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Abstract

Let X and Y be any two graphs of order n. The friends-and-strangers graph

FS(X,Y ) of X and Y is a graph with vertex set consisting of all bijections σ :

V (X) 7→ V (Y ), in which two bijections σ, σ′ are adjacent if and only if they

differ precisely on two adjacent vertices of X, and the corresponding mappings

are adjacent in Y . The most fundamental question that one can ask about these

friends-and-strangers graphs is whether or not they are connected. Let Kk,n−k
be a complete bipartite graph of order n. In 1974, Wilson characterized the con-

nectedness of FS(K1,n−1, Y ) by using algebraic methods. In this paper, by using

combinatorial methods, we investigate the connectedness of FS(Kk,n−k, Y ) for any

Y and all k ≥ 2, including Y being a random graph, as suggested by Defant and

Kravitz, and pose some open problems.

1 Introduction

All graphs considered in this paper are finite and simple without loops. Let G =

(V (G), E(G)) be a graph. For W ⊆ V (G), G|W denotes the subgraph of G induced

by W and N(W ) denotes the vertex set consisting of all vertices in V (G) \W that are

adjacent to some vertex in W . Let Cn denote a cycle of order n and Ks,t a complete

bipartite graph with bipartition of size s and t. In particular, set Sn = K1,n−1. By

symmetry, when the graph Ks,t is considered, we always assume that s ≤ t. An edge

of a connected graph is a cut edge if its removal results a disconnected graph. A cut

edge is non-trivial if none of its ends has degree one. If a path P = v1v2 · · · vk is a

(k − 2)-subdivisions of a non-trivial cut edge v1vk of a connected graph, then we call

P a non-trivial k-bridge of the resulting graph. A non-trivial cut edge corresponds to

a non-trivial 2-bridge. For a finite sequence S, let S−1 denote the reverse of S.

The friends-and-strangers graphs, introduced by Defant and Kravitz [4], is a kind

of flip graphs defined as follows.
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Definition 1.1. [4] Let X and Y be two graphs, each with n vertices. The friends-

and-strangers graph FS(X,Y ) of X and Y is a graph with vertex set consisting of all

bijections from V (X) to V (Y ), two such bijections σ, σ′ are adjacent if and only if

they differ precisely on two adjacent vertices, say a, b ∈ V (X) with ab ∈ E(X), and the

corresponding mappings are adjacent in Y , i.e.,

• σ(a)σ(b) ∈ E(Y );

• σ(a) = σ′(b), σ(b) = σ′(a) and σ(c) = σ′(c) for all c ∈ V (X)\{a, b}.

When this is the case, we refer to the operation that transforms σ into σ′ as an

(X,Y )-friendly swap, and say that the swap along the edge ab ∈ E(X) transforms σ

to σ′.

The friends-and-strangers graph FS(X,Y ) can be interpreted as follows. View V (X)

as n cities and V (Y ) as nmayors. Two mayors are friends if and only if they are adjacent

in Y and two cities are adjacent if and only if they are adjacent in X. A bijection

from V (X) to V (Y ) represents n mayors managing these n cities such that each mayor

manage precisely one city. At any point of time, two mayors can swap their cities if and

only if they are friends and the two cities they manage are adjacent. A natural question

is how various configurations can be reached from other configurations when multiple

such swaps are allowed. This is precisely the information that is encoded in FS(X,Y ).

Note that the components of FS(X,Y ) are the equivalence classes of mutually-reachable

(by the multiple swaps described above) configurations, so the connectivity, is the basic

aspect of interest in friends-and-strangers graphs.

The questions and results in literature on the friends-and-strangers graph FS(X,Y )

can be divided into two categories. One is when at least one of X,Y are specific graphs,

such as stars, paths, cycles, spider graphs and so on, [3], [4], [6], [8], [11], [12]. Another

is when none of X,Y is specific graph, such as both X and Y are random graphs,

minimum degree conditions on X and Y , the non-polynomially bounded diameters of

FS(X,Y ) and so on, [1]-[4], [6], [7], [9], [10]. We note that Milojevic [9] also studied a

new model of friends-and-strangers graphs.

The structure of FS(X,Y ) when X,Y belong to the first category is a basic question

on the topic related to friends-and-strangers graphs, and the results on this category can

also be used to study the other category. For example, Alon, Defant and Kravitz [1] used

the structure of FS(Sn, Y ) in researching the threshold probability and minimum degree

conditions on X,Y for the connectedness of FS(X,Y ); Jeong [7] used the structure of

FS(Cn, Y ) to investigate the connectedness of FS(X,Y ) when X is 2-connected.

