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Abstract

Let Sn denote the symmetric group on n letters. The k-point
fixing graph F(n, k) is defined to be the graph with vertex set Sn

and two vertices g, h of F(n, k) are joined by an edge, if and only
if gh−1 fixes exactly k points. Ku, Lau and Wong [Cayley graph
on symmetric group generated by elements fixing k points, Linear
Algebra Appl. 471 (2015) 405-426] obtained a recursive formula for
the eigenvalues of F(n, k). In this paper, we use objects called excited
diagrams defined as certain generalizations of skew shapes and derive
an explicit formula for the eigenvalues of Cayley graph F(n, k). Then
we apply this formula and show that the eigenvalues of F(n, k) are in

the interval [−|S(n,k)|
n−k−1 , |S(n, k)|], where S(n, k) is the set of elements σ

of Sn such that σ fixes exactly k points.

Keywords: Cayley graph, eigenvalue, excited diagram, Symmetric group.
AMS Subject Classification Number: 05A17, 05E10, 20C30.

1 Introduction

For a graph Γ, the eigenvalues of Γ is the eigenvalues of its adjacency
matrix. The study of eigenvalues of graphs is an important part of modern
graph theory. In particular, eigenvalues of Cayley graphs have attracted
increasing attention due to their prominent roles in algebraic graph theory
and applications in many areas such as expanders [8, 18], chemical graph
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theory [24] and quantum computing [2, 23]. Let G be a finite group and S
be an inverse closed subset of G with 1 /∈ S. The Cayley graph Γ(G, S) is the
graph which has the elements of G as its vertices and two vertices u, ν ∈ G
are joined by an edge if and only if ν = au, for some a ∈ S. A Cayley graph
Γ(G, S) is called normal if S is closed under conjugation with elements of G.
Also Γ(G, S) is called integral if its eigenvalues are all integers.

Suppose k and n are positive integers. For k ≤ n, a k-permutation of
[n] := {1, 2, . . . , n} is an injective function from [k] to [n]. Let 1 ≤ r ≤ k ≤ n.
The (n, k, r)-arrangement graph A(n, k, r) has all the k-permutations of [n]
as vertices and two k-permutations are adjacent if they differ in exactly
r positions. Note that A(n, k, r) is a regular graph [3]. The family of the
arrangement graphsA(n, k, 1) was first introduced in [5] as an interconnection
network model for parallel computation. A relation between the eigenvalues
of A(n, k, r) and certain Cayley graphs was given in [3].

Let n be a positive integer. Given an integer k with 0 ≤ k ≤ n − 1, let
S(n, k) be the set of elements σ of Sn such that σ fixes exactly k points
in [n]. The k-point-fixing graph is defined [15] to be the Cayley graph
F(n, k) := Γ(Sn, S(n, k)), that is, two vertices σ, τ are adjacent if and only if
στ−1 fixes exactly k points. Note that the k-point fixing graph is also a kind
of arrangement graph, i.e., F(n, k) = A(n, n, n − k). Since S(n, k) is closed
under conjugation, all k-point-fixing graphs are integral [3, Corollary 1.2].
Ku, Lau and Wong [15] obtained a recursive formula for the eigenvalues of
F(n, k), and using this formula, they determined the signs of the eigenvalues
of the 1-point-fixing graph F(n, 1). In [16], they obtained exact values of
some eigenvalues of F(n, 1). Also Renteln [22] gave several interesting for-
mulas for the eigenvalues of F(n, 0). In this paper, we wish to obtain an
explicit formula for eigenvalues of F(n, k).

It is well known that the eigenvalues of a normal Cayley graph Γ(G, S)
can be expressed in terms of the irreducible characters of G [4, p.235].

Theorem 1.1. ([1], [6], [17], [21]) The eigenvalues of a normal Cayley graph
Γ(G, S) are given by ηχ = 1

χ(1)

∑

a∈S χ(a) where χ ranges over all the complex

irreducible characters of G. Moreover, the multiplicity of ηχ is χ(1)2.

