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Abstract

Let G be an edge-colored graph on n vertices. For a vertex v, the color degree of v

in G, denoted by dc(v), is the number of colors appearing on the edges incident with v.

Denote by δc(G) = min{dc(v) : v ∈ V (G)}. By a theorem of H. Li, an n-vertex edge-

colored graph G contains a rainbow triangle if δc(G) ≥ n+1
2 . Inspired by this result, we

consider two related questions concerning edge-colored books and friendship subgraphs of

edge-colored graphs. Let k ≥ 2 be a positive integer. We prove that if δc(G) ≥ n+k−1
2

where n ≥ 3k − 2, then G contains k rainbow triangles sharing one common edge; and

if δc(G) ≥ n+2k−3
2 where n ≥ 2k + 9, then G contains k rainbow triangles sharing one

common vertex. The special case k = 2 of both results improves H. Li’s theorem. The

main novelty of our proof of the first result is a combination of the recent new technique

for finding rainbow cycles due to Czygrinow, Molla, Nagle, and Oursler and some recent

counting technique from [26]. The proof of the second result is with the aid of the machine

implicitly in the work of Turán numbers for matching numbers due to Erdős and Gallai.
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1 Introduction

In 1907, Mantel [28] proved that every triangle-free graph on n vertices has size at most ⌊n
2

4
⌋.

Rademacher (see [12, pp.91]) showed that there are indeed at least ⌊n
2
⌋ triangles in a graph G on

n vertices and at least n2

4
+1 edges but not only one triangle. The k-fan (usually called friendship

graph), denoted by Fk, is a graph which consists of k triangles sharing a common vertex. The

book Bk is a graph which consists of k triangles sharing a common edge. Erdős [11] extended

Mantel’s theorem and conjectured that there is a B⌈n
6
⌉ in G if e(G) > n2

4
, which was later

confirmed by Edwards in an unpublished manuscript [9] and independently by Khadžiivanov

and Nikiforov [23]. Erdős, Füredi, Gould, and Gunderson [12] also studied Turán numbers of

Fk, and proved that ex(n, Fk) = ⌊
n2

4
⌋ + k2 − k if k is odd; and ex(n, Fk) = ⌊

n2

4
⌋ + k2 − 3k

2
if k

is even, for n ≥ 50k2. These results immediately imply the fact that every graph on n vertices

with minimum degree at least n+1
2

contains a Bk for n ≥ 6k and also a Fk for n ≥ 50k2. In this

paper, we consider edge-colored versions of these extremal problems.

A subgraph of an edge-colored graph is properly colored (rainbow) if every two adjacent edges

(all edges) have pairwise different colors. The rainbow and properly-colored subgraphs have

been shown closely related to many graph properties and other topics, such as classical stability

results on Turán functions [29], Bermond-Thomassen Conjecture [16], and Caccetta-Häggkvist

Conjecture [1], etc. For more rainbow and properly-colored subgraphs under Dirac-type color

degree conditions, we refer to [6, 8, 10, 17, 18].

The study of rainbow triangles has a rich history, and there are many classical open problems

on them. In some classical problems, the host graph is complete. One conjecture due to Erdős

and Sós [14] asserts that the maximum number of rainbow triangles in a 3-edge-coloring of

the complete graph Kn, denoted by F (n), satisfied that F (n) = F (a) + F (b) + F (c) + F (d) +

abc + abd + acd + bcd, where a + b + c + d = n and a, b, c, d are as equal as possible. By

using Flag Algebra, Balogh et al. [2] confirmed this conjecture for n sufficiently large and

n = 4k for any k ≥ 1. The other example is a recent conjecture by Aharoni (see [1]), which

can imply Caccetta-Häggkvist Conjecture [5], a big and fundamental open problem in digraph.

The conjecture says that given any positive integer r, if G is an n-vertex edge-colored graph

with n color classes, each of size at least n/r, then G contains a rainbow cycle of length at most

r. For more recent developments on Aharoni’s conjecture, we refer to the work [7, 20, 21] and

more references therein. A special case of Aharoni’s conjecture is about rainbow triangles. The

relationship between directed triangles and rainbow triangles has been extensively used before

(see [24, 25, 27]).

We would like to introduce a construction from Li [24]. Suppose that D is an n-vertex

digraph satisfying out-degree of every vertex is at least n/3. Let V (D) = {v1, v2, . . . , vn}. We

construct an edge-colored graph G such that: V (G) = V (D); for each arc vivj ∈ A(D), we color
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the edge vivj with the color j. In this way, the number of colors appearing on edges incident

with vi different from i equals to d+D(vi). Thus, finding a directed triangle in D is equivalent to

finding a rainbow triangle in such an edge-colored graph. More importantly for us, the idea of

constructing the auxiliary digraph will also be an important constitution for our proofs in this

paper.

Our theme of this paper is closely related to the color degree conditions for rainbow triangles.

Let G be an edge-colored graph. For every vertex v ∈ V (G), the color degree of v, denoted by

dcG(v), is the number of distinct colors appearing on the edges which are incident to v. The

minimum color degree of G, denoted by δc(G) (or in short, δc), equals to min{dc(v) : v ∈ V (G)}.