The first, also foundational, result in the literature on friends-and-strangers graphs

is the following, derived by Wilson [12] using algebraic methods, which gives a sufficient

and necessary condition for FS(Sn, Y ) to be connected.

Theorem 1.2. [12] Let Y be a graph on n ≥ 3 vertices. The graph FS(Sn, Y ) is

connected if and only if Y is 2-connected, non-bipartite and Y 6= Cn, Θ, where Θ is a
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graph of order 7 as shown in Figure 1.

Figure 1: The graph Θ.

Note that an Sn is also a K1,n−1. Defant and Kravitz [4] suggested to investigate the

connectivity of FS(Kk,n−k, Y ) for any graph Y and they thought it might be interesting

even if to consider the case when k = 2.

In this paper, by using combinatorial methods, we consider the connectedness of

FS(Kk,n−k, Y ) in general situation. At first, we get the following theorem that tells us

when FS(Kk,n−k, Y ) is disconnected for k ≥ 2, which is a little different from that in

Theorem 1.2.

Theorem 1.3. Let Y be a graph on n ≥ 2k ≥ 4 vertices. If Y is disconnected,

or is bipartite, or contains a non-trivial k-bridge, or Y = Cn, then FS(Kk,n−k, Y ) is

disconnected.

Next, we consider when FS(Kk,n−k, Y ) is connected. For k = 2, we characterize the

connectedness of FS(K2,n−2, Y ) completely as follows.

Theorem 1.4. Let Y be a graph on n ≥ 4 vertices. Then the graph FS(K2,n−2, Y ) is

connected if and only if Y is a connected non-bipartite graph with no non-trivial cut

edge and Y 6= Cn.

For k ≥ 3, we fail in doing that as in Theorem 1.4, and obtain a sufficient condition

for FS(Kk,n−k, Y ) to be connected as below.

Theorem 1.5. Let Y be a graph on n ≥ 2k ≥ 6 vertices. If Y is a (k − 1)-connected,

non-bipartite graph and Y 6= Cn, then the graph FS(Kk,n−k, Y ) is connected.

Finally, we determine the threshold probability that guarantees FS(Kk,n−k, Y ) being

connected when Y is a random graph. Let G(n, p) denote the Erdős-Rényi random

graphs with n vertices and edge-chosen probability p.

Theorem 1.6. Let Y be a random graph chosen from G(n, p). For any fix integer

k ≥ 1, the threshold probability guaranteeing the connectedness of FS(Kk,n−k, Y ) is

p0 =
(
1 + o(1)

) log n

n
.

The remainder of this paper is organized as follows. Section 2 contains some pre-

liminaries. Sections 3 and 4 are devoted to prove Theorems 1.3, 1.4 and Theorems 1.5,

1.6, respectively. In Section 5, we raise some open problems.
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2 Preliminaries

In this section, we give some results for proving Theorems 1.3, 1.4, 1.5 and 1.6. The

first four results are the basic properties of friends-and-strangers graphs.

Lemma 2.1. [4] For any two graphs X and Y on n vertices, the graphs FS(X,Y ) and

FS(Y,X) are isomorphic.

Lemma 2.2. [4] Let X, X̃, Y, Ỹ be graphs on n vertices. If X,Y are spanning subgraphs

of X̃, Ỹ , respectively, then FS(X,Y ) is a spanning subgraph of FS(X̃, Ỹ ). In particular,

FS(X̃, Ỹ ) is connected if FS(X,Y ) is connected.

Lemma 2.3. [4] Let X and Y be two graphs on n vertices. If one of X and Y is

disconnected, then the graph FS(X,Y ) is disconnected.

Lemma 2.4. [4] If both X and Y are bipartite graphs on n vertices, then the graph

FS(X,Y ) is disconnected.

The following lemma will be used to investigate the disconnectedness of friends-

and-strangers graphs, due to Milojevic [9].

Lemma 2.5. [9] Let X be a graph containing a non-trivial k-bridge. If Y is not

(k + 1)-connected, then the graph FS(X,Y ) is disconnected.

The following lemma is an addition to Theorem 1.2, due to Defant and Kravitz [4].

Let S+
n denote a graph obtained from Sn by adding one extra edge.

Lemma 2.6. [4] Let Y be a graph on n ≥ 4 vertices. Then the graph FS(S+
n , Y ) is

connected if Y is 2-connected and Y 6= Θ, Cn.

Defant and Kravitz [4] charactered the components of FS(Cn, Sn). Note that an Sn
is also a K1,n−1, the following lemma extends their result and reveals the structure of

the graph FS(Cn,Kk,n−k).