A partition is a weakly decreasing finite sequence of positive integers
λ = (λ1, . . . , λl). We call |λ| = λ1 + · · · + λl the size of λ, and l = l(λ) the
length of λ. The notation λ ⊢ n is used for a partition λ of a positive integer
n. The diagram of λ is [λ] = {(i, j)| 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi}. We call
the elements of [λ] the cells of λ. For partitions µ and λ, we say that mu is
contained in λ, µ ⊆ λ, if [µ] ⊆ [λ]. We say that λ/µ is a skew shape of size
|λ/µ| = |λ| − |µ| and the diagram of λ/µ is [λ/µ] = [λ]\[µ].
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The conjugate of a partition λ is the partition λ′ whose diagram is the
transpose of [λ]; in other words, λ′

j = max{i| λi ≥ j}. The hook length
hλ(u) := λi − i + λ′

j − j + 1 of a cell u = (i, j) ∈ [λ] is the number of cells
directly to the right and directly below u in [λ].

Excited diagrams defined as certain generalizations of skew shapes play
an important role in combinatorics and representation theory of symmetric
groups. Excited diagrams were introduced by Ikeda and Naruse [9], and in
a slightly different form independently by Kreiman [13], [14] and Knutson,
Miller and Young [11]. Let λ/µ be a skew partition and D be a subset
of the Young diagram of λ. A cell u = (i, j) ∈ D is called active if (i +
1, j), (i, j+1) and (i+1, j+1) are all in [λ]\D. Let u be an active cell of D,
define αu(D) to be the set obtained by replacing (i, j) in D by (i+ 1, j + 1).
We call this replacement an excited move. An excited diagram of λ/µ is a
subdiagram of λ obtained from the Young diagram of µ after a sequence of
excited moves on active cells. For example, (23, 1)/(12) has three excited
diagrams {(1, 1), (2, 1)}, {(1, 1), (3, 2)} and {(2, 2), (3, 2)}. The set of excited
diagrams of λ/µ is denoted by ε(λ/µ). Now we are ready to present our main
result.

Theorem 1.2. The eigenvalues of F(n, k) are given by

ηλ(k) :=
∑

µ⊢n−k
µ⊆λ

[

∑n−k
t=0 (−1)n−k−t

∑

D∈ε(µ/(t))

∏

u∈D hµ(u)
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)],

where λ ranges over partitions of n. Moreover, the multiplicity of ηλ(k) is
( n!∏

u∈[λ]hλ(u)
)2.

Remark 1.3. The number of excited diagrams of skew shape λ/µ is given
by a determinant [19, Corollary 3.7], a polynomial in the parts of λ and µ.

The complete transposition graph (also known as the transposition net-
work) Tn is the Cayley graph on Sn with connection set consisting of all
transpositions in Sn. Note that Tn = F(n, n− 2).

Corollary 1.4. For the transposition network Tn,

a) The eigenvalues of Tn are given by

ηλ(n− 2) =
∑

(i,i),(j,j+1)∈[λ]
i≤j

hλ((i, i))hλ((j, j + 1))−

(

n

2

)

,

where λ ranges over partitions of n.

3



b) The multiplicity of an eigenvalue m of Tn is equal to

∑

{(
n!

∏

u∈[λ]hλ(u)
)2| λ ⊢ n,

∑

(i,i),(j,j+1)∈[λ]
i≤j

hλ((i, i))hλ((j, j+1)) =

(

n

2

)

+m}.

Suppose k and n are non-negative integers with k < n. For every partition
λ ⊢ n, we define Mk(λ) := max{|ηµ(0)| | µ ⊢ n− k and µ ⊆ λ}. As another
application of our main theorem, we can state the following result.