It is an easy observation that every graph on n vertices contains a triangle if minimum degree

is at least n+1
2
. H. Li and Wang [27] considered a rainbow version and conjectured that the

minimum color degree condition δc(G) ≥ n+1
2

ensures the existence of a rainbow triangle in G.

This conjecture was confirmed by H. Li [24] in 2013.

Theorem 1 (H. Li [24]). Let G be an edge-colored graph on n vertices. If δc(G) ≥ n+1
2

then G

contains a rainbow triangle.

Independently, B. Li, Ning, Xu and Zhang [25] proved a weaker condition
∑

v∈V (G) d
c(v) ≥

n(n+1)
2

suffices for the existence of rainbow triangles, and moreover, characterized the exceptional

graphs under the condition δc(G) ≥ n
2
. Very recently, X. Li, Ning, Shi and Zhang [26] proved

a counting version of Theorem 1, i.e., there are at least 1
6
δc(G)(2δc(G)− n)n rainbow triangles

in an edge-colored graph G, which is best possible.

Hu, Li and Yang [22] proposed the following conjecture: Let G be an edge-colored graph on

n ≥ 3k vertices. If δc ≥ n+k
2

then G contains k vertex-disjoint rainbow triangles. Besides the

work on Turán numbers of books and k-fans mentioned before, our another motivation is to

study the converse of Hu-Li-Yang’s conjecture, i.e., rainbow triangles sharing vertices or edges.

As the selections for us, we shall study the existence of rainbow triangles sharing one common

vertex or an edge under color degree conditions, in views of the famous books and friendship

graphs in graph theory.

Our original result is the following one which improves Li’s theorem. Indeed, we can go

farther.

Theorem 2. Let G be an edge-colored graph on n vertices with δc(G) ≥ n+1
2
.

(i) If n ≥ 5 then G contains two rainbow triangles sharing one common edge;

(ii) If n ≥ 13 then G contains two rainbow triangles sharing one common vertex.

This paper is organized as follows. In Section 2, we will list our main theorems. In Section

3, we introduce some necessary notations and terminology and prove some lemmas. In Section

4, we prove general versions of Theorem 2, i.e., Theorems 3 and 4. We conclude this paper
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with some more discussions on the sharpness of our results, together some propositions on Fk

and Bk on uncolored graphs.

2 Main theorems

Our main results are given as follows.

Theorem 3. Let k ≥ 2 be a positive integer and G be an edge-colored graph on n ≥ 3k − 2

vertices. If δc(G) ≥ n+k−1
2

then G contains k rainbow triangles sharing one edge.

Theorem 4. Let k ≥ 2 be a positive integer and G be an edge-colored graph on n ≥ 2k + 9

vertices. If δc(G) ≥ n+2k−3
2

then G contains k rainbow triangles only sharing one common

vertex.

Setting δc(G) = n+k−1
2

in Theorem 3, the following example shows that the bound “n ≥

3k− 2” is sharp. Furthermore, it follows from Example 1 that the tight color degree should be

at least δc ≥ n+k
2

when n ≤ 3k − 3.

Example 1. Let G be a properly-colored balanced complete 3-partite graph G[V1, V2, V3] with

|V (G)| = 3k−3 and |V1| = |V2| = |V3| = k−1, where k ≥ 1 is a positive integer. Then for each

vertex v ∈ V (G), dc(v) = d(v) = 2k−2 = n+k−1
2

while G contains no Bk and Fk (see Figure 2).

Figure 1: An extremal graph for Theorem 3

The main novelty of our proof of Theorem 3 is a combination of the recent new technique

for finding rainbow cycles due to Czygrinow, Molla, Nagle, and Oursler [6] and some recent

counting technique from [26]. In particular, Czygrinow et al. [6] extended H. Li’s theorem

by proving that for every integer ℓ, every edge-colored graph G on n ≥ 432ℓ many vertices

satisfying δc(G) ≥ n+1
2

admits a rainbow ℓ-cycle Cℓ. One novel concept introduced in [6] is

called restriction color, and it will be used in our proof. The proof of Theorem 4 is with the
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aid of the machine implicitly in the work of Turán number for matching numbers due to Erdős

and Gallai [13]. (For details, see the proof of Lemma 13.)

Meantime, both Theorem 3 and Theorem 4 improve Theorem 1 (by setting k = 2). On the

other hand, Theorem 4 slightly improves Theorem 9 in [26] by a different method.

3 Additional notations and lemmas

Some of our notations come from [6, 26]. Let G be an edge-colored graph. Let C : E(G)→

{1, 2, . . . , k} be an edge-coloring of G. For a color α ∈ C(G) and a vertex v ∈ V (G), define the

α-neighborhood of v as

Nα(v) = {u ∈ N(v) | c(uv) = α},

α-neighborhood in X of v as

Nα(v,X) = {u ∈ N(v) ∩X | c(uv) = α}

where X ⊆ V (G), and N(v) is the neighborhood of v in G. Define

N!(v) =
⋃

α∈C(G)

{Nα(v) | |Nα(v)| = 1}.