Lemma 2.7. Let A and B be the bipartition of the vertex set of a Kk,n−k. Then

FS(Cn,Kk,n−k) has precisely (k−1)!(n−k−1)! components, each of which corresponds

to a pair of cyclic orderings of A and B.

Proof. Assume that c1c2 · · · cnc1 is a Cn. For any bijection σ : V (Cn) 7→ V (Kk,n−k),

we can map σ to a cyclic ordering ρ(σ) = σ(c1)σ(c2) · · ·σ(cn)σ(c1) of V (Kk,n−k). This

cyclic ordering ρ(σ) can be divided uniquely to a pair of cyclic orderings (ρA(σ), ρB(σ))

of A and B. So we obtain a map that sends any bijection σ to a pair of cyclic orderings

(ρA(σ), ρB(σ)) of A and B.

Because any vertices a ∈ A and b ∈ B are adjacent in Kk,n−k, two bijections are in

the same component of FS(Cn,Kk,n−k) if and only if they are mapped to the same pair

of cyclic orderings. Thus, each component of FS(Cn,Kk,n−k) corresponds to a pair of

cyclic orderings of A and B. Because a set S has precisely |S|!/|S| = (|S| − 1)! cyclic

orderings, the graph FS(Cn,Kk,n−k) has precisely (k− 1)!(n− k− 1)! components. �
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For any graphG and u, v ∈ V (G), we use (u v) to denote the bijection V (G) 7→ V (G)

such that (u v)(u) = v, (u v)(v) = u and (u v)(w) = w for any w ∈ V (G)\{u, v}. In

order to study the connectedness of friends-and-strangers graphs, Alon, Defant and

Kravitz [1] introduced the notion of an exchangeable pair of vertices: Let X and Y be

two graphs on n vertices, σ : V (X) 7→ V (Y ) be a bijection and u, v ∈ V (Y ). We say

that u and v are (X,Y )-exchangeable from σ if σ and (u v)◦σ, i.e., σ◦(σ−1(u) σ−1(v)),

are in the same component. In other words, we say u and v are (X,Y )-exchangeable

from σ if there is a sequence of (X,Y )-friendly swaps that we can apply to σ in order

to exchange u and v, that is, there is a path between σ and (u v) ◦ σ in FS(X,Y ). The

following two lemmas give two sufficient conditions for FS(X,Y ) to be connected in

terms of exchangeable pairs of vertices.

Lemma 2.8. [1] Let X, Y and Ỹ be three graphs on n vertices such that Y is a

spanning subgraph of Ỹ . Suppose that for any edge uv ∈ E(Ỹ ) and any bijection

σ : V (X) 7→ V (Y ) satisfying σ−1(u)σ−1(v) ∈ E(X), the vertices u and v are (X,Y )-

exchangeable from σ. Then the number of components of FS(X,Y ) equals to the number

of components of FS(X, Ỹ ). In particular, the graph FS(X,Y ) is connected if and only

if FS(X, Ỹ ) is connected.

Godsil and Royle [5] proved that the graph FS(X,Kn) is connected if and only if

X is connected. By setting Ỹ = Kn in Lemma 2.8, the following lemma holds.

Lemma 2.9. [1] Let X,Y be two graphs on n vertices such that X is connected. Suppose

that for any two vertices u, v ∈ V (Y ) and every σ satisfying σ−1(u)σ−1(v) ∈ E(X), the

vertices u and v are (X,Y )-exchangeable from σ. Then FS(X,Y ) is connected.

Throughout the rest part of this paper, we always assume that Kk,n−k has vertex

set [n] = {1, 2, ..., n} with bipartition {1, . . . , k} and {k + 1, . . . , n}.
The following lemma reveals the exchageability of a pair of vertices in K2,n−2.

Lemma 2.10. Suppose that t ≥ 3 is an odd integer. Then the vertices 1, 2 ∈ V (K2,t−2)

are (Ct,K2,t−2)-exchangeable from any bijection σ : V (Ct) 7→ V (K2,t−2) satisfying

σ−1(1)σ−1(2) ∈ E(Ct).

Proof. Fix such a bijection σ and let Ct = c1c2 · · · ctc1 satisfying c1 = σ−1(1), c2 =

σ−1(2). Let S be the sequence of swaps along the edges c2c3, c3c4, . . . , ct−1ct, c1c2, ctc1.