Corollary 1.5. For the Cayley graph F(n, k),

a) If λ ⊢ n, then |ηλ(k)| ≤
(

n
k

)

Mk(λ).

b) The eigenvalues of F(n, k) are in the interval [−|S(n,k)|
n−k−1

, |S(n, k)|].

c) η(n)(k) = |S(n, k)| and η(1n)(k) = −(n− k − 1)
(

n
k

)

.

d) If k = n − 2 or n − 4, then the least eigenvalue of F(n, k) is given by

η = −|S(n,k)|
n−k−1

.

e) Suppose λ = (m, 1n−m), for some positive integer m < n. Then ηλ(k)
is equal to

(−1)n−k
(

n
k

)

(

n−1
m−1

)

min{m,n−k}
∑

s=max{1,m−k}

[((−1)s|S(s, 0)|−
n− k − s

n− k
)

(

n− k

s

)(

k

m− s

)

].

2 Preliminaries

In this paper, all groups are assumed to be finite. We first state well-
known results on the character theory of the symmetric groups; for a complete
account, see [10]. We often represent a partition λ by its Young tableau, in
which a cell (i, j) ∈ [λ] is represented by a unit square in position (i, j), and
we again denote it by [λ]. It is well known that both the conjugacy classes
of Sn and the irreducible characters of Sn are indexed by partitions λ of [n]
(see [10]). The irreducible character indexed by λ ⊢ n may be identified with
the Young tableau [λ] of λ. The character value of [λ] on the conjugacy class
indexed by β ⊢ n is denoted by [λ]β. In representation theory of symmetric
groups, the branching rule tells us how to restrict an ordinary irreducible
representation from Sn to Sn−1.
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Lemma 2.1. [10, Theorem 2.4.3](branching rule)
If α = (α1, α2, . . . , αs) is a partition of n, then we have for the restriction

of [α] to the stabilizer Sn−1 of the point n

[α] ↓ Sn−1 =
∑

i
αi>αi+1

[αi−],

where [αi−] is a diagram obtained by taking a cell away from i’th row in [α].

A generalization of branching rule is as follows:

Lemma 2.2. Suppose m and n are positive integers with m ≤ n. Then for
every λ ⊢ n,

[λ] ↓ Sm =
∑

µ⊢m
µ⊆λ

fλ/µ[µ].

Proof. We do by induction on k := n −m. If k = 1, then using branching
rule, it is clear. Let t ≥ 2 be an integer. Now, we assume that the statement
is true for every k < t and we prove it for k = t. By induction hypothesis,

[λ] ↓ Sm+1 =
∑

µ̃⊢m+1
µ̃⊆λ

fλ/µ̃[µ̃].

Thus using branching rule,

[λ] ↓ Sm =
∑

µ̃⊢m+1
µ̃⊆λ

fλ/µ̃[µ̃] ↓ Sm

=
∑

µ̃⊢m+1
µ̃⊆λ

[fλ/µ̃
∑

i
µ̃i>µ̃i+1

[µ̃i−]].

If µ ⊢ m and µ ⊆ λ, then obviously, fλ/µ =
∑

µ⊆µ̃ f
λ/µ̃. Hence

[λ] ↓ Sm =
∑

µ⊢m
µ⊆λ

fλ/µ[µ].

The standard Young tableaux and skew shapes are central objects in
enumerative and algebraic combinatorics. A standard Young tableau (or SYT
for short) of shape λ is a bijective map T : [λ] → {1, . . . , |λ|}, (i, j) 7→ Tij ,
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satisfying Tij < Ti,j+1 if (i, j),(i, j+1) ∈ [λ] and Tij < Ti+1,j if (i, j),(i+1, j) ∈
[λ]. The number of SYT’s of shape λ is denoted by fλ. Analogously, if
µ ⊆ λ, we can define a standard Young tableau of skew shape λ/µ as a map
T : [λ/µ] → {1, . . . , |λ/µ|}, (i, j) 7→ Tij , satisfying Tij < Ti,j+1 if (i, j),
(i, j + 1) ∈ [λ/µ] and Tij < Ti+1,j if (i, j), (i+ 1, j) ∈ [λ/µ]. The number of
SYT’s of shape λ/µ is denoted by fλ/µ.

Lemma 2.3. ([7]) Let λ be a partition of n. We have:

fλ =
n!

