Mycielskian of Signed Graphs

Albin Mathew 1 Germina K A 2

Abstract

In this paper, we define the Mycielskian of a signed graph and discuss the properties of balance and switching in the Mycielskian of a given signed graph. We provide a condition for ensuring the Mycielskian of a balanced signed graph remains balanced, leading to the construction of a balanced Mycielskian. We establish a relation between the chromatic numbers of a signed graph and its Mycielskian. We also study the structure of different matrices related to the Mycielskian of a signed graph.

Keywords: Signed graph, Signed graph coloring, Mycielskian of a signed graph. Mathematics Subject Classification (2020): Primary 05C22, Secondary 05C15, 05C50.

1 Introduction

A signed graph $\Sigma=(G, \sigma)$ consists of an underlying graph $G=(V, E)$, together with a function $\sigma: E \rightarrow\{-1,1\}$, called the signature or sign function. The sign of a cycle in a signed graph is the product of the signs of its edges. A signed graph Σ is said to be balanced if no negative cycles exist, otherwise Σ is unbalanced. A signed graph is called all-positive (all-negative) if all the edges are positive (negative).

A switching function for Σ is a function $\zeta: V(\Sigma) \rightarrow\{-1,1\}$. For an edge $e=u v$ in Σ, the switched signature σ^{ζ} is defined as $\sigma^{\zeta}(e)=\zeta(u) \sigma(e) \zeta(v)$, and the switched signed graph is $\Sigma^{\zeta}=\left(G, \sigma^{\zeta}\right)$ (see [8, Section 3]). The signs of cycles are unchanged

[^0]by switching, and any balanced signed graph can be switched to an all-positive signed graph. If one signed graph can be switched from the other, they are said to be switching equivalent. Two signed graphs Σ_{1} and Σ_{2} are said to be switching isomorphic if Σ_{1} is isomorphic to a switching of Σ_{2}.

The net-degree of a vertex v in a signed graph Σ, denoted by $d_{\Sigma}^{ \pm}(v)$ is defined as $d_{\Sigma}^{ \pm}(v)=d_{\Sigma}^{+}(v)-d_{\Sigma}^{-}(v)$, where $d_{\Sigma}^{+}(v)$ and $d_{\Sigma}^{-}(v)$ respectively denotes the number of positive and negative edges incident with v in Σ. The total number of edges incident with v in Σ is denoted by $d_{\Sigma}(v)$ and $d_{\Sigma}(v)=d_{\Sigma}^{+}(v)+d_{\Sigma}^{-}(v)$.

Throughout this paper, we consider only finite, simple, connected and undirected graphs and signed graphs. For the standard notation and terminology in graphs and signed graphs not given here, the reader may refer to [3] and [9, 12] respectively.

The Mycielski construction of a simple graph was introduced by J. Mycielski [7] in his search for triangle-free graphs with arbitrarily large chromatic number. The Mycielskian for a finite, simple, connected graph $G=(V, E)$ is defined as follows.

Definition 1.1. [1] The Mycielskian $M(G)$ of G is a graph whose vertex set is the disjoint union $V \cup V^{\prime} \cup\{w\}$, where $V^{\prime}=\left\{v^{\prime}: v \in V\right\}$, and whose edge set is $E \cup\left\{u^{\prime} v: u v \in E\right\} \cup\left\{v^{\prime} w: v^{\prime} \in V^{\prime}\right\}$. The vertex w is called the root of $M(G)$ and $v^{\prime} \in V^{\prime}$ is called the twin of v in $M(G)$.

1.1 Mycielskian of signed graphs

Motivated from the Definition 1.1, we define the Mycielskian $M(\Sigma)$ of the signed graph Σ as follows.

Definition 1.2 (Mycielskian). The Mycielskian of Σ is the signed graph $M(\Sigma)=$ $\left(M(G), \sigma_{M}\right)$, where $M(G)$ is the Mycielskian of the underlying graph G of Σ, and the signature function σ_{M} is defined as $\sigma_{M}(u v)=\sigma_{M}\left(u^{\prime} v\right)=\sigma(u v)$ and $\sigma_{M}\left(v^{\prime} w\right)=1$

The following are some immediate observations.
Observation 1.3. Let Σ be a signed graph with p vertices and q edges and let $M(\Sigma)$ be its Mycielskian. Then, we have the following.
(i) $M(\Sigma)$ has $2 p+1$ vertices and $3 q+p$ edges.
(ii) If Σ contains r positive edges and $q-r$ negative edges, then $M(\Sigma)$ contains $3 r+p$ positive edges and $3(q-r)$ negative edges.
(iii) If Σ is triangle-free, then $M(\Sigma)$ is also triangle-free.
(iv) For each vertex $v \in V, d_{M(\Sigma)}^{ \pm}(v)=2 d_{\Sigma}^{ \pm}(v)$ and $d_{M(\Sigma)}(v)=2 d_{\Sigma}(v)$.
(v) For each vertex $v^{\prime} \in V^{\prime}, d_{M(\Sigma)}^{ \pm}\left(v^{\prime}\right)=d_{\Sigma}^{ \pm}(v)+1$ and $d_{M(\Sigma)}\left(v^{\prime}\right)=d_{\Sigma}(v)+1$.
$(\mathrm{vi}) d_{M(\Sigma)}^{ \pm}(w)=d_{M(\Sigma)}(w)=p$.
Note that one can define the signature function for the Mycielskian of a signed graph in other ways. In this paper, we initiate a study on Mycielskian of a signed graph using this particular definition.

This particular construction of Mycielskian of a signed graph is illustrated in Example 1.4.

Example 1.4. Let Σ be the negative cycle C_{4}^{-}. The Mycielskian of C_{4}^{-}is constructed in Figure 1b.

