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Mycielskian of Signed Graphs

Albin Mathew 1 Germina K A 2

Abstract

In this paper, we define the Mycielskian of a signed graph and discuss

the properties of balance and switching in the Mycielskian of a given signed

graph. We provide a condition for ensuring the Mycielskian of a balanced

signed graph remains balanced, leading to the construction of a balanced

Mycielskian. We establish a relation between the chromatic numbers of a

signed graph and its Mycielskian. We also study the structure of different

matrices related to the Mycielskian of a signed graph.
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1 Introduction

A signed graph Σ = (G, σ) consists of an underlying graph G = (V,E), together

with a function σ : E → {−1, 1}, called the signature or sign function. The sign of a

cycle in a signed graph is the product of the signs of its edges. A signed graph Σ is

said to be balanced if no negative cycles exist, otherwise Σ is unbalanced. A signed

graph is called all-positive (all-negative) if all the edges are positive (negative).

A switching function for Σ is a function ζ : V (Σ) → {−1, 1}. For an edge e = uv

in Σ, the switched signature σζ is defined as σζ(e) = ζ(u)σ(e)ζ(v), and the switched

signed graph is Σζ = (G, σζ) (see [8, Section 3]). The signs of cycles are unchanged
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2 Mycielskian of Signed Graphs

by switching, and any balanced signed graph can be switched to an all-positive

signed graph. If one signed graph can be switched from the other, they are said

to be switching equivalent. Two signed graphs Σ1 and Σ2 are said to be switching

isomorphic if Σ1 is isomorphic to a switching of Σ2.

The net-degree of a vertex v in a signed graph Σ, denoted by d±Σ(v) is defined as

d±Σ(v) = d+Σ(v)− d−Σ(v), where d+Σ(v) and d−Σ(v) respectively denotes the number of

positive and negative edges incident with v in Σ. The total number of edges incident

with v in Σ is denoted by dΣ(v) and dΣ(v) = d+Σ(v) + d−Σ(v).

Throughout this paper, we consider only finite, simple, connected and undirected

graphs and signed graphs. For the standard notation and terminology in graphs and

signed graphs not given here, the reader may refer to [3] and [9, 12] respectively.

The Mycielski construction of a simple graph was introduced by J. Mycielski [7]

in his search for triangle-free graphs with arbitrarily large chromatic number. The

Mycielskian for a finite, simple, connected graph G = (V,E) is defined as follows.

Definition 1.1. [1] The Mycielskian M(G) of G is a graph whose vertex set is

the disjoint union V ∪ V ′ ∪ {w}, where V ′ = {v′ : v ∈ V }, and whose edge set is

E ∪ {u′v : uv ∈ E} ∪ {v′w : v′ ∈ V ′}. The vertex w is called the root of M(G) and

v′ ∈ V ′ is called the twin of v in M(G).

1.1 Mycielskian of signed graphs

Motivated from the Definition 1.1, we define the Mycielskian M(Σ) of the signed

graph Σ as follows.

Definition 1.2 (Mycielskian). The Mycielskian of Σ is the signed graph M(Σ) =

(M(G), σM ), where M(G) is the Mycielskian of the underlying graph G of Σ, and

the signature function σM is defined as σM(uv) = σM (u′v) = σ(uv) and σM (v′w) = 1

The following are some immediate observations.

Observation 1.3. Let Σ be a signed graph with p vertices and q edges and let

M(Σ) be its Mycielskian. Then, we have the following.
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(i) M(Σ) has 2p+ 1 vertices and 3q + p edges.

(ii) If Σ contains r positive edges and q − r negative edges, then M(Σ) contains

3r + p positive edges and 3(q − r) negative edges.

(iii) If Σ is triangle-free, then M(Σ) is also triangle-free.

(iv) For each vertex v ∈ V , d±
M(Σ)(v) = 2d±Σ(v) and dM(Σ)(v) = 2dΣ(v).

(v) For each vertex v′ ∈ V ′, d±
M(Σ)(v

′) = d±Σ(v) + 1 and dM(Σ)(v
′) = dΣ(v) + 1 .

(vi) d±
M(Σ)(w) = dM(Σ)(w) = p.

Note that one can define the signature function for the Mycielskian of a signed

graph in other ways. In this paper, we initiate a study on Mycielskian of a signed

graph using this particular definition.

