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TILINGS OF DAMAGED HEXAGONS
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1. Introduction

In a recent paper [3], Byun presented nice formulas for the enumer-
ation of lozenge tilings of certain hexagonal regions with “intrusions”.

This paper attempts to generalise some of Byun’s investigations. It
is organised as follows:

• In section 2, we present the background needed for the con-
siderations in this paper. This material is well–known to the
expert, and the non–expert can easily conceive it from illus-
trations: Hence, in most cases we shall avoid lengthy formal
definitions and present illustrative pictures instead.

• In section 3, we explain the bijection between lozenge tilings
and nonintersecting lattice paths and recall

– the Lindström–Gessel–Viennot method for counting non-
intersecting lattice paths
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2 MARKUS FULMEK

– and Dodgson’s condensation formula.
• In section 4, we apply these considerations to a generalisation of
Byun’s investigations, present solutions to (simple) special cases
and formulate a conjecture for the general case. Moreover, by
straightforward matrix manipulation we rewrite a simple special
case as a summation formula.

Parts of the considerations involve lengthy manipulations of ratio-
nal functions and polynomials: The software Mathematica and the
Python–library sympy was used to help with such manipulations. More-
over, Zeilberger’s algorithm [16] (which not only gives the result, but
also an “automated proof”) was employed; in the implementation of
Paule, Schorn and Riese [14] .

2. Damaged hexagons and Byun’s formulas

2.1. Hexagons with intrusions in the triangular lattice. In the
triangular lattice, we consider (a, b, c)–hexagons with side lengths a, b, c,
a, b, c (anti–clockwise, with a, b, c ∈ N), see the upper left pictures in
Figures 1 and 2.

We assume that the triangular lattice is drawn in a way that the
hexagon’s baseline of length a appears horizontal, and that an even
number of vertically stacked triangles, adjacent to the baseline, is re-
moved from the hexagon. Following Byun’s wording, we call such stack
of 2d removed triangles an intrusion of length d. Intrusions come in
two flavours, namely

• starting with a triangle which has only a single vertex in com-
mon with the hexagon’s baseline, see the upper left picture in
Figure 1: We shall call this type an even intrusion;

• or starting with a triangle having an edge in common with the
hexagon’s baseline, see the upper left picture in Figure 2: We
shall call this type an odd intrusion.

We count the horizontal position p of intrusions from right to left, start-
ing with 0 for even intrusions and starting with 1 for odd intrusions, see
the upper left pictures in Figures 1 and 2. We shall call such hexagon
with an intrusion a damaged hexagon.

2.2. Lozenge tilings and their enumeration. A lozenge is a geo-
metric shape in the triangular lattice which covers two triangles sharing
a common edge.

A lozenge tiling of some (damaged) hexagon is a set of pairwise dis-
joint lozenges (in the sense that no two lozenges have a triangle in
common) which together cover all triangles of the damaged hexagon,
see the upper right pictures in Figures 1 and 2.

We denote by e(a,b,c,d,p) or o(a,b,c,d,p), respectively, the number of lozenge
tilings of the damaged (a, b, c)–hexagon with an even or odd, respec-
tively, intrusion of length d in position p.
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a = 4

b = 5

c = 3

a = 4

b = 5

c = 3

4 3 2 1 0

The upper left picture shows the hexagon with side lengths (a, b, c) =
(4, 5, 3) in the triangular lattice with an even intrusion of length d = 2
(marked as gray triangles) at position p = 2 (possible positions of intru-
sions are indicated by ticks at the base line of the hexagon). The upper
right picture shows a lozenge tiling of this hexagonal region, and the lower
left picture shows the same tiling together with the corresponding family
of nonintersecting lattice paths (starting points of the paths are coloured
red, and ending points are coloured green; points which are starting and

ending points — these correspond to the “intrusion” — are coloured red
and green): It is a well–known fact that this correspondence is a bijection.
The lower right picture shows the family of nonintersecting lattice paths in
the integer lattice Z×Z: These are obtained by tilting the paths shown in
the picture to the left and shifting them in the plane such that the lowest
starting point coincides with the origin (0, 0). Altogether, this gives a = 4
lateral starting points plus d = 2 intrusive starting points



(0, 0), (−1, 1), (−2, 2), (−3, 3)
︸ ︷︷ ︸

lateral

, (−1, 2), (0, 3)
︸ ︷︷ ︸

intrusive



 ,

and a = 4 lateral ending points plus d = 2 intrusive ending points


(5, 3), (4, 4), (3, 5), (2, 6)
︸ ︷︷ ︸

lateral

, (−1, 2), (0, 3)
︸ ︷︷ ︸

intrusive



 .

Figure 1. The hexagon with side lengths (a, b, c) =
(4, 5, 3) and even intrusion of length d = 2 at position
p = 2.
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a = 4

b = 5

c = 3

a = 4

b = 5

c = 3

4 3 2 1

The upper left picture shows the hexagon with side lengths (a, b, c) =
(4, 5, 3) in the triangular lattice with an odd intrusion of length d = 3
(marked as gray triangles) at position 2 (possible positions of intrusions
are indicated by ticks at the base line of the hexagon). The upper right
picture shows a lozenge tiling of this hexagonal region, and the lower left
picture shows the same tiling together with the corresponding family of
nonintersecting lattice paths (starting points of the paths are coloured red,
and ending points are coloured green; points which are starting and end-
ing points — these correspond to the “intrusion” — are coloured red and

green): It is a well–known fact that this correspondence is a bijection.
The lower right picture shows the family of nonintersecting lattice paths in
the integer lattice Z×Z: These are obtained by tilting the paths shown in
the picture to the left and shifting them in the plane such that the lowest
starting point coincides with the origin (0, 0). Altogether, this gives a = 4
lateral starting points plus d = 3 intrusive starting points



(0, 0), (−1, 1), (−2, 2), (−3, 3)
︸ ︷︷ ︸

lateral

, (0, 2), (1, 3), (2, 4)
︸ ︷︷ ︸

intrusive



 ,

and a = 4 lateral ending points plus d = 3 intrusive ending points


(5, 3), (4, 4), (3, 5), (2, 6)
︸ ︷︷ ︸

lateral

, (−1, 1), (0, 2), (1, 3)
︸ ︷︷ ︸

intrusive



 .

Figure 2. The hexagon with side lengths (a, b, c) =
(4, 5, 3) and odd intrusion of length d = 3 at position
p = 2.
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The enumeration of lozenge tilings of hexagonal regions in the tri-
angular lattice often leads to interesting formulas, the most prominent
of which is MacMahon’s formula [12, § 429] giving the number of all
lozenge tilings of the (a, b, c)–hexagon (without damage, i.e., with an
intrusion of length 0). Denoting this number by mm(a,b,c), we have

mm(a,b,c) = e(a,b,c,0,p) = o(a,b,c,0,p)

= det

[(
b+ c

b− i+ j

)]a

i,j=1

=
a∏

i=1

b∏

j=1

c∏

k=1

i+ j + k − 1

i+ j + k − 2

=

a−1∏

i=0

i! (b+ c+ i)!

