0, λ2, . . . , λ2k−2, λ2k−1 + δk−1 + θk−1 satisfy Lemma 5.1(d).
To conclude the proof we apply Lemma 5.1 to T̃�T̃ ′ using the matrices defined above.

Here, C1 = {T̃}, C2 = {T̃ ′}, k1 = k2 = k+1, A1 = {λ̃min, λ0−δk−1, λ0, . . . , λ2k−2, λ2k−1+
δk−1, λ2k−1 + δk−1 + θk−1}, A2 = {λ0 − δk−1, λ0, . . . , λ2k−2, λ2k−1 + δk−1, λ2k−1 + δk−1 +

θk−1, λ̃
′
max}, hence a = λ̃min, b = λ̃′max. Set Λ1 = {λ0, λ2, . . . , λ2k−2, λ2k−1 + δk−1 + θk−1}

and Λ2 = {λ0 − δk−1, λ1, λ3, . . . , λ2k−3, λ2k−1 + δk−1}. Since a ∈ A1, b ∈ A2 and p = 1,
it follows that there exist λmin and λmax such that

DSpec(M) = {λmin, λ0 − δk−1, λ0, . . . , λ2k−2, λ2k−1 + δk−1, λ2k−1 + δk−1 + θk−1, λmax}.
(16)

In particular, |DSpec(M)| = 2k + 4 = d+ 1, so that q(T ) = d+ 1 in this case.

Case 3: If d = 2k+3 for some k ≥ 1 and T is an unfolding of S ′′d , by Proposition 3.5(iii),
there exist T0 ∈ T ∗ of height k−1 and T1, . . . , Tp, T

′
0, T

′
1, . . . , T

′
q ∈ T ∗ of height k, where

p, q ≥ 1, such that T = (T0 � (T1, . . . , Tp))� (T ′0 � (T ′1, . . . , T
′
q)).

We define the matrix M ∈ S(T ) in two parts. For the part that is related to

T̃ = T0� (T1, . . . , Tp), set M [T0] = M
(k−1)
1 (T0) and M [Ti] = M

(k)
1 (Ti) for i ∈ {1, . . . , p},

where M1 denotes a matrix that satisfy (i) in Theorem 4.4. By Lemma 3.6, we may
define the weights on the edges {v0, vi} such that λ2k−1 + δk−1 + θk−1 is the maximum
eigenvalue of M [T0 � (T1, . . . , Tp)]. Note that, for M [T0 � (T1, . . . , Tp)], all hypotheses
of Lemma 5.1 are satisfied for the same reasons described in case 1 above. Then, by
Lemma 5.1, there exist λ̃min, λ̃max = λ2k−1 + δk−1 + θk−1 ∈ R such that

DSpec(M [T̃ ]) ⊆ {λ̃min, λ0 − δk−1, λ0, . . . , λ2k−2, λ2k−1 + δk−1, λ2k−1 + δk−1 + θk−1}.

Moreover, λ̃min, λ0, . . . , λ2k−2, λ2k−1 + δk−1 + θk−1 satisfy Lemma 5.1(c), while λ0 −
δk−1, λ1, . . . , λ2k−3, λ2k−1 + δk−1 satisfy Lemma 5.1(d).

For the part that is related to T̃ ′ = T ′0� (T ′1, . . . , T
′
p), set M [T ′0] = M

(k)
1,θk

(T ′0), M [T ′i ] =

M
(k)
2 (T ′i ), for i ∈ {1, . . . , q}, where M2 denotes a matrix that satisfies (ii) and M1,θ

