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VECTOR PARTITION IDENTITIES FOR 2D, 3D AND nD
LATTICES

GEOFFREY B CAMPBELL

Dedicated to Professor Rodney J Baxter on his 83rd birthday.

Abstract. We prove identities generating higher dimensional vector partitions.
We derive theorems for integer lattice points in the 2D first quadrant, then gener-
alize the approach to find 3D and n-space lattice point vector region extensions.
We also state combinatorial identities for Visible Point Vectors in 2D up to 5D
and nD first hyperquadrant and hyperpyramid lattices. 2D and 3D theorems for
vector partitions with binary components are also derived.

1. Preview of results

We show the following selected sample results from this paper. These examples
are intended to inform the reader of a few notable points of content along the way.

Preview 1. The number of first quadrant 2D partitions of vectors into exactly
three parts ♣2(a, b), is for |y| < 1, |z| < 1, generated by
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Preview 2. If |v| < 1, |w| < 1, |x| < 1, |y| < 1, |z| < 1 and q + r + s + t+ u = 1,
then

∏
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Preview 3. For each of |y|, |z| < 1,

∏

(a,b,c,d,e)=1
a,b,c,d<e

a,b,c,d≥0,e>0

(

1

1− ya+b+c+dze

)1/e

=

(

(1− yz)4(1− y3z)4

(1− z)(1 − y2z)6(1− y4z)

)1/(1−y)4
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Preview 4. For |y| < 1, |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)m/n2

= (1− yz)
y

1−y exp

{

y

(1− y)2
(Li2(z)− Li2(yz))

}

.

2. Defining Vector Partitions

With respect to vector partitions, herein we study the additive decomposition
of vectors v = 〈a1, a2, . . . , an〉 where each of the components a1, a2, . . . , an are an
integer, usually a non-negative integer, but this may vary by situation. A partition,
whether it be for integer partitions or it be for vector partitions, is a partially ordered
set or poset. For an integer partition of n say λ1 + λ2 + . . .+ λr = n this means we
impose that λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 for λ as integers. For a vector partition of v
say λ1 + λ2 + . . .+ λr = v this means we impose that ‖λ1‖ ≥ ‖λ2‖ ≥ . . . ≥ ‖λr‖ for
each λ as an nD (n-dimensional, or n-component) vector.

Definition 2.1. A partition of an n-dimensional vector v = 〈a1, a2, . . . , an〉 is a fi-
nite partially ordered sequence of vectors λ1, λ2, . . . , λr such that

∑r
i=1 λi = v under

vector addition. The λi vectors are called parts of the vector partition. A suitable par-
tial ordering for v is for example, a non-increasing norm defined by ‖v‖ =

√

∑n
i=1 a

2
i

applied to the λi.

We will strive to obtain theorems and conjectures with regard to nD vectors
generally with positive integer n, but mostly we shall begin with or attempt to
illustrate or justify these theorems and conjectures by first considering the 2D and
3D situations, since they are most easily visualized in the Cartesian co-ordinate
settings. We say the pn(〈a1, a2, . . . , an〉) abbreviated to pn(a1, a2, . . . , an) or simply
pn(v) is the number of nD partitions of vector v. Here are a few 2D examples taking
a, b > 0 so excluding the often included a = 0, b = 0.

p2(1, 1) = 2; 〈1, 1〉 = (〈1, 1〉1);
p2(2, 1) = 1; 〈2, 1〉 = (〈2, 1〉1);
p2(1, 2) = 1; 〈1, 2〉 = (〈1, 2〉1);
p2(2, 2) = 2; 〈2, 2〉 = (〈2, 2〉1); 〈1, 1〉+ 〈1, 1〉 = (〈1, 1〉2);
p2(3, 2) = 2; 〈3, 2〉 = (〈3, 2〉1); 〈2, 1〉+ 〈1, 1〉 = (〈2, 1〉1〈1, 1〉1).

3. Vector or Multipartite Partitions from George E Andrews

Andrews [2, Chapter 12, page 203] defines P (n) = P (n1, n2, ..., nr) as the number
of unrestricted partitions of the ”r-partite” or ”multipartite” number (n1, n2, ..., nr)
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as an ordered r-tuple of non-negative integers not all zero. In our vector par-
titions theory we mostly would say that this multipartitie number is the vector
n = 〈n1, n2, ..., nr〉, defining a lattice point in Euclidean r-space. Similarly the Q(n)
function is the number of partitions of vectors n into distinct parts. Andrews states
the two generating functions

∑

n1,n2,...,nr≥0

P (n)xn1
1 ...xnr

r =
∏

n1,n2,...,nr≥0
not all zero

1

1− xn1
1 ...xnr

r

(3.1)

∑

n1,n2,...,nr≥0

Q(n)xn1
1 ...xnr

r =
∏

n1,n2,...,nr≥0

(1 + xn1
1 ...xnr

r )(3.2)

and also gives the result due to Cheema and Motzkin [23] extending the well-
known Euler theorem that the number of integer partitions into ”odd parts” is same
as the number of integer partitions into ”distinct parts”. In our work however we
often replace ni ≥ 0 by ni ≥ 1 or even apply mixed versions of these.

In the theory resulting from our present paper we make use of the fact that
equations (3.1) and (3.2) correspond to nD grids of their coefficients for xn1

1 ...xnr
r ;

which here are P (n1, n2, ..., nr), respectively Q(n1, n2, ..., nr). Although the lattice
points of theses grids are n-space lattice configurations, we find that a straight line
from the origin to the point 〈n1, n2, ..., nr〉 has an easily derived generating function
for each point along the line.

