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Abstract

Homogeneous chain decompositions (HCDs) and noncrossing chain decomposi-
tions (NcCDs) of a poset are studied here, the former having a close connection
to linear sequential dynamical systems while the latter generalizing the well-known
noncrossing partitions. There exists a unique HCD containing the minimum number
of chains for any poset and we show the number is not necessarily Lipschitz. Making
use of the unique HCD, we then identify a group that contains an isomorphic copy
of the automorphism group of the poset. Finally, we prove some upper bounds for
the minimum number of chains contained in an NcCD. In particular, the number
of chains in the unique HCD provides an upper bound.
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1 Introduction

Partially ordered sets are well studied objects in discrete mathematics and we will basically
follow the notation in Stanley [13]. A partially ordered set (poset) is a set P with a
binary relation ‘≤’ among the elements in P , where the binary relation satisfies reflexivity,
antisymmetry and transitivity. The poset will be denoted by (P,≤) or P for short. For
simplicity, all posets discussed in this paper are assumed to be finite.

If two elements x and y in P satisfy x ≤ y, we say x and y are comparable. We
write x < y if x ≤ y but x 6= y. A chain of P is a subset of elements such that
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any two elements there are comparable, while an antichain is a subset where any two
elements are not comparable. A chain decomposition of P is a family of disjoint chains
{C1, C2, . . . , Ck} such that

⋃k

i=1Ci = P . Let Min(P ) denote the minimum number of
chains that are contained in a chain decomposition of P , and let Anti(P ) denote the
maximum number of elements that can be contained in an antichain of P . The celebrated
Dilworth’s theorem [6] states that Min(P ) = Anti(P ) for all finite P .

Regarding chain decompositions of posets, various types (e.g., symmetric chain de-
composition [7], canonical symmetric chain decomposition [8], etc.) have been studied. A
new type of chain decomposition, called homogeneous chain decomposition (HCD), was
introduced in [5] in the context of studying the interaction between incidence algebras of
posets and linear sequential dynamical systems, where in particular, it was shown that
the Möbius function of any poset can be efficiently computed via a sequential dynamical
system and a cut theorem concerning HCDs of posets holds. However, HCDs have some
nice structural properties thus deserve a close look for its own sake, which motivated
this work. In addition, we discuss decomposing a poset into noncrossing chains which
can be viewed as a generalization of the extensively studied noncrossing partitions (e.g.,
see [1, 10]).

The paper is organized as follows. In Section 2, we review some notation regarding
HCDs and noncrossing chain decompositions (NcCDs). We also propose a new interpre-
tation of the cut theorem in terms of counting certain chains. In Section 3, we show that
there exists a unique HCD containing the minimum number Minh(P ) of chains and that
Minh(P ) is not Lipschitz. We additionally show that the automorphism group Aut(P ) of
any poset P is isomorphic to a subgroup of the group Aut(GP )

⋂
OP , where GP is a graph

and OP is a group, both induced by the unique minimum HCD. Finally, we prove some
upper bounds for the minimum number of chains contained in an NcCD in Section 4. In
particular, Minh(P ) provides an upper bound.

2 HCDs and NcCDs of posets

In this section, we will review some notation regarding HCDs and the cut theorem of
posets proved in Chen and Reidys [5]. The definition of NcCDs will be given too.

Definition 2.1. Let (P,≤) be a poset. An HCD C of P is a collection of mutually disjoint
chains C1, C2, . . . , Cn such that

⋃
iCi = P , and if si ∈ Ci and sj ∈ Cj are comparable,

then all elements in Ci and Cj are pairwise comparable.

When all elements in two chains Ci and Cj are pairwise comparable, we say Ci and
Cj are comparable for short. We also write C = (ξ1 < ξ2 < · · · < ξs) as a shorthand of
that C is the chain {ξ1, ξ2, . . . , ξs} and ξ1 < ξ2 < · · · < ξs.

Definition 2.2. Let C = {C1, C2, . . . , Cn} be an HCD of P . The C-graph of P is the
graph GC having Ci’s as vertices where Ci and Cj are adjacent if they are comparable.