(a) Σ

(b) $M(\Sigma)$

Figure 1: A signed graph and its Mycielskian.

2 Balance and switching in Mycielskian of signed graphs

Balance and switching are two important concepts in signed graph theory.
In this section, we establish how the signed graph and its Mycielskian are related with respect to balance and switching. One may note that if Σ is unbalanced, then $M(\Sigma)$ is unbalanced. Also, in general, for a balanced signed graph Σ, the Mycielskian $M(\Sigma)$ need not be balanced.

The following is a characterization for $M(\Sigma)$ to be balanced.
Proposition 2.1. The Mycielskian $M(\Sigma)$ is balanced if and only if Σ is all-positive.
Proof. If Σ is all-positive, then so is $M(\Sigma)$, and hence is balanced. Conversely, If Σ has at least one negative edge, say $v_{i} v_{j}$, then $v_{i} v_{j} v_{i}^{\prime} w v_{j}^{\prime} v_{i}$ forms a negative 5 - cycle in $M(\Sigma)$, making it unbalanced.

Consider any balanced signed graph Σ which is not all-positive. Then Σ can be switched to an all-positive signed graph, say Σ^{\prime}. By Proposition 2.1, $M(\Sigma)$ is not balanced, but $M\left(\Sigma^{\prime}\right)$ is balanced. Hence, the Mycielskians of two switching equivalent signed graphs need not to be switching equivalent.

The Mycielskian of an unbalanced signed graph is always unbalanced. However, for a balanced signed graph Σ, the Mycielskian $M(\Sigma)=\left(M(G), \sigma_{M}\right)$ can be made balanced by modifying the signature function σ_{M}. Though there are several ways to do so, to remain consistent with our original definition, we only look for changes that can be made in the signature of the edges incident to the root vertex w which makes the Mycielskian balanced, and leave the signatures of the other edges unchanged.

We need the following theorem (4].
Theorem 2.2 (Harary's bipartition theorem [4]). A signed graph Σ is balanced if and only if there is a bipartition of its vertex set, $V=V_{1} \cup V_{2}$, such that every
positive edge is induced by V_{1} or V_{2} while every negative edge has one endpoint in V_{1} and one in V_{2}. The bipartition $V=V_{1} \cup V_{2}$ is called a Harary bipartition for Σ.

Note that if $V=V_{1} \cup V_{2}$ is a Harary bipartition for Σ, then every path in Σ joining vertices in V_{1} (similarly V_{2}) is positive, and every path between V_{1} and V_{2} is negative.

Theorem 2.3 provides a method to construct a balanced Mycielskian signed graph from a balanced signed graph.

Theorem 2.3. Let Σ be a balanced signed graph and $M(\Sigma)=\left(M(G), \sigma_{M}\right)$ be its Mycielskian. If σ_{M}^{\prime} is a signature function satisfying $\sigma_{M}^{\prime}=\sigma_{M}$ on $M(G) \backslash\{w\}$ and satisfies the relation $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)=\sigma\left(v_{i} v_{j}\right)$ for every edge $v_{i} v_{j}$ in Σ, then the signed graph $M^{\prime}(\Sigma)=\left(M(G), \sigma_{M}^{\prime}\right)$ is balanced.

Proof. Since Σ is balanced, by Harary bipartition theorem, there exist a bipartition $V=V_{1} \cup V_{2}$ of V such that every negative edge in Σ has its one end vertex in V_{1} and the other in V_{2}. We construct a Harary bipartition for $M^{\prime}(\Sigma)$ as follows.

For $i=1,2$, let $V_{i}^{\prime}=\left\{v_{i}^{\prime}: v_{i} \in V_{i}\right\}$ be the subsets of V^{\prime} corresponding to the subsets V_{1} and V_{2} of V. Since $V=V_{1} \cup V_{2}$, we have $V^{\prime}=V_{1}^{\prime} \cup V_{2}^{\prime}$. Every edge with both its end vertices in V_{1} is positive and no vertices in V_{1}^{\prime} are adjacent. Also, for edges $v_{i} v_{j}^{\prime}$, where $v_{i} \in V_{1}$ and $v_{j}^{\prime} \in V_{1}^{\prime}, \sigma_{M}^{\prime}\left(v_{i} v_{j}^{\prime}\right)=\sigma_{M}\left(v_{i} v_{j}^{\prime}\right)=\sigma\left(v_{i} v_{j}\right)=+1$. Thus, every edge with both its end vertices in $V_{1} \cup V_{1}^{\prime}$ is positive. Similarly, every edge with both its end vertices in $V_{2} \cup V_{2}^{\prime}$ is positive.

Consider any edge e having one end vertex in $V_{1} \cup V_{1}^{\prime}$ and the other in $V_{2} \cup V_{2}^{\prime}$. There are three possibilities.

1. If $e=v_{i} v_{j}$, where $v_{i} \in V_{1}$ and $v_{j} \in V_{2}$, then $\sigma_{M}^{\prime}(e)=\sigma_{M}(e)=\sigma_{M}\left(v_{i} v_{j}\right)=$ $\sigma\left(v_{i} v_{j}\right)=-1$.
2. If $e=v_{i} v_{j}^{\prime}$, where $v_{i} \in V_{1}$ and $v_{j}^{\prime} \in V_{2}^{\prime}$, then $\sigma_{M}^{\prime}(e)=\sigma_{M}(e)=\sigma_{M}\left(v_{i} v_{j}^{\prime}\right)=$ $\sigma\left(v_{i} v_{j}\right)=-1$.
3. If $e=v_{i}^{\prime} v_{j}$, where $v_{i}^{\prime} \in V_{1}^{\prime}$ and $v_{j} \in V_{2}$, then $\sigma_{M}^{\prime}(e)=\sigma_{M}(e)=\sigma_{M}\left(v_{i}^{\prime} v_{j}\right)=$ $\sigma\left(v_{i} v_{j}\right)=-1$.