∏

u∈[λ] h(u)
.

This formula also gives dimensions of the irreducible representation corre-
sponding to λ.

Lemma 2.4. ([20])( Naruse’s formula) Let λ, µ be partitions such that µ ⊆
λ. We have:

fλ/µ = |λ/µ|!
∑

D∈ε(λ/µ)

∏

u∈[λ]\D

1

hλ(u)
.

Remark 2.5. There are an algebraic and a combinatorial proof of Naruse’s
formula in [19]. Also Konvalinka [12] gave a simple bijection that proves an
equivalent recursive version of Naruse’s formula.

There exists an interesting formula to evaluation the eigenvalues ofF(n, 0)
as follows:

Lemma 2.6. ([22, Theorem 3.2]) The eigenvalues of F(n, 0) are given by

ηλ(0) =

n
∑

k=0

(−1)n−k n!

(n− k)!

fλ/(k)

fλ
,

where λ runs over all partitions of n.

Lemma 2.7. ([22, Theorem 7.1]) The least eigenvalue of the adjacency ma-
trix of the graph F(n, 0) is given by

η =
−|S(n, 0)|

n− 1
.

3 Proof of main results

In this section, we wish to prove our main results. We begin by an observation
an eigenvalues of F(n, 0).
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Lemma 3.1. The eigenvalues of F(n, 0) are given by

ηλ(0) =

n
∑

k=0

(−1)n−k
∑

D∈ε(λ/(k))

∏

u∈D

hλ(u)

where λ runs over all partitions of n.

Proof. We have,

ηλ(0) =
n

∑

k=0

(−1)n−k n!

(n− k)!

fλ/(k)

fλ
(Lemma 2.6)

=

n
∑

k=0

(−1)n−k n!

(n− k)!

|λ/(k)|!
∑

D∈ε(λ/(k))

∏

u∈[λ]\D
1

hλ(u)

n!∏
u∈[λ] hλ(u)

(Lemmas 2.3, 2.4)

=

n
∑

k=0

(−1)n−k n!

(n− k)!

(n−k)!∏
u∈[λ] hλ(u)

∑

D∈ε(λ/(k))

∏

u∈D hλ(u)

n!∏
u∈[λ] hλ(u)

=

n
∑

k=0

(−1)n−k
∑

D∈ε(λ/(k))

∏

u∈D

hλ(u).

Proof of Theorem 1.2. Let λ ⊢ n. Then

ηλ(k) =
1

fλ

∑

β∈S(n,k)

[λ]β (Lemma 1.1)

=

(

n
k

)

fλ

∑

β∈S(n−k,0)

[λ]β

=

(

n
k

)

fλ

∑

β∈S(n−k,0)

∑

µ⊢n−k
µ⊆λ

fλ/µ[µ]β (Lemma 2.2)

=

(

n
k

)

fλ

∑

µ⊢n−k
µ⊆λ

fµfλ/µ(
1

fµ

∑

β∈S(n−k,0)

[µ]β)

=

(

n
k

)

fλ

∑

µ⊢n−k
µ⊆λ

fµfλ/µηµ(0)
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=

(

n
k

)
∏

u∈[λ] hλ(u)

n!

∑

µ⊢n−k
µ⊆λ

(
(n− k)!

∏

u∈[µ] hµ(u)
)(|λ/µ|!

∑

E∈ε(λ/µ)

∏

u∈[λ]\E

1

hλ(u)
)ηµ(0)

(Lemmas 2.3, 2.4)

=

(

n
k

)
∏

u∈[λ] hλ(u)

n!

∑

µ⊢n−k
µ⊆λ

[(
(n− k)!

∏

u∈[µ] hµ(u)
)(

k!
∏

u∈[λ] hλ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u))ηµ(0)]

=
∑

µ⊢n−k
µ⊆λ

[(
1

∏

u∈[µ] hµ(u)
)(

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u))ηµ(0)]

=
∑

µ⊢n−k
µ⊆λ

[

∑n−k
t=0 (−1)n−k−t

∑

D∈ε(µ/(t))

∏

u∈D hµ(u)
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)].