Definition 2.3. A C-cut of P is a cut of each chain Ci = (ξ1 < ξ2 < · · · < ξs) into two
subchains C↓

i = (ξ1 < ξ2 < · · · < ξh(i)) and C↑
i = (ξh(i)+1 < ξh(i)+2 < · · · < ξs).
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Note that C↓
i or C↑

i could be empty for some i. If none of C↓
i and C↑

i are empty for
any i, the C-cut is called proper. Clearly, given an HCD C of P , a C-cut of P induces the
sub-posets P ↓ and P ↑, in which C↓ = {C↓

1 , . . . , C
↓
n} and C↑ = {C↑

1 , . . . , C
↑
n} are HCDs of

P ↓ and P ↑, respectively.
In the incidence algebra of a poset, a particular important function is known to be

its Möbius function. The cut theorem proved in [5] is concerned with the relation among
the Möbius functions of P , P ↓ and P ↑. Here we present an alternative version of the cut
theorem which may be easier to get the point.

For an increasing chain (ξ1 < · · · < ξs), its length is defined as s− 1. The number of
chains of length zero from x to y is one if x = y, otherwise zero. Let D be an n×n matrix,
where the entry Dij is the number of (increasing) chains of even length less the number
of chains of odd length, starting with an element in Ci and ending with an element in Cj.
The matrices D↓ and D↑ are defined analogously. Then, in the case of the cut C being
proper and that elements in C↓

i are smaller than elements in C↑
j whenever Ci and Cj are

comparable, we have

Proposition 2.1 (Cut theorem). Let J = I + J0, where J0 is the adjacency matrix of
GC, i.e., [J0]ij = 1 if Ci and Cj (i 6= j) are adjacent and [J0]ij = 0 otherwise. Then

DJ = D↓J +D↑J −D↓JD↑J. (1)

We refer to [5] for the details of the original form of the cut theorem and leave the
proof of the new version here to the interested reader. Note that eq. (1) can be further
simplified if J is invertible. It would be nice if a more intuitive, alternative explanation
could be given to the cut theorem above, in particular the reason why the invertibility of
J even matters.

Example 2.1. In Figure 1, x → y indicates that x < y, and the two elements on each
vertical dashed line form a chain and these chains give an HCD C of the poset P . A C-cut
will send the upper element on each chain to P ↑ and the lower element to P ↓. All elements
in P ↓ are assumed to be smaller than those in P ↑ if they are comparable although the
corresponding arrows are not shown here for simplicity.

cut

Figure 1: An example of a C-cut.

Definition 2.4. A collection of chains {C1, C2, . . . , Ck} is called a noncrossing chain
decomposition of a poset P if there do not exist elements a, b ∈ Ci and c, d ∈ Cj (i 6= j)
such that a < c < b < d in P .
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Let [n] = {1, 2, . . . , n}. It is not hard to observe that a classical noncrossing parti-
tion [1, 10] of [n] is essentially a noncrossing chain decomposition of the poset [n] with
the natural order. We denote by Minnc(P ) the minimum number of chains contained in
a noncrossing chain decomposition of P . Clearly, Minnc(P ) = 1 if and only if P ∼ [n].

3 Minimal HCDs

We denote by |C| the number of chains contained in C. Let Minh(P ) = minC |C|, where
the minimization is over all HCDs of P . An HCD of P containing exactly Minh(P ) chains
is called a minimal homogeneous chain decomposition (MHCD) of P . It turns out there
is only one such a decomposition.

Proposition 3.1. For any poset P , there exists a unique MHCD of P .

Proof. Let C = {C1, C2, . . . , Cm} be a MHCD of P . If |Ci| = 1 for all 1 ≤ i ≤ m,
there is nothing to prove. Thus, we assume that there exists at least one i such that
|Ci| > 1. Let C′ = {C ′

1, C
′
2, . . . , C

′
m} be a different MHCD of P . First, there exists k and

sk1, sk2 ∈ Ck such that sk1 ∈ C ′
j1, sk2 ∈ C ′

j2 and C ′
j1 6= C ′

j2. Otherwise, it is not hard to
argue C = C′. Next, since sk1 and sk2 are comparable, C ′

j1 and C ′
j2 are comparable. Thus,

C∗ = C ′
j1

⋃
C ′

j2 is a chain of P .
We claim (C′ \ {C ′

j1, C
′
j2})

⋃
{C∗} is an HCD of P . For any j /∈ {j1, j2}, C ′

j is either
comparable to C ′

j1 or not comparable to C ′
j1. For the former case, there exists sj ∈ C ′

j

comparable to sk1. Since sk1 and sk2 come from the same chain Ck, regardless of whether
sj ∈ Ck, sk2 must be comparable to sj as well. Hence, C ′

j is also comparable to C ′
j2 so

that C ′
j is comparable to C∗. For the latter case, we can analogously show C ′

j is not
comparable to C∗. Thus, the claim holds. However, this contradicts the assumption that
C′ is minimum. Hence, C is the unique MHCD of P .