Hence, every edge joining $V_{1} \cup V_{1}^{\prime}$ and $V_{2} \cup V_{2}^{\prime}$ is negative.
We claim that: If $\sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)$ is positive for some $v_{k} \in V_{1}$, then $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right)$ is positive for all $v_{i} \in V_{1}$ and $\sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)$ is negative for all $v_{j} \in V_{2}$.

To prove the claim, note that if $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)=\sigma\left(v_{i} v_{j}\right)$ for every edge $v_{i} v_{j}$ in Σ, the same holds for every $v_{i} v_{j}$ path in Σ. For, consider a $v_{i} v_{j}$ path, say $v_{i} v_{i+1} v_{i+2} \cdots v_{j-1} v_{j}$, in Σ. Then,

$$
\begin{aligned}
\sigma\left(v_{i} v_{j}\right) & =\sigma\left(v_{i} v_{i+1} v_{i+2} \cdots v_{j-1} v_{j}\right) \\
& =\sigma\left(v_{i} v_{i+1}\right) \sigma\left(v_{i+1} v_{i+2}\right) \cdots \sigma\left(v_{j-1} v_{j}\right) \\
& =\left(\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{i+1}^{\prime} w\right)\right)\left(\sigma_{M}^{\prime}\left(v_{i+1}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{i+2}^{\prime} w\right)\right) \cdots\left(\sigma_{M}^{\prime}\left(v_{j-1}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)\right) \\
& \left.=\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right)\left(\sigma_{M}^{\prime}\left(v_{i+1}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{i+2}^{\prime} w\right) \cdots \sigma_{M}^{\prime}\left(v_{j-1}^{\prime} w\right)\right)^{2} \sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)\right) \\
& =\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right) .
\end{aligned}
$$

Now, consider $v_{k} \in V_{1}$ and let $v_{i} \in V_{1}$ and $v_{j} \in V_{2}$ be arbitrary. Then every $v_{i} v_{k}$ path is positive and every $v_{j} v_{k}$ path is negative. The connectedness of Σ guarantees the existence of such paths.
Now, $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)=\sigma\left(v_{i} v_{k}\right)=+1$. Thus. $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right)$ and $\sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)$ must have the same sign.

Similarly, since $\sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right) \sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)=\sigma\left(v_{j} v_{k}\right)=-1, \sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)$ and $\sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)$ are of the opposite sign.

Thus, if $\sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)$ is positive for some $v_{k} \in V_{1}$, then $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right)$ is positive for all $v_{i} \in V_{1}$ and $\sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)$ is negative for all $v_{j} \in V_{2}$. Hence, the claim is proved.

Now consider the edges $v_{i}^{\prime} w$, where, $v_{i}^{\prime} \in V_{1}^{\prime} \cup V_{2}^{\prime}$. Because of the claim, if $\sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)$ is positive for some $v_{k} \in V_{1}$, then $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right)$ is positive for all $v_{i} \in V_{1}$ and $\sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)$ is negative for all $v_{j} \in V_{2}$.
In this case, take $\left(V_{M}\right)_{1}=V_{1} \cup V_{1}^{\prime} \cup\{w\}$ and $\left(V_{M}\right)_{2}=V_{2} \cup V_{2}^{\prime}$.
Similarly, if $\sigma_{M}^{\prime}\left(v_{k}^{\prime} w\right)$ is negative for some $v_{k} \in V_{1}$, then $\sigma_{M}^{\prime}\left(v_{i}^{\prime} w\right)$ is negative for all
$v_{i} \in V_{1}$ and $\sigma_{M}^{\prime}\left(v_{j}^{\prime} w\right)$ is positive for all $v_{j} \in V_{2}$.
In this case, take $\left(V_{M}\right)_{1}=V_{1} \cup V_{1}^{\prime}$ and $\left(V_{M}\right)_{2}=V_{2} \cup V_{2}^{\prime} \cup\{w\}$.
Thus, in either cases, $V_{M}=\left(V_{M}\right)_{1} \cup\left(V_{M}\right)_{2}$ forms a Harary bipartition for $M^{\prime}(\Sigma)$, and hence $M^{\prime}(\Sigma)$ is balanced.

Remark 2.4. One may note that σ_{M}^{\prime} is a different signature on $M(G)$ that coincides with σ_{M} on $M(G) \backslash\{w\}$. The signature function σ_{M}^{\prime} for the remaining edges $v_{i}^{\prime} w$ of $M(G)$ has to be defined using the relation stated in Theorem 2.3. One such construction is discussed in Section 2.1.

It is also worth noting that if $\sigma_{M}^{\prime}=\sigma_{M}$ on $M(G)$, then Theorem 2.3 reduces to Proposition 2.1.