denotes a matrix that satisfies (v) in Theorem 4.4. By Lemma 3.6, we may define the
weights on the edges {v′0, v′i} such that λ0 − δk−1 is the minimum eigenvalue of M [T̃ ′].
To compute the spectrum of M [T̃ ′] we apply Lemma 5.1. To this end, let C1 = C2 = T ∗,
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let k1 = k2 = k, and consider A1 = Ck \ {λ0 − δk} and A2 = (Ck ∪ {λ0 − δk−1 + θk}) \
{λ0− δk−1, λ2k−1 + δk−1 +θk−1}. Note that A1∩A2 = {λ0, . . . , λ2k−2, λ2k−1 + δk−1}, that
(A1∪A2)\(A1∩A2) = {λ0−δk−1+θk, λ2k−1+δk−1+θk−1}, and hence a = λ0−δk−1+θk,
b = λ2k−1+δk−1+θk−1. Set Λ1 = {λ2, λ4, . . . , λ2k−2} and Λ2 = {λ1, λ3, . . . , λ2k−1+δk−1}.
By Theorem 4.4(vi), M

(k)
1,θk

(T ′0) is a strong realization of A2 and M
(k)
2 (T ′i ) is a strong

realization of A1 for any i ≥ 1. By Theorem 4.4(iii), (iv) and (v), the following hold:

(I) For all λ ∈ Λ1, L(M
(k)
2 (T ′i ), λ) = 0 and m

M
(k)
1,θk

[T ′0−v′0]
(λ) = m

M
(k)
1,θk

(T ′0)
(λ) + 1.

(II) For all λ ∈ Λ2, L(M
(k)
1,θk

(T ′0), λ) = 0 and m
M

(k)
2 [T ′i−v′i]

(λ) = m
M

(k)
2 (T ′i )

(λ) + 1.

Having verified the hypotheses, we are now ready to apply Lemma 5.1. Lemma 5.1(a)

tells us that there exist λ̃′min = λ0 − δk−1, λ̃′max ∈ R such that

DSpec(M [T̃ ′]) ⊆ {λ0−δk−1, λ0, . . . , λ2k−2, λ2k−1+δk−1, λ2k−1+δk−1+θk−1, λ̃
′
max}. (17)

Moreover, λ0 − δk−1, λ1, . . . , λ2k−1 + δk−1, λ̃
′
max satisfy Lemma 5.1(c), while the values

λ0, λ2, . . . , λ2k−2, λ2k−1 + δk−1 + θk−1 satisfy Lemma 5.1(d).
As in case 2, we conclude the proof by applying Lemma 5.1 to T̃ � T̃ ′. This gives

λmin, λmax such that

DSpec(M) = {λmin, λ0 − δk−1, λ0, . . . , λ2k−2, λ2k−1 + δk−1, λ2k−1 + δk−1 + θk−1, λmax}.
(18)

In particular, |DSpec(M)| = 2k + 4 = d+ 1, so that q(T ) = d+ 1 in this case. �

We observe that our proof of Theorem 1.2 using Theorem 4.4 allows us to ask more
about the spectrum of a realization of a diminimal tree. For instance, we may require
it to be integral.

Corollary 6.1. Let d be a positive integer. Let T (Sd), T (S ′d) and T (S ′′d ) be the families
of trees of diameter d generated by the seeds Sd, S

′
d and S ′′d , respectively, where S ′d is

defined for d ≥ 4 and S ′′d for odd values of d ≥ 5. For every T ∈ T (Sd)∪T (S ′d)∪T (S ′′d ),
there is a real symmetric matrix M(T ) whose spectrum is integral with underlying tree
T and |DSpec(T )| = d+ 1.

Proof. The proof follows the same steps of the proof of Theorem 1.2. However, when
d ∈ {2k, 2k+1} and we apply Theorem 4.4 to produce the set Ck, we start the proof by
fixing an arbitrary integer α and by choosing β = α + 2k−1, so that β−α

2k−1 is an integer.
Then C1 = {2α− β, α, β, 2β − α} is integral and the elements δj, θj are integers for all
j ≤ k − 1. Remark 5.2 ensures that the sets Cj are integral for all j ≤ k. This gives
the desired conclusion for unfoldings of Sd.