For the sake of simplicity, let dα(v) = |Nα(v)| and dα(v,X) = |Nα(v,X)|. Moreover, let N [v] =

N(v) ∪ {v}. The monochromatic degree of v, denoted by dmon(v), is the maximum number of

edges incident to v colored with a same color (i.e., dmon(v) = max{dα(v) | α ∈ C(G)}.) For a

graph G, we denote the monochromatic degree of G by ∆mon(G) = max{dmon(v) | v ∈ V (G)}.

W.l.o.g., assume that d1(v) ≥ d2(v) ≥ · · · ≥ ds(v) and s := s(v) = dc(v) for each vertex

v ∈ V (G). (When there is no danger of ambiguity, we use s for short.)

The following concept of restriction was firstly introduced in [6, Section 3].

Definition 5 (restriction color [6]). Let G be an edge-colored graph. Fix v ∈ V (G) and

X ⊆ N(v). Suppose α = c(xy) for x ∈ X ∩N(y) and y ∈ V (G) \ {v}. We say (v,X) restricts

color α for y if vxy is a rainbow P3 and α /∈ C(y,N(y) \X). Denote by σv,X(y) the number of

colors α ∈ C(E) restricted for y by (v,X).

Denote by rt(v) the number of rainbow triangles containing v; by rt(v, x) the number

of rainbow triangles containing both v and x (i.e., containing the edge vx); and rt(v,X) =
∑

x∈X rt(v, x).

According to the definition of restriction color, we have the following proposition.

Proposition 6. Let v be a vertex of G and x ∈ N(v). Then rt(v, x) ≥ σv,N(v)\Nc(vx)(v)(x) and

rt(v,Nc(vx)(v)) ≥
∑

x∈Nc(vx)(v)
σv,N(v)\Nc(vx)(v)(x).
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Proof. For y ∈ N(v) \Nc(vx)(v), we have c(vx) 6= c(vy). If c(xy) is a restriction color for x to v

with respect to N(v)\Nc(vx)(v), then c(vy) 6= c(xy) and c(xy) /∈ C(x,N(x)\(N(v)\Nc(vx)(x))),

and c(xy) 6= c(xv). Thus, vxyv is a rainbow triangle. It follows rt(v, x) ≥ σv,N(v)\Nc(vx)(v)(x)

and rt(v,Nc(vx)(v)) ≥
∑

x∈Nc(vx)(v)
σv,N(v)\Nc(vx)(v)(x).

Remark 1. Throughout this paper, we say that an edge-colored graph G is edge-minimal if

for any e ∈ E(G), there exists a vertex v incident to e such that dcG−e(v) < dcG(v). Hence, G

contains neither monochromatic paths of length 3 nor monochromatic triangles.

The form of the following lemma is motivated by [26], but its proof is a mixture of techniques

from [6, 26]. For the sake of simplicity, define the color set C(G) = {1, 2, · · · , c(G)}.

Lemma 7. Let G be an edge-colored graph which is edge-minimal. Then for 1 ≤ i ≤ s = dc(v),

we have,

rt(v,Ni(v)) ≥
∑

x∈Ni(v)

(

dc(x) + dc(v)− n
)

+ di(v)
∑

1≤j≤s

(

dj(v)− 1
)

− di(v)
(
di(v)− 1

)
−

∑

y∈N!(v)

dc(vy)(y,Ni(v)).

Proof of Lemma 7. For convenience, let Xi = Ni(v), Yi = N(v) \ Xi for 1 ≤ i ≤ s, and

di for di(v) in the following. Let s = dc(v). For v ∈ V (G) and 1 ≤ i ≤ s, define a directed

graph Di on V (Di) = Xi ∪ Yi as follows: the arc −→yx exists if and only if the following hold:

(1) x ∈ Xi and y ∈ Yi; and (2) c(xy) = c(vy). Since G is edge-minimal, the existence of ←−xy

gives dc(vy)(v) = 1. (Indeed, since the arc ←−xy exists, we have c(xy) = c(vy). If dc(vy)(v) ≥ 2,

there exists a monochromatic path of length 3, a contradiction!) Hence y ∈ N!(v). Evidently,

d+D(y) ≤ dc(vy)(y,Xi). Thus,

∑

x∈Xi

d−D(x) =
∑

y∈Yi

d+D(y) =
∑

y∈N!(v)

d+D(y) ≤
∑

y∈N!(v)

dc(vy)(y,Xi). (1)

As for x ∈ Xi, there are at most d−D(x) + σv,Yi
(x) colors which only appear on edges from x to

Yi. Then there are at least dc(x)− d−D(x)− σv,Yi
(x) vertices in V (G) \ (Yi ∪ {x}). Therefore,

n− |Yi| − 1 ≥ dc(x)− d−D(x)− σv,Yi
(x)

⇒ σv,Yi
(x) ≥ dc(x) + |Yi|+ 1− d−D(x)− n (2)

Note that |Yi| = d(v)−di =
∑

1≤j≤s dj−di = dc(v)+
∑

1≤j≤s(dj−1)−di. Combining Ineqs
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(1) and (2), we can get that
∑

x∈Xi

σv,Yi
(x)

≥
∑

x∈Xi

(

dc(x) + |Yi|+ 1− n
)

−
∑

y∈N!(v)

dc(vy)(y,Xi)

≥
∑

x∈Xi

(

dc(x) + dc(v) +
∑

1≤j≤s

(dj − 1)− di + 1− n
)

−
∑

y∈N!(v)

dc(vy)(y,Xi)

≥
∑

x∈Xi

(

dc(x) + dc(v)− n
)

+ di

( ∑

1≤j≤s

(dj − 1)
)

− di
(
di − 1

)
−

∑

y∈N!(v)

dc(vy)(y,Xi).