This particular construction of Mycielskian of a signed graph is illustrated in

Example 1.4.

Example 1.4. Let Σ be the negative cycle C−

4 . The Mycielskian of C−

4 is con-

structed in Figure 1b.

v1 v2

v4 v3

(a) Σ

v1
v2 v3

v4

v′1 v′2 v′3 v′4

w

(b) M(Σ)

Figure 1: A signed graph and its Mycielskian.



4 Mycielskian of Signed Graphs

2 Balance and switching in Mycielskian of signed

graphs

Balance and switching are two important concepts in signed graph theory.

In this section, we establish how the signed graph and its Mycielskian are related

with respect to balance and switching. One may note that if Σ is unbalanced, then

M(Σ) is unbalanced. Also, in general, for a balanced signed graph Σ, the Mycielskian

M(Σ) need not be balanced.

The following is a characterization for M(Σ) to be balanced.

Proposition 2.1. The Mycielskian M(Σ) is balanced if and only if Σ is all-positive.

Proof. If Σ is all-positive, then so is M(Σ), and hence is balanced. Conversely, If Σ

has at least one negative edge, say vivj , then vivjv
′

iwv
′

jvi forms a negative 5 - cycle

in M(Σ), making it unbalanced.

Consider any balanced signed graph Σ which is not all-positive. Then Σ can be

switched to an all-positive signed graph, say Σ′. By Proposition 2.1, M(Σ) is not

balanced, but M(Σ′) is balanced. Hence, the Mycielskians of two switching equiva-

lent signed graphs need not to be switching equivalent.

The Mycielskian of an unbalanced signed graph is always unbalanced. However,

for a balanced signed graph Σ, the Mycielskian M(Σ) = (M(G), σM ) can be made

balanced by modifying the signature function σM . Though there are several ways to

do so, to remain consistent with our original definition, we only look for changes that

can be made in the signature of the edges incident to the root vertex w which makes

the Mycielskian balanced, and leave the signatures of the other edges unchanged.

We need the following theorem [4].

Theorem 2.2 (Harary’s bipartition theorem [4]). A signed graph Σ is balanced if

and only if there is a bipartition of its vertex set, V = V1 ∪ V2, such that every
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positive edge is induced by V1 or V2 while every negative edge has one endpoint in

V1 and one in V2. The bipartition V = V1 ∪ V2 is called a Harary bipartition for Σ.

Note that if V = V1 ∪ V2 is a Harary bipartition for Σ, then every path in Σ

joining vertices in V1 (similarly V2) is positive, and every path between V1 and V2 is

negative.

Theorem 2.3 provides a method to construct a balanced Mycielskian signed graph

from a balanced signed graph.

Theorem 2.3. Let Σ be a balanced signed graph and M(Σ) = (M(G), σM ) be its

Mycielskian. If σ′

M is a signature function satisfying σ′

M = σM on M(G)\{w} and

satisfies the relation σ′

M(v′iw)σ
′

M(v′jw) = σ(vivj) for every edge vivj in Σ, then the

signed graph M ′(Σ) = (M(G), σ′

M) is balanced.

Proof. Since Σ is balanced, by Harary bipartition theorem, there exist a bipartition

V = V1 ∪ V2 of V such that every negative edge in Σ has its one end vertex in V1

and the other in V2. We construct a Harary bipartition for M ′(Σ) as follows.

For i = 1, 2, let V ′

i = {v′i : vi ∈ Vi} be the subsets of V ′ corresponding to the

subsets V1 and V2 of V . Since V = V1 ∪ V2, we have V ′ = V ′

1 ∪ V ′

2 . Every edge with

both its end vertices in V1 is positive and no vertices in V ′

1 are adjacent. Also, for

edges viv
′

j , where vi ∈ V1 and v′j ∈ V ′

1 , σ
′

M(viv
′

j) = σM (viv
′

j) = σ(vivj) = +1. Thus,

every edge with both its end vertices in V1 ∪ V ′

1 is positive. Similarly, every edge

with both its end vertices in V2 ∪ V ′

2 is positive.

Consider any edge e having one end vertex in V1 ∪ V ′

1 and the other in V2 ∪ V ′

2 .

There are three possibilities.