For the other seeds, we need to go back to the proof of Theorem 1.2. For instance,
assume that we are in the case d = 2k + 2 and we have an unfolding of S ′d. With the
choices that we made for Sd, if we repeat the proof of Theorem 1.2 until we get to (14),
we deduce that all elements of DSpec(M) are integers except possibly λmin and λmax.
However, when we applied Lemma 5.1 to define M(T ), it was not necessary to assign
weights to the edges joining the roots of the trees T0 � (T1, . . . , Tp). By Lemma 3.6,
we can assign these weights in a way that λmax is equal to any value greater than
λ2k−1 + δk−1, and we may choose this value to be an integer. Moreover, Lemma 5.1(f)
tells us that λmin+λmax = a+b, where a and b are both known to be integers. Therefore
λmin is also an integer and the result follows.

Unfoldings of the other two seeds may be dealt with using similar arguments. �
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7. Example

In this section we provide an example to illustrate that our proofs may be used to
construct matrices associated with diminimal trees. In this example, we construct a
symmetric matrix whose underlying graph is the seed S9 (of diameter 9) with exactly 10

distinct eigenvalues. It is based on the matrix M
(5)
1 ∈ S(S9) defined in Theorem 4.4. We

choose α = 0 and β = 32, and after k = 5 steps we obtain the matrix M
(5)
1 (S9) ∈ S(S9)

with integral spectrum given by

Spec(M
(5)
1 ) = {−62[1],−56[1],−48[2],−32[4], 0[8], 32[8], 80[4], 104[2], 116[1], 122[1]}.

It is depicted in Figure 8, where vertex weights denote the diagonal entries and edge
weights denote the off-diagonal nonzero entries. In a git repository‖, readers can access
an algorithm based on the proof of Theorem 4.4 to compute a matrix M ∈ S(Sd) where
the input parameters are α, β and d, where k = dd
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e.
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Figure 8. Matrix M
(5)
1 ∈ S(S9).

‖https://github.com/Lucassib/Diminimal-Graph-Algorithm or https://

lucassib-diminimal-graph-algorithm-st-app-0t3qu7.streamlit.app/

https://github.com/Lucassib/Diminimal-Graph-Algorithm
https://lucassib-diminimal-graph-algorithm-st-app-0t3qu7.streamlit.app/
https://lucassib-diminimal-graph-algorithm-st-app-0t3qu7.streamlit.app/
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Figure 9. T = (T0 � (T1, . . . , Tp))� (T ′0 � (T ′1, . . . , T
′
q))

Appendix A. Additional results

We illustrate how Proposition 3.5 can be proved by providing a detailed proof of
item (ii). The proofs of (i) and (iii) are analogous. Proposition 3.5(ii) states that
T ∈ T (S ′2k+3) if, and only if, there exist T1, . . . , Tp, T

′
1, . . . , T

′
q ∈ T ∗, p, q ≥ 1 of height k

and T0, T
′
0 ∈ T ∗ of height k − 1 such that

T = (T0 � (T1, . . . , Tp))� (T ′0 � (T ′1, . . . , T
′
q)).

Let T be a tree and k ≥ 1. The case k = 1 (S ′5 = P6) is simple, so we concentrate
in the case k ≥ 2. First assume that there exist T1, . . . , Tp, T

′
1, . . . , T

′
q ∈ T ∗ of height

k, where p, q ≥ 1, and T0, T
′
0 ∈ T ∗ of height k − 1 such that T = (T0 � (T1, . . . , Tp))�

(T ′0 � (T ′1, . . . , T
′
q)) (see Figure 9). Note that all paths of length 2k + 3 in T may be

decomposed as Pv0v
′
0Q where P is a path of length k joining a leaf of some Ti to its

root vi and Q is a path of length k joining the root v′j of some T ′j to one of its leaves.
In particular, no such path uses vertices in V (T0 − v0)∪ V (T ′0 − v′0) nor vertices in two
different components of some Ti − vi or Tj − v′j.