The proof is complete. �

Since rt(v) ≥ 1
2

∑

1≤i≤dc(v) rt(v,Ni(v)), we have the following corollary.

Corollary 8. Let G be an edge-colored graph which is edge-minimal. Then for 1 ≤ i ≤ dc(v) =

s, we have,

rt(v) ≥
1

2

( ∑

x∈N(v)

(
dc(x) + dc(v)− n

)
+ d(v)

( ∑

1≤j≤s

(dj(v)− 1)
)

−
∑

1≤i≤s

di(v)
(
di(v)− 1

)
−

∑

y∈N!(v)

dc(vy)(y,N(v))
)

.

�

4 Edge-colored books and friendship graphs

4.1 Edge-colored books

The aim of this subsection is to prove Theorem 3.

Before the proof, it’s better to introduce a notation, which indeed is some term from Corol-

lary 8. For i ∈ [1, s], let

Bi(v) = di(v)
( ∑

1≤j≤s

(
dj(v)− 1

))

− di(v)
(
di(v)− 1

)
−

∑

y∈N!(v)

dc(vy)(y,Ni(v)). (3)

Set

B(v) =
∑

1≤i≤s

Bi(v)

= d(v)
∑

1≤j≤s

(
dj(v)− 1

)
−

∑

1≤i≤s

di(v)
(
di(v)− 1

)
−

∑

y∈N!(v)

dc(vy)(y,N(v)).

=
(
d(v)− d1(v)

)(
d1(v)− 1

)
−

∑

y∈N!(v)

dc(vy)(y,N(v)) +
∑

2≤i≤s

(
d(v)− di(v)

)(
di(v)− 1

)
.

(4)
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For two disjoint subsets V1, V2 ⊆ V (G), the set of colors appearing on the edges between V1

and V2 in G is denoted by C(V1, V2). We say an edge xy ∈ E(G) is a rainbow triangle edge of v

if vxyv is a rainbow triangle. Denote by RE(v) the edge set of rainbow triangle edges of v.

First we prove a result on a vertex with maximum monochromatic degree, i.e., a vertex

v ∈ V (G) with dmon(v) = ∆mon(G). Recall that we assume d1(v) ≥ d2(v) ≥ . . . ≥ ds(v), where

s = dc(v). Thus, d1(v) = dmon(v). Also, N1(v) means the set of all vertices u ∈ N(v) such that

c(uv) = 1.

Lemma 9. Let G be an edge-colored graph. Then for a vertex v ∈ V (G) with dmon(v) =

∆mon(G) we have B(v) ≥ 0. If ∆mon(G) ≥ 2 and B(v) = 0 then there hold:

(a) N!(v) = N(v) \N1(v);

(b) dmon(u) = ∆mon(G) for all u ∈ N!(v); and

(c) if B1(v) = 0, then E[N1(v), N!(v)] ⊆ RE(v).

Proof of Lemma 9. If ∆mon(G) = 1, then obviously B(v) = 0. Suppose that ∆mon(G) ≥ 2.

Notice that dc(vy)(y,N(v)) ≤ ∆mon(G)− 1 = d1(v)− 1 for y ∈ N!(v). From Ineq (4), we have

B(v) ≥
(
d(v)− d1(v)− |N!(v)|

)(
d1(v)− 1

)

︸ ︷︷ ︸

1○

+
∑

2≤i≤s

(
d(v)− di(v)

)(
di(v)− 1

)

︸ ︷︷ ︸

2○

≥ 0.

(5)

If B(v) = 0, then dc(vy)(y,N(v)) = d1(v)− 1 for all y ∈ N!(v) and both 1○ and 2○ in Ineq

(5) equal to 0. Since ∆mon(G) = dmon(v) = d1(v) ≥ 2, we have d(v)− d1(v)− |N!(v)| = 0 and

di(v) = 1 for i ∈ [2, s]. Therefore, both (a) and (b) hold.

Note that d(v) − dc(v) = d1(v) − 1. We have B1(v) = −
∑

y∈N!(v)
dc(vy)(y,N1(v)) = 0.

Hence, c(vy) /∈ C(N1(v), N!(v)) for y ∈ N!(v). Since G is edge-minimal and d1(v) ≥ 2, we have

1 /∈ C(N1(v), N!(v)); indeed, if 1 ∈ C(N1(v), N!(v)), then there exists a monochromatic path of

length 3 as d1(v) ≥ 2. Furthermore, for any edge xy ∈ E[N1(v), N!(v)], xy is a rainbow triangle

edge of v. Hence E[N1(v), N!(v)] ⊆ RE(v). This proves (c). The proof is complete. �

Lemma 10. Let k ≥ 2 be a positive integer and G be a graph on n ≥ 3k − 2 vertices. If

δ(G) ≥ n+k−1
2

then G contains a Bk.