The above equations (3.1) and (3.2) when represented by their 2D, 3D, 4D and 5D
grids in their respective first quadrants and first hyperquadrants, obviously become
unwieldy to visualize after the 2D extended rectangular lattice, and 3D extended
cubic lattice. What human consciousness can say they see a 4D extended tesseract
(4D cube) lattice, or a 5D extended hypercube lattice? However we understand
this dimensional concept, there is a logical higher space extension also of the 2D
first quadrant diagonal of lattice points upon the line y = x. In the 3D cube
first hyperquadrant in an x-y-z plane of lattice points there is the diagonal line
represented by the equation x = y = z and the coefficients of those lattice point
vectors arise from setting the generating function f(x, y, z) to say f(z, z, z) which
then is the generating function for the 3D diagonal lattice point vectors in that
hyperquadrant. Similarly for the 4D case generating function f(w, x, y, z) calculate
f(z, z, z, z) to give the 4D hyperdiagonal generating function for lattice points along
the line with equation w = x = y = z through the 4D extended tesseract (hypecube).
And so on for the 5D function generated by f(v, w, x, y, z) giving us the function
f(z, z, z, z, z) generating the coefficients (vector partition sums) for the lattice points
along the 5D line v = w = x = y = z. This concept can be applied to any of our
2D, 3D, 4D, etc lattice point vector grids throughout our present volume. It applies
to VPV identities as hyperquadrant lattice functions, square hyperpyramid lattice
functions and skewed hyperpyramid lattice point vector identities. This includes the
many possibilities of applying polylogarithm formulas and Parametric Euler sum
identities; examples given in our oncoming papers being just the starting place of a
large number of possibilities.

4. Hyperspace line generating functions for different nD slopes

In the previous section we saw how to calculate the hyperdiagonal generating
function for an nD generated vector partition grid. Basically, we have the
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Statement 4.1. If the nD generating function for the entire nD grid is the n variable
fn(z1, z2, z3, ..., zn), the equation of the nD hyperdiagonal line from the origin is
z1 = z2 = z3 = ... = zn and so the generating function for the nD vector partitions
along that line is given by the single variable function fn(z, z, , ..., z).

That is, even though an nD space grid is impossible for humans to envision, we
can define a straight line through the hyperdiagonal from the nD origin point, and
formulate an exact value of the vector partition function at any point along that nD
hyperspace line.

Furthermore, taking an arbitrary lattice point vector 〈a1, a2, a3, ..., an〉 in the nD
grid we can show that the vector partition function (or nD coefficient) for that lattice
point is exactly evaluated as follows.

Statement 4.2. If the nD generating function for the entire nD grid is the n variable
fn(z1, z2, z3, ..., zn), the equation of the nD hyper-radial-from-origin line from the
origin to the arbitrary point 〈a1, a2, a3, ..., an〉 is based on knowing values of

(4.1) 〈a1, a2, a3, ..., an〉 = r〈c1, c2, c3, ..., cn〉
where 〈c1, c2, c3, ..., cn〉 is a VPV with gcd(c1, c2, c3, ..., cn) = 1 and r is the unique
positive integer that makes this true. So the straight line from the origin to the point
〈a1, a2, a3, ..., an〉 has the defining equation c1z1 = c2z2 = c3z3 = ... = cnzn and so the
generating function for the nD vector partitions along that line is given by the single
variable function fn(c1z, c2z, c3z, ..., cnz), which has the coefficient of zr equal to the
vector partition function (or nD coefficient) for that lattice point 〈a1, a2, a3, ..., an〉
exactly evaluated.

We will give numerous examples in later papers where the Visible Point Vector
(VPV) identities yield exact results for nD generating functions.

5. Defining Vector Grids and resulting Partition Grids

The set of first quadrant cartesian 2D lattice point vectors is a countable set.
The lattice points radial from the origin in the radial region from y = x to the
positive y axis can be replicated in the region between y = x and the positive x
axis. Therefore, the set of all 2D lattice point vectors in the first quadrant are also
countable. They are shown as follows.

Definition 5.1. The first quadrant 2D vector grid, denoted as V2(y ∈ [1,∞); z ∈
[1,∞)) is the set of vectors 〈a, b〉 such that a and b are positive integers. We say
that a vector grid generally is a collection of vectors in a defined region. For ex-
ample, in the following picture, first quadrant 2D vector grid is split into an
overlinedUpper vector grid, a Bold Diagonal vector grid and an underlined Lower
vector grid.

In certain situations the set of all overlined upper vectors can be mapped to the
set of all underlined lower vectors. The bold diagonal is defined by y = z. We have
in fact

Statement 5.1. For any positive integers such that a < b,

〈a, b〉 7→ 〈b, a〉,
and

〈b, a〉 7→ 〈a, b〉.
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Table 1. First quadrant 2D vector grid

...
...

...
...

...
...

...
...

...
. . .

8 〈1, 8〉 〈2, 8〉 〈3, 8〉 〈4, 8〉 〈5, 8〉 〈6, 8〉 〈7, 8〉 〈8, 8〉 · · ·
7 〈1, 7〉 〈2, 7〉 〈3, 7〉 〈4, 7〉 〈5, 7〉 〈6, 7〉 〈7, 7〉 〈8, 7〉 · · ·
6 〈1, 6〉 〈2, 6〉 〈3, 6〉 〈4, 6〉 〈5, 6〉 〈6, 6〉 〈7, 6〉 〈8, 6〉 · · ·
5 〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉 〈5, 5〉 〈6, 5〉 〈7, 5〉 〈8, 5〉 · · ·
4 〈1, 4〉 〈2, 4〉 〈3, 4〉 〈4, 4〉 〈5, 4〉 〈6, 4〉 〈7, 4〉 〈8, 4〉 · · ·
3 〈1, 3〉 〈2, 3〉 〈3, 3〉 〈4, 3〉 〈5, 3〉 〈6, 3〉 〈7, 3〉 〈8, 3〉 · · ·
2 〈1, 2〉 〈2, 2〉 〈3, 2〉 〈4, 2〉 〈5, 2〉 〈6, 2〉 〈7, 2〉 〈8, 2〉 · · ·
1 〈1, 1〉 〈2, 1〉 〈3, 1〉 〈4, 1〉 〈5, 1〉 〈6, 1〉 〈7, 1〉 〈8, 1〉 · · ·

z/y 1 2 3 4 5 6 7 8 · · ·

Hence, the Upper grid can map onto the Lower grid, and the Lower grid can map
onto the Upper grid.

While the consideration of the upper vectors and the lower vectors may seem
unnecessary in the present discussion, in later papers we shall make good use of the
symmetries and possible mappings, especially when we come to discuss the Visible
Point Vector (VPV) partitions wherein these symmetries can be applied to practical
examples.