(b+ i)! (c+ i)!
. (1)

(The expression of this number as a determinant will become clear
in section 3, and section 4.2.1 contains a short proof of MacMahon’s
formula.)

From now on, letters a, b, c ∈ N will always denote the side lengths
of some hexagon, and letters d ∈ N and p ∈ Z will always denote the
length and position of an intrusion.

2.3. Byun’s formulas. Byun found and proved nice formulas for the
special cases

• a = 2p for even intrusions [3, equation (2.1)],
• and a = 2p+ 1 for odd intrusions [3, equation (2.2)].

In the notation just introduced, [3, equation (2.1)] is equivalent to

e(2p,b,c,d,p) = mm(2p,b,c) ·
d∏

k=1

4p
(1 + b− k)p (1 + c− k)p

(
−1

2
+ k
)

p

(2 + b+ c− 2k)2p (k)p
, (2)

and [3, equation(2.2)] reads

o(2p+1,b,c,d,p) = mm(2p+1,b,c) ·
1

4d
·

d−1
∏

k=0

(a+ k + 1)c−2k

(

k + 3
2

)

c−2k−2
(b− k)⌊ c−b

2

⌋

(

c− k − 1
2

)

−

⌊

c−b

2

⌋

(k + 1)c−2k−1

(

a+ k + 3
2

)

c−2k−1
(a+ b− k + 1)⌊ c−b

2

⌋

(

a+ c− k + 1
2

)

−

⌊

c−b

2

⌋

. (3)

Byun’s proofs of these formula involved results by Ciucu ([5, Theo-
rem 3.1] and [4, Matching Factorisation Theorem]) and certain elegant
recursions for the enumeration of perfect matchings (basically applica-
tions of Pfaffian identities to the Kasteleyn–Percus method [9, 15], for
which Kuo [10] coined the name “graphical condensation”).
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3. Enumeration of lozenge tilings by determinants

3.1. Bijection between lozenge tilings and nonintersecting lat-

tice paths. Lozenge tilings are in bijection with nonintersecting lat-
tice paths. Instead of giving a formal description we point to the lower
left picture in Figure 1: First, observe that a lozenge tilings of an
(a, b, c)–hexagon with an even intrusion might be viewed as a “stack of
cubes” fitting in a rectangular box with side lengths a, b, c, and that
such “stack of cubes” is uniquely described by a family of lattice paths,
where the intrusion of length d corresponds to d lattice paths of length
0. These lattice paths and their respective starting and ending points
are indicated in the lower left picture of Figure 1 by blue lines and by
red and green points, and it is easy to see that by tilting the picture,
the paths appear in the integer lattice Z× Z, with unit steps directed
upwards and to the right (see the lower right picture in Figure 1).

Note that there are starting and ending points

• on the horizontal sides of the hexagon: We shall call these lateral
points,

• and inside the intrusion’s removed triangles: We shall call these
intrusive points.

The situation is a little bit more complicated in the case of odd
intrusion, since lozenge tilings do not correspond to a simple “stack
of cubes” now: But it is easy to see that there is basically the same
bijection with nonintersecting lattice paths, see Figure 2.

3.2. Counting nonintersecting lattice paths with determinants.

Of course, we may shift the nonintersecting lattice paths in the integer
lattice Z×Z such that the lowest lateral starting point has coordinates
(0, 0): Then the coordinates of the lateral starting and ending points,
counted from right to left, are the following:

• For the i–th lateral starting: (1− i, i− 1),
• and for the j–th lateral ending point: (b+ 1− j, c + j − 1).

The coordinates of the intrusive starting and ending points are the
following:

• for even intrusions, the i–th intrusive starting point coincides
with the i–th intrusive ending point: (−p + i,+i− 1),

• for p intrusions,
– the i–th intrusive starting point: (−p + i, p+ i),
– and the j–th intrusive ending point: (−p + j − 1, p+ j − 1).

(See again Figures 1 and 2.)
The well–known Lindström–Gessel–Viennot method [11, 7] counts

the number of nonintersecting lattice paths in the integer lattice Z ×
Z as a determinant, whose (i, j)–entry equals the number of lattice
paths from the i–th starting point to the j–th starting point (under
the assumption that all permutations π for which there actually are
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nonintersecting lattice paths from starting point i to ending point π (i)
have the same positive sign).

We shall consider the following order of starting and ending points of
the nonintersecting lattice paths corresponding to lozenge tilings with
even or odd intrusions:

• First, there come the lateral points, numbered from lower right
to upper left,

• then, there come the intrusive points, numbered from lower left
to upper right.

Note that there is precisely one permutation π admitting nonintersec-
ting lattice paths running from starting point i to ending point π (i):
For even intrusions, this is simply the identity permutation, while for
odd intrusions the corresponding permutation might have the negative
sign.

Clearly, the number of all lattice paths in the integer lattice Z × Z

starting in (x, y) and ending in (u, v), with unit steps to the right and
upwards, is either zero or a binomial coefficient. By slight abuse of the
standard notation, throughout this paper we adopt the convention

(
n

k

)

≡ 0 if k < 0 or k > n

(i.e.,
(
−1
3

)
= 0, not −1) and set n = (u− x) + (v − y) and k = (u− x):

Then this number of lattice paths is simply
(
n

k

)
=
(
u−x+v−y

u−x

)
.

Example 1. For the damaged hexagon with parameters (a, b, c, d, p) =
(4, 5, 3, 2, 4) depicted in Figure 1, the determinant counting the nonin-
tersecting lattice paths (and thus the lozenge tilings) is

det
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= det

















56 70 56 28 0 1
28 56 70 56 1 3
8 28 56 70 1 3
1 8 28 56 0 1

7 21 35 35 1 2
1 5 10 10 0 1

















= 12600.

Example 2. For the damaged hexagon with parameters (a, b, c, d, p) =
(4, 5, 3, 3, 3) depicted in Figure 2, the determinant counting the nonin-
tersecting lattice paths (and thus the lozenge tilings) is

det
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= det





















56 70 56 28 0 1 4
28 56 70 56 1 2 6
8 28 56 70 0 1 4
1 8 28 56 0 0 1

6 15 20 15 0 1 2
1 4 6 4 0 0 1
0 1 2 1 0 0 0





















= −4032.
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Note that this determinant is negative: This does, of course, not
mean that the number of lozenge tilings is negative, but that the per-
mutation admitting nonintersecting lattice paths has the negative sign.