(Lemma 3.1)

Moreover, using Theorem 1.1 and Lemma 2.3, the multiplicity of ηλ(k) is
( n!∏

u∈[λ]hλ(u)
)2. This completes the proof.

In the sequel of this section, we require an interesting observation as
follows:

Lemma 3.2. Let n and k be non-negative integers with k ≤ n. Then for
every λ ⊢ n,

(

n

k

)

=
∑

µ⊢n−k
µ⊆λ

∑

E∈ε(λ/µ)

∏

u∈E hλ(u)
∏

u∈[µ] hµ(u)
.

Proof. suppose A :=
∑

µ⊢n−k
µ⊆λ

∑
E∈ε(λ/µ)

∏
u∈E hλ(u)

∏
u∈[µ] hµ(u)

. Then

A =
∑

µ⊢n−k
µ⊆λ

[

(

n

k

)

∏

u∈[λ] hλ(u)

n!

(n− k)!
∏

u∈[µ] hµ(u)

|λ/µ|!
∏

u∈[λ] hλ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]

=

(

n
k

)

fλ

∑

µ⊢n−k
µ⊆λ

fλ/µfµ (Lemmas 2.3, 2.4)

=

(

n
k

)

fλ

fλ
=

(

n

k

)

. (Lemma 2.2)
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Proof of Corollary 1.4 Let λ ⊢ n. Then by Theorem 1.2

ηλ(n− 2) =
∑

µ⊢2
µ⊆λ

[

∑2
t=0(−1)2−t

∑

D∈ε(µ/(t))

∏

u∈D hµ(u)
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]

=
1

2
(

∑

E∈ε(λ/(2))

∏

u∈E

hλ(u)−
∑

E∈ε(λ/(12))

∏

u∈E

hλ(u)) (1)

Note that if ε(λ/µ) = ∅, then
∑

E∈ε(λ/µ)

∏

u∈E hλ(u) = 0. Now using Lemma
3.2,

(

n

2

)

=
1

2
(

∑

E∈ε(λ/(2))

∏

u∈E

hλ(u) +
∑

E∈ε(λ/(12))

∏

u∈E

hλ(u)). (2)

Hence equations (1) and (2) imply that

ηλ(n− 2) =
∑

E∈ε(λ/(2))

∏

u∈E

hλ(u)−

(

n

2

)

=
∑

(i,i),(j,j+1)∈[λ]
i≤j

hλ((i, i))hλ((j, j + 1))−

(

n

2

)

Therefore using Theorem 1.2, we are done.

Proof of Corollary 1.5

a) |ηλ(k)| = |
∑

µ⊢n−k
µ⊆λ

[

∑n−k
t=0 (−1)n−k−t

∑

D∈ε(µ/(t))

∏

u∈D hµ(u)
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]|

(Theorem 1.2)

≤
∑

µ⊢n−k
µ⊆λ

[
|
∑n−k

t=0 (−1)n−k−t
∑

D∈ε(µ/(t))

∏

u∈D hµ(u)|
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]

=
∑

µ⊢n−k
µ⊆λ

[
|ηµ(0)|

∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)] (Lemma 3.1)

≤
∑

µ⊢n−k
µ⊆λ

[
Mk(λ)

∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]

=

(

n

k

)

Mk(λ). (Lemma 3.2)
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b) Clearly, F(n, k) is vertex-transitive, so it is |S(n, k)|-regular and the
largest eigenvalue of F(n, k) is |S(n, k)|. Let λ ⊢ n. Then

ηλ(k) =
∑

µ⊢n−k
µ⊆λ

[

∑n−k
t=0 (−1)n−k−t

∑

D∈ε(µ/(t))

∏

u∈D hµ(u)
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]

(Theorem 1.2)

=
∑

µ⊢n−k
µ⊆λ

[
ηµ(0)

∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)] (Lemma 3.1)