2.1 A balance-preserving construction

Given any balanced signed graph $\Sigma=(G, \sigma)$, there exist a switching function ζ : $V(\Sigma) \rightarrow\{-1,+1\}$ that switches Σ to all-positive. Define $M_{B}(\Sigma)$ as the signed graph with underlying graph $M(G)$ and having the signature function σ_{B} defined as

$$
\begin{aligned}
\sigma_{B}\left(v_{i} v_{j}\right) & =\sigma\left(v_{i} v_{j}\right), \\
\sigma_{B}\left(v_{i}^{\prime} v_{j}\right) & =\sigma_{B}\left(v_{i} v_{j}^{\prime}\right)=\sigma\left(v_{i} v_{j}\right), \\
\sigma_{B}\left(v_{i}^{\prime} w\right) & =\zeta\left(v_{i}\right) .
\end{aligned}
$$

Define a switching function $\zeta_{B}: V\left(M_{B}(\Sigma)\right) \rightarrow\{-1,+1\}$ by

$$
\begin{aligned}
\zeta_{B}\left(v_{i}\right) & =\zeta\left(v_{i}\right), \\
\zeta_{B}\left(v_{i}^{\prime}\right) & =\zeta\left(v_{i}\right), \\
\zeta_{B}(w) & =1 .
\end{aligned}
$$

Since ζ switches Σ to all-positive, for edges $v_{i} v_{j}$,

$$
\begin{aligned}
\sigma_{B}^{\zeta_{B}}\left(v_{i} v_{j}\right) & =\zeta_{B}\left(v_{i}\right) \sigma_{B}\left(v_{i} v_{j}\right) \zeta_{B}\left(v_{j}\right) \\
& =\zeta\left(v_{i}\right) \sigma\left(v_{i} v_{j}\right) \zeta\left(v_{j}\right) \\
& =\sigma^{\zeta}\left(v_{i} v_{j}\right) \\
& =+1
\end{aligned}
$$

Similarly, for edges $v_{i}^{\prime} v_{j}$,

$$
\begin{aligned}
\sigma_{B}^{\zeta_{B}}\left(v_{i}^{\prime} v_{j}\right) & =\zeta_{B}\left(v_{i}^{\prime}\right) \sigma_{B}\left(v_{i}^{\prime} v_{j}\right) \zeta_{B}\left(v_{j}\right) \\
& =\zeta\left(v_{i}\right) \sigma\left(v_{i} v_{j}\right) \zeta\left(v_{j}\right) \\
& =\sigma^{\zeta}\left(v_{i} v_{j}\right) \\
& =+1
\end{aligned}
$$

Also, for edges $v_{i}^{\prime} w$,

$$
\begin{aligned}
\sigma_{B}^{\zeta_{B}}\left(v_{i}^{\prime} w\right) & =\zeta_{B}\left(v_{i}^{\prime}\right) \sigma_{B}\left(v_{i}^{\prime} w\right) \zeta_{B}(w) \\
& =\zeta\left(v_{i}\right) \zeta\left(v_{i}\right)(+1) \\
& =\left(\zeta\left(v_{i}\right)\right)^{2} \\
& =+1
\end{aligned}
$$

Hence, ζ_{B} switches $M_{B}(\Sigma)$ to all-positive. Thus, $M_{B}(\Sigma)=\left(M(G), \sigma_{B}\right)$ is balanced, which we call as the balanced Mycielskian of Σ.

Definition 2.5 (Balanced Mycielskian). Let $\Sigma=(G, \sigma)$ be a balanced signed graph, where the underlying graph $G=(V, E)$, is a finite simple connected graph. The signed graph $M_{B}(\Sigma)=\left(M(G), \sigma_{B}\right)$ is called the balanced Mycielskian of Σ.

One can observe that under this construction, if two balanced signed graphs Σ_{1} and Σ_{2} are switching equivalent, then their corresponding balanced Mycielskians $M_{B}\left(\Sigma_{1}\right)$ and $M_{B}\left(\Sigma_{2}\right)$ are also switching equivalent.

Remark 2.6. Note that since $\sigma^{\zeta}\left(v_{i} v_{j}\right)=+1$, for every edge $v_{i} v_{j}$ in Σ, we have $\zeta\left(v_{i}\right) \zeta\left(v_{j}\right)=\sigma\left(v_{i} v_{j}\right)$. Thus,

$$
\begin{aligned}
\sigma_{B}\left(v_{i}^{\prime} w\right) \sigma_{B}\left(v_{i}^{\prime} w\right) & =\zeta\left(v_{i}\right) \zeta\left(v_{j}\right) \\
& =\sigma\left(v_{i} v_{j}\right)
\end{aligned}
$$

Hence, the signature function defined for the balanced Mycielskian satisfies the condition given in Theorem 2.3.

Example 2.7. Let Σ be the balanced 4-cycle shown in Figure 2a. The switching function $\zeta: V(\Sigma) \rightarrow\{-1,1\}$ defined by $\zeta\left(v_{1}\right)=\zeta\left(v_{3}\right)=\zeta\left(v_{4}\right)=-1$ and $\zeta\left(v_{2}\right)=1$ switches Σ to all-positive. The corresponding balanced Mycielskian is constructed in Figure 2b,

(a) Σ

(b) $M_{B}(\Sigma)$

Figure 2: A balanced signed graph Σ and its balanced Mycielskian $M_{B}(\Sigma)$.

3 The chromatic number of Mycielskian of signed graphs

In 1981, Zaslavsky [10] introduced the concept of coloring a signed graph. For a signed graph Σ, he defined the signed coloring of Σ in μ colors, or in $2 \mu+1$
signed colors as a mapping $c: V(\Sigma) \rightarrow\{-\mu,-\mu+1, \ldots, 0, \ldots, \mu-1, \mu\}$. Whenever a coloring never assumes the value 0 , it is referred to as a zero-free coloring. A coloring c is said to be proper if $c(u) \neq \sigma(e) c(v)$ for every edge $e=u v$ of Σ (see [10, Section 1]).

Máčajová et al. in [5] defined the chromatic number of a signed graph as follows.
Definition 3.1. 5] An n-coloring of a signed graph Σ is a proper coloring that uses colors from the set M_{n}, which is defined for each $n \geq 1$ as

$$
M_{n}= \begin{cases}\{ \pm 1, \pm 2, \ldots \pm k\} & \text { if } n=2 k \\ \{0, \pm 1, \pm 2, \ldots \pm k\} & \text { if } n=2 k+1\end{cases}
$$

The smallest n such that Σ admits an n - coloring is called the chromatic number of Σ and is denoted by $\chi(\Sigma)$.