We denote by GP the C-graph corresponding to the MHCD of P hereafter. The
functionMin(P ) (and many other functions) on a poset P satisfies the Lipschitz property,
i.e., for any element z ∈ P , |Min(P )−Min(P \ {z})| ≤ 1. However, Minh(P ) does not
necessarily share this property. In fact, we have

Theorem 3.1. Let P be a poset and z ∈ P . Then we have the sharp bounds

Minh(P \ {z}) ≤ Minh(P ) ≤ 2Minh(P \ {z}) + 1. (2)

Proof. Let C = {C1, C2, . . . , Ck} be the MHCD of P . Deleting z from the chain Ci

containing it, we obtain an HCD C′ = {C1, . . . , Ci \ {z}, . . . , Ck} of P \ {z}. Thus,
Minh(P \ {z}) ≤ Minh(P ). It is clear that if there is no edge in GC and |Cj| > 1 for all
1 ≤ j ≤ k, C′ will be the MHCD of P \ {z} whence the equality can be achieved.

For the second inequality, let C′ and C be the MHCDs of P \ {z} and P , respectively.
We first claim that

Claim. The elements of each chain in C′ can be contained in at most two chains in C.
If otherwise, there exists a chain C ′

i in C′ whose elements are contained in at least three
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different chains C1, C2, C3 in C. By the pigeonhole principle, there are at least two of
them either comparable to z or not. W.l.o.g., suppose C1, C2 are both comparable to z.
Then C1, C2 are both comparable to the chain containing z. Now, for any chain C ∈ C
such that z /∈ C, if C1 is comparable to C, so is C2, since C1 and C2 are contained in the
same chain C ′

i, and vice versa. Thus, C1 and C2 can be combined in C will induce a new
HCD with less number of chains by merging C1 and C2, which contradicts the assumption
that C is minimum. Hence, the claim is affirmed.

Note that z may possibly form a chain itself in C. Therefore, we have

Minh(P ) ≤ 2Minh(P \ {z}) + 1.

As far as the sharpness of the bound, consider the case: suppose C′ = {C ′
1, . . . , C

′
k} with

|C ′
i| = 2 for 1 ≤ i ≤ k, and there is no edge in GP\{z}. Assume for each 1 ≤ i ≤ k, z is

larger than the minimum element in Ci but not comparable to the maximum element in
Ci. See Figure 2 for an illustration. Then, it is not difficult to check that each chain in the
MHCD of P contains only one element. Thus, Minh(P ) = 2k+1 = 2Minh(P \ {z}) + 1.
This completes the proof.

P

z

Figure 2: An example achieves the upper bound of Minh(P ).

We proceed to prove a result about poset automorphisms. See the papers [2, 3, 11,
12] and references therein for previous studies. The following notation will be assumed
through the end of the section. Let Aut(P ) denote the automorphism group of P , and
let Aut(GP ) denote the automorphism group of the graph GP . Let C = {C1, C2, . . . , Cm}
be the MHCD of P . Without loss of generality, assume the chains in the set Si =
{Cki+1, Cki+2, . . . , Cki+1

} have the same length li for 0 ≤ i ≤ t − 1, and li 6= lj if i 6= j,

where k0 = 0, t ≥ 1,
∑t

i=1 ki = m and
∑t

i=1 liki = |P |. Let OP be the group generated by
all permutations π on V (GP ) such that every cycle of π contains elements from the same
set Si for some 0 ≤ i ≤ t− 1.

Theorem 3.2. There exists an acyclic orientation Asyc(GP ) of GP such that the auto-
morphism group Aut(P ) is isomorphic to a subgroup of the group

Aut(Asyc(GP ))
⋂

OP .