1. If e = vivj , where vi ∈ V1 and vj ∈ V2, then σ′

M(e) = σM(e) = σM(vivj) =

σ(vivj) = −1.

2. If e = viv
′

j , where vi ∈ V1 and v′j ∈ V ′

2 , then σ′

M (e) = σM(e) = σM(viv
′

j) =

σ(vivj) = −1.
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3. If e = v′ivj , where v′i ∈ V ′

1 and vj ∈ V2, then σ′

M (e) = σM(e) = σM(v′ivj) =

σ(vivj) = −1.

Hence, every edge joining V1 ∪ V ′

1 and V2 ∪ V ′

2 is negative.

We claim that : If σ′

M (v′kw) is positive for some vk ∈ V1, then σ′

M (v′iw) is positive

for all vi ∈ V1 and σ′

M(v′jw) is negative for all vj ∈ V2.

To prove the claim, note that if σ′

M (v′iw)σ
′

M(v′jw) = σ(vivj) for every edge vivj

in Σ, the same holds for every vivj path in Σ. For, consider a vivj path, say

vivi+1vi+2 · · · vj−1vj , in Σ. Then,

σ(vivj) = σ(vivi+1vi+2 · · · vj−1vj)

= σ(vivi+1)σ(vi+1vi+2) · · ·σ(vj−1vj)

= (σ′

M(v′iw)σ
′

M(v′i+1w))(σ
′

M(v′i+1w)σ
′

M(v′i+2w)) · · · (σ
′

M(v′j−1w)σ
′

M(v′jw))

= σ′

M(v′iw)(σ
′

M(v′i+1w)σ
′

M(v′i+2w) · · ·σ
′

M(v′j−1w))
2σ′

M(v′jw))

= σ′

M(v′iw)σ
′

M(v′jw).

Now, consider vk ∈ V1 and let vi ∈ V1 and vj ∈ V2 be arbitrary. Then every vivk

path is positive and every vjvk path is negative. The connectedness of Σ guarantees

the existence of such paths.

Now, σ′

M (v′iw)σ
′

M(v′kw) = σ(vivk) = +1. Thus. σ′

M (v′iw) and σ′

M(v′kw) must have

the same sign.

Similarly, since σ′

M(v′jw)σ
′

M(v′kw) = σ(vjvk) = −1, σ′

M(v′jw) and σ′

M(v′kw) are of the

opposite sign.

Thus, if σ′

M(v′kw) is positive for some vk ∈ V1, then σ′

M(v′iw) is positive for all

vi ∈ V1 and σ′

M (v′jw) is negative for all vj ∈ V2. Hence, the claim is proved.

Now consider the edges v′iw, where, v
′

i ∈ V ′

1∪V
′

2 . Because of the claim, if σ′

M(v′kw)

is positive for some vk ∈ V1, then σ′

M(v′iw) is positive for all vi ∈ V1 and σ′

M(v′jw) is

negative for all vj ∈ V2.

In this case, take (VM)1 = V1 ∪ V ′

1 ∪ {w} and (VM)2 = V2 ∪ V ′

2 .

Similarly, if σ′

M(v′kw) is negative for some vk ∈ V1, then σ′

M (v′iw) is negative for all
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vi ∈ V1 and σ′

M (v′jw) is positive for all vj ∈ V2.

In this case, take (VM)1 = V1 ∪ V ′

1 and (VM)2 = V2 ∪ V ′

2 ∪ {w}.

Thus, in either cases, VM = (VM)1∪ (VM)2 forms a Harary bipartition for M ′(Σ),

and hence M ′(Σ) is balanced.

Remark 2.4. One may note that σ′

M is a different signature onM(G) that coincides

with σM on M(G)\{w}. The signature function σ′

M for the remaining edges v′iw

of M(G) has to be defined using the relation stated in Theorem 2.3. One such

construction is discussed in Section 2.1.

It is also worth noting that if σ′

M = σM on M(G), then Theorem 2.3 reduces to

Proposition 2.1.

2.1 A balance-preserving construction

Given any balanced signed graph Σ = (G, σ), there exist a switching function ζ :

V (Σ) → {−1,+1} that switches Σ to all-positive. DefineMB(Σ) as the signed graph

with underlying graph M(G) and having the signature function σB defined as

σB(vivj) = σ(vivj),

σB(v
′

ivj) = σB(viv
′

j) = σ(vivj),

σB(v
′

iw) = ζ(vi).