Then the sequence S transforms σ into a new bijection σ1 = S(σ) satisfying σ1(c2) =

σ(c1), σ1(c1) = σ(c2), σ1(c3) = σ(c4), σ1(c4) = σ(c5), . . . , σ1(ct−1) = σ(ct), σ1(ct) =

σ(c3). Set σi+1 = S(σi), see Table 1. It is easy to verify that σt−2 = (1 2) ◦ σ since

t − 2 is an odd integer, which implies that σ and (1 2) ◦ σ lie in the same component

of FS(Ct,K2,t−2). �
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c1 c2 c3 c4 · · · ct−1 ct

σ σ(c1) σ(c2) σ(c3) σ(c4) · · · σ(ct−1) σ(ct)

σ1 σ(c2) σ(c1) σ(c4) σ(c5) · · · σ(ct) σ(c3)

σ2 σ(c1) σ(c2) σ(c5) σ(c6) · · · σ(c3) σ(c4)

σt−2 σ(c1) σ(c2) σ(c3) σ(c4) · · · σ(ct−1) σ(ct)

Table 1. The images of V (Ct) under σ, σ1, σ2 and σt−2.

The following lemma is due to Bangachev [2].

Lemma 2.11. [2] If two bijections σ, τ ∈ V (FS(X,Y )) are in the same component

of FS(X,Y ) and there is a sequence of swaps transforming σ into τ only involving

edges in Y |V (Y )\{u,v}, then u, v are (X,Y )-exchangeable from τ if and only if u, v are

(X,Y )-exchangeable from σ.

3 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. If Y is disconnected, Lemma 2.3 implies that FS(Kk,n−k, Y )

is disconnected. If Y is bipartite, Lemma 2.4 implies that FS(Kk,n−k, Y ) is disconnected

since Kk,n−k is also bipartite. If Y contains a non-trivial k-bridge, then Lemma 2.5

implies that FS(Kk,n−k, Y ) is disconnected since Kk,n−k is not (k + 1)-connected. If Y

is a cycle, then Lemma 2.7 implies that FS(Kk,n−k, Y ) is disconnected. �

Proof of Theorem 1.4. It is easy to see that the disconnectedness part of Theorem

1.4 follows from Theorem 1.3, just taking k = 2.

For the connectedness part of Theorem 1.4, we need the following.

Proposition 3.1. Suppose that X is a connected non-bipartite graph on n ≥ 5 vertices

with no non-trivial cut edge and X 6= Cn. Then the graph FS(X,K2,n−2) is connected.

To make the arguments easier to follow, we postpone the proof of Proposition 3.1

until the end of this section. Note that Kk,n−k = C4 if n = 4 and so Theorem 1.4 holds

by the connectedness of FS(Cn, Y ) as shown by Defant and Kravitz [4]. If n ≥ 5, then

Theorem 1.4 follows from Proposition 3.1.

Therefore, we complete the proof of Theorem 1.4. �

We are now in position to prove Proposition 3.1. Before starting to do this, we

need in addition the following lemma. Recall that the bipartition of K2,n−2 is {1, 2}
and {3, . . . , n}.

Lemma 3.2. Suppose that X is a connected non-bipartite graph on n ≥ 5 vertices.

Then the vertices 1, 2 ∈ V (K2,n−2) are (X,K2,n−2)-exchangeable from any bijection

σ : V (X) 7→ V (K2,n−2) satisfying σ−1(1)σ−1(2) ∈ E(X).
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Proof. Since X is non-bipartite, there exists an odd cycle C in X. Fix a bijection σ

satisfying σ−1(1)σ−1(2) ∈ E(X).

If both σ−1(1) and σ−1(2) are in V (C), then Lemma 2.10 implies directly that

1, 2 ∈ V (K2,n−2) are (X,K2,n−2)-exchangeable from σ by considering swaps along edges

in E(C).

If exactly one of σ−1(1) and σ−1(2) is in V (C), assume that σ−1(1) ∈ V (C). Let

c ∈ N(σ−1(1))∩V (C) be one of the two neighbors of σ−1(1) in V (C) and swap along the

edges σ−1(1)c, σ−1(2)c, which results a new bijection τ satisfying τ−1(1), τ−1(2) ∈ V (C)

and τ−1(1)τ−1(2) ∈ E(C). Applying Lemma 2.10 to τ obtains a sequence of swaps that

transforms τ to (1 2) ◦ τ . Then we can swap along the edges σ−1(2)c, σ−1(1)c to get

the desired (1 2) ◦ σ.