Definition 5.2. A finite 2D vector grid is a collection of vectors in a defined finite
rectangular region. V2(y ∈ [a, b]; z ∈ [c, d]) is notation for

d 〈a, d〉 〈a+ 1, d〉 . . . 〈b− 1, d〉 〈b, d〉
d− 1 〈a, d− 1〉 〈a+ 1, d− 1〉 . . . 〈b− 1, d− 1〉 〈b, d− 1〉
d− 2 〈a, d− 2〉 〈a+ 1, d− 2〉 . . . 〈b− 1, d− 2〉 〈b, d− 2〉
...

...
...

. . .
...

...
c+ 2 〈a, c+ 2〉 〈a+ 1, c+ 2〉 . . . 〈b− 1, c+ 2〉 〈b, c+ 2〉
c+ 1 〈a, c+ 1〉 〈a+ 1, c+ 1〉 . . . 〈b− 1, c+ 1〉 〈b, c+ 1〉
c 〈a, c〉 〈a + 1, c〉 . . . 〈b− 1, c〉 〈b, c〉

z/y a a+ 1 . . . b− 1 b

and we see from this, that the first 2D quadrant finite grid starting at 〈a, c〉 can
have b and d extended ”to infinity”, which could then be written V2(y ∈ [a,∞]; z ∈
[c,∞]).

We give some examples now.

V2(y ∈ [−1, 1]; z ∈ [−1, 1]) =

1 〈−1, 1〉 〈0, 1〉 〈1, 1〉
0 〈−1, 0〉 〈0, 0〉 〈1, 0〉
−1 〈−1,−1〉 〈0,−1〉 〈1,−1〉
z/y −1 0 1
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V2(y ∈ [−2, 2]; z ∈ [−2, 2]) =

2 〈−2, 2〉 〈−1, 2〉 〈0, 2〉 〈1, 2〉 〈2, 2〉
1 〈−2, 1〉 〈−1, 1〉 〈0, 1〉 〈1, 1〉 〈2, 1〉
0 〈−2, 0〉 〈−1, 0〉 〈0, 0〉 〈1, 0〉 〈2, 0〉
−1 〈−2,−1〉 〈−1,−1〉 〈0,−1〉 〈1,−1〉 〈2,−1〉
−2 〈−2,−2〉 〈−1,−2〉 〈0,−2〉 〈1,−2〉 〈2,−2〉
z/y −2 −1 0 1 2

In our work on vector partitions, it will be a standard approach that we specify
the vector grid, and then based on the type of partition function applied to the grid,
specify a corresponding partition grid. Hence our partition grid related to the vector
grid of Definition 5.2, is as follows.

Definition 5.3. The first quadrant 2D partition grid is the set of 2D partitions
denoted

p2(V2(〈m,n〉 ⊆ {y ∈ [a, b] ∪ z ∈ [c, d]}))
of 〈a, b〉 such that a and b are positive integers. We say that a partition grid

is a range of a partition function applied to a vector grid domain in a defined
region. For example, in the following picture, first quadrant 2D partition grid is
split into an ”overlined Upper” partition grid, a ”Diagonal upslope” grid, and an
”underlined Lower” partition grid.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8 p2(0, 8) p2(1, 8) p2(2, 8) p2(3, 8) p2(4, 8) p2(5, 8) p2(6, 8) p2(7, 8) p2(8, 8) · · ·
7 p2(0, 7) p2(1, 7) p2(2, 7) p2(3, 7) p2(4, 7) p2(5, 7) p2(6, 7) p2(7, 7) p2(8, 7) · · ·
6 p2(0, 6) p2(1, 6) p2(2, 6) p2(3, 6) p2(4, 6) p2(5, 6) p2(6, 6) p2(7, 6) p2(8, 6) · · ·
5 p2(0, 5) p2(1, 5) p2(2, 5) p2(3, 5) p2(4, 5) p2(5, 5) p2(6, 5) p2(7, 5) p2(8, 5) · · ·
4 p2(0, 4) p2(1, 4) p2(2, 4) p2(3, 4) p2(4, 4) p2(5, 4) p2(6, 4) p2(7, 4) p2(8, 4) · · ·
3 p2(0, 3) p2(1, 3) p2(2, 3) p2(3, 3) p2(4, 3) p2(5, 3) p2(6, 3) p2(7, 3) p2(8, 3) · · ·
2 p2(0, 2) p2(1, 2) p2(2, 2) p2(3, 2) p2(4, 2) p2(5, 2) p2(6, 2) p2(7, 2) p2(8, 2) · · ·
1 p2(0, 1) p2(1, 1) p2(2, 1) p2(3, 1) p2(4, 1) p2(5, 1) p2(6, 1) p2(7, 1) p2(8, 1) · · ·
0 p2(0, 0) p2(1, 0) p2(2, 0) p2(3, 0) p2(4, 0) p2(5, 0) p2(6, 0) p2(7, 0) p2(8, 0) · · ·

z/y 0 1 2 3 4 5 6 7 8 · · ·

Depending on how the partition function is defined, it may be that the set of all
Upper partitions can be mapped to the set of all Lower partitions. The Diagonal
upslope is defined here by y = z. We may often seek out or observe these features and
apply them to generating functions for vector partitions in 2D, or generalized to 3D,
4D, and so on. As analogy with partitions into integers having Ferrers graphs, vector
partitions can have generating functions over different grids, yielding theorems on
vector partitions that arise simply from different equivalences of algebraic rational
functions of several variables. What we often call weighted vector partitions are in
fact functions mapped from the vector partition sums.

For example a 2D vector sum may map to a weighted value as in,

〈1, 2〉+ 〈1, 3〉+ 〈2, 3〉 = 〈4, 8〉 7→ f2(4, 8) =

(

2

1

)(

3

1

)(

3

2

)

,

so a vector partition sum maps to a function of the sum of that partition 〈4, 8〉, the
right side showing the function as a product of binomial coefficients in this instance.

6. Partitions into exactly one part, two parts, or three parts

We now try to lay the foundation for the language of vector partitions needed to
progress our work in this paper.
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Statement 6.1. Obviously, the number of partitions (of any kind) into one part,
is 1. The partition grid for 2D vector partitions into one part as defined above is
therefore trivially,

...
...

...
...

...
...

...
...

...
...