Define a switching function ζB : V (MB(Σ)) → {−1,+1} by

ζB(vi) = ζ(vi),

ζB(v
′

i) = ζ(vi),

ζB(w) = 1.
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Since ζ switches Σ to all-positive, for edges vivj ,

σζB
B (vivj) = ζB(vi)σB(vivj)ζB(vj)

= ζ(vi)σ(vivj)ζ(vj)

= σζ(vivj)

= +1.

Similarly, for edges v′ivj ,

σζB
B (v′ivj) = ζB(v

′

i)σB(v
′

ivj)ζB(vj)

= ζ(vi)σ(vivj)ζ(vj)

= σζ(vivj)

= +1.

Also, for edges v′iw,

σζB
B (v′iw) = ζB(v

′

i)σB(v
′

iw)ζB(w)

= ζ(vi)ζ(vi)(+1)

= (ζ(vi))
2

= +1.

Hence, ζB switches MB(Σ) to all-positive. Thus, MB(Σ) = (M(G), σB) is balanced,

which we call as the balanced Mycielskian of Σ.

Definition 2.5 (Balanced Mycielskian). Let Σ = (G, σ) be a balanced signed graph,

where the underlying graph G = (V,E), is a finite simple connected graph. The

signed graph MB(Σ) = (M(G), σB) is called the balanced Mycielskian of Σ.

One can observe that under this construction, if two balanced signed graphs Σ1

and Σ2 are switching equivalent, then their corresponding balanced Mycielskians

MB(Σ1) and MB(Σ2) are also switching equivalent.
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Remark 2.6. Note that since σζ(vivj) = +1, for every edge vivj in Σ, we have

ζ(vi)ζ(vj) = σ(vivj). Thus,

σB(v
′

iw)σB(v
′

iw) = ζ(vi)ζ(vj)

= σ(vivj)

Hence, the signature function defined for the balanced Mycielskian satisfies the

condition given in Theorem 2.3.

Example 2.7. Let Σ be the balanced 4-cycle shown in Figure 2a. The switching

function ζ : V (Σ) → {−1, 1} defined by ζ(v1) = ζ(v3) = ζ(v4) = −1 and ζ(v2) = 1

switches Σ to all-positive. The corresponding balanced Mycielskian is constructed

in Figure 2b.

v1 v2

v4 v3

(a) Σ

v1
v2 v3

v4

v′1 v′2 v′3 v′4

w

(b) MB(Σ)

Figure 2: A balanced signed graph Σ and its balanced Mycielskian MB(Σ).

3 The chromatic number of Mycielskian of signed

graphs

In 1981, Zaslavsky [10] introduced the concept of coloring a signed graph. For

a signed graph Σ, he defined the signed coloring of Σ in µ colors, or in 2µ + 1
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signed colors as a mapping c : V (Σ) → {−µ,−µ+1, . . . , 0, . . . , µ− 1, µ}. Whenever

a coloring never assumes the value 0, it is referred to as a zero-free coloring. A

coloring c is said to be proper if c(u) 6= σ(e)c(v) for every edge e = uv of Σ (see [10,

Section 1]).

Máčajová et al. in [5] defined the chromatic number of a signed graph as follows.

Definition 3.1. [5] An n - coloring of a signed graph Σ is a proper coloring that

uses colors from the set Mn, which is defined for each n ≥ 1 as

Mn =











{±1,±2, . . . ± k} if n = 2k

{0,±1,±2, . . . ± k} if n = 2k + 1

The smallest n such that Σ admits an n - coloring is called the chromatic number

of Σ and is denoted by χ(Σ).

The chromatic number of a balanced signed graph coincides with the chromatic

number of its underlying unsigned graph.

Proposition 3.2. Let M(Σ)\{w} be the signed graph obtained by removing the root

vertex w (and the corresponding edges) from M(Σ). Then χ(M(Σ)\{w}) = χ(Σ).

Proof. Let χ(Σ) = n and let c : V (Σ) → Mn be an n - coloring for Σ. Define c′ :

V ((M(Σ)\{w}) → Mn by c′(v′i) = c′(vi) = c(vi) for all i. Since c(vi) 6= σ(vivj)c(vj),

it follows that c′(vi) 6= σM (vivj)c
′(vj) and c′(v′i) 6= σM (v′ivj)c

′(vj). Hence, c′ is an n

- coloring for M(Σ)\{w}.