The chromatic number of a balanced signed graph coincides with the chromatic number of its underlying unsigned graph.

Proposition 3.2. Let $M(\Sigma) \backslash\{w\}$ be the signed graph obtained by removing the root vertex w (and the corresponding edges) from $M(\Sigma)$. Then $\chi(M(\Sigma) \backslash\{w\})=\chi(\Sigma)$.

Proof. Let $\chi(\Sigma)=n$ and let $c: V(\Sigma) \rightarrow M_{n}$ be an $n-$ coloring for Σ. Define c^{\prime} : $V\left((M(\Sigma) \backslash\{w\}) \rightarrow M_{n}\right.$ by $c^{\prime}\left(v_{i}^{\prime}\right)=c^{\prime}\left(v_{i}\right)=c\left(v_{i}\right)$ for all i. Since $c\left(v_{i}\right) \neq \sigma\left(v_{i} v_{j}\right) c\left(v_{j}\right)$, it follows that $c^{\prime}\left(v_{i}\right) \neq \sigma_{M}\left(v_{i} v_{j}\right) c^{\prime}\left(v_{j}\right)$ and $c^{\prime}\left(v_{i}^{\prime}\right) \neq \sigma_{M}\left(v_{i}^{\prime} v_{j}\right) c^{\prime}\left(v_{j}\right)$. Hence, c^{\prime} is an n - coloring for $M(\Sigma) \backslash\{w\}$.

For any given signed graph Σ, there exist a signed graph $-\Sigma$ obtained by reversing the signs of all edges of Σ. We say Σ is antibalanced when $-\Sigma$ is balanced. Note that Σ is antibalanced if and only if it can be switched to all-negative.

We restate the Lemma 2.4 from [11] as follows.
Lemma 3.3 ([11]). A signed graph Σ is antibalanced if and only if $\chi(\Sigma) \leq 2$.

Theorem 3.4. Let Σ be a signed graph and $M(\Sigma)$ be its Mycielskian. Then, $\chi(M(\Sigma)) \leq 2$ if and only if Σ is all-negative.

Proof. If Σ is an all-negative signed graph with vertex set $\left\{v_{1}, v_{2}, \ldots v_{p}\right\}$, then the only positive edges of $M(\Sigma)$ are $v_{i}^{\prime} w, 1 \leq i \leq p$. Now, the switching function $\zeta_{M}^{\prime}: V(M(\Sigma)) \rightarrow\{-1,1\}$ defined by $\zeta_{M}^{\prime}\left(v_{i}\right)=\zeta_{M}^{\prime}\left(v_{i}^{\prime}\right)=1$ for all $1 \leq i \leq p$ and $\zeta_{M}^{\prime}(w)=-1$ switches $M(\Sigma)$ to all-negative. Therefore, $M(\Sigma)$ is antibalanced and hence $\chi(M(\Sigma)) \leq 2$, by Lemma 3.3. Conversely, if Σ is not all-negative, it contains at least one positive edge, say $v_{i} v_{j}$. Then $v_{i} v_{j} v_{i}^{\prime} w v_{j}^{\prime} v_{i}$ forms a negative 5 - cycle in $-M(\Sigma)$, making it unbalanced. Thus, $M(\Sigma)$ is not antibalanced and therefore, by Lemma 3.3, $\chi(M(\Sigma))>2$.

We have the following theorem in [1].
Theorem 3.5 ([1]). Let $\chi(G)$ and $\chi(M(G))$ be the chromatic numbers of a graph G and its Mycielskian $M(G)$ respectively. Then $\chi(M(G))=\chi(G)+1$.

Theorem 3.6. Let $M(\Sigma)$ be the Mycielskian of a signed graph (Σ). Then, $\chi(\Sigma) \leq$ $\chi(M(\Sigma)) \leq \chi(\Sigma)+1$. Furthermore, $\chi(M(\Sigma))=\chi(\Sigma)$ if Σ is all-negative and $\chi(M(\Sigma))=\chi(\Sigma)+1$ if Σ is all-positive.

Proof. Let $\chi(\Sigma)=n$ and let $c: V \rightarrow M_{n}$ be an n - coloring for Σ. We extend c to an $(n+1)$ - coloring of $M(\Sigma)$. If $n=2 k$, we extend c to an $(n+1)$ - coloring of $M(\Sigma)$ by setting $c\left(v_{i}^{\prime}\right)=c\left(v_{i}\right)$ for all i and $c(w)=0$. If $n=2 k+1$, we extend c to an $(n+1)$ - coloring of $M(\Sigma)$ as follows. Let v_{t} be any vertex in V with $c\left(v_{t}\right)=0$. Then for all $v_{i} \neq v_{t}$, set $c\left(v_{i}^{\prime}\right)=c\left(v_{i}\right), c\left(v_{t}^{\prime}\right)=c\left(v_{t}\right)=k+1$ and $c(w)=-(k+1)$. Hence, $\chi(M(\Sigma)) \leq \chi(\Sigma)+1$.

Now, if Σ is all-negative, it can be colored using just one color, namely -1 . Let $c: V(\Sigma) \rightarrow\{ \pm 1\}$ be the proper 2 - coloring for Σ. This can be extended to a proper 2 - coloring for $M(\Sigma)$ by setting $c\left(v_{i}^{\prime}\right)=c\left(v_{i}\right)=-1$ for all i and $c(w)=+1$. If Σ is all-positive, then $M(\Sigma)$ is all-positive. Thus, $\chi(M(\Sigma))=\chi(|M(\Sigma)|)=\chi(|\Sigma|)+1=$ $\chi(\Sigma)+1$.