3.3. Symmetries and Dodgson’s condensation formula. Note
that our definition of starting and ending points makes perfect sense
also for intrusions in positions p < 0 or p > a (but for odd intrusions,
positions outside the range [1, a] would give an endpoint which cannot
be reached by any of the starting points, hence the number of noninter-
secting lattice paths and the corresponding determinant is zero). From
now on, we shall understand e(a,b,c,d,p) and o(a,b,c,d,p) as notations for the
determinants described above (i.e., p < 0 or p > a is now possible,
and o(a,b,c,d,p) might give the negative of the number of corresponding
lozenge tilings).

By reflecting the damaged hexagon at a vertical axis, we observe the
following symmetries:

e(a,b,c,d,p) = e(a,c,b,d,a−p) and o(a,b,c,d,p) = o(a,c,b,d,a−p+1). (4)

Now recall Dodgson’s condensation formula [6] (also known as Des-
nanot—Jacobi’s Adjoint Matrix Theorem: According to [2], Lagrange
discovered this Theorem for dimension n = 3, Desnanot proved it for
dimensions n ≤ 6, and Jacobi published the general theorem [8], see
also [13, vol. I, pp. 142]): Let M be some n × n matrix. Consider
row indices 1 ≤ i1 6= i2 ≤ n and column indices 1 ≤ j1 6= j2 ≤ n,
and denote by M(r)|(c) the matrix obtained from M by deleting rows
and columns with indices in lists (r) and (c), respectively. Then there
holds:

detM · detM(i1,i2)|(j1,j2) =

detM(i1)|(j1) · detM(i2)|(j2) − detM(i1)|(j2) · detM(i2)|(j1). (5)

Applying Dodgson’s condensation formula (5) to the determinant
e(a,b,c,d,p) for row and column indices i1 = j1 = 1 and i2 = j2 = a gives
the following functional equation

e(a,b,c,d,p) · e(a−2,b,c,d,p−1) = e(a−1,b,c,d,p−1) · e(a−1,b,c,d,p)

− e(a−1,b+1,c−1,d,p−1) · e(a−1,b−1,c+1,d,p) (6)

for all d ∈ N, p ∈ Z and a ≥ 2, and the analogous identity for o(a,b,c,d,p)

o(a,b,c,d,p) · o(a−2,b,c,d,p−1) = o(a−1,b,c,d,p−1) · o(a−1,b,c,d,p)

− o(a−1,b+1,c−1,d,p−1) · o(a−1,b−1,c+1,d,p). (7)

By convention, empty determinants or products are equal to 1, which
is perfectly in line with the fact that a (damaged) hexagon with side
a = 0 has, in fact, precisely one lozenge tiling:

e(0,b,c,d,p) ≡ 1.
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−1 −1 −2

All pictures show hexagons with side lengths (a, b, c) = (2, 4, 2) and intru-

sions, not all of which actually cause a damage to the hexagon. The left

picture shows the situation d = 1 and position p = −1, which illustrates

the fact that intrusions with d ≤ −p do not affect the number of tilings

at all, and the same holds for −p ≥ b

2
, as is illustrated in the right pic-

ture (where d = 3 and p = −2). The central picture illustrates the case

−p < min
(
d, b

2

)
(i.e., where the intrusion “actually causes damage”. The

special case p = 1− d of this situation is considered in Proposition 2.

Figure 3. Hexagons with side lengths (a, b, c) =
(2, 4, 2) and intrusions of length d ≤ 3 at positions p < 0.

4. Even intrusions

In the rest of this paper, we shall restrict our considerations to even
intrusions.

It is clear that even intrusions at positions “too far away” from the
hexagon’s baseline are equivalent to “no intrusions at all” (as far as
the counting of lozenge tilings or nonintersecting lattice paths is con-
cerned). More precisely:

e(a,b,c,d,p) = e(a,b,c,0,p) = mm(a,b,c)

if p ≤ max

(

−d,−

⌊
b+ 1

2

⌋)

or p ≥ min

(

a+ d, a+

⌊
c+ 1

2

⌋)

. (8)

(See Figure 3 for an illustration.)

4.1. Simple observations: Cancellations. Loosely speaking, Mac-
Mahon’s formula (1) for the (a, b, c)–hexagon is a product of quotients
of factorials. Hence it is clear that quotients of instances of this formula
will involve a lot of cancellations. For instance, by straightforward
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computation we obtain:

mm(a,b,c)

mm(a−1,b,c)
=

(a− 1)! (a+ b+ c− 1)!

(a+ b− 1)! (a+ c− 1)!
, (9)

mm(a,b−1,c+1)

mm(a,b,c)
=

c! (a + b− 1)!

(a+ c)! (b− 1)!
, (10)

mm(a,b−1,c+1)

mm(a−1,b,c)
=

(a− 1)!c! (a + b+ c− 1)!

(a+ c)! (a+ c− 1)! (b− 1)!
. (11)

Note that (10) and (11) give symmetric equations due to the obvious
symmetry

mm(a,b,c) = mm(a,c,b).

4.2. A very general ansatz. We make the ansatz

e(a,b,c,d,p) = mm(a,b,c) · F(a,b,c,d,p). (12)

Substituting ansatz (12) in the recursion (6) (derived from Dodgson’s
condensation formula (5)), we obtain the following functional equation
by straightforward cancellations (see the examples of such cancellations
in section 4.1):

(a− 1) · (a+ b+ c− 1) · F(a−2,b,c,d,p−1) · F(a,b,c,d,p) =

(a + b− 1) · (a+ c− 1) · F(a−1,b,c,d,p−1) · F(a−1,b,c,d,p)−

b · c · F(a−1,b−1,c+1,d,p) · F(a−1,b+1,c−1,d,p−1). (13)

For fixed d and p, this amounts to the following recursive description
of F(a,b,c,d,p)

F(a,b,c,d,p) =
1

(a− 1) · (a+ b+ c− 1) · F(a−2,b,c,d,p−1)

×
(

(a+ b− 1) · (a + c− 1) · F(a−1,b,c,d,p−1) · F(a−1,b,c,d,p)−

b · c · F(a−1,b−1,c+1,d,p) · F(a−1,b+1,c−1,d,p−1)

)

. (14)

Together with the boundary values

• F(a,b,c,d,p−1) (for all a, b, c)
• F(0,b,c,d,p) and F(1,b,c,d,p) (for all b, c),

the recursion (14) uniquely determines F(a,b,c,d,p) for all a, b, c.