Proof of Lemma 10. Suppose to the contrary that there is no Bk in G. If there exists a

vertex v ∈ V (G) with d(v) ≥ n+k
2
, then |N(v) ∩ N(u)| ≥ ⌈n+k

2
⌉ + ⌈n+k−1

2
⌉ − n ≥ k where

u ∈ N(v). In this case, there is a Bk. Suppose d(v) = n+k−1
2

for all v ∈ V (G). Then for any

edge uv ∈ E(G), we have

n+ k − 1

2
+

n+ k − 1

2
− n ≤ |N(v) ∩N(u)| ≤ k − 1.
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Hence |N(v) ∩N(u)| = k − 1 ≥ 1 and N(u) ∪N(v) = n. It follows that V (G) \N(v) ⊆ N(u).

Since each vertex in V (G) is of degree n+k−1
2

, we have |V (G) \ N(v)| = n−k+1
2

. Similarly, for

w ∈ N(v) ∩ N(u), we also have V (G) \ N(v) ⊆ N(w). Hence, V (G) \ N(v) ⊆ N(u) ∩ N(w).

Then |N(u) ∩N(w)| ≥ n−k+1
2

. Since n+k−1
2

is an integer, k − 1 ≥ n−k+1
2

, and so n ≤ 3k − 3, a

contradiction. This proves Lemma 10. �

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We prove the theorem by contradiction. Let G be a counterexample

such that e(G) is as small as possible. We use di instead of di(v) in the following. Let v be a

vertex with dmon(v) = ∆mon(G). By Lemma 10, we can assume ∆mon(G) ≥ 2.

If there exists an integer i ∈ [1, s] such that rt(v,Ni(v)) ≥ (k− 1)di + 1, then there exists a

vertex x0 ∈ Ni(v) satisfying rt(v, x0) ≥ k, a contradiction. Thus,

rt(v,Ni(v)) ≤ (k − 1)di ≤
∑

x∈Ni(v)

(dc(x) + dc(v)− n)

(where the second inequality holds as the condition that dc(x) + dc(v) ≥ n+ k − 1). It follows

that Bi(v) ≤ 0 for all i ∈ [1, s] by Lemma 7. Therefore, 0 ≤ B(v) =
∑

1≤i≤s Bi(v) ≤ 0. That is,

B(v) = Bi(v) = 0 for i ∈ [1, s]. By Lemma 9 we have rt(v,Ni(v)) = (k − 1)di for all i ∈ [1, s]

and di = 1 for i ∈ [2, s]. Since G contains no k rainbow triangles sharing one common edge,

rt(v, x) = k − 1 for all x ∈ N(v).

Claim. There exists a vertex x ∈ N!(v) such that dcG[N [v]](x) ≤ k.

Proof. Choose x ∈ N!(v). If all edges inG[N!(v)] are rainbow edges of v, then asE[N1(v), N!(v)] ⊆

RE(v) (recall Lemma 9(c)), dcG[N [v]](x) ≤ dG[N [v]](x) ≤ rt(v, x) + 1 ≤ k for x ∈ N!(v). Now

assume that there exists a vertex u′ ∈ N!(v) such that c(xu′) = c(vx). Since x ∈ N!(v), by (b)

of Lemma 9, dmon(x) = ∆mon(G).

By a) of Lemma 9, N!(x) = N(x) \ Nc(vx)(x) and c(vx) is the maximum monochromatic

color of x. For all u ∈ N!(v) ∩ N(x), we have u ∈ Nc(xv)(x) or u ∈ N!x. By c) of Lemma 9,

E[Nc(xv)(x), N!(x)] ⊆ RE(x). If u ∈ N!(x), then xvux is a rainbow triangle, and hence xu is

a rainbow triangle edge of v. Therefore, for all u ∈ N!(v) ∩ N(x), we have c(xu) = c(vx) or

xu ∈ RE(v). From c) of Lemma 9, we have E[x,N1(v)] ⊆ RE(v). Hence,

dcG[N [v]](x) ≤ dcN![v]
(x) + |C(x,N1(v))| ≤ rt(v, x) + 1 = k.

9



Then, we infer

n+ k − 1

2
≤ dc(x) ≤ dcG[N [v]](x) + n−

(
∆mon(G) + dc(v)

)

= k + n−∆mon(G)− dc(v)

≤
n + k + 1

2
−∆mon(G),

that is, ∆mon(G) = 1, a contradiction. �

4.2 Edge-colored friendship graphs

The aim of this subsection is to prove Theorem 4.

A matching of a graph consists of some vertex-disjoint edges. The matching number of a

graph G is the maximum number of pairwise disjoint edges in G, denoted by α′(G). Erdős and

Gallai [13] determined Turán number of a matching with given size.

A covering of a graph G is a subset K of V (G) such that every edge of G has at least one

end vertex in K. A covering K∗ is a minimum covering if G has no covering K with |K| < |K∗|.

The number of vertices in a minimum covering of G is called the covering number of G, and is

denoted by β(G).

Lemma 11. For a graph G on n vertices, we have β(G) ≤ n− 1. Furthermore, G is complete

if and only if β(G) = n− 1.