Remark 3.7. Let Σ be a signed graph with $\chi(\Sigma)=n$ and let $c: V(\Sigma) \rightarrow M_{n}$ be an n-coloring of Σ. The deficiency of the coloring c is the number of unused colors from M_{n} (see [6]). The existence of signed graphs satisfying $\chi(M(\Sigma))=\chi(\Sigma)$ is a consequence of the deficiency of the coloring of Σ. Specifically, if the coloring of Σ has deficiency at least 1 , then an unused color can be assigned to w, making the chromatic number of $M(\Sigma)$ and Σ equal. As an example, consider Σ as the balanced 3 - cycle shown in Figure 3a, Note that $\chi(\Sigma)=3$ and the color -1 in the color set $\{0, \pm 1\}$ is unused.

Figure 3: A signed graph Σ satisfying $\chi(M(\Sigma))=\chi(\Sigma)$

We now establish some results on the balanced Mycielskian of signed graphs.
Proposition 3.8. Let $\Sigma=(G, \sigma)$ be a balanced signed graph and $M_{B}(\Sigma)=$ $\left(M(G), \sigma_{B}\right)$ be its balanced Mycielskian. Then $\chi\left(M_{B}(\Sigma)\right)=\chi(\Sigma)+1$.

Proof. Since Σ and $M_{B}(\Sigma)$ are both balanced, $\chi\left(M_{B}(\Sigma)\right)=\chi(M(G))$ and $\chi(\Sigma)=$ $\chi(G)$. The result then follows from Theorem 3.5.

The following theorem was put forward by Mycielski in [7]
Theorem 3.9 ([7]). For any positive integer n, there exists a triangle-free graph with chromatic number n.

The next theorem is an analogous result for balanced signed graphs.
Theorem 3.10. For any positive integer n, there exists a balanced triangle-free signed graph that is not all-positive, and having chromatic number n.

Proof. The proof is based on mathematical induction. For $n=1$ and $n=2$, the signed graphs $\Sigma_{1}=K_{1}$ and $\Sigma_{2}=K_{2}^{-}$, where K_{2}^{-}is the all-negative signed complete graph on two vertices have the required property. Suppose that for $k>2$, such a signed graph Σ_{k} satisfying the induction hypothesis exist. Then $M_{B}\left(\Sigma_{k}\right)$ is a balanced signed graph that is not all-positive. Also, by Proposition 3.8, we have, $\chi\left(\Sigma_{k+1}\right)=\chi\left(\Sigma_{k}\right)+1=k+1$.

The first four signed graphs mentioned in Theorem 3.10 are shown in Figure 4.

Figure 4: Iterated balanced Mycielskians.

4 Matrices of the Mycielskian of signed graphs

Given a signed graph $\Sigma=(V, E, \sigma)$ where $V=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the vertex set, $E=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$ is the edge set and $\sigma: E \rightarrow\{-1,1\}$ is the sign function. Let $M(\Sigma)$ be the Mycielskian of Σ. In this section, we introduce the adjacency matrix, the incidence matrix and the Laplacian matrix of the Mycielskian $M(\Sigma)$ of Σ.

4.1 The adjacency matrix

The adjacency matrix of Σ, denoted by $\mathbf{A}=\mathbf{A}(\Sigma)$, is a $p \times p$ matrix $\left(a_{i j}\right)$ in which $a_{i j}=\sigma\left(v_{i} v_{j}\right)$ if v_{i} and v_{j} are adjacent and 0 otherwise (see [9, Section 3]).

Since v_{i} is adjacent to v_{j}^{\prime} and v_{i}^{\prime} is adjacent to v_{j} in $M(\Sigma)$ whenever v_{i} and v_{j} are adjacent in Σ, the adjacency matrix $\mathbf{A}_{\mathbf{M}}$ of the Mycielskian $M(\Sigma)$ takes the block form

$$
\mathbf{A}_{\mathbf{M}}=\mathbf{A}(M(\Sigma))=\left[\begin{array}{ccc}
\mathbf{A}(\Sigma) & \mathbf{A}(\Sigma) & \mathbf{0}_{p \times 1} \\
\mathbf{A}(\Sigma) & \mathbf{0}_{p \times p} & \mathbf{j}_{p \times 1} \\
\mathbf{0}_{1 \times p}^{t} & \mathbf{j}_{1 \times p}^{t} & 0
\end{array}\right]
$$

where $\mathbf{0}$ is a matrix of zeros and \mathbf{j} is a matrix of ones of the specified order.
$\mathbf{A}_{\mathbf{M}}$ is a symmetric matrix of order $2 p+1$.
Given a graph G with adjacency matrix $A(G)$, the connection between the ranks of $A(G)$ and $A(M(G))$, the connection between the number of positive, negative and zero eigenvalues $A(G)$ and $A(M(G))$ were studied by Fisher et al. in [2]. We initiate a similar study in the case of signed graphs.

Let $\Sigma=(V, E, \sigma)$ be a given signed graph and let $t \notin V$. We denote the signed graph obtained by joining all the vertices of Σ to t with negative edges by $\Sigma_{t^{-}}$. That is, $\Sigma_{t^{-}}$is the negative join $\Sigma \vee_{-} K_{1}$. The adjacency matrix of Σ_{t} takes the block form

$$
\mathbf{A}_{t^{-}}=\mathbf{A}\left(\Sigma_{t^{-}}\right)=\left[\begin{array}{cc}
\mathbf{A} & -\mathbf{j} \\
-\mathbf{j}^{t} & 0
\end{array}\right]
$$

We now have the following theorem.