For any given signed graph Σ, there exist a signed graph −Σ obtained by re-

versing the signs of all edges of Σ. We say Σ is antibalanced when −Σ is balanced.

Note that Σ is antibalanced if and only if it can be switched to all-negative.

We restate the Lemma 2.4 from [11] as follows.

Lemma 3.3 ([11]). A signed graph Σ is antibalanced if and only if χ(Σ) ≤ 2.
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Theorem 3.4. Let Σ be a signed graph and M(Σ) be its Mycielskian. Then,

χ(M(Σ)) ≤ 2 if and only if Σ is all-negative.

Proof. If Σ is an all-negative signed graph with vertex set {v1, v2, . . . vp}, then the

only positive edges of M(Σ) are v′iw, 1 ≤ i ≤ p. Now, the switching function

ζ ′M : V (M(Σ)) → {−1, 1} defined by ζ ′M(vi) = ζ ′M(v′i) = 1 for all 1 ≤ i ≤ p and

ζ ′M(w) = −1 switches M(Σ) to all-negative. Therefore, M(Σ) is antibalanced and

hence χ(M(Σ)) ≤ 2, by Lemma 3.3. Conversely, if Σ is not all-negative, it contains

at least one positive edge, say vivj . Then vivjv
′

iwv
′

jvi forms a negative 5 - cycle in

−M(Σ), making it unbalanced. Thus, M(Σ) is not antibalanced and therefore, by

Lemma 3.3, χ(M(Σ)) > 2.

We have the following theorem in [1].

Theorem 3.5 ([1]). Let χ(G) and χ(M(G)) be the chromatic numbers of a graph

G and its Mycielskian M(G) respectively. Then χ(M(G)) = χ(G) + 1.

Theorem 3.6. Let M(Σ) be the Mycielskian of a signed graph (Σ). Then, χ(Σ) ≤

χ(M(Σ)) ≤ χ(Σ) + 1. Furthermore, χ(M(Σ)) = χ(Σ) if Σ is all-negative and

χ(M(Σ)) = χ(Σ) + 1 if Σ is all-positive.

Proof. Let χ(Σ) = n and let c : V → Mn be an n - coloring for Σ. We extend c to

an (n + 1) - coloring of M(Σ). If n = 2k, we extend c to an (n + 1) - coloring of

M(Σ) by setting c(v′i) = c(vi) for all i and c(w) = 0. If n = 2k + 1, we extend c to

an (n + 1) - coloring of M(Σ) as follows. Let vt be any vertex in V with c(vt) = 0.

Then for all vi 6= vt, set c(v
′

i) = c(vi) , c(v
′

t) = c(vt) = k + 1 and c(w) = −(k + 1).

Hence, χ(M(Σ)) ≤ χ(Σ) + 1.

Now, if Σ is all-negative, it can be colored using just one color, namely −1. Let

c : V (Σ) → {±1} be the proper 2 - coloring for Σ. This can be extended to a proper

2 - coloring for M(Σ) by setting c(v′i) = c(vi) = −1 for all i and c(w) = +1. If Σ is

all-positive, then M(Σ) is all-positive. Thus, χ(M(Σ)) = χ(|M(Σ)|) = χ(|Σ|) + 1 =

χ(Σ) + 1.
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Remark 3.7. Let Σ be a signed graph with χ(Σ) = n and let c : V (Σ) → Mn be

an n - coloring of Σ. The deficiency of the coloring c is the number of unused colors

from Mn (see [6]). The existence of signed graphs satisfying χ(M(Σ)) = χ(Σ) is a

consequence of the deficiency of the coloring of Σ. Specifically, if the coloring of Σ

has deficiency at least 1, then an unused color can be assigned to w, making the

chromatic number of M(Σ) and Σ equal. As an example, consider Σ as the balanced

3 - cycle shown in Figure 3a. Note that χ(Σ) = 3 and the color −1 in the color set

{0,±1} is unused.