If none of σ−1(1) and σ−1(2) are in V (C), let x1x2 · · ·xp be a shortest path in

X between the two vertex sets {σ−1(1), σ−1(2)} and V (C). Assume without loss of

generality that σ−1(1) = x1 and denote σ−1(2) by x0. Denote by S the sequence of

swaps along the edges x1x2, . . . , xp−1xp, x0x1, x1x2, . . . , xp−2xp−1. The sequence S

transforms σ into a new bijection τ satisfying τ−1(1) ∈ V (C), τ−1(2) /∈ V (C) and

τ−1(1)τ−1(2) ∈ E(X). Similar to the case when exactly one of σ−1(1) and σ−1(2) is in

V (C), there is a sequence of swaps that transforms τ into (1 2)◦ τ . Then, the sequence

S−1 transforms (1 2) ◦ τ into the desired (1 2) ◦ σ. �

Proof of Proposition 3.1. By Lemma 2.8, it suffices to show that any two ver-

tices u, v ∈ V (K2,n−2) are (X,K2,n−2)-exchangeable from any bijection σ : V (X) 7→
V (K2,n−2) satisfying σ−1(u)σ−1(v) ∈ E(X). If {u, v} = {1, 2}, then Lemma 3.2 implies

directly that u, v are (X,K2,n−2)-exchangeable from σ. If |{u, v} ∩ {1, 2}| = 1, then

we can swap along the edge σ−1(u)σ−1(v) to obtain directly the bijection (u v) ◦ σ,

i.e., u, v are (X,K2,n−2)-exchangeable from σ. So we are left to consider the case

{u, v} ∩ {1, 2} = ∅.

Firstly, we prove that there exists a sequence of swaps only involving edges in

K2,n−2|[n]\{u,v} that transforms σ into a bijection τ such that X|τ−1({u,v,1,2}) is con-

nected and τ−1(u)τ−1(v) ∈ E(X). If there are no edges between {σ−1(1), σ−1(2)}
and {σ−1(u), σ−1(v)}, let x1x2 · · ·xq be a shortest path between the two vertex sets

{σ−1(1), σ−1(2)} and {σ−1(u), σ−1(v)}. Assume without loss of generality that σ−1(1) =

x1. Denote by S the sequence of swaps along the edges x1x2, . . . , xq−2xq−1, which can

transform σ into a bijection τ ′ such thatX|τ ′−1({u,v,1}) is connected and τ ′−1(u)τ ′−1(v) ∈
E(X). For the same reason, if τ ′−1(2) is not adjacent to any vertex in {τ ′−1(u), τ ′−1(v),

τ ′−1(1)}, then there exists a sequence of swaps transforming τ ′ into a bijection τ satis-

fying that X|τ−1({u,v,1,2}) is connected and τ−1(u)τ−1(v) ∈ E(X). So, by Lemma 2.11,

u, v are (X,K2,n−2)-exchangeable from τ if and only if u, v are (X,Y )-exchangeable

from σ. So, we assume that X|σ−1({u,v,1,2}) is connected.

If one of σ−1(1) and σ−1(2) has no neighbor in {σ−1(u), σ−1(v)}, assume that it

is σ−1(1) and that σ−1(2)σ−1(v) ∈ E(X). Denote by S0 the sequence of swaps along

7



the edges σ−1(2)σ−1(v), σ−1(v)σ−1(u). The sequence S0 transforms σ into a new

bijection η such that both η−1(1) and η−1(2) have neighbors in {η−1(u), η−1(v)} and

η−1(u)η−1(v) ∈ E(X). If u, v are (X,K2,n−2)-exchangeable from η, then there will exist

a sequence S1 of swaps that transforms η to (u v) ◦ η. Thus, the sequences S0, S1, S
−1
0

will transform σ to (u v) ◦σ. So, to complete the proof, it suffices to show that u, v are

(X,K2,n−2)-exchangeable from σ under the assumption that both σ−1(1) and σ−1(2)

have neighbors in {σ−1(u), σ−1(v)}.

Case 1. The vertices σ−1(1) and σ−1(2) have a common neighbor in {σ−1(u), σ−1(v)}.

Assume that σ−1(u) is a common neighbor. Swapping along the edges σ−1(1)σ−1(u),

σ−1(u)σ−1(v), σ−1(2)σ−1(u) transforms σ into a new bijection τ with τ−1(2) = σ−1(u),

τ−1(1) = σ−1(v) and τ−1(1)τ−1(2) ∈ E(X), see Figure 2. Apply Lemma 3.2 to τ , we

obtain a sequence of swaps that transforms τ to (1 2) ◦ τ . Then swapping along the

edges σ−1(1)σ−1(u), σ−1(v)σ−1(u), σ−1(2)σ−1(u) transforms (1 2) ◦ τ into the desired

bijection (u v) ◦ σ.

−→
1

2

u

v
u 2

v 1

Figure 2: The blue i is σ−1(i) and red i is τ−1(i).

Case 2. The vertices σ−1(1) and σ−1(2) have no common neighbors in {σ−1(u), σ−1(v)}.