Theorem 4.1. Let Σ be a signed graph and $\boldsymbol{A}(\Sigma)$ be the adjacency matrix of Σ. Let $r(\boldsymbol{A})$ denote the rank and $n_{+}(\boldsymbol{A}), n_{-}(\boldsymbol{A})$ and $n_{0}(\boldsymbol{A})$ respectively denote the number of positive, negative and zero eigenvalues of a symmetric matrix \boldsymbol{A}, then we have the following.
(i) $r\left(\boldsymbol{A}_{\boldsymbol{M}}\right)=r(\boldsymbol{A})+r\left(\boldsymbol{A}_{t^{-}}\right)$
(ii) $n_{+}\left(\boldsymbol{A}_{\boldsymbol{M}}\right)=n_{+}(\boldsymbol{A})+n_{+}\left(\boldsymbol{A}_{t^{-}}\right)$
(iii) $n_{-}\left(\boldsymbol{A}_{M}\right)=n_{-}(\boldsymbol{A})+n_{-}\left(\boldsymbol{A}_{t^{-}}\right)$
(iv) $n_{0}\left(\boldsymbol{A}_{M}\right)=n_{0}(\boldsymbol{A})+n_{0}\left(\boldsymbol{A}_{t^{-}}\right)$

Proof. The adjacency matrix $\mathbf{A}_{\mathbf{M}}$ can be factorized as

$$
\mathbf{A}_{\mathbf{M}}=\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{A} & \mathbf{0} \\
\mathbf{A} & \mathbf{0} & \mathbf{j} \\
\mathbf{0}^{t} & \mathbf{j}^{t} & 0
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{I} & \mathbf{0} & \mathbf{0} \\
\mathbf{I} & -\mathbf{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}^{t} & 1
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{A} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & -\mathbf{A} & -\mathbf{j} \\
\mathbf{0}^{t} & -\mathbf{j}^{t} & 0
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{I} & \mathbf{I} & \mathbf{0} \\
\mathbf{0} & -\mathbf{I} & \mathbf{0} \\
\mathbf{0}^{t} & \mathbf{0}^{t} & 1
\end{array}\right]=\mathbf{P} \mathbf{B} \mathbf{P}^{t}
$$

where, $\mathbf{P}=\left[\begin{array}{ccc}\mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{I} & \mathbf{- I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}^{t} & 1\end{array}\right]$ is an invertible matrix and $\mathbf{B}=\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{t^{-}}\end{array}\right]$.
Thus, the matrices $\mathbf{A}_{\mathbf{M}}$ and \mathbf{B} are congruent, and hence by Sylvester's law of inertia, they have the same rank and the same number of positive, negative and zero eigenvalues.

4.2 The incidence matrix

The incidence matrix of Σ, denoted by $\mathbf{H}=\mathbf{H}(\Sigma)$, is the $p \times q$ matrix

$$
\mathbf{H}(\Sigma)=\left[\begin{array}{llll}
\mathbf{x}\left(e_{1}\right) & \mathbf{x}\left(e_{2}\right) & \cdots & \mathbf{x}\left(e_{q}\right)
\end{array}\right]
$$

where, for each edge $e_{k}=v_{i} v_{j}, 1 \leq k \leq q$, the vector $\mathbf{x}\left(e_{k}\right)=\left(\begin{array}{c}x_{1 k} \\ \vdots \\ x_{p k}\end{array}\right) \in \mathbb{R}^{p \times 1}$ has its $i^{\text {th }}$ and $j^{\text {th }}$ entries as $x_{i k}= \pm 1$ and $x_{j k}=\mp \sigma\left(e_{k}\right)$ respectively and all other entries
as 0 (see [9, Section 3]).
Let us denote the vertex set V_{M} and the edge set E_{M} of $M(\Sigma)$ as

$$
\begin{gathered}
V_{M}=\left\{v_{1}, v_{2}, \ldots, v_{p}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{p}^{\prime}, w\right\} \\
E_{M}=\left\{e_{1}, e_{2}, \ldots, e_{q}, e_{1}^{\prime}, e_{1}^{\prime \prime}, e_{2}^{\prime}, e_{2}^{\prime \prime}, \ldots, e_{q}^{\prime}, e_{q}^{\prime \prime}, f_{1}, f_{2}, \cdots, f_{p}\right\}
\end{gathered}
$$

respectively, where, for each $1 \leq k \leq q$, the edges e_{k}^{\prime} and $e_{k}^{\prime \prime}$ of $M(\Sigma)$ are defined by $e_{k}^{\prime}=v_{i} v_{j}^{\prime}$ and $e_{k}^{\prime \prime}=v_{i}^{\prime} v_{j}$ whenever $e_{k}=v_{i} v_{j}$ is an edge of Σ with $1 \leq i<j \leq q$ and f_{i} is defined by $f_{i}=v_{i}^{\prime} w$ for $1 \leq i \leq p$. Then, the incidence matrix $\mathbf{H}_{\mathbf{M}}=\mathbf{H}(M(\Sigma))$ takes the block form

Here, $\mathbf{H}(\Sigma)$ is the incidence matrix of Σ, \mathbf{I} is the identity matrix, $\mathbf{0}$ is the zero matrix and $\mathbf{- j}$ is the matrix with all entries -1 of the specified order. $\mathbf{x}_{\mathbf{i}}$'s and $\mathbf{y}_{\mathbf{i}}$'s are matrices of order $p \times 1$ and satisfies the condition $\mathbf{x}_{\mathbf{i}}+\mathbf{y}_{\mathbf{i}}=\mathbf{x}\left(e_{i}\right)$ for all $1 \leq i \leq q$.

4.3 The Laplacian matrix

The Laplacian matrix of Σ, denoted by $\mathbf{L}=\mathbf{L}(\Sigma)$ is the $p \times p$ matrix

$$
\mathbf{L}(\Sigma)=\mathbf{D}(|\Sigma|)-\mathbf{A}(\Sigma)
$$

where $\mathbf{A}(\Sigma)$ is the adjacency matrix of Σ and $\mathbf{D}(|\Sigma|)$ is the degree matrix of the underlying graph $|\Sigma|$ (see [9, Section 3]).