4.2.1. First application: MacMahon’s formula. These simple observa-
tions provide a short proof of MacMahon’s formula (1):

MacMahon’s formula. For d = 0, we clearly have F(a,b,c,0,p) = F(a,b,c,0,0)

(i.e., the position p of an intrusion of length 0 is irrelevant), and

• F(0,b,c,0,0) = 1 since e(0,b,c,0,0) = 1 = mm(0,b,c)

• and F(1,b,c,0,0) = 1 since e(1,b,c,0,0) =
(
b+c

c

)
= mm(1,b,c).
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MacMahon’s formula is equivalent to F(a,b,c,0,0) ≡ 1, and if we want to
prove this equation, we simply have to show that constant 1 is a solution
of the functional equation (12). But this amounts to the simple identity

(a− 1) · (a+ b+ c− 1) = (a+ b− 1) · (a+ c− 1)− b · c,

which is immediately verified. �

4.3. A very general plan of action. So our quest for a formula
giving e(a,b,c,d,p) leads us to the following plan of action:

(1) Let d > 0 be fixed.
(2) Identify some p0 for which F(a,b,c,d,p0) can be derived easily.
(3) Observe that F(0,b,c,d,p) ≡ 1, and find a formula giving F(1,b,c,d,p)

for all p ≥ p0.
(4) Guess the formula giving F(a,b,c,d,p) and prove it by verifying that

it satisfies the functional equation (14).

From the geometric situation one might suspect that formulae

• for p ≤ 0
• and for 0 ≤ p ≤ a

are of different quality (by the symmetry e(a,b,c,d,p) = e(a,c,b,d,a−p), we
may omit the case p ≥ a): Indeed, we shall use a specialized ansatz for
the first case, and a modified ansatz for the second case.

4.4. A specialized ansatz for p ≤ 0. For fixed d > 0 and p ≤ 0, we
rewrite the function F(a,b,c,d,p) from (12) as follows:

F(a,b,c,d,p) =

(
d+p−1
∏

k=0

(c− k)a−d−p+1+2k

(b+ c− 2d+ 2k + 2)a+2d−2−3k

)

· F′(a,b,c,d,p) (15)

Numerical experiments indicate that this specialized ansatz yields the
factors F′(a,b,c,d,p) as polynomials for fixed d and p (p ≤ 0).

Substituting (15) in (14), we obtain by straightforward cancellation
the following functional equation for F′(a,b,c,d,p):

(a− 1) · F′(a,b,c,d,p) · F′(a−2,b,c,d,−1+p) =

(a+ b− 1) · F′(a−1,b,c,d,−1+p) · F′(a−1,b,c,d,p)−

b · F′(a−1,−1+b,1+c,d,p) · F′(a−1,1+b,−1+c,d,−1+p). (16)

(Note that the coefficients of this functional equation do not contain
the variable c.)

Now let d > 0 be arbitrary, but fixed. Observe that

F(a,b,c,d,p) = F′(a,b,c,d,p) ≡ 1 for all p ≤ −d

(since e(a,b,c,d,p) = mm(a,b,c) for p ≤ −d; see Figure 3 for an illustration):
So we found our p0 = −d for which F(a,b,c,d,p0) can be derived easily.

Morevover, we (trivially) have

e(0,b,c,d,p) ≡ 1, (17)
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a = 1

b = 5

c = 5

a = 1

b = 5

c = 5

The left picture shows the hexagon with side lengths (a, b, c) = (1, 5, 5) with
an even intrusion of length d = 3 (marked as gray triangles) at position
p = −1, and the right picture shows the starting and ending points of
the nonintersecting lattice paths which correspond to lozenge tilings of
this damaged hexagon. Note that the lattice paths with intersections are
precisely those which

• run from starting point (0, 0) to (3, 0), and continue from there to
ending point (5, 5); the number of such lattice paths is

(
3

3

)(
7

2

)

,

• or run from starting point (0, 0) to (3, 1), without touching (3, 0),
then make a horizontal step to (4, 1), and continue from there to
ending point (5, 5); by the reflection principle (the reflected path
is shown with dashed lines), the number of such lattice paths is

((
4

3

)

−

(
4

0

))(
5

1

)

.

So altogether, the number of nonintersecting lattice paths is
(
10

5

)

−

(
3

3

)(
7

2

)

−

((
4

3

)

−

(
4

0

))(
5

1

)

.

Figure 4. The hexagon with side lengths (a, b, c) =
(1, 5, 5) and even intrusion of length d = 3 at position
p = −1.

hence we have

F′(0,b,c,d,p) =

(
d+p−1
∏

k=0

(b+ c− 2d+ 2k + 2)2d−2−3k

(c− k)−d−p+1+2k

)

.

So all that is left to find is a formula which gives F′(1,b,c,d,p): By a
straightforward application of the reflection principle [1] (see Figure 4
for an illustration) we obtain the following expression for e(1,b,c,d,p) for
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p ≤ 0 and d ≤ b+c+1
2

:

(
b+ c

b

)

−

d+p−1
∑

i=0

((
b+ c− 2(−p + i)− 1

b+ 2p− i− 1

)((
2(−p+ i)

−2p+ i

)

−

(
2(−p+ i)

−1 + i

)))

.

We may rewrite this as follows:
(
b+ c

b

)

− (1− 2p)

d+p−1
∑

i=0

(2i− 2p)(i−1)

(
b+c−2i+2p−1
b−i+2p−1

)

i!
. (18)

This implies that F′(1,b,c,d,p) equals the right–hand side of (18), divided
by
(
b+c

b

)
= mm(1,b,c) and by the product in (15).

In order to simplify notation, set

r(a,i,x) = F′(a,b+i,c−i,d,−d+x).

Clearly, the desired formula F′(a,b,c,d,p) is some function in a, b, c, r(0,i,x)

and r(1,i,x): As already mentioned, numerical experiments indicate that
it is, in fact, a polynomial for d and p ≤ 0 fixed.

4.4.1. Special case p = 1 − d (or x = 1). For x = 1 (equivalent to
p = 1− d) we claim

F′(a,b,c,d,1−d) =
∑a−1

k=0 (−1)a+k−1 (−a + b+ k + 2)a−1

(
a−1
k

)
r(1,−a+k+1,1)

(a− 1)!
(19)

for all a, d > 0.
First, note that formula (19) gives the correct result (namely r(1,0,1))

for a = 1. In order to show its validity for a > 1, we must verify that
it satisfies the functional equation (16), which simplifies to

F′(a,b,c,d,−d+1) =

(a+ b− 1) · F′(a−1,b,c,d,−d+1) − b · F′(a−1,b−1,c+1,d,−d+1)

a− 1
(20)

since F′(a,b,c,d,−d) ≡ 1. Now substitute (19) in (20), multiply by (a− 1)!
and compare the coefficients of r(1,−a+k,1): On the right–hand side, this
coefficient is

− b (−1)a+k−2 (−a + b+ k + 2)a−2

(
a− 2

k

)

+

(a+ b− 1) (−1)a+k−3 (−a + b+ k + 2)a−2

(
a− 2

k − 1

)

.