. . .
8 1 1 1 1 1 1 1 1 1 · · ·
7 1 1 1 1 1 1 1 1 1 · · ·
6 1 1 1 1 1 1 1 1 1 · · ·
5 1 1 1 1 1 1 1 1 1 · · ·
4 1 1 1 1 1 1 1 1 1 · · ·
3 1 1 1 1 1 1 1 1 1 · · ·
2 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 1 1 · · ·
0 1 1 1 1 1 1 1 1 1 · · ·

z/y 0 1 2 3 4 5 6 7 8 · · ·

and the generating function for this, say Ô2(y, z), for |y| and |z| both less than 1,
is

(6.1) Ô2(y, z) =
∑

a,b≥0

ô2(a, b)y
azb =

∑

a,b≧0

yazb =
1

(1− y)(1− z)
,

where ô2(a, b) is the number of partitions of 2D vectors 〈a, b〉, with each of a, and b
non-negative integers, into exactly one part.

So we have described the simplest vector partition scenario, where there is only
one part in each partition in the 2D first quadrant. In the 3D first hyperquadrant,
the extended cubic lattice of points or vectors 〈a, b, c〉 with each of a, b and c non-

negative integers, we have the generating function, say Ô3(x, y, z), for |x|, |y| and
|z| all less than 1, is

(6.2) Ô3(x, y, z) =
∑

a,b,c≥0

ô2(a, b, c)x
aybzc =

∑

a,b,c≧0

xaybzc =
1

(1− x)(1− y)(1− z)
,

where ô2(a, b, c) is the number of partitions of 3D vectors 〈a, b, c〉 with each of a, b
and c non-negative integers into exactly one part. Generally speaking of n-space,
we have: in the nD first hyperquadrant, the extended hypercubic lattice of points or
vectors 〈a1, a2, a3, . . . , an〉 with each of a1, a2, a3 up to an all non-negative integers,

we have the generating function, say Ôn(a1, a2, a3, . . . , an), for |z1|, |z2| up to |zn| all
less than 1, is

(6.3)
∑

a1,a2,a3,...,an≥0

ôn(a1, a2, a3, . . . , an)z1
a1z2

a2z3
a3 · · · znan

=
∑

a1,a2,...,an≧0

z1
a1z2

a2 · · · znan

=
1

(1− z1)(1− z2) · · · (1− zn)
,

where ô2(a1, a2, . . . , an) is the number of partitions of nD vectors 〈a1, a2, . . . , an〉,
with each of a1, a2 up to an non-negative integers, into exactly one part.
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The next simplest case is then the scenario where each partition 〈a, b〉 is into
exactly two parts, based on the vector grid for a and b both greater than or equal
to 1. An arbitrary example where the vector partition is into two parts is for 〈5, 2〉,

〈5, 2〉 = 〈4, 1〉+ 〈1, 1〉 = 〈3, 1〉+ 〈2, 1〉.
A reminder here, that compositions count different orders of summands whereas

partitions do not. We recall that partitions are partially ordered sets, so these two
vector equations are the only two partitions into two parts using vectors from the
2D first quadrant grid.

7. Partitions into exactly two parts, and exactly three parts

It is easy to find the number of partitions of 2D first quadrant vectors into exactly
two parts, by a process of observation, then by formalizing this. However, a much
neater approach is given from generating functions in Campbell [18] leading to a
determinant form solution given here.

Theorem 7.1. The number of first quadrant 2D partitions of vectors into two parts
♠2(a, b), and the number of first quadrant 2D partitions of vectors into three parts
♣2(a, b), are generated by the following equations valid for |y| < 1, |z| < 1,

∞
∑

a,b≥0

♠2(a, b)y
azb =

1

2!

∣

∣

∣

∣

∣

1
(1−y)(1−z)

−1
1

(1−y2)(1−z2)
1

(1−y)(1−z)

∣

∣

∣

∣

∣

=
(1 + yz)

2(1 + y)(1 + z)(1− y2)2(1− z2)2
;

and
∞
∑

a,b≥0

♣2(a, b)y
azb =

1

3!

∣

∣

∣

∣

∣

∣

∣

1
(1−y)(1−z)

−1 0
1

(1−y2)(1−z2)
1

(1−y)(1−z)
−2

1
(1−y3)(1−z3)

1
(1−y2)(1−z2) (1−y)(1−z)

∣

∣

∣

∣

∣

∣

∣

=
y3z3 + y2z2 + y2z + yz2 + yz + 1

(1− y)3(1 + y)(y2 + y + 1)(1− z)3(1 + z)(z2 + z + 1)
.

The two related partition grids for these are:

for ♠2(a, b),
...

...
...

...
...

...
...

...
...

...
. . .

8 5 9 14 18 23 27 32 36 41 · · ·
7 4 8 12 16 20 24 28 32 36 · · ·
6 4 7 11 14 18 21 25 28 32 · · ·
5 3 6 9 12 15 18 21 24 27 · · ·
4 3 5 8 10 13 15 18 20 23 · · ·
3 2 4 6 8 10 12 14 16 18 · · ·
2 2 3 5 6 8 9 11 12 14 · · ·
1 1 2 3 4 5 6 7 8 9 · · ·
0 1 1 2 2 3 3 4 4 5 · · ·

z ↑ y → 0 1 2 3 4 5 6 7 8 · · ·

and for ♣2(a, b),
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...
...

...
...

...
...

...
...

...
...

. . .

8 10 25 50 80 120 165 220 280 350 · · ·
7 8 20 40 64 96 132 176 224 280 · · ·
6 7 16 32 51 76 104 139 176 220 · · ·
5 5 12 24 38 57 78 104 132 165 · · ·
4 4 9 18 28 42 57 76 96 120 · · ·
3 3 6 12 19 28 38 51 64 80 · · ·
2 2 4 8 12 18 24 32 12 40 · · ·
1 1 2 4 6 9 12 16 20 25 · · ·
0 1 1 2 3 4 5 7 8 10 · · ·

z ↑ y → 0 1 2 3 4 5 6 7 8 · · ·

Some notes on the partition grid sequences in theorem 7.1
Observations on the diagonal sequences, and symmetries:

Observation 1: The bold diagonal sequence 1, 2, 5, 8, 13, 18, 25, ... in the ♠2(a, b)
grid is easily found in the OEIS as sequence number A000982, and is given by the

ceiling function, so we have the exact formula ♠2(n, n) = ⌈ (n+1)2

2
⌉. In plain words

this means ”The number of 2D vector partitions of 〈n, n〉 into exactly two parts

where n is a positive integer is equal to ⌈ (n+1)2

2
⌉.”