Proof of Lemma 11. The sufficiency of condition is clear. We establish its necessity by the

contradiction. Suppose that G is not complete. Then there exist two vertices u, v ∈ V (G) such

that uv /∈ E(G). Hence V (G) \ {u, v} is a covering of G. Thus, β(G) ≤ n− 2, a contradiction.

�

Now we will prove a useful bound on α′(G) and β(G), which is partly inspirited by the

proof of Turán numbers of matchings by Erdős and Gallai [13]. Following Berge [4, pp. 176]

(see also Erdős and Gallai [13, pp. 354]), for a graph G with α′(G) = k and n > 2k, choose k

independent edges and call them α′-edges and the remaining edges γ-edges. Add a vertex x to

V (G) and connect x with every vertex which is not incident with α′-edges (i.e., any vertex not

in the edges of the matching of size k) by an edge. For all the new edges (i.e., the edges we add)

and the old α′-edges (i.e., the matching), we call them α-edges. A path is called alternating if

its edges are alternately α-edges and γ-edges. For a vertex, we say that it is a γ-vertex if it

is reachable from x by an alternating path which only ends with γ-edges. Apparently, x is a

γ-vertex.
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Let V0 be the set of all γ-vertices of G, and V1, · · · , Vp be the components of G obtained

from G by deleting V0. There is a well-known fact ([3, 4, pp. 169-170], [19, pp. 141-142]) on

the relationship among α-edges, γ-vertices and Vi.

Fact 12. Each α-edge incident to a γ-vertex is also incident to some odd Vi (i.e., |Vi| is odd)

and each odd Vi has exactly one α-edge incident to a γ-vertex.

It follows that each α-edge is either incident to a γ-vertex and an odd Vi, or is an edge of

some G[Vi] (see Figure 2, the edges colored blue are α′-edges). Furthermore, we can assert that

Figure 2: A partition (V0, V1, · · · , Vp) of a graph G

G[Vi] contains exactly ⌊ |Vi|
2
⌋ α′-edges. If α′(G) < ⌊ |Vi|

2
⌋, then there exist at least two vertices

in Vi incident to x, a contradiction to Fact 12. Note that each vertex in V0 is incident with an

α′-edge; otherwise the vertex is connected with x by an α-edge, a contradiction. The following

equation on α′(G) can be deduced implicitly from Erdős and Gallai [13, pp. 355].

α′(G) = |V0|+
∑

1≤i≤p

⌊
|Vi|

2

⌋

. (6)

Since β(Vi) ≤ |Vi| − 1 for 1 ≤ i ≤ p, by Lemma 11, we have the following lemma.

Lemma 13. Let G be a graph on n > 2α′(G) vertices and {Vi : 0 ≤ i ≤ p} be the partition as

remarked above. Then

β(G) ≤ |V0|+
∑

1≤i≤p

(|Vi| − 1) = n− p ≤ 2α′(G)− |V0|. (7)

Lemma 14. Let G be a graph on n ≥ 2α′(G) + 2 vertices and {Vi : 0 ≤ i ≤ p} be the

partition as remarked above. Then β(G) ≤ 2α′(G) − 1 and V0 is not empty. Furthermore, if

β(G) = 2α′(G)− 1, then

(1) Vi is complete and odd for 1 ≤ i ≤ p;

(2) β(G) = n− p and the covering of G consists of all vertices of V0 and |Vi| − 1 vertices of

Vi for 1 ≤ i ≤ p.

11



Proof of Lemma 14. Since n ≥ 2α′(G) + 2, G is not complete. If V0 = ∅, then G contains

exactly ⌊n
2
⌋ α′-edges, which implies that n ≤ 2α′(G) + 1, a contradiction. Hence |V0| ≥ 1.

β(G) ≤ 2α′(G)− 1 follows from Ineq (7).

If β(G) = 2α′(G) − 1, then all inequalities become equalities in Ineq (7). Hence β(Vi) =

|Vi| − 1 for all 1 ≤ i ≤ p. From Lemma 11, G[Vi] is complete. �

Recall RE(v) is the edge set of rainbow triangle edges of v. Let G△(v) denote the subgraph

induced by the edge set RE(v). Let C△(v) denote a minimum covering of G△(v). Thus

β(G△(v)) = |C△(v)|. Now we are ready to prove Theorem 4.

Proof of Theorem 4. We prove the theorem by contradiction. Let G be a counterexample

with the smallest order n, and then e(G) is as small as possible. Choose v ∈ V (G) such that

dmon(v) = ∆mon(G). Then α′(G△(v)) ≤ k − 1. Since n ≥ 2k + 9, by Corollary 8 and Lemma 9

we have e(G△(v)) = rt(v) ≥ 4k2−9
2

>
(
2k−1
2

)
. Hence |V (G△(v))| ≥ 2k ≥ 2α′(G△(v)) + 2. Then

β(G△(v)) ≤ 2k − 3 by Lemma 14.