Proof. Note that both Aut(Asyc(GP )) and OP are groups of permutations on V (Gp).
Thus Aut(Asyc(GP ))

⋂
OP is indeed a group. We first show that Aut(P ) is isomorphic

to a subgroup of OP .
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Claim 1. Under any g ∈ Aut(P ), two P -elements in the same chain Ci of the MHCD
must be mapped to two P -elements in the same chain Cj of the MHCD with |Ci| = |Cj|.
It is easy to see that any automorphism g will map a chain to a chain, thus a chain
decomposition to a chain decomposition with the same number of chains. The resulting
chain decomposition C′ induced by g acting on the MHCD must be an HCD. This is
verified as follows. Let x′

i be an element from a chain C ′
i of C

′ and x′
j be an element from

a chain C ′
j of C′. Suppose x′

i and x′
j are comparable. Note that g−1 ∈ Aut(P ). Then

their respective preimages xi = g−1(x′
i) and xj = g−1(x′

j) must be comparable as well.
Let y′j be any other element from C ′

j and let yj = g−1(y′j). Note that by construction yj
is contained in the same chain as xj . So xi and yj are comparable. Thus their images
under g, x′

i and y′j must be comparable too, whence C ′
i and C ′

j are comparable. Similarly,
if x′

i and x′
j are incomparable, C ′

i and C ′
j are incomparable. Therefore, C′ is an HCD. By

the uniqueness of the MHCD, each chain in the MHCD must be uniquely and exclusively
mapped to a chain in the MHCD under g, whence Claim 1.

Following Claim 1, any chain in Si will be mapped to a chain in Si. Furthermore, the
maximum element of a chain there must be mapped to the maximum element of a chain,
and for each chain Ci of the MHCD, once the image of the maximum element in the chain
under g is determined, then g is completely determined. Thus, g uniquely induces an
element in OP . For g, g

′ ∈ Aut(P ), it is not hard to see that the induced element of g ◦ g′

is also in OP . Therefore, Aut(P ) is isomorphic to a subgroup of OP .
Let C = {C1, C2, . . . , Cn} be the MHCD of a poset P . Then, (C,≤h) is obviously a

well-defined poset, where the relation ≤h is defined as follows: Ci ≤h Ci, and for i 6= j,
Ci ≤h Cj iff min(Ci) < min(Cj). Let Asyc(GP ) be the orientation induced by the poset
(C,≤h), i.e., the edge between Ci and Cj in GP is oriented from Ci to Cj if Ci ≤h Cj. We
next show

Claim 2. Aut(P ) is isomorphic to a subgroup of Aut(Asyc(GP )).
To prove this, we show that each g ∈ Aut(P ) uniquely induces an automorphism g̃ ∈
Aut(Asyc(GP )). From Claim 1, we know that g maps chain to chain so that it induces a
bijection g̃ on V (GP ). It suffices to verify that g̃ preserves directed edges in Asyc(GP ).
Given a directed edge Ci → Cj, by construction min(Ci) < min(Cj). Thus, g(min(Ci)) <
g(min(Cj)), and there is an edge between the chain C ′

i containing g(min(Ci)) and the
chain C ′

j containing min(Cj). By construction of the orientation, C ′
i is directed to C ′

j.
Note under g̃, Ci and Cj will be mapped to C ′

i and C ′
j respectively. Obviously, g̃ maps

non-adjacent pairs to non-adjacent pairs. Hence, g̃ ∈ Aut(Asyc(GP )), whence the claim.
Finally, for g, g′ ∈ Aut(P ), it is easy to check that g ◦ g′ induces g̃ ◦ g̃′ ∈ Aut(Asyc(GP )).
Therefore, Claim 2 holds, and the theorem follows.

Obviously Aut(Asyc(GP )) ⊂ Aut(GP ), then the following corollary holds:

Corollary 3.1. The automorphism group Aut(P ) is isomorphic to a subgroup of the group

Aut(GP )
⋂

OP .
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4 Minimal NcCDs

An NcCD containing the minimum number Minnc(P ) of chains is called a minimal NcCD
of the poset P . There is no reason to expect the uniqueness of a minimal NcCD. Never-
theless, we shall prove some upper bounds for Minnc(P ).

Another notion that we need is 132-avoiding permutations of a poset P and 132-
avoiding permutations with respect to a linear extension of P . A permutation π =
π1π2 · · ·πn of the elements of P is said to be 132-avoiding if no three-element subsequence
πi1πi2πi3 in π satisfies i1 < i2 < i3 while πi1 < πi3 < πi2 in P . In the case of P = [n], it
reduces to a conventional 132-avoiding permutation which is ubiquitous in combinatorics
and computer science.