Since σ−1(u)σ−1(v) is not a trivial cut edge and X contains no non-trivial cut edge,

there exist cycles in X that contain the edge σ−1(u)σ−1(v). Let C be such a shortest

one. The length of C is strictly less than n since X is not a cycle. Assume without loss

of generality that σ−1(1)σ−1(u), σ−1(2)σ−1(v) are edges in X.

Subcase 2.1. Exactly one of σ−1(1) and σ−1(2) is in V (C).

Assume that it is σ−1(1). Let C = c1c2 · · · crc1 with c1 = σ−1(u), c2 = σ−1(1),

cr = σ−1(v).

Denote by S the sequence of swaps along the edges c2c3, c3c4, . . . , cr−2cr−1. The

sequence S transforms σ into a new bijection τ such that τ−1(1) and τ−1(2) are adjacent

to a common vertex τ−1(v), see Figure 3. The same as Case 1, we obtain a sequence

of swaps that transforms τ to (u v) ◦ τ . Then the sequence of swaps S−1 transforms

(u v) ◦ τ into the desired (u v) ◦ σ.

8



−→

c1
c2

cr
cr−1

c1
c2

cr
cr−1

1

u v 2

σ(cr−1) σ(c3)

u v 2

1

Figure 3: The blue i is σ−1(i) and red i is τ−1(i).

Subcase 2.2. None of σ−1(1) and σ−1(2) are in V (C).

Let a be the other neighbor of σ−1(u) in V (C). Denote by S the sequence of swaps

along the edges σ−1(2)σ−1(v), σ−1(u)σ−1(v), σ−1(u)a, σ−1(1)σ−1(u), σ−1(u)σ−1(v),

σ−1(2)σ−1(v). The sequence S transforms σ into a new bijection τ satisfying τ−1(2) ∈
V (C), τ−1(1) 6∈ V (C) and τ−1(u)τ−1(v) ∈ E(X), see Figure 4. By Subcase 2.1, we

obtain a sequence of swaps that transforms τ to (u v) ◦ τ . Then the sequence S−1

transforms (u v) ◦ τ into the desired (u v) ◦ σ.

−→σ(a)

2 uvu

2

v 1

a a

1 σ(a)

Figure 4: The blue i is σ−1(i) and red i is τ−1(i).

Subcase 2.3. Both σ−1(1) and σ−1(2) are in V (C).

Let c0 be a vertex in N(V (C)). By the structure of FS(Ct,K2,t−2) described in

Lemma 2.7, we may assume without loss of generality that σ−1(u)c0 ∈ E(X).

Denote by S the sequence of swaps along the edges σ−1(2)σ−1(v), σ−1(u)σ−1(v),

σ−1(u)c0, σ
−1(1)σ−1(u), σ−1(u)σ−1(v), σ−1(2)σ−1(v). The sequence S transforms σ

into a new bijection τ satisfying τ−1(2) = c0, τ
−1(u) = σ−1(u), τ−1(v) = σ−1(v) and

τ−1(1) = σ−1(2), see Figure 5. By Subcase 2.2, we obtain a sequence of swaps that

transforms τ to (u v) ◦ τ . Then the sequence S−1 transforms (u v) ◦ τ into the desired

(u v) ◦ σ. �

−→12

uvu 2v

1

c0 c0
σ(c0)

σ(c0)

Figure 5: The blue i is σ−1(i) and red i is τ−1(i).
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4 Proofs of Theorems 1.5 and 1.6

In order to prove Theorem 1.5, we need in addition the following lemma.

Lemma 4.1. Let X be a (k− 1)-connected non-bipartite graph on n ≥ 2k ≥ 6 vertices

and X 6= Cn. Then for any vertices u ∈ {2, . . . , k}, 1, u ∈ V (Kk,n−k) are (X,Kk,n−k)-

exchangeable from any bijection σ : V (X) 7→ V (Kk,n−k) satisfying σ−1(u)σ−1(1) ∈
E(X).

Proof. Assume without loss of generality that u = 2. Fix such a bijection σ and let

C denote a shortest odd cycle in X, whose existence is because X being non-bipartite.

We divide σ−1({1, . . . , k}) into two parts according to the cycle C, that is, we denote

L = L(σ) = V (C) ∩ σ−1({1, . . . , k}) and M = M(σ) = σ−1({1, . . . , k}) \ L.

Case 1. Both σ−1(1) and σ−1(2) are in V (C).

We use induction on |L|. If |L| = 2, then Lemma 2.10 implies directly that 1, 2 ∈
V (Kk,n−k) are (X,Kk,n−k)-exchangeable from σ by considering swaps along edges in

E(C). Suppose now that it holds for all |L| ≤ l − 1, where l ≥ 3. Because X is

(k − 1)-connected and |M | < k − 1, the graph X ′ = X|V (X)\M is connected.