1 0

1

(a) Σ

1
0

1

1 0 1

−1

(b) M(Σ)

Figure 3: A signed graph Σ satisfying χ(M(Σ)) = χ(Σ)

We now establish some results on the balanced Mycielskian of signed graphs.

Proposition 3.8. Let Σ = (G, σ) be a balanced signed graph and MB(Σ) =

(M(G), σB) be its balanced Mycielskian. Then χ(MB(Σ)) = χ(Σ) + 1.

Proof. Since Σ and MB(Σ) are both balanced, χ(MB(Σ)) = χ(M(G)) and χ(Σ) =

χ(G). The result then follows from Theorem 3.5.

The following theorem was put forward by Mycielski in [7]

Theorem 3.9 ([7]). For any positive integer n, there exists a triangle-free graph

with chromatic number n.



Albin, Germina 13

The next theorem is an analogous result for balanced signed graphs.

Theorem 3.10. For any positive integer n, there exists a balanced triangle-free

signed graph that is not all-positive, and having chromatic number n.

Proof. The proof is based on mathematical induction. For n = 1 and n = 2, the

signed graphs Σ1 = K1 and Σ2 = K−

2 , where K
−

2 is the all-negative signed complete

graph on two vertices have the required property. Suppose that for k > 2, such

a signed graph Σk satisfying the induction hypothesis exist. Then MB(Σk) is a

balanced signed graph that is not all-positive. Also, by Proposition 3.8, we have,

χ(Σk+1) = χ(Σk) + 1 = k + 1.

The first four signed graphs mentioned in Theorem 3.10 are shown in Figure 4.

u

(a) Σ1 = K1

u v

(b) Σ2 = K
−

2

v1

v2

v3v4

v5

(c) Σ3 = MB(Σ2)

v1

v2

v3v4

v5

v′1

v′2

v′3v′4

v′5
w

(d) Σ4 = MB(Σ3) = M
2
B(Σ)

Figure 4: Iterated balanced Mycielskians.
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4 Matrices of the Mycielskian of signed graphs

Given a signed graph Σ = (V,E, σ) where V = {v1, v2, . . . , vp} is the vertex set,

E = {e1, e2, . . . , eq} is the edge set and σ : E → {−1, 1} is the sign function. Let

M(Σ) be the Mycielskian of Σ. In this section, we introduce the adjacency matrix,

the incidence matrix and the Laplacian matrix of the Mycielskian M(Σ) of Σ.

4.1 The adjacency matrix

The adjacency matrix of Σ, denoted by A = A(Σ), is a p× p matrix (aij) in which

aij = σ(vivj) if vi and vj are adjacent and 0 otherwise (see [9, Section 3]).

Since vi is adjacent to v′j and v′i is adjacent to vj in M(Σ) whenever vi and vj

are adjacent in Σ, the adjacency matrix AM of the Mycielskian M(Σ) takes the

block form

AM = A(M(Σ)) =









A(Σ) A(Σ) 0p×1

A(Σ) 0p×p jp×1

0t
1×p jt1×p 0









where 0 is a matrix of zeros and j is a matrix of ones of the specified order.

AM is a symmetric matrix of order 2p+ 1.

Given a graph G with adjacency matrix A(G), the connection between the ranks

of A(G) and A(M(G)), the connection between the number of positive, negative

and zero eigenvalues A(G) and A(M(G)) were studied by Fisher et al. in [2]. We

initiate a similar study in the case of signed graphs.

Let Σ = (V,E, σ) be a given signed graph and let t /∈ V . We denote the signed

graph obtained by joining all the vertices of Σ to t with negative edges by Σt− . That

is, Σt− is the negative join Σ ∨− K1. The adjacency matrix of Σt takes the block

form

At− = A(Σt−) =





A -j

-jt 0





We now have the following theorem.
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Theorem 4.1. Let Σ be a signed graph and A(Σ) be the adjacency matrix of Σ. Let

r(A) denote the rank and n+(A), n−(A) and n0(A) respectively denote the number

of positive, negative and zero eigenvalues of a symmetric matrix A, then we have

the following.