A linear extension of P is a permutation e = e1e2 · · · en of P -elements such that ei < ej
implies i < j. There are more than one linear extension unless P ∼ [n]. A permutation
π = π1π2 · · ·πn of the elements of P is called 132e-avoiding if there does not exist a
subsequence πi1πi2πi3 = ej1ej2ej3 such that i1 < i2 < i3 and j1 < j3 < j2. It is easily seen
that a 132e-avoiding permutation is a 132-avoiding permutation.

Given a permutation π = π1π2 · · ·πn of P , i is called a p-descent of π if πi > πi+1 or
πi is not comparable with πi+1 in P or i = n. The number of p-descents in π is denoted
by dP (π). Let

Mind(P ) = min{dP (π) : π is a 132-avoiding permutation of P},

Mine
d(P ) = min{dP (π) : π is a 132e-avoiding permutation of P}.

Our main theorem in this section is the following quantitative relations.

Theorem 4.1. For any poset P , there exists a linear extension e of P such that

Min(P ) ≤ Minnc(P ) ≤ Mind(P ) ≤ Mine
d(P ) ≤ Minh(P ). (3)

We remark that the rightmost inequality is not necessarily true for an arbitrary linear
extension and the leftmost inequality is trivial. A proof of the above theorem follows from
a series of properties that we are about to present.

Proposition 4.1. Let π be a 132-avoiding permutation of a poset P . Then, the segments
induced by the p-descents of π as sets give an NcCD of P .

Proof. Assume π = π1π2 · · ·πn. Read π from left to right and collect these elements
between two consecutive p-descents, excluding the first one and including the second. By
definition of p-descents, these elements comprise a chain. We next show these chains give
an NcCD. If not, without loss of generality, suppose the first chain π1π2 and the second
chain π3π4 cross, i.e., π1 < π3 < π2 < π4 or π3 < π1 < π4 < π2. Obviously, either case
implies a 132 pattern in π, a contradiction whence the proposition.

As a result, we immediately have Minnc(P ) ≤ Mind(P ) ≤ Mine
d(P ) for any linear

extension e of P . If otherwise explicitly stated, we assume the following notation in the
rest of the section. Let C = {C1, C2, . . . , Ck} be the MHCD of P , where

Ci = (si1 < si2 < · · · < simi
),

k∑

i=1

mi = n.

7



Lemma 4.1. If Ci and Cj are comparable, then there exists 0 ≤ l ≤ mi such that

si1 < si2 < · · · < sil < sj1 < sj2 < · · · < sjmj
< si(l+1) < si(l+2) < · · · < simi

.

Proof. In order to prove the lemma, it suffices to show that there does not exist 0 < l1 <
mi and 0 < l2 < mj such that

sil2 < sjl1 < si(l2+1) < sj(l1+1).

Assume by contradiction that such l1 and l2 exist. For any other chain Ck, if Ck is
comparable to Ci and x ∈ Ck, then either x < si(l2+1) or x > si(l2+1). In any case, we
conclude that an element in Cj is comparable to x whence Cj and Ck are comparable.
By similar analysis, we can conclude that if Ck is not comparable to Ci, then Ck is not
comparable to Cj either. Therefore, (C \ {Ci, Cj})

⋃
{Ci ∪ Cj} is an HCD of P . This

contradicts the assumption that C is the minimum and the lemma follows.
Consider the relation ≤b on C that Ci ≤b Cj if there exist elements x, z ∈ Cj and

y ∈ Ci such that x < y < z or min(Ci) > max(Cj). As for the first case, we say Cj wrap
around Ci or Ci can be wrapped around by Cj . In view of Lemma 4.1, we leave it to the
reader to verify that (C,≤b) is a well-defined poset.

Proposition 4.2. Let C1C2 · · ·Ck be a linear extension of (C,≤b). Then the following
permutation π is 132-avoiding and has k p-descents:

π = s11s12 · · · s1m1
s21 · · · s2m2

· · · sk1 · · · skmk
.

Proof. By definition, it is easy to see there are exactly k p-descents in π. We prove the
rest by contradiction. Suppose πl1πl2πl3 is a 132 pattern in π. Since each Ci appears as
an increasing chain in π, we have only two possible cases:

• πl1 , πl2 ∈ Ci, πl3 ∈ Cj, and i < j;

• πl1 ∈ Ci, πl2 ∈ Cj , πl3 ∈ Ck, and i < j < k.