Collecting the terms with factor b and applying the recursion of bino-
mial coefficients, we obtain

(−1)a+k−1 (−a + b+ k + 2)a−2

(

b

(
a− 1

k

)

+ (a− 1)

(
a− 2

k − 1

))

.
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Now rewrite (a− 1)
(
a−2
k−1

)
= k
(
a−1
k

)
to arrive at

(−1)a+k−1 (b+ k) (−a+ b+ k + 2)a−2

(
a− 1

k

)

=

(−1)a+k−1 (−a + b+ k + 2)a−1

(
a− 1

k

)

,

which is precisely the coefficient on the left–hand side: This proves that
(19) does indeed satisfy the functional equation (16).

By combining (15), (1) and (18) we get

r(1,i,1) =

((
b+c

c

)
−
(
b+c−2d+1

c−i

))
(b+ c− 2d+ 2)a+2d−2

(
b+c

c

)
(c)a

.

Inserting this in (19) leads to the following result:

Proposition 1. Consider the damaged (a, b, c)–hexagon with an even
intrusion of length d > 0 in position p = 1− d.

For d ≥ b
2
+ 1, we have

e(a,b,c,d,1−d) = mm(a,b,c).

For d < b
2
+ 1, we have

e(a,b,c,d,1−d) = mm(a,b,c) ·

(

1−
(c)a

(a− 1)! (b+ c− 2d+ 2)a+2d−2

×

a−1∑

k=0

(−1)a+k−1

(
a− 1

k

)
(−a+ b− 2d+ k + 3)a+2d−2

a+ c− k − 1

)

. (21)

Proof. The first assertion is an immediate consequence of the fact that
an intrusion in position 1 − d does not inflict any actual “damage” to
the hexagon if d > b

2
+ 1, see Figure 3.

The second assertion follows from the above considerations, which
immediately give

e(a,b,c,d,1−d) =
mm(a,b,c) (c)a

(a− 1)! (b+ c− 1)a−1

×

a−1∑

k=0

(−1)a+k−1

(
a− 1

k

)

(−a+ b+ k + 2)a−1





((
b+c

a+c−k−1

)
−
(
b+c−2d+1
a+c−k−1

))

(
b+c

a+c−k−1

)
(a+ c− k − 1)



 .

(22)

The sum in this expression is the difference of two sums, the simpler
of which is

Sa
def
=

a−1∑

k=0

(−1)a+k−1

(
a− 1

k

)
(−a + b+ k + 2)a−1

a+ c− k − 1
.
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Zeilberger’s algorithm [16, 14] readily gives the recursion

Sa+1 =
a (a+ b+ c)

a+ c
Sa,

from which we immediately obtain the following summation formula:

Sa =
(a− 1)! (c− 1)! (a+ b+ c− 1)!

(a+ c− 1)! (b+ c)!

Use of this formula together with straightforward simplifications yields
(21). �

4.4.2. Very special case x = 1 and d = 1 (so p = 0). The case d = 1,
p = 0 is particularly simple: By the recursion for binomial coefficients
and the identity n

k

(
n−1
k−1

)
=
(
n

k

)
(for 0 < k ≤ n), we have

((
b+c

a+c−k−1

)
−
(

b+c−1
a+c−k−1

))

(
b+c

a+c−k−1

)
(a+ c− k − 1)

= 1

in (22), whence the sum simplifies to

a−1∑

k=0

(−1)a+k−1(−a + b+ k + 2)a−1

(
a− 1

k

)

= (a− 1)! (23)

(Again, this summation formula is readily found by Zeilberger’s algo-
rithm [16, 14].)

Corollary 1. Consider the damaged (a, b, c)–hexagon with an even in-
trusion of length d = 1 in position p = 0. Then we have

e(a,b,c,1,0) = mm(a,b,c) ·
(c)a

(b+ c)a
= mm(a,b,c−1).

Proof. The assertion is a direct consequence of the above consider-
ations. But there is a much simpler argument: A single intruding
lozenge in position 0 implies that all lozenges at the baseline of the
hexagon are forced (or, equivalently, that all lattice paths have to start
with an upwards step), see Figure 5. Removing the forced lozenges
gives an (a, b, c− 1)–hexagon with no intrusion. �

4.4.3. Special case p = 1 − d (or x = 1), revisited. We may choose
another ansatz, which leads to a different formula:

Proposition 2. Consider the damaged (a, b, c)–hexagon with an even
intrusion of length d > 0 in position p = 1− d.

For d ≤
⌈
b
2

⌉
, we have the following formula:

e(a,b,c,d,−d+1) = mm(a,b,c)

×

(

1−
(b− 2d+ 2)c

(2d− 2)! (b+ 1)a+c−1

a∑

k=1

(b+ c+ k)a−k (k)2d−2 (c)k−1

)

. (24)
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a = 3

b = 4

c = 5

a = 3

b = 4

c = 5

a = 3

b = 4

c = 4

a = 3

b = 4

c = 4

The upper left picture shows the hexagon with side lengths (a, b, c) =

(3, 4, 5) with an even intrusion of length d = 1 (marked as gray trian-

gle) at position 0, and the upper right picture shows a lozenge tiling of this

damaged hexagon. Note that the intrusion implies that certain lozenges

must belong to all tilings of the damaged hexagon: These forced lozenges

are drawn with blue colour in the upper left picture. But this means that

tilings of the damaged of the upper left picture are in bijection with tilings

of the (intact) hexagon with side lengths (a, b, c) = (3, 4, 4) shown in the

lower left picture (the lower right picture shows the tiling which is in bi-

jection with the tiling from the upper right picture; the bijection simply

“removes” the “forced lozenges”).

Figure 5. The hexagon with side lengths (a, b, c) =
(3, 4, 5) and even intrusion of length d = 1 at position
0.

Alternatively, we have the following formula, valid for b > d

e(a,b,c,d,1−d) =
(c)a mm(a,b,c)

(b+ c− 2d− 2)a+2d−2

×

(

(b+ c− 2d+ 2)2d−2

−

d∑

k=2

(

(b+ c− 2d+ 2)2d−2k (b− 2k + 4)2k−3 (a)2k−3

×
−a(b− 2k + 3) + b(5− 4k)− 2ck + 2c+ 8k2 − 20k + 13

(2k − 2)!