We now show that V (C) is a proper subset of V (X ′). Suppose to the contrary that

V (C) = V (X ′), then it also holds that E(C) = E(X ′) since C is a shortest odd cycle in

X. Thus, M 6= ∅ since X is not a cycle. Because X ′ is (k−1−|M |)-connected, we have

k − 1− |M | ≤ 2, i.e., |M | ≥ k − 3. So, we have |M | = k − 3 since |L| = l ≥ 3. Because

X is (k− 1)-connected, the minimum degree of X is at least k− 1, so every vertices in

V (C) is adjacent to all vertices in M , which implies that X contains a triangle. The

contradiction arises since |V (C)| = n− |M | ≥ n− (k − 2) ≥ k + 2 > 3.

Let c0 be a vertex in N(V (C))∩V (X ′). By the structure of FS(Ct,Kk,t−k) described

in Lemma 2.7, there is a sequence S of swaps, involves only edges in E(C), that

transforms σ into a new bijection τ such that τ−1(1)τ−1(2), c0τ
−1(a) ∈ E(X) for some

a satisfying σ−1(a) ∈ L\{σ−1(1), σ−1(2)}. Let τ ′ = σ◦(c0 τ
−1(a)) denote the bijection

obtained from τ by swapping the edge c0τ
−1(a). Then we have |L(τ ′)| = l − 1. By

induction hypothesis, there exists a sequence of swaps that transforms τ ′ into τ ′′ =

(1 2) ◦ τ ′. Then the sequence S−1 transforms τ = τ ′′ ◦ (c0 τ
−1(a)) into the desired

(1 2) ◦ σ.

Case 2. Exactly one of σ−1(1) and σ−1(2) is in V (C).

Assume that σ−1(1) ∈ V (C). We consider the following two subcases separately.

Subcase 2.1. The vertex set V (C) \ σ−1({1, . . . , k}) is non-empty.

Let c1 be a vertex in V (C) \ σ−1({1, . . . , k}). By the structure of FS(Ct,Kk,t−k)

described in Lemma 2.7, there is a sequence S of swaps, involves only the edges in E(C),

that transforms σ into a new bijection τ satisfying τ−1(2)c1 ∈ E(X), τ−1(1)c1 ∈ E(C).

So, the bijection τ ′ = τ ◦ (σ−1(2) c1) satisfies that τ ′−1(1)τ ′−1(2) ∈ E(C). By Case 1,
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there is a sequence of swaps that transforms τ ′ into τ ′′ = (1 2) ◦ τ ′. Then the sequence

S−1 transforms τ ′′ ◦ (c1 σ
−1(1)) into the desired (1 2) ◦ σ.

Subcase 2.2. The vertex set V (C) \ σ−1({1, . . . , k}) is empty.

We first observe that |L| = |V (C)| ≥ 3, which implies that |M ∪ {σ−1(1)}| =

k−|L|+1 < k−1. Because X is (k−1)-connected, the graph X ′′ = X|V (X)\(M∪{σ−1(1)})
is connected.

Because n− k ≥ k, we have the relation

|V (X ′′)| ≥ n− k + 2 > k − 1 ≥ |V (C) \ {σ−1(1)}|,

which implies that V (C)\{σ−1(1)} is a proper subset of V (X ′′). So, there exists a vertex

c2 ∈ N(V (C) \ {σ−1(1)}) ∩ V (X ′′) and let c3 ∈ V (C) \ {σ−1(1)} be a vertex such that

c2c3 ∈ E(X ′′). Then the bijection τ = σ ◦ (c2 c3) satisfies V (C) \ τ−1({1, . . . , k}) 6= ∅,

which implies that τ satisfies the condition in Subcase 2.1. Thus, there is a sequence

of swaps that transforms τ into τ ′ = (1 2) ◦ τ . Then the bijection (c2 c3) ◦ τ ′ equals to

the desired (1 2) ◦ σ.

Case 3. None of σ−1(1) and σ−1(2) is in V (C).

We consider the following two subcases separately.

Subcase 3.1. The vertex set V (C) \ σ−1({1, . . . , k}) is non-empty.

Because X is (k − 1)-connected, the graph X ′′′ = X|V (X)\σ−1({3,...,k}) is connected.

Let x1x2 · · ·xp be a shortest path in X ′′′ between the two sets {σ−1(1), σ−1(2)} and

V (C) \ σ−1({1, . . . , k}). Assume that x1 = σ−1(1). Let x0 = σ−1(2) and denote

by S the sequence of swaps along the edges x1x2, . . . , xt−1xt, x0x1, . . . , xt−2xt−1. The

sequence S transforms σ into a new bijection τ satisfying τ−1(1)τ−1(2) ∈ E(X) and

only one of τ−1(1) and τ−1(2) lies in V (C). By Case 2, there is a sequence of swaps

that transforms τ into τ ′ = (1 2) ◦ τ . Then the sequence S−1 transforms τ ′ into the

desired (1 2) ◦ σ.