Accordingly, we define the Laplacian matrix for the Mycielskian of Σ as

$$
\mathbf{L}_{\mathbf{M}}=\mathbf{L}(M(\Sigma))=\mathbf{D}(|M(\Sigma)|)-\mathbf{A}(M(\Sigma))=\mathbf{D}_{\mathbf{M}}-\mathbf{A}_{\mathbf{M}}
$$

where, $\mathbf{A}_{\mathbf{M}}$ is the adjacency matrix and $\mathbf{D}_{\mathbf{M}}$ is the diagonal degree matrix of the Mycielskian of Σ. Now, $\mathbf{D}_{\mathbf{M}}$ takes the block form

$$
\mathbf{D}_{\mathbf{M}}=\left[\begin{array}{ccc}
2 \mathbf{D}(|\Sigma|)_{p \times p} & \mathbf{0}_{p \times p} & \mathbf{0}_{p \times 1} \\
\mathbf{0}_{p \times p} & (\mathbf{D}(|\Sigma|)+\mathbf{I})_{p \times p} & \mathbf{0}_{p \times 1} \\
\mathbf{0}_{1 \times p}^{t} & \mathbf{0}_{1 \times p}^{t} & p
\end{array}\right]
$$

where $p=|V|, \mathbf{D}(\Sigma)$ is the diagonal degree matrix of Σ, \mathbf{I} is the identity matrix and $\mathbf{0}$ is the zero matrix of the specified order.

Consequently, the Laplacian matrix $\mathbf{L}_{\mathbf{M}}=\mathbf{L}(M(\Sigma))$ takes the block form

$$
\mathbf{L}_{\mathbf{M}}=\left[\begin{array}{ccc}
(2 \mathbf{D}(|\Sigma|)-\mathbf{A}(\Sigma))_{p \times p} & -\mathbf{A}(\Sigma)_{p \times p} & \mathbf{0}_{p \times 1} \\
-\mathbf{A}(\Sigma)_{p \times p} & (\mathbf{D}(|\Sigma|)+\mathbf{I})_{p \times p} & -\mathbf{j}_{p \times 1} \\
\mathbf{0}_{1 \times p}^{t} & -\mathbf{j}_{1 \times p}^{t} & p
\end{array}\right]
$$

5 Conclusion and Scope

In this paper, we have defined the Mycielskian of a signed graph and discussed some of its properties. We have seen that the Mycielskian of a balanced signed graph need not be balanced and hence we provide an alternate construction in which the Mycielskian of Σ is balanced whenever Σ is balanced, This paper also discuss the chromatic number of the Mycielskian of a signed graph and established that the chromatic number of a signed graph and its Mycielskian are related. We also established the block forms of various matrices of the Mycielskian of a signed graph such as the adjacency matrix, the incidence matrix and the Laplacian matrix. Developing another balance preserving, switching preserving constructions for Mycielskian of signed graphs, computing the spectrum of the Mycielskian of signed graphs for various matrices are some interesting areas for further investigation.

Acknowledgments

The first author would like to acknowledge his gratitude to the University Grants Commission (UGC), India, for providing financial support in the form of Junior Research fellowship (NTA Ref. No.: 191620039346). The authors express their sincere gratitude to Professor Thomas Zaslavsky, Binghamton University (SUNY), Binghamton, for valuable discussions and guidance throughout the process.

References

[1] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer, 2012. doi $10.1007 / 978-1-4614-4529-6$.
[2] D. C. Fisher, P. A. McKenna, E. D. Boyer, Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski's graphs, Discrete Appl. Math. 84 (1998) 93-105. doi 10.1016/S0166-218X(97)00126-1.
[3] F. Harary, Graph Theory, Addison Wesley, Reading, Mass., 1969.
[4] F. Harary, On the notion of balance of a signed graph, Michigan Math. J. 2 (1953) 143-146. doi $10.1307 / \mathrm{mmj} / 1028989917$.
[5] E. Máčajová, A. Raspaud, M. Škoviera, The chromatic number of a signed graph., Electron. J. Combin. 23(1) (2016) (article P1.14). doi:10.37236/4938
[6] A. Mattern, Deficiency in Signed Graphs, Submitted, arXiv:2005.14336 doi $10.48550 /$ arXiv.2005.14336.
[7] J. Mycielski, Sur le colouriage des graphes., Colloq. Math. 3 (1955) 161-162.
[8] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1982) 47-74. Erratum, Discrete Appl. Math. 5 (1983) 248. doi:10.1016/0166-218X(82)90033-6.
[9] T. Zaslavsky, Signed graphs and geometry, J. Combin. Inform. System Sci. 37(2-4) (2012) 95-143 doi:10.48550/arXiv.1303.2770.
[10] T. Zaslavsky, Signed graph coloring, Discrete Mathematics 39(2) (1982) 215228. doi 10.1016/0012-365X(82)90144-3.
[11] T. Zaslavsky, Chromatic invariants of signed graphs, Discrete Mathematics 42(2-3) (1982) 287-312. doi $10.1016 / 0012-365 \mathrm{X}(82) 90225-4$.
[12] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas. Electronic J. Combinatorics, Dynamic Surveys \#8 (1998). doi $10.37236 / 29$.

[^0]: ${ }^{1}$ Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerala, India. Email: albinmathewamp@gmail.com,
 ${ }^{2}$ Department of Mathematics, Central University of Kerala, Kasaragod - 671316, Kerala, India. Email: srgerminaka@gmail.com