Observation 2: The♠2(a, b) grid diagonal has generating function valid for |q| < 1,

1 + q2

(1 + q)(1− q)3
= 1 + 2q + 5q2 + 8q3 + 13q4 + 18q5 + 25q6 + . . . .

Observation 3: The sequence ♠2(n, n) is also given as a ”floor” function by ⌊n2+1
2

⌋

Observation 4: If we partition n in two parts, say r and s so that r2+s2 is minimal,
then ♠2(n, n) = r2 + s2. Geometrical significance: folding a rod with length n units
at right angles in such a way that the end points are at the least distance, which is
given by

√

♠2(n, n) as the hypotenuse of a right triangle with the sum of the base
and height = n units.

Observation 5: A Dirichlet summation. With respect to the diagonal sequence
♠2(n, n) it is known that

∑

n>0

1

⌊n2+1
2

⌋
=
∑

n>0

1

2n2
+
∑

n≥0

1

2n2 + 2n+ 1

1 +
1

2
+

1

5
+

1

8
+

1

13
+

1

18
+

1

25
+ . . . =

1

2

(

π2

6
+ π tanh

(π

2

)

)

= 2.26312655....

Observation 6: The bold diagonal sequence 1, 2, 8, 19, 42, 78, 139, 224, 350, ... in
the ♣2(a, b) grid is found in the OEIS sequence number A101427, and is given by
the following cases,

♣2(n, n) =

{

((n+ 2)2(n+ 1)2 + 12(⌊n/2⌋+ 1)2 + 8)/24, for n divisible by 3;
((n+ 2)2(n+ 1)2 + 12(⌊n/2⌋+ 1)2)/24, otherwise.
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Therefore we have an exact formula for ♣2(n, n); the number of 2D vector parti-
tions of 〈n, n〉 into exactly three parts; for n any positive integer. The description
of this sequence A101427 from OEIS is ”Number of different cuboids with volume
(pq)n, where p, q are distinct prime numbers”.

As an illustrative example of the formula, the first ten terms of ((n+2)2(n+1)2+
12(⌊n/2⌋ + 1)2 + 8)/24 are 1, 7

3
, 25

3
, 19, 127

3
, 235

3
, 139, 673

3
, 1051

3
, 517, and the first ten

terms of ((n+2)2(n+1)2+12(⌊n/2⌋+1)2)/24 are 2
3
, 2, 8, 56

3
, 42, 78, 416

3
, 224, 350, 1550

3
.

Observation 7: The♣2(a, b) grid diagonal has generating function valid for |q| < 1,

q6 + 3q4 + 4q3 + 3q2 + 1

(1− q3)(1− q2)2(1− q)2
= 1 + 2q + 8q2 + 19q3 + 42q4 + 78q5 + 139q6 + . . . .

Observation 8: Horizontal rows and Vertical columns sequences generating func-
tions.

Row and column sequences for ♠2(a, b) and ♣2(a, b) have certain observable prop-
erties worth mentioning:

(a) The jth row sequence is the same as the jth column sequence;
(b) The kth term in the jth row sequence is the same as k term in the jth column

sequence;
(c) That is, ♠2(a, b) = ♠2(b, a) and ♣2(a, b) = ♣2(b, a).
(d) The generating function for the jth row sequence is the same as the generating

function for the jth column sequence.

Proof of theorem 7.1.
In Campbell [18], we have the following 2D corollary of the main nD extension of

Cauchy’s q-binomial theorem, which is equation (3.3) in that paper. The proof of
this nD theorem used Cramer’s Rule and gave us the determinants as coefficients.
So, setting a = 0 in identity (3.3) of [18] we obtain, for y and z both less than unity,

(7.1) F2(y, z; 0, t) =
∏

j,k≥0

1

1− yjzkt

= 1 +
1

(1− y) (1− z)

t

1!
+

∣

∣

∣

∣

∣

1
(1−y)(1−z)

−1
1

(1−y2)(1−z2)
1

(1−y)(1−z)

∣

∣

∣

∣

∣

t2

2!

+

∣

∣

∣

∣

∣

∣

∣

1
(1−y)(1−z)

−1 0
1

(1−y2)(1−z2)
1

(1−y)(1−z)
−2

1
(1−y3)(1−z3)

1
(1−y2)(1−z2)

1
(1−y)(1−z)

∣

∣

∣

∣

∣

∣

∣

t3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
(1−y)(1−z)

−1 0 0
1

(1−y2)(1−z2)
1

(1−y)(1−z)
−2 0

1
(1−y3)(1−z3)

1
(1−y2)(1−z2)

1
(1−y)(1−z)

−3
1

(1−y4)(1−z4)
1

(1−y3)(1−z3)
1

(1−y2)(1−z2)
1

(1−y)(1−z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

t4

4!

+ etc.
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The proof of the theorem comes from recognizing that ♠2(b, a) and ♣2(a, b) are
the coefficients of t2 and t3 respectively in (7.1). The determinants are simplified by
applying the below identities, setting

a1 =
1

(1− y)(1− z)
, a2 =

1

(1− y2)(1− z2)
, a3 =

1

(1− y3)(1− z3)
,

substituted into
∣

∣

∣

∣

a1 −1
a2 a1

∣

∣

∣

∣

= a1
2 + a2;

and
∣

∣

∣

∣

∣

∣

a1 −1 0
a2 a1 −2
a3 a2 a1

∣

∣

∣

∣

∣

∣

= a2
3 + 3a1a2 + 2a3

respectively. This gives us the appropriate functions generating the partitions
♠2(b, a) and ♣2(a, b). Expanding these generating functions allows us to fill in
the relevant partition grids. �

7.1. The n-dimensional q-binomial theorem. In his classical account of the
theory of partitions, Andrews [2, chapter 2] shows that many of the time honoured
partition identities first given by Euler, Gauss, Heine and Jacobi derive from the
q-binomial theorem originally given by Cauchy [21],

Theorem 7.2. The q-binomial theorem. If |q| < 1, |t| < 1, for all complex a,

(7.2) 1 +
∞
∑

k=1

(1− a)(1− aq)(1− aq2)...(1− aqk−1)tk

(1− q)(1− q2)(1− q3)...(1− qk)
=

∞
∏

k=0

1− atqk

1− tqk
.