Let α be a color satisfying dmon(v) = dα(v). Now we define two disjoint vertex subsets

of N(v). If ∆mon(G) ≥ 2, let U(v) be a maximum rainbow neighborhood of v in N(v) \

(Nα(v) ∪ C△(v)) and W (v) = Nα(v) \ C△(v). If ∆mon(G) = 1, let U(v) be a maximum

rainbow neighborhood of v in N(v) \ C△(v) and W (v) = ∅. Set X(v) = U(v) ∪W (v), T (v) =

X(v) ∪ C△(v) and T [v] = T (v) ∪ {v}. Thus, X(v) = (N(v) ∪Nα(v)) \ C△(v) = N(v) \ C△(v).

Apparently, |U(v)| ≥ dc(v)− β(G△(v))− 1 and

|T [v]| ≥ |Nα(v)|+ dc(v)− 1 + 1 ≥ dmon(v) + dc(v). (8)

Define q(u) = |C(u, C△(v)) \ C(u,X [v])| for u ∈ X(v).

According to the definition of C△(v), there is no rainbow triangle edge of v in G[{v}∪X(v)].

For u1, u2 ∈ X(v), if u1u2 ∈ E(G), then we have

c(u1u2) ∈ {c(vu1), c(vu2)}. (9)

Let Y ⊆ X(v) and D[Y ] be the oriented graph of G[Y ] defined as follows: let V (D) = Y and

orient each edge u1u2 in G[Y ] by −−→u1u2 if c(u1u2) = c(vu2). Then for u ∈ Y , all in-arcs from u are

assigned the color c(vu), and all out-arcs from u are assigned pairwise distinct colors which are

different from c(vu) as G is edge-minimal. Hence dmon
G[Y ](u) = d−

D[Y ](u) and dcG[Y ](u) = d+
D[Y ](u).

Since d−
D[Y ](u) ≤ ∆mon(G)− 1 for any u ∈ Y , there exists a vertex u′ ∈ Y such that

dcG[Y ](u
′) = d+

D[Y ](u
′) ≤ ∆mon(G)− 1. (10)

In the following, we prove a useful claim on a vertex v ∈ V (G) with dmon(v) = ∆mon(G).

Claim. q(u) = β(G△(v)) = 2k − 3 for all u ∈ X(v).

12



Proof. Apparently, we have

dc(u) ≤ dcT [v](u) + n−
∣
∣T [v]

∣
∣. (11)

If ∆mon(G) = 1, then G is properly-colored. Therefore, G[X(v)] consists of isolated vertices

by (9). Thus, for u ∈ X(v), dcT [v](u) = |c(uv) ∪ C({u}, C△(v))| ≤ 1 + q(u). Hence by Ineqs

(8) and (11), we have dc(u) + dc(v) − n ≤ q(u) ≤ β(G△(v)) ≤ 2k − 3. Now we have q(u) =
∣
∣C△(v)

∣
∣ = 2k − 3 for all u ∈ X(v).

Assume that ∆mon(G) ≥ 2. Then for w ∈ W (v) and u ∈ U(v), c(wu) = c(vu) if wu ∈

E(G) (otherwise, there is a monochromatic P3, a contradiction). Thus for u ∈ U(v), we have

dcT [v](u) ≤ d+
D[U(v)](u) + 1 + q(u). By Ineqs (8) and (11), we have

d+
D[U(v)](u) ≥ dc(u) +

∣
∣T [v]

∣
∣− n− q(u)− 1

≥ ∆mon(G) + 2k − 4− q(u).
(12)

Since q(u) ≤ β(G△(v)) ≤ 2k − 3, we have d+
D[U(v)](u) ≥ ∆mon(G) − 1. Since d−

D[U(v)](u) ≤

∆mon(G) − 1, d+
D[U(v)](u) = d−

D[U(v)](u) = ∆mon(G) − 1, which gives that q(u) = 2k − 3 for all

u ∈ U(v) and all inequalities in Ineq (12) become equalities.

Meanwhile, we have E[W (v), U(v)] = ∅ as c(wu) = c(vu) if wu ∈ E(G). Hence for w ∈

W (v),
n+ 2k − 3

2
≤ dc(w) ≤ dcT [v](w) + n−

∣
∣T [v]

∣
∣

≤ ∆mon(G) + q(w) + n−∆mon(G)− dc(v)

≤
n− 2k + 3

2
+ q(w).

(13)

Then q(w) = 2k − 3 for all w ∈ W (v).

Let {Vi : 0 ≤ i ≤ p} be the partition of G△(v) as remarked in Lemma 13. Since G△(v) is

non-complete, by Claim, 2k − 3 = β(G△(v)) ≤ 2α′(G△(v))− |V0| ≤ 2k − 3, which guarantees

that α′(G△(v)) = k − 1 and |V0| = 1. Since |V (G△(v))| ≥ 2k, by Lemma 13, we have

p ≥ |G△(v)|+ |V0| − 2α′(G△(v)) ≥ 2k + 1− 2(k − 1) = 3.