The first case cannot happen because the condition implies that Cj <b Ci in the light of
Lemma 4.1, contradicting the assumption of the proposition. Next suppose the second
case occurs. First, πl1 < πl2 and Ci <b Cj imply that πl1 > xj for some xj ∈ Cj , i.e.,
Cj wrap around Ci. Analogously, Ck wrap around Ci. Secondly, πl2 > πl3 and Cj <b Ck

imply that either min(Cj) > max(Ck) or Ck wrap around Cj. Since both Cj and Ck

can wrap around Ci, the former is absurd. On the other hand, that Ck wrap around Cj

while Cj wrap around Ci makes it impossible to have a 132 pattern πl1πl2πl3 such that
πl1 ∈ Ci, πl2 ∈ Cj , πl3 ∈ Ck. Hence, no 132 patterns exist in π, completing the proof.

From Lemma 4.1 and Proposition 4.2, we concludeMinnc(P ) ≤ Mind(P ) ≤ Minh(P ).
But we cannot conclude Mine

d(P ) ≤ Minh(P ) for a linear extension e. We proceed with
further analysis below, where on the way we need to make use of plane trees. A plane tree
T can be recursively defined as an unlabeled tree with one distinguished vertex called the
root of T , where the unlabeled trees obtained by deleting the root as well as its adjacent

8



edges from T are linearly ordered, and they are plane trees with the vertices adjacent
to the root of T in T as their respective roots. These subtrees are pictured as locating
below the root and appearing left to right. A non-root vertex without any child is called a
leaf, and an internal vertex otherwise. A labelled plane tree is a plane tree where vertices
carry mutually distinct labels from a certain set of labels. The preorder of the vertices in a
labelled plane tree T is the sequence obtained by travelling T in a left-to-right depth-first
manner and recording the label of a vertex when it is first visited. See Figure 3 for an
example.

r

6

5

4

3 2

1
preorder: r,6,5,4,3,2,1

Figure 3: A labelled plane tree and the preorder of its vertices.

Proposition 4.3. Suppose C1C2 · · ·Ck is a linear extension of the poset (C,≤b). Then,
there exists a labelled plane tree T with non-root vertex labels from P such that π in
Proposition 4.2 is 132e-avoiding, where e is the reverse of the preorder of the vertices
other than the root of T .

Proof. We actually build a sequence of trees T1, T2, . . . , Tk so that Tk is the desired tree
T . The tree T1 is obtained by attaching the chain Ck (of vertices) to a vertex r such that
the vertices reading from r along the path are r, skmk

, sk(mk−1), . . . , sk1. The vertex r will
be the root of Ti’s. Next, we build T2 from T1 by attaching Ck−1 to a certain vertex in T1

from left: in the path from the leftmost leaf in T1 to r, find the minimal vertex (excluding
r) that is larger than s(k−1)mk−1

and attach the chain Ck−1 of vertices to the found vertex
(so that the found vertex and s(k−1)mk−1

are adjacent); if no such a vertex exists, then
attach the chain Ck−1 to r. The process of obtaining Ti+1 from Ti is analogous, and we
eventually obtain a tree Tk = T with vertices other than r from P .

Denote the reverse of the preorder of the vertices other than the root of T by e. The
consequence that π is a 132e-avoiding permutation is implied in the Jani-Rieper bijection
between plane trees and conventional 132-avoiding permutations. The reader is refered
to [9] and [4] for discussion. This completes the proof.

While it may be hard to generate all 132-avoiding permutations of P , it is easy to
generate all 132e-avoiding permutations for any linear extension e of P as it is essentially
generating all plane trees. It remains to prove that there exists a linear extension of
(C,≤b) of which the corresponding e is in fact a linear extension of P . We need one more
lemma to that end.

Lemma 4.2. Suppose C1, C2, . . . , Cm are the maximal elements of the poset (C,≤b).
Then, any Cj for m+ 1 ≤ j ≤ k satisfies either one of the cases:

9



(1) for at least one t (1 ≤ t ≤ m), min(Cj) > max(Ct);

(2) for a unique t (1 ≤ t ≤ m), Ct wrap around Cj.

In addition, two case (2) elements wrapped around by distinct maximal elements are not
comparable, while a case (1) element is smaller than a case (2) element if comparable and
the minimal (P -element) of the former is greater than the maximal of the latter.