Subcase 3.2. The vertex set V (C) \ σ−1({1, . . . , k}) is empty.

We first observe that |L| = |V (C)| ≥ 3, which implies that |M | = k − |L| < k − 1.

Because X is (k − 1)-connected, the graph X ′ = X|V (X)\M is connected.

Because n− k ≥ k, we have

|V (X ′)| ≥ n− k + 2 > k − 1 ≥ |V (C)|,

which implies that V (C) is a proper subset of V (X ′). So, there exists a vertex c2 ∈
N(V (C)) ∩ V (X ′) and let c3 ∈ V (C) be a vertex such that c2c3 ∈ E(X ′). Then

the new bijection τ = σ ◦ (c2 c3) satisfies V (C) \ τ−1({1, . . . , k}) 6= ∅, which implies

that τ satisfies the condition in Subcase 3.1. Thus, there is a sequence of swaps that
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transforms τ into τ ′ = (1 2) ◦ τ . It is easy to verify that the bijection (c2 c3) ◦ τ ′ equals

to the desired (1 2) ◦ σ. �

Proof of Theorem 1.5. By Lemmas 2.8 and 4.1, the graph FS(X,Kk,n−k) is con-

nected if and only if FS(X,Lk,n−k) is connected, where Lk,n−k is the graph obtained

by adding the edges 12, 13, . . . , 1k to Kk,n−k. It is easy to observe that Lk,n−k contains

the graph S+
n as a spanning subgraph.

By Lemma 2.6, the condition, that X is a (k − 1)-connected non-bipartite graph

and not a cycle, guarantees the connectedness of FS(X,S+
n ) for X 6= Θ. By Lemma

2.2, FS(X,Lk,n−k) is connected and thus FS(X,Kk,n−k) is connected for X 6= Θ. If

X = Θ, then k equals to 3 since n = 7 and n− k ≥ k. It can be verified by computer

that the graph FS(Θ,K3,4) is connected. �

Proof of Theorem 1.6. For the disconnectedness part, it is well known that if

p ≤ log n− c(n)

n

for some c(n) → +∞ arbitrary slowly, then the random graph X ∈ G(n, p) is discon-

nected with high probability. Thus, the graph FS(X,Kk,n−k) is disconnected with high

probability by Lemma 2.3.

For the connectedness part, it is well known that if

p ≥ log n+ k log log n+ c(n)

n

for some c(n)→ +∞ arbitrary slowly, then the random graph X ∈ G(n, p) is a (k+ 1)-

connected, non-bipartite graph, and is not a cycle with high probability. Thus, by

Theorems 1.2, 1.4 and 1.5, we can see that the graph FS(X,Kk,n−k) is connected with

high probability. �

5 Open problems

Based on Theorems 1.3, 1.4 and 1.5, we have the following conjecture.

Conjecture 5.1. Let Y be a graph on n ≥ 2k ≥ 4 vertices. The graph FS(Kk,n−k, Y )

is connected if and only if Y is a connected non-bipartite graph without non-trivial

k-bridge and Y 6= Cn.

The disconnectedness part of Conjecture 5.1 is guaranteed by Theorem 1.3. And

Theorems 1.4 and 1.5 are weaker forms of the connectedness part of Conjecture 5.1.

Wilson [12] gave a sufficient and necessary condition for FS(Sn, Y ) to be connected,

see Theorem 1.2. In addition, he also proved that FS(Sn, Y ) has exactly 2 components

12



for any 2-connected bipartite graph Y . Based on his result and Theorem 1.4, we have

the following conjecture.

Conjecture 5.2. Let Y be a connected bipartite graph on n ≥ 5 vertices with no non-

trivial cut edge and Y 6= Cn, then the graph FS(K2,n−2, Y ) has exactly 2 components.

Let Y be a bipartite graph on n vertices with bipartition S and T of size s and t,

respectively. Alon, Defant and Kravitz [1] proved that the graph FS(K2,n−2,Ks,t) has

exactly 2 components. By Lemma 2.8, in order to prove Conjecture 5.2, it suffices to

show that any two vertices u ∈ S and v ∈ T in Y are (K2,n−2, Y )-exchangeable from

any bijection σ : V (K2,n−2) 7→ V (Y ) satisfying σ−1(u)σ−1(v) ∈ E(K2,n−2).
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