We first consider the case of V0 ( C△(v). By Lemma 14(2), for x ∈ Vi ∩ C△(v), 1 ≤ i ≤ p

there exists exactly one vertex u′ ∈ X(v) such that xu′ ∈ RE(v), as |Vi \ C△(v)| = 1. For any

u ∈ X(v)\V (G△) and x ∈ C△(v), the fact xu /∈ RE(v) gives that c(xu) ∈ {c(vu), c(vx)}. Since

q(u) = |C(u, C△(v)) \ C(u,X [v])| = |C△(v)| = β△, c(xu) = c(vx). Since q(u) = |C△(v)| = β△,

by Claim, each vertex in X(v) is incident to all vertices in C△(v). For x ∈ Vi ∩ C△(v),
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there is only one vertex u′ ∈ X(v) such that c(xu′) 6= c(vx). Hence dmon(x) ≥ dc(vx)(x) ≥

|X(v) ∪ {v} − {u′}|. Since |X(v) ∪ {v}| = |T [v]| − β△, we have the following inequality:

dmon(x) ≥ |(X(v) ∪ {v})− {u′}|

≥ dc(v) + ∆mon(G)− β(G△(v))− 1

≥
n + 2k − 3

2
+ ∆mon(G)− (2k − 3)− 1

≥ ∆mon(G) + 1

as n ≥ 2k + 1. This is a contradiction.

Next we consider the case that C△(v) = V0. The goal of the coming part is to prove that

dmon(u) = ∆mon(G) for any u ∈ X(v).

Suppose that there exists a vertex u′ ∈ X(v) with dcG[X(v)](u
′) ≤ ∆mon(G)− 2. Recall that

T (v) = X(v) ∪ C△(v), and X(v) and C△(v) are disjoint. Then by Claim and (8), we have

n+ 2k − 3

2
≤ dc(u′)

≤ dcG[X(v)](u
′) + dcG[{u′}∪C△(v)](u

′) + n− |T [v]|+ |{v}|

= dcG[X(v)](u
′) + q(u′) + n− |T (v)|

≤ ∆mon(G)− 2 + 2k − 3 + n− (dmon(v) + dc(v)− 1)

≤ 2k − 4 + n−
n + 2k − 3

2
,

a contradiction. Thus, for any vertex u ∈ X(v), we have dcG[X(v)](u) ≥ ∆mon(G) − 1. Set

Y = X(v). Recall the rule of the construction of D[Y ] (above the proof of Claim). We have

d−
D[Y ](u) ≤ ∆mon(G) − 1 for any u ∈ Y . Since

∑

u∈Y d−
D[Y ](u) =

∑

u∈Y d+
D[Y ](u), each vertex

u ∈ X(v) satisfies that dcG[X(v)](u) = ∆mon(G)−1. Hence dmon(u) = d−
D[X(v)](u)+1 = ∆mon(G).

Since C△(v) = V0 and |V0| = 1, we have q(u) = 2k − 3 = 1, and hence k = 2. Note that

|G△(v)− C△(v)| =
∑p

i=1 |Vi| ≥ p ≥ 3. To avoid the graph consisting of two rainbow triangles

sharing one common vertex in G, we have |RE(u)| ≤ 1 for u ∈ G△(v)−C△(v). Since u is also

a vertex with dmon(u) = ∆mon(G), we have |RE(u)| ≥ 2, a contradiction. �

5 Concluding remarks

One may wonder the sharpness of Theorems 3 and 4. For Theorem 3, by Example 1, we

know when k ≥ n
3
+ 1 (in this case, the subgraph Bk is with order Θ(n)), the color degree

guaranteeing a properly colored Bk should be larger than n+k−1
2

.

For uncolored friendship subgraphs, we first prove the following result.
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Proposition 15. Let k ≥ 2 be a positive integer and G be a graph on n ≥ 3k − 1 vertices. If

δ(G) ≥ n+k−1
2

then G contains a Fk.

Proof of Proposition 15. We proceed the proof by induction on k. The basic case k = 2 is

easily derived from Theorem 4. Let k ≥ 3 and suppose the result holds for k − 1. Suppose to

the contrary that there is no Fk in G. Let v be the center of a Fk−1 and S = V (Fk − v). Since

δ(G) ≥ n+k−1
2

, each edge is contained in at least k − 1 triangles. As n ≥ 3k − 1, there exist k

vertices in N(v) \ S. According to pigeonhole principle, there exists a Fk in N [v]. �

As we have already mentioned in the introduction, as corollaries of the result of Erdős et

al. [12] on k-fans and Erdős’ conjecture on books, respectively, the following results hold.

Proposition 16. Let k ≥ 2 be a positive integer and G be a graph on n ≥ 50k2 vertices. If

δ(G) ≥ n+1
2

then G contains a Fk.

Proposition 17. Let k ≥ 2 be a positive integer and G be a graph on n ≥ 6k vertices. If

δ(G) ≥ n+1
2

then G contains a Bk.

So by reasoning the above results, Theorems 3 and 4 should be at least asymptotically tight

when k = o(n).

For Theorem 4, the corresponding color degree condition may be acceptable when one

considers a nearly spanning Fk. One evidence is that, if we consider the color degree condition

for the spanning Fk (that is, k = n−1
2
), then the sufficient condition is that δc ≥ n − 1 which

equals to n+2k
2

+O(1) (see the following).

Fact 18. Let G be an edge-colored graph on n vertices where n is odd. If δc ≥ n − 1 then G

contains a properly-colored Fn−1
2
.
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