By Proposition 3.4, we know that the trees T1, . . . , Tp, T
′
1, . . . , T

′
q are unfoldings of

S2k−1 or S2k, and that T0, T
′
0 are unfoldings of S2k−3 or S2k−2. Recall that, in part (ii)

of the proof of Proposition 3.4, given j ≥ 2, we were able to fold the pair (S2j−3, S2j−3)
in S2j = S2j−3 � (S2j−3, S2j−3) to S2j−3 � S2j−3 = S2j−1 without affecting the diameter
of the tree. This does not mean that S2j can always be folded onto S2j−1, but instead
that folding can be performed if the diameter of the tree is not modified.

For the tree T in this proposition, where maximum paths have the structure men-
tioned above, this means that any Ti or T ′i with i > 0 may be folded directly to S2k−1
or may first be folded to S2k = S2k−3 � (S2k−3, S2k−3), which can in turn be folded to
S2k−3�S2k−3 = S2k−1. Similarly, if k ≥ 3, T0 and T ′0 may be folded directly to S2k−3 or
may first be folded to S2k−2 = S2k−5� (S2k−5, S2k−5) and then to S2k−5�S2k−5 = S2k−3.
For k = 2, T0 and T ′0 have height 1, so they are equal to S1 or they are stars that can
be folded into S1.

Combining this, we conclude that T can be folded to

T ′ = (S2k−3 � (S2k−1, . . . , S2k−1))� (S2k−3 � (S2k−1, . . . , S2k−1)),

with p terms in the first vector and q terms in the second. Now, if p > 1 or q > 1, we can
fold each (S2k−1, . . . , S2k−1) onto a single S2k−1, without decreasing the diameter. This
results in (S2k−3 � S2k−1)� (S2k−3 � S2k−1) = S ′2k+3, as required. Figure 10 illustrates
this case.
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S2k−1

S2k−3

Figure 10. Folding of T ′ into (S2k−3�S2k−1)�(S2k−3�S(2k−1) = S ′2k+3.

For the converse, our proof is by induction on the number of branch decompositions
performed on the seed S ′2k+3 to produce T . If no CBD was performed, then T =
S ′2k+3 = (S2k−3 � S2k−1) � (S2k−3 � S2k−1) and we have T = (T0 � T1) � (T ′0 � T ′1) for
T0 = T ′0 = S2k−3 (of height k − 1) and T1 = T ′1 = S2k−1 (of height k).

Now suppose that if T ∈ T (S ′2k+3) has been formed after a sequence of ` branch
decompositions, then there exist T0, T1, . . . , Tp, T

′
0, T

′
1, . . . , T

′
q ∈ T ∗ as in the statement

of the theorem for which

T = (T0 � (T1, . . . , Tp))� (T ′0 � (T ′1, . . . , T
′
q)). (19)

Note that the central edge of T is {v0, v′0} and the tree is rooted at v0.
We claim that if we perform an additional s-CBD to T , we still obtain a decomposition

as in (iii). Indeed, let U be the tree obtained after performing an s-CBD of a branch B
at v ∈ V (T ). First assume that v /∈ {v0, v′0}. Without loss of generality, assume that
v ∈ V (Ti), so that, in case i = 0, v is not the root of T0. Since the diameter remains
the same, B must be entirely contained in Ti. By Proposition 3.4, the tree Ui obtained
after performing an s-CBD of branch B at v ∈ V (Ti) lies in T ∗. In particular, if we
replace Ti by Ui in (19), we get the desired decomposition of U .

Next assume that v = v0 (the case v = v′0 is analogous). Let B be the branch at
v0 involved in the duplication. This is not the branch that contains v′0, otherwise the
diameter would increase. If B is entirely contained in T0, we may repeat the above
argument. Otherwise, B = Ti for some i, and

T = (T0 � (T1, . . . , Ti, T
(1)
i , . . . , T

(s)
i , Ti+1, . . . , Tp))� (T ′0 � (T ′1, . . . , T

′
q)),
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where each T
(j)
i is a copy of Ti. This concludes the proof.
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