)
)

, (25)
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−2
a = 1

b = 6

c = 4

a = 1

b = 6

c = 4

The left picture illustrates the situation of Proposition 2 for a = 1, with
d = 3 and p = −d+ 1 = −2. The right picture is the “translation” of this
situation to the language of nonintersecting lattice paths: Observe that the
lattice paths with intersections are precisely the ones

• which reach point (2d− 1, 0) = (5, 0) by five horizontal steps from
the origin (0, 0) (and this is the only way to achieve this!),

• and then continue from (5, 0) in an arbitrary way to the endpoint
(b, c) = (6, 4),

so the number of nonintersecting lattice paths in this situation is
(
b+ c

c

)

−

(
b− 2d+ 1 + c

c

)

=

(
10

4

)

−

(
5

4

)

.

Figure 6. Hexagon with side lengths (a, b, c) = (1, 6, 4)
and intrusion of length d = 3 at position p = −2.

which has the advantage that the expression after the first line of (25)
actually is a polynomial in a, b, c for fixed d.

Proof. We make the ansatz

e(a,b,c,d,1−d) = mm(a,b,c) ·

(

1−
(b− 2d+ 2)c

(2d− 2)! (b+ 1)a+c−1

· f (a, b, c, d)

)

. (26)

Clearly, for proving (24) we have to show

f (a, b, c, d) =
a∑

k=1

(b+ c + k)a−k (k)2d−2 (c)k−1 . (27)

We shall achieve this by induction on a.
For a = 0, we have e(0,b,c,d,1−d) = mm(0,b,c) = 1, and the sum in (27) is

indeed zero.
For a = 1, it is easy to see that e(1,b,c,d,−d+1) is equal to the number

of lattice paths starting in (0, 0) and ending in (b, c) which do not pass
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through the lattice point (2d− 1, 0) (see Figure 6). This number is
(
b+ c

c

)

−

(
b+ c− 2d+ 1

c

)

,

which equals

mm(1,b,c) ·

(

1−
(b− 2d+ 2)c

(b+ 1)c

)

=
(b+ 1)c

c!
·

(

1−
(b− 2d+ 2)c

(b+ 1)c

)

.

From this we immediately obtain that (27) is true also for a = 1:

1∑

k=1

(b+ c+ k)1−k (k)2d−2 (c)k−1 = (2d− 2)!.

Since e(a,b,c,d,−d) = mm(a,b,c), Dodgson’s condensation (6) amounts to

e(a,b,c,d,1−d) · mm(a−2,b,c) = mm(a−1,b,c) · e(a−1,b,c,d,1−d)

−mm(a−1,b+1,c−1) · e(a−1,b−1,c+1,d,1−d)

for a > 1, and substituting our ansatz (26) for e(a,b,c,d,1−d) gives (af-
ter straightforward cancellations) the following recursion (in a) for
f (a, b, c, d):

(a− 1) f (a, b, c, d) =

(a + b− 1) (a + c− 1) f (a− 1, b, c, d)

− c (b− 2d+ 1) f (a− 1, b− 1, c+ 1, d) . (28)

So what is left to prove is that
a∑

k=1

(b+ c+ k)a−k (k)2d−2 (c)k−1

actually obeys the recursion (28). Using the elementary identity

(a+ b− 1) (a+ c− 1)− b c = (a− 1) (a+ b+ c− 1)

we may rewrite (28) equivalently as

(a− 1) f (a, b, c, d) = (a− 1) (a+ b+ c− 1) f (a− 1, b, c, d)

+ b c (f (a− 1, b, c, d)− f (a− 1, b− 1, c+ 1, d))

+ c (2d− 1) f (a− 1, b− 1, c+ 1, d) . (29)

Now observe that

(a− 1)(a+ b+ c− 1) (b+ c+ k)a−k−1 (c)k−1 (k)−2+2d

equals

(a− 1) (b+ c+ k)a−k (c)k−1 (k)2d−2 ,

which is (a− 1) times the k–th summand of f (a, b, c, d). Hence we
need to show that the summand for k = a in (a− 1) f (a, b, c, d),

(a− 1) (c)a−1 (a)−2+2d , (30)
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is equal to the last two summands of the right–hand side in (29), which
can be simplified to

a−1∑

k=1

(

(b+ c+ k)a−k−1 (c)k−1 (k)2d−2

×

(

bc

(

1−
c+ k − 1

c

)

+ (2d− 1)(c + k − 1)

))

. (31)

Now Zeilberger’s algorithm [16, 14] shows that (31) evaluates to (30)
and thus concludes the proof of (24).

It is Zeilberger’s algorithm [16, 14], again, which also gives a recur-
sion for f (a, b, c, d) in d, namely

(b− 2d+ 2)(b− 2d+ 3)f(a, b, c, d) =

2(d− 1)(2d− 3)(b+ c− 2d+ 2)(b+ c− 2d+ 3)f(a, b, c, d− 1)+

(a+ c− 1)(a+ 2d− 4)(c)a−1(a)2d−4×
(
−a(b− 2d+ 3) + b(5− 4d)− 2cd+ 2c+ 8d2 − 20d+ 13

)
,

which by iteration leads to an alternative expression for f , valid for
b > d:

f (a, b, c, d) =
(2d− 2)!

(b− 2d+ 2)2d−1

(

(b+ c− 2d+ 2)a+2d−2

+ (c)a

d∑

k=1

(

(b+ c− 2d+ 2)2d−2k (b− 2k + 4)2k−3 (a)2k−3

−a(b− 2k + 3) + b(5 − 4k)− 2ck + 2c+ 8k2 − 20k + 13

(2k − 2)!

)
)

.

Inserting this alternative expression in our ansatz (26) gives (25) (after
some straightforward cancellations and simplifications). �

4.5. A modified ansatz for 0 ≤ p ≤ a. For 0 ≤ p ≤ a, a ≥ 0,
b > d > 0 and c > d+ p, we define three products:

Pp(a,b,c,d,p)
def
=

(
p−1
∏

i=0

i! (b+ c− d+ i)!

(b− d+ i)! (a+ c− p+ i)!

)

, (32)

Pa(a,b,c,d,p)
def
=

(
a−1∏

i=p

i! (b+ c− d+ i)!

(b+ i)! (c− d− p+ i)!