≥
∑

µ⊢n−k
µ⊆λ

[
(−|S(n−k,0)|

n−k−1
)

∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)] (Lemma 2.7)

=
−|S(n− k, 0)|

n− k − 1

∑

µ⊢n−k
µ⊆λ

∑

E∈ε(λ/µ)

∏

u∈E hλ(u)
∏

u∈[µ] hµ(u)

=
−|S(n− k, 0)|

(

n
k

)

n− k − 1
(Lemma 3.2)

=
−|S(n, k)|

n− k − 1
.

c) Applying Theorems 1.1 and 1.2, we are done.

d) Using part (c), it is easy to see that η(1n)(k) =
−|S(n,k)|
n−k−1

. Thus by part (b),

η := −|S(n,k)|
n−k−1

is the least eigenvalue of F(n, k).

e) Let µ ⊢ n− k such that µ ⊆ λ. We can see that ε(λ/µ) = {µ}. Also it is
clear that

{µ ⊢ n− k| µ ⊆ λ} ⊆ {µs := (s, 1n−k−s)| s ∈ N0, 1 ≤ s ≤ n− k},

where (n−k) = (n−k, 10) and (1n−k) = (1, 1n−k−1). Since n−k−s ≤ n−m
and s ≤ min{m,n− k}, we deduce that m− k ≤ s ≤ min{m,n− k}. Hence
as s is a positive integer, max{1, m − k} ≤ s ≤ min{m,n − k}. Now using
Theorem 1.2, we have:

ηλ(k) =
∑

µ⊢n−k, µ⊆λ

[

∑n−k
t=0 (−1)n−k−t

∑

D∈ε(µ/(t))

∏

u∈D hµ(u)
∏

u∈[µ] hµ(u)

∑

E∈ε(λ/µ)

∏

u∈E

hλ(u)]

=

min{m,n−k}
∑

s=max{1,m−k}

[

∑n−k
t=0 (−1)n−k−t

∑

D∈ε(µs/(t))

∏

u∈D hµs(u)
∏

u∈[µs]
hµs(u)

∏

u∈[µs]

hλ(u)]
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=
(−1)n−k

(n− k)

min{m,n−k}
∑

s=max{1,m−k}

[
1 +

∑s
t=1(−1)t

∏

u∈[(t)] hµs(u)

(s− 1)!(n− k − s)!

n(m− 1)!(n−m)!

(m− s)!(k + s−m)!
]

=
(−1)n−kn(m− 1)!(n−m)!

n− k

min{m,n−k}
∑

s=max{1,m−k}

1 + (n− k)
∑s

t=1
(−1)t(s−1)!

(s−t)!

(s− 1)!(n− k − s)!(m− s)!(s+ k −m)!

Since
(−1)n−kn(m− 1)!(n−m)!

n− k
=

(−1)n−k
(

n
k

)

(n− k − 1)!k!
(

n−1
m−1

) ,

we have

ηλ(k) =
(−1)n−k

(

n
k

)

(

n−1
m−1

)

min{m,n−k}
∑

s=max{1,m−k}

[(1

+ (n− k)
s

∑

t=1

(−1)t(s− 1)!

(s− t)!
)

(

n− k − 1

s− 1

)(

k

m− s

)

]

=
(−1)n−k

(

n
k

)

(

n−1
m−1

)

min{m,n−k}
∑

s=max{1,m−k}

[(
s

n− k
+

s
∑

t=1

(−1)tt!

(

s

t

)

)

(

n− k

s

)(

k

m− s

)

]

=
(−1)n−k

(

n
k

)

(

n−1
m−1

)

min{m,n−k}
∑

s=max{1,m−k}

[(
s

n− k
+ (−1)s|S(s, 0)| − 1)

(

n− k

s

)(

k

m− s

)

]

=
(−1)n−k

(

n
k

)

(

n−1
m−1

)

min{m,n−k}
∑

s=max{1,m−k}

[((−1)s|S(s, 0)| −
n− k − s

n− k
)

(

n− k

s

)(

k

m− s

)

]

This completes the proof.
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