Proof. For any m + 1 ≤ j ≤ k, it is clear that Cj is smaller than at least one maximal
element. We first show that Cj cannot satisfy both cases. Suppose min(Cj) > max(Ct)
for some 1 ≤ t ≤ m. If Cj can be wrapped around by another maximal element Ct′ , then
it is easy to see that Ct and Ct′ are comparable, a contradiction. Analogously, an element
satisfy (2) cannot satisfy (1) at the same time. Moreover, an element cannot be wrapped
around by more than one maximal elements.

If two case (2) elements wrapped around by distinct maximal elements are comparable,
either the minimal P -element of one is greater than the maximal P -element of the other
or one wrap around the other. Either case implies the two involved distinct maximal
elements are comparable, contradicting the maximality. The remaining statement can be
similarly verified, completing the proof.

Proposition 4.4. There exists a linear extension of (C,≤b), still denoted by C1C2 · · ·Ck,
of which the corresponding e refered to in Proposition 4.3 is a linear extension of P .

Proof. We first construct a linear extension of (C,≤b) and then argue the corresponding
e is a linear extension of P .

At the beginning, we arrange the maximal elements of (C,≤b) in an arbitrary way.
Next, we put each of those case (2) elements right before the maximal C-element that
wrap around it (and after the preceeding maximal element) and order those right before
the same maximal element later. As for those case (1) elements, we arrange their maxi-
mal elements in front of the current partial sequence in an arbitrary way. Note that with
respect to these case (1) maximal elements, other case (1) elements are either case (1)
or case (2) which will be processed analogously. Iterate this procedure until no elements
are in case (1) with respect to the most newly generated case (1) maximal elements. At
this point, all elements of (C,≤b) are grouped into disjoint ordered groups. The involved
maximal C-elements (w.r.t. a certain iteration) serve as a kind of group markers. The
groups obtained so far will be refered to as type I groups. In view of Lemma 4.2, any
C-element in a left group is smaller than any C-element in a right group if comparable,
not violating the current sequence to possibly become a linear extension of (C,≤b). For
each group of “roughly” placed elements right before a maximal element (w.r.t. a certain
iteration), we do the same iteration to determine their relative order. It is kind of suc-
cessive “refinement” until each non-empty “group” contains a single element. Eventually,
we obtain a linear extension of (C,≤b).

Assume the resulting linear extension is C1C2 · · ·Ck, and its corresponding tree is
T . According to the construction of the linear extension C1C2 · · ·Ck and the tree T ,
P -elements contained in chains belonging to distinct type I groups (including respective
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group markers) are contained in distinct subtrees of T . Thus, a P -element in a left subtree
is greater than a P -element in a right subtree if comparable, leading to no contradiction
for e being a linear extension of P . We next examine the stuctures of these subtrees. Note
that all chains in the same type I group can be wrapped around by the corresponding
group marker. As such, they naturally form a tree structure as follows. The group marker
Ck is taken as an example. The corresponding subtree T0 has skmk

as its root, and the
path from the rightmost leaf to the root of the subtree is exactly Ck. From the root skmk

along the path down to sk1, the first internal vertex having more than one child is the first
place skj such that there are other chains that can be embedded between skj1 and sk(j1−1),
and the chains attaching to skj1 are those directly (i.e., adjacent in the Hasse diagram of
(C,≤b)) wrapped around by Ck where the minimal P -element of a left chain is greater
than the maximal of a right chain if comparable; Similarly, the second internal vertex
having more than one child is the second place skj2 such that there are other chains that
can be embedded between skj2 and sk(j2−1), and so on. It is not difficult to observe that
these chains attaching to skjt will be group markers themselves, other branches will attach
along these chains. As a consequence, we conclude that for any two subtrees incident to
the same vertex in T0, the minimal P -element of the left subtree is greater than the
maximal of the right subtree if comparable. It is also obvious that any vertex is greater
than its descendants in T . These are enough for e being a linear extension of P , and the
proof follows.

Now it is not hard to piece all properties above together to arrive at Theorem 4.1.
We end this paper with some future study problems: (i) when can some of the equalities
be achieved in Theorem 4.1, e.g., when Minnc(P ) = Minh(P )? and (ii) following the
notation of Theorem 3.2, consider the sufficient and/or necessary conditions such that

Aut(P ) ∼ Aut(Asyc(GP ))
⋂

OP .
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