)

, (33)

Pd(a,b,c,d,p)
def
=

(
d−1∏

i=0

(a− p + 1 + i)p
(p+ i)! (b+ c− 2d+ 1 + i)i

)

. (34)

(Note that by the inequalities constraining the integers a, b, c, d and p,
these products are well–defined: There is no factor z! for z < 0.)
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We define

P(a,b,c,d,p)
def
= Pp(a,b,c,d,p) · Pa(a,b,c,d,p) · Pd(a,b,c,d,p)

and make the modified ansatz

e(a,b,c,d,p) = P(a,b,c,d,p) · Q(a,b,c,d,p). (35)

Inserting this modified ansatz in the condensation recursion (6) gives
(after a lot of straightforward cancellations) the following functional
equation for Q(a,b,c,d,p), valid for 1 ≤ p ≤ a, a ≥ 0, b > d > 0 and
c > d+ p:

Q(a,b,c,d,p) · Q(a−2,b,c,d,p−1) · (a+ b+ c− d− 1) · (a+ d− 1) =

Q(a−1,b,c,d,p) · Q(a−1,b,c,d,p−1) · (a + c− 1) · (a + b− 1)

− Q(a−1,b−1,c+1,d,p) · Q(a−1,b+1,c−1,d,p−1) · (c− d) · (b− d) . (36)

The following assertion shows that this modified ansatz (35) makes
sense:

Proposition 3. For d = 1, the function Q(a,b,c,1,p) is a simple constant:

Q(a,b,c,1,p) ≡ 1 for all 0 ≤ p ≤ a. (37)

Proof. We shall prove (37) by induction on p: For p = 0, we simply
have

e(a,b,c,1,0) = e(a,b,c−1,0,0) = mm(a,b,c−1),

see Figure 5. Moreover, it is obvious that

P(a,b,c,1,0) = Pa(a,b,c,1,0) = mm(a,b,c−1),

whence Q(a,b,c,1,0) = 1 and (by symmetry (4)) Q(a,b,c,1,a) = 1.
So assume (37) holds for p− 1. By the induction hypothesis (on p),

(36) simplifies to

Q(a,b,c,1,p) =

Q(a−1,b,c,1,p) · (a+ c− 1) · (a+ b− 1)− Q(a−1,b−1,c+1,1,p) (c− 1) · (b− 1)

(a+ b+ c− 2) · (a)
.

From this, the assertion follows by induction on a ≥ p: Simply
observe that

(a+ c− 1) · (a + b− 1)− (c− 1) · (b− 1)

(a+ b+ c− 2) · (a)
= 1

and Q(p,b,c,1,p) = Q(p,c,b,1,0) = 1. �

Note that the proof of Proposition 3 relied on one crucial ingredient,
namely the (very simple) formula for Q(a,b,c,1,0) (easily obtained by the
simple formula for e(a,b,c,1,0)): It served

• as the base case for the induction on p

• and as the base case for the induction on a ≥ p (via the sym-
metry e(p,b,c,d,p) = e(p,c,b,d,0)).
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Of course, we cannot expect that Q(a,b,c,d,p) is given by a simple formula
for d > 1. But numerical experiments indicate that for d fixed, Q(a,b,c,d,p)

is a polynomial in a, b, c, p. So if we can somehow guess this polynomial
and are able to show that

• e(a,b,c,d,0) = P(a,b,c,d,0) · Q(a,b,c,d,0)

• and (36) is, in fact, a polynomial identity,

then we would have proved the corresponding formula.
Assuming b ≥ 2d, the values for p ≤ a are partitioned in three

intervals of “different quality”:

• p ∈ [0, a] (this is the interval considered in Proposition 3, for
which we presented our modified ansatz),

• p ∈ [−d + 1,−1],
• and p ≤ −d: It is obvious that the intrusion does no damage to
the hexagon at all in this case, whence e(a,b,c,d,p) = mm(a,b,c) for
p ≤ −d.

So the case p = 1 − d (which we already considered in sections
4.4.1 and 4.4.3) would serve as base case for the interval [1− d,−1] in
the same sense as p = 0 served as base case for the interval [0, a] in
the proof of Proposition 3. So in principle, we could work with our
“specialized” ansatz from p = 1− d till p = 0, and then continue with
our “modified” ansatz: However, the formulas quickly become rather
unwieldy for d > 1. So for now, we conclude this line of investigations
with the following conjecture:

Conjecture 1. The number e(a,b,c,d,p) of lozenge tilings of a damaged
hexagon with side lengths a, b, c and vertical intrusion of depth d at
even position p with 0 ≤ p ≤ a equals

d−1∏

i=0

(a− p+ i+ 1)
p

(b+ c− d− i)d−i−1 (p + i)!
×

p−1
∏

i=0

i! (b+ c− d+ i)!

(b− d+ i)! (a + c− i− 1)!

×
a−1∏

i=p

i! (b+ c− d+ i)!

(b+ i)! (a+ c− d− i− 1)!
× Q(p,c,b,d,p), (38)

where for fixed d the factor Q(p,c,b,d,p) is a polynomial in the variables
a, b, c and p. The coefficient of monomial bicj in Q(p,c,b,d,p) is a polyno-
mial in a and p whose degree with respect to a is ≤ g − j, and whose
degree with respect to p is ≤ 2g − i− j. For instance, in Proposition 3
we showed Q(a,b,c,1,p) = 1. Numerical experiments indicate that

Q(a,b,c,2,p) = b · (a− p+ 1) + c · (p+ 1) + 2
(
ap− p2 − 1

)

and

Q(a,b,c,3,p) = 98a3 + 621a2 + 1243a+ (a + 3) (2a+ 5) (125a+ 250)−

(a+ 3) (4a+ 13) (75a+ 150) + (a+ 3) (375a+ 750) + 786.
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A brute–force computer search yields the polynomials Q(a,b,c,d,p) for
d up to 5: Mathematica shows that all these formulae factor nicely for
a = 2p, in accordance with Byun’s formula (2).

In order to specify and prove Conjecture 1, we need to find the
general formula giving Q(a,b,c,d,p): We hope to find this formula in future
work.

4.6. Another “brute force” approach. Consider the matrix whose
determinant gives MacMahon’s formula:

Lemma 1. For a, b, c ∈ N, define the following (a× a)–matrices M ,
L, T , D and U with (i, j)–entries

Mi,j

def
=

(
b+ c

b+ i− j

)

,

Li,j

def
= (−1)i+j

(
i− 1

j − 1

)
(c)i−j

(b+ j)i−j

,

Ti,j

def
= (−1)i+j

(
j − 1

i− 1

)
(b)j−i

(c+ i)j−i

,

Di,j

def
= [i = j] ·

(b+ i− 1)! (c+ i− 1)!

(b+ c+ i− 1)! (i− 1)!
,

Ui,j

def
= (−i+ j + 1)i−1

b! (b+ c + i− 1)!

(b+ i− 1)! (c+ j − 1)! (b+ i− j)!
.

Note that M is the matrix corresponding to MacMahon’s formula (i.e.,
detM = mm(a,b,c)), L is a lower triangular matrix with entries 1 on the
main diagonal, T is the transpose of L with variables b and c swapped,
D is a diagonal matrix (Iverson’s bracket [A] is 1 if assertion A is true,
else 0), and U is an upper triangular matrix.