The following extension to nD of the q-binomial theorem was proved in Campbell
[18] and 22 years earlier in his thesis [15]. We begin with the

Definition 7.1. Define the function Fn(t) for all complex numbers a, t with |a|, |t| <
1, and for n ≥ 1 with |x1|, |x2|, ..., |xn| < 1 by the sequence of functions Fn(t) with

(7.3) F0(−; a, t) =
1− at

1− t

and for all of |x1| , |x2| , |x3| , ..., |xn| < 1, by

(7.4) Fn(x1, x2, x3, ..., xn; a, t) =
∏

α1,α2,α3,...,αn≥0

1− xα1
1 xα2

2 ...xαn
n at

1− xα1
1 xα2

2 ...xαn
n t

≡
∞
∑

k=0

nAkt
k

where α1, α2, α3, ..., αn may be all zero.

By the way, note that from this definition the right side of (7.2) is F1(q; a, t), so
it is evident we are working on a generalised q-binomial expression. Next, based
on this definition we can assert the n-space q-binomial theorem, extended making q
redundant replaced by n separate xi variables,

Theorem 7.3. For each |xi| < 1, with 1 ≤ i ≤ n,

(7.5) nAk(x1, x2, x3, ..., xn; a) = det(aij)/k!

where the determinant is of order k, and
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aij =











1−ai−j+1

(1−x1
i−j+1)(1−x2

i−j+1)(1−x3
i−j+1)...(1−xn

i−j+1)
, i ≥ j;

−i, i = j − 1;

0, otherwise.

We write theorem 7.3, restating it as a single equation identity as follows, and
rate it as a distinct theorem for our purposes.

Theorem 7.4. For each |xi| < 1, with 1 ≤ i ≤ n,

(7.6) Fn(x1, x2, x3, ..., xn; a, t) =
∏

α1,α2,α3,...,αn≥0

1− xα1
1 xα2

2 ...xαn
n at

1− xα1
1 xα2

2 ...xαn
n t

= 1 +
1− a

(1− x1) (1− x2) · · · (1− xn)

t

1!

+

∣

∣

∣

∣

∣

1−a
(1−x1)(1−x2)···(1−xn)

−1
1−a2

(1−x1
2)(1−x2

2)···(1−xn
2)

1−a
(1−x1)(1−x2)···(1−xn)

∣

∣

∣

∣

∣

t2

2!

+

∣

∣

∣

∣

∣

∣

∣

1−a
(1−x1)(1−x2)···(1−xn)

−1 0
1−a2

(1−x1
2)(1−x2

2)···(1−xn
2)

1−a
(1−x1)(1−x2)···(1−xn)

−2
1−a3

(1−x1
3)(1−x2

3)···(1−xn
3)

1−a2

(1−x1
2)(1−x2

2)···(1−xn
2)

1−a
(1−x1)(1−x2)···(1−xn)

∣

∣

∣

∣

∣

∣

∣

t3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1−a
(1−x1)(1−x2)···(1−xn)

−1 0 0
1−a2

(1−x1
2)(1−x2

2)···(1−xn
2)

1−a
(1−x1)(1−x2)···(1−xn)

−2 0
1−a3

(1−x1
3)(1−x2

3)···(1−xn
3)

1−a2

(1−x1
2)(1−x2

2)···(1−xr
2)

1−a
(1−x1)(1−x2)···(1−xn)

−3
1−a4

(1−x1
4)(1−x2

4)···(1−xn
4)

1−a3

(1−x1
3)(1−x2

3)···(1−xn
3)

1−a2

(1−x1
2)(1−x2

2)···(1−xn
2)

1−a
(1−x1)(1−x2)···(1−xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

t4

4!

+ etc.

We are now in a position to state the n-dimensional vector partition generalization
of theorem 7.1.

Theorem 7.5. The number of first hyperquadrant nD partitions of vectors into
two parts ♠n(a1, a2, . . . , an), and the number of first hyperquadrant nD partitions of
vectors into three parts ♣n(a1, a2, . . . , an), are generated by the following equations
valid for |zi| < 1, with 1 ≤ i ≤ n,

∞
∑

a1,a2,...,an≥0

♠n(a1, a2, . . . , an)z1
a1z2

a2 · · · znan =
1

2!

∣

∣

∣

∣

∣

1
(1−z1)(1−z2)···(1−zn)

−1
1

(1−z12)(1−z22)···(1−zn2)
1

(1−z1)(1−z2)···(1−zn)

∣

∣

∣

∣

∣

= c1
2 + c2;

where c1 =
1

(1− z1) (1− z2) · · · (1− zn)
and c2 =

1

(1− z21) (1− z22) · · · (1− z2n)
.

Also
∞
∑

a1,a2,...,an

♣n(a1, a2, . . . , an)z1
a1z2

a2 · · · znan

=
1

3!

∣

∣

∣

∣

∣

∣

∣

1
(1−z1)(1−z2)···(1−zn)

−1 0
1

(1−z12)(1−z22)···(1−zn2)
1

(1−z1)(1−z2)···(1−zn)
−2

1
(1−z13)(1−z23)···(1−zn3)

1
(1−z12)(1−z22)···(1−zn2)

1
(1−z1)(1−z2)···(1−zn)

∣

∣

∣

∣

∣

∣

∣
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= c2
3 + 3c1c2 + 2c3; where c1 =

1

(1− z1) (1− z2) · · · (1− zn)
,

c2 =
1

(1− z21) (1− z22) · · · (1− z2n)
and c3 =

1

(1− z31) (1− z32) · · · (1− z3n)
.

PROOF: From the coefficients of t2 respectively t3 and mapping x1 7→ zi in
theorem 7.4 and setting a = 0 we obtain the number of relevant nD partitions into
exactly two parts and exactly three parts. �

Hence, in this section we have demonstrated that in nD first hyperquadrants, the
number of vector partitions into exactly integer m number of parts is derivable to a
closed form of a determinant.

8. First 3D hyperquadrant tableau reduced to a 2D tableau

The set of all lattice points in 3D space first hyperquadrant (extended cube) are
similarly a countable set. The lattice point vectors in nD space first hyperquadrant
comprised of points 〈a1, a2, a3, ..., an〉 with each ai a positive integer is a countable
set.