(i) r(AM) = r(A) + r(At−)

(ii) n+(AM) = n+(A) + n+(At−)

(iii) n−(AM) = n−(A) + n−(At−)

(iv) n0(AM) = n0(A) + n0(At−)

Proof. The adjacency matrix AM can be factorized as

AM =









A A 0

A 0 j

0t jt 0









=









I 0 0

I -I 0

0 0t 1

















A 0 0

0 -A -j

0t -jt 0

















I I 0

0 -I 0

0t 0t 1









= PBPt

where, P =









I 0 0

I -I 0

0 0t 1









is an invertible matrix and B =





A 0

0 At−



.

Thus, the matrices AM and B are congruent, and hence by Sylvester’s law of

inertia, they have the same rank and the same number of positive, negative and zero

eigenvalues.

4.2 The incidence matrix

The incidence matrix of Σ, denoted by H = H(Σ), is the p× q matrix

H(Σ) =
[

x(e1) x(e2) · · · x(eq)
]

where, for each edge ek = vivj, 1 ≤ k ≤ q, the vector x(ek) =









x1k

...

xpk









∈ R
p×1 has its

ith and jth entries as xik = ±1 and xjk = ∓σ(ek) respectively and all other entries
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as 0 (see [9, Section 3]).

Let us denote the vertex set VM and the edge set EM of M(Σ) as

VM = {v1, v2, . . . , vp, v
′

1, v
′

2, . . . , v
′

p, w}

EM = {e1, e2, . . . , eq, e
′

1, e
′′

1, e
′

2, e
′′

2, . . . , e
′

q, e
′′

q , f1, f2, · · · , fp}

respectively, where, for each 1 ≤ k ≤ q, the edges e′k and e′′k of M(Σ) are defined by

e′k = viv
′

j and e′′k = v′ivj whenever ek = vivj is an edge of Σ with 1 ≤ i < j ≤ q and fi

is defined by fi = v′iw for 1 ≤ i ≤ p. Then, the incidence matrix HM = H(M(Σ))

takes the block form

HM = H(M(Σ)) =









H(Σ)p×q x1 y1 x2 y2 · · · xp yp 0p×p

0p×q y1 x1 y2 x2 · · · yp xp Ip×p

01×3q -j1×p









Here, H(Σ) is the incidence matrix of Σ, I is the identity matrix, 0 is the zero

matrix and -j is the matrix with all entries −1 of the specified order. xi’s and yi’s

are matrices of order p×1 and satisfies the condition xi+yi = x(ei) for all 1 ≤ i ≤ q.

4.3 The Laplacian matrix

The Laplacian matrix of Σ, denoted by L = L(Σ) is the p× p matrix

L(Σ) = D(|Σ|)−A(Σ)

where A(Σ) is the adjacency matrix of Σ and D(|Σ|) is the degree matrix of the

underlying graph |Σ| (see [9, Section 3]).

Accordingly, we define the Laplacian matrix for the Mycielskian of Σ as

LM = L(M(Σ)) = D(|M(Σ)|)−A(M(Σ)) = DM −AM

where, AM is the adjacency matrix and DM is the diagonal degree matrix of the

Mycielskian of Σ. Now, DM takes the block form

DM =









2D(|Σ|)p×p 0p×p 0p×1

0p×p (D(|Σ|) + I)p×p 0p×1

0t
1×p 0t

1×p p








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where p = |V |, D(Σ) is the diagonal degree matrix of Σ, I is the identity matrix

and 0 is the zero matrix of the specified order.

Consequently, the Laplacian matrix LM = L(M(Σ)) takes the block form

LM =









(2D(|Σ|)−A(Σ))p×p -A(Σ)p×p 0p×1

-A(Σ)p×p (D(|Σ|) + I)p×p -jp×1

0t
1×p -jt1×p p









5 Conclusion and Scope

In this paper, we have defined the Mycielskian of a signed graph and discussed some

of its properties. We have seen that the Mycielskian of a balanced signed graph

need not be balanced and hence we provide an alternate construction in which the

Mycielskian of Σ is balanced whenever Σ is balanced, This paper also discuss the

chromatic number of the Mycielskian of a signed graph and established that the

chromatic number of a signed graph and its Mycielskian are related. We also estab-

lished the block forms of various matrices of the Mycielskian of a signed graph such

as the adjacency matrix, the incidence matrix and the Laplacian matrix. Develop-

ing another balance preserving, switching preserving constructions for Mycielskian

of signed graphs, computing the spectrum of the Mycielskian of signed graphs for

various matrices are some interesting areas for further investigation.
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