Then we have
U = L ·M (39)

and
M−1 = T ·D · L. (40)

Moreover, the (i, j)–entry of the inverse M−1 is

M−1
i,j = (−1)i+j (b+ j − 1)! (c+ i− 1)!

×
a∑

k=1

(
k − 1

i− 1

)(
k − 1

j − 1

)
(b)

k−i
(c)

k−j

(k − 1)! (b+ c+ k − 1)!
(41)

(Note that the sum in (41) actually starts at k = max (i, j): All other
summands are zero due to the binomial coefficients.)

Remark 1. As an easy consequence of (39), we have

detM = detU =

a−1∏

i=0

i!
(b+ c+ i)!

(b+ i)! (c+ i)!
,
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which is MacMahon’s formula (1).

Let us call the matrix M in Lemma 1 MacMahon’s matrix. Consider
the natural decomposition of the matrix Q underlying the determinant
giving e(a,b,c,d,p) (i.e., detQ = e(a,b,c,d,p), see Example 1) into 4 submatri-
ces Q1, Q2 Q3 and Q4,

Q =

(
Q2 Q1

Q3 Q4

)

,

where

• Q1 is the submatrix of the first a rows and d last columns of Q,
• Q2 is the submatrix of the first a rows and a first columns of Q,
• Q3 is the submatrix of the last d rows and a first columns of Q,
• Q4 is the submatrix of the last d rows and d last columns of Q.

Note that Q2 is MacMahon’s matrix (i.e., matrix M in Lemma 1). All
the (i, j)–entries of these submatrices are binomial coefficients:

(Q1)i,j =

(
2j − 1

−i+ j + p

)

(42)

(Q2)i,j =

(
b+ c

c− i+ j

)

(43)

(Q3)i,j =

(
b+ c− 2i+ 1

c− i+ j − p

)

(44)

(Q4)i,j =

(
2 (j − i)

j − i

)

(45)

Denote by 1 and 0 the identity matrix and the zero matrix, respectively,
with the “appropriate” dimensions, and observe

(
Q−1

2 0

0 1

)

·

(
Q2 Q1

Q3 Q4

)

=

(
1 Q−1

2 ·Q1

Q3 Q4

)

Combining (41) and (42), we see that the (i, j)–entry of Q−1
2 ·Q1 is

(
Q−1

2 ·Q1

)

i,j
=

a∑

l=1

(−1)i+l (b+ l − 1)! (c+ i− 1)!

(
2j − 1

l + j − p− 1

)

a∑

k=1

(
k − 1

i− 1

)(
k − 1

l − 1

)
(b)k−i (c)k−l

(k − 1)! (b+ c+ k − 1)!
(46)

Clearly, by straightforward column operations we can achieve that sub-
matrix Q−1

2 ·Q1 is replaced by 0. Expressed as matrix multiplication:
(

1 Q−1
2 ·Q1

Q3 Q4

)

·

(
1 −Q−1

2 ·Q1

0 1

)

=

(
1 0

Q3 F

)

,
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where F is the product of matrices

F =
(
Q3 Q4

)
·

(
−Q−1

2 ·Q1

1

)

= Q4 −Q3 ·Q
−1
2 ·Q1.

Combining (46) and (44), we see that the (i, j)–entry of Q3 ·Q
−1
2 · Q1

is the triple sum

(
Q3 ·Q

−1
2 ·Q1

)

i,j
=

a∑

t=1

(
b+ c− 2i+ 1

c− i+ t− p

)

a∑

l=1

(−1)t+l (b+ l − 1)! (c+ t− 1)!

(
2j − 1

l + j − p− 1

) a∑

k=1

(
k − 1

t− 1

)(
k − 1

l − 1

)
(b)k−t (c)k−l

(k − 1)! (b+ c+ k − 1)!
. (47)

(Note that the (i, j)–entry (49) does not depend on d.)
So by combining this with (44), we deduce:

Corollary 2. Let Q1, Q2, Q3 and Q4 be the submatrices of the matrix
Q underlying the determinant giving e(a,b,c,d,p). Then e(a,b,c,d,p) (and thus
the number of tilings of the (a, b, c)–hexagon with an (even) intrusion
of length d at position p) is given as

e(a,b,c,d,p) = detF · mm(a,b,c) = detF ·

a−1∏

i=0

i!
(b+ c+ i)!

(b+ i)! (c+ i)!
, (48)

where F = Q4 −
(
Q3 ·Q

−1
2 ·Q1

)
.

4.6.1. Special case d = 1, once again. Note that F is the (d× d)–
matrix with (i, j)–entry

Fi,j =

(
2 (j − i)

j − i

)

−
(
Q3 ·Q

−1
2 ·Q1

)

i,j
, (49)

where
(
Q3 ·Q

−1
2 ·Q1

)

i,j
is given by (47), so for the special case d =

1, the determinant of matrix F is simply F1,1. Combining this with
our result for e(a,b,c,1,p) (i.e., for the special case d = 1; see equation
(37) in Proposition 3) gives (after straightforward cancellations and
simplifications; observe that the sum over l only contributes two non–
zero summands) the following summation formula:

(−1)p (b+ p− 1)!

a∑

t=1

(−1)t
(

b+ c− 1

c− p+ t− 1

)

(c+ t− 1)!

a∑

k=1

(

− (b+ p)
(
k−1
p

)
+ (c+ k − p− 1)

(
k−1
p−1

))

(b)k−t (c)k−p−1

(
k−1
t−1

)

(k − 1)! (b+ c+ k − 1)!

= 1−

(
a

a− p

)
(b)

p
(c)

a−p

(b+ c)a
. (50)
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For the special case p = 0, (50) reads (after some simplification)

b!

a−1∑

t=0

(−1)t (b− t)c+t

a−1∑

k=0

(b)k−t

(
k

t

)(
c+k−1

k

)

(b+ c+ k)!
= 1−

(c)a
(b+ c)a

. (51)

For p > 0, we may rewrite (50) as

(−1)p (b+ p− 1)!

a∑

t=1

(−1)t
(

b+ c− 1

c− p+ t− 1

)

(c+ t− 1)!

a∑

k=1

(

− bk
p
+ b+ c− 1

)

(b)k−t (c)k−p−1

(
k−1
p−1

)(
k−1
t−1

)

(k − 1)! (b+ c+ k − 1)!

= 1−

(
a

a− p

)
(b)p (c)a−p

(b+ c)a
. (52)

As a direct consequence of Byun’s formula (2), we obtain:

Proposition 4. If we set a = 2p in Corollary 2, then the determinant
factors nicely:

det F |a=2p = 4dp
d∏

k=1

(
k − 1

2

)

p
(b− k + 1)p(c− k + 1)p

(k)p(b+ c− 2k + 2)2p
.
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