In 3D the set of first hyperquadrant points can be portrayed as shown below, as
2D horizontal layers or lamina, each one as follows.

(8.1)
...

...
...

...
...

...
... .·

6 〈1, 6, a〉 〈2, 6, a〉 〈3, 6, a〉 〈4, 6, a〉 〈5, 6, a〉 〈6, 6, a〉 · · ·
5 〈1, 5, a〉 〈2, 5, a〉 〈3, 5, a〉 〈4, 5, a〉 〈5, 5, a〉 〈6, 5, a〉 · · ·
4 〈1, 4, a〉 〈2, 4, a〉 〈3, 4, a〉 〈4, 4, a〉 〈5, 4, a〉 〈6, 4, a〉 · · ·
3 〈1, 3, a〉 〈2, 3, a〉 〈3, 3, a〉 〈4, 3, a〉 〈5, 3, a〉 〈6, 3, a〉 · · ·
2 〈1, 2, a〉 〈2, 2, a〉 〈3, 2, a〉 〈4, 2, a〉 〈5, 2, a〉 〈6, 2, a〉 · · ·
1 〈1, 1, a〉 〈2, 1, a〉 〈3, 1, a〉 〈4, 1, a〉 〈5, 1, a〉 〈6, 1, a〉 · · ·

y ↑, x →, z = a 1 2 3 4 5 6 · · ·
where a ∈ {1, 2, 3, . . .}.

In order to count each lattice point vector in the entire first 3D hyperquadrant,
it suffices to count the following vectors 〈a, b, c〉 such that 0 < a < b < c and apply
symmetries. We can start with an arrangement like
(8.2)

etc.
〈1, 3, 6〉 〈2, 3, 7〉 〈3, 6, 7〉 〈4, 6, 8〉 〈5, 6, 9〉 〈6, 8, 9〉 〈7, 8, 10〉 〈8, 9, 10〉
〈1, 2, 6〉 〈2, 5, 6〉 〈3, 5, 7〉 〈4, 5, 8〉 〈5, 7, 8〉 〈6, 7, 9〉 〈7, 8, 9〉
〈1, 4, 5〉 〈2, 4, 6〉 〈3, 4, 7〉 〈4, 6, 7〉 〈5, 6, 8〉 〈6, 7, 8〉
〈1, 3, 5〉 〈2, 3, 6〉 〈3, 5, 6〉 〈4, 5, 7〉 〈5, 6, 7〉
〈1, 2, 5〉 〈2, 4, 5〉 〈3, 4, 6〉 〈4, 5, 6〉
〈1, 3, 4〉 〈2, 3, 5〉 〈3, 4, 5〉
〈1, 2, 4〉 〈2, 3, 4〉
〈1, 2, 3〉

where the bottom entry for ”column a” is 〈a, a+1, a+2〉 and each column has terms
⋃

a<j<k〈a, j, k〉 in an order that exhausts successive k integer terms with respect to
the j terms between a and k. The above arrangement of 3D vectors enables us to
write the generating function
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Theorem 8.1.

(8.3)
∏

0<a<b<c

(1 + xaybzc) = 1 +
∑

0<i<j<k

p3(D; i, j, k)xiyjzk

= (1 + x1y2z3)

(1 + x1y2z4)(1 + x2y3z4)

(1 + x1y3z4)(1 + x2y3z5)(1 + x3y4z5)

(1 + x1y2z5)(1 + x2y4z5)(1 + x3y4z6)(1 + x4y5z6)

(1 + x1y3z5)(1 + x2y3z6)(1 + x3y5z6)(1 + x4y5z7)(1 + x5y6z7)

(1 + x1y4z5)(1 + x2y4z6)(1 + x3y4z7)(1 + x4y6z7)(1 + x5y6z8)(1 + x6y7z8)

(1 + x1y2z6)(1 + x2y5z6)(1 + x3y5z7)(1 + x4y5z8)(1 + x5y7z8)(1 + x6y7z9)(1 + x7y8z9)

etc.

where p3(D; i, j, k) is the number of 3D partitions of 〈i, j, k〉 into distinct vector parts
of type 〈a, b, c〉 such that 0 < a < b < c with positive integer values of a, b, and c.
In other words, p3(D; i, j, k) is the number of 3D partitions into distinct parts from
(8.2).

As a logical companion to theorem 8.1, also easily inferred from our reduction of
3D tableau to 2D tableau (8.2) is the following

Theorem 8.2.

(8.4)
∏

0<a<b<c

1

(1− xaybzc)
= 1 +

∑

0<i<j<k

p3(U; i, j, k)x
iyjzk

=
1

(1− x1y2z3)

1

(1− x1y2z4)(1− x2y3z4)

1

(1− x1y3z4)(1− x2y3z5)(1− x3y4z5)

1

(1− x1y2z5)(1− x2y4z5)(1− x3y4z6)(1− x4y5z6)

1

(1− x1y3z5)(1− x2y3z6)(1− x3y5z6)(1− x4y5z7)(1− x5y6z7)

1

(1− x1y4z5)(1− x2y4z6)(1− x3y4z7)(1− x4y6z7)(1− x5y6z8)(1− x6y7z8)

1

(1− x1y2z6)(1− x2y5z6)(1− x3y5z7)(1− x4y5z8)(1− x5y7z8)(1− x6y7z9)(1− x7y8z9)
etc.

where p3(U; i, j, k) is the number of 3D partitions of 〈i, j, k〉 into unrestricted vector
parts of type 〈a, b, c〉 such that 0 < a < b < c with positive integer values of a, b,
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and c. In other words, p3(U; i, j, k) is the number of 3D partitions into unrestricted
parts from (8.2).

9. 2D and 3D Upper Radial Regions of vectors for partition identities

In the next sections we study 2D and 3D sets of vectors in regions radial from the
origin. A 2D or 3D vector partition is essentially:

(a) a bunch of vector arrows
(b) in order of non-increasing length,
(c) each with positive rational gradients in 2D or in 3D wrt the relevant axes,
(d) joined head to tail
(e) starting at the origin
(f) with ending destination an integer co-ordinate point,
(g) say 〈a, b〉 with a and b both non-negative integers in 2D, or
(h) say 〈a, b, c〉 with a, b and c all non-negative integers in 3D.

The number of arrows in this vector partition is the number of parts of the par-
tition.

Since a vector partition is a partially ordered set summed in a defined way, this
means there are potentially many ways to define the vector partition. Rules used in
defining a vector partition are possibly one or more of:

• non-increasing arrow length (or non-decreasing),
• non-increasing co-ordinate numbering (or non-decreasing) or co-ordinate or-
derings, say X then Y; or Y then X axes,

• non-increasing (respectively non-decreasing) angular measure from an axis
as polar co-ordinate systemic,

• non-increasing (respectively non-decreasing) color gradations.

We consider 2D vectors 〈a, b〉 where 0 < a < b. We mainly look into two types of
such vectors for our vector partition aggregations; both types being in ”radial from
the origin” regions:

(a) All of the 2D vectors 〈a, b〉 where 0 ≤ a < b are in the infinitely extended re-
gion radial from the origin. This may involve examination of defined ”subset
finite patches” of that radial region.

(b) All VPV 2D vectors are 〈a, b〉 where 0 < a < b and gcd(a, b) = 1 are in
the infinitely extended region radial from the origin. This also may involve
examination of defined ”subset finite patches” of that radial region.

Using ”All 2D first quadrant vectors” we have the examples

(9.1)
∏

j,k≥1

1

1− xjyk
=
∏

j,k≥1

{

1 + xjyk + x2jy2k + x3jy3k + . . .
}

=
∑

a,b≥0

p2(a, b)x
ayb.

Here we generate p2(a, b) as the number of partitions of 〈j, k〉 into unrestricted parts
〈a, b〉 with a, b ≥ 0. In this case each partition has a value of 1, so the number of
partitions is unsurprisingly just a count of each partition.
(9.2)
∏

j,k≥1

(

1 +
xjyk

(1− xjyk)2

)

=
∏

j,k≥1

{

1 + xjyk + 2x2jy2k + 3x3jy3k + . . .
}

=
∑

a,b≥0

q2(a, b)x
ayb.

This generates q2(a, b) as a weighted sum of partitions of 〈j, k〉 into unrestricted
parts 〈a, b〉 with a, b ≥ 0. This is a function of a partition applied across all possible
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partitions of 〈j, k〉. In this case each partition is assigned a value (called also a
weight) of

na1
1 na2

2 ...nar
r

for a partition of 〈j, k〉
(〈n1j, n1k〉a1〈n2j, n2k〉a2 ...〈nrj, nrk〉ar),

so the function of partitions (as distinct from number of partitions) on 〈j, k〉 is
derived as a combined function of each partition. So q2(a, b) is a sum of products
∑

na1
1 na2

2 ...nar
r taken over every partition of 〈j, k〉.

(9.3)
∏

j,k≥1

(

1 +
xjyk(1 + xjyk)

(1− xjyk)3

)

=
∏

j,k≥1

{

1 + 12xjyk + 22x2jy2k + 32x3jy3k + . . .
}

=
∑

a,b≥0

r2(a, b)x
ayb.

In this instance r2(a, b) is a sum of products
∑

n2a1
1 n2a2

2 ...n2ar
r taken over every

partition (〈n1j, n1k〉a1〈n2j, n2k〉a2 ...〈nrj, nrk〉ar) of 〈j, k〉.

(9.4)
∏

j,k≥1

(

1 +
xjyk

1− x2jy2k

)

=
∏

j,k≥1

{

1 + xjyk + 3x3jy3k + 5x5jy5k + . . .
}

=
∑

a,b≥0

s2(a, b)x
ayb.

In this case x2(a, b) is a sum of products
∑

(2n1+1)a1(2n2+1)a2 ...(2nr +1)ar taken
over every partition (〈n1j, n1k〉a1〈n3j, n3k〉a2 ...〈n2r+1j, n2r+1k〉ar) of 〈j, k〉.

In the examples that follow here we use gcd(j, k) = 1 abbreviated to (j, k) = 1. It
will become evident that when applying these generating function forms to radial-
from-origin regions over vector partitions, the theory of 〈j, k〉 where (j, k) = 1
simplifies things.
(9.5)

∏

j,k≥1;
(j,k)=1

1

1− xjyk
=
∏

j,k≥1;
(j,k)=1

{

1 + xjyk + x2jy2k + x3jy3k + . . .
}

=
∑

a,b≥0

v2(a, b)x
ayb.

Note that the curly-bracketed term in (9.5) contributes vector parts of rational
gradient j/k with (j, k) = 1 in the first 2D quadrant exactly one part per partition.
So v2(a, b) is the number of partitions of 〈a, b〉 into vectors each part of distinct
positive rational gradient. In traditional integer partition parlance this would say
v2(a, b) is the number of partitions into unrestricted Visible Point Vector (VPV)
parts.

(9.6)
∏

j,k≥1;
(j,k)=1

(

1 +
xjyk

(1− xjyk)2

)

=
∏

j,k≥1;
(j,k)=1

{

1 + xjyk + 2x2jy2k + 3x3jy3k + . . .
}

=
∑

a,b≥0

w2(a, b)x
ayb.
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(9.7)
∏

j,k≥1;
(j,k)=1

(

1 +
xjyk(1 + xjyk)

(1− xjyk)3

)

=
∏

j,k≥1;
(j,k)=1

{

1 + 12xjyk + 22x2jy2k + 32x3jy3k + . . .
}

=
∑

a,b≥0

x2(a, b)x
ayb.

(9.8)
∏

j,k≥1;
gcd(j,k)=1

(

1 +
xjyk

1− x2jy2k

)

=
∏

j,k≥1;
gcd(j,k)=1

{

1 + xjyk + 3x3jy3k + 5x5jy5k + . . .
}

=
∑

a,b≥0

y2(a, b)x
ayb.

We also consider 3D vectors 〈a, b, c〉 where 0 < a < b < c. Again we mainly look
into two types of such vectors for our vector partition aggregations:

(a) All of the 3D vectors 〈a, b, c〉 where 0 < a < b < c are in the infinitely
extended region radial from the origin. This on occasion means examination
of defined ”finite patches” of that radial region.

(b) All of the 3D vectors 〈a, b, c〉 where 0 < a < b < c and gcd(a, b, c) = 1 are in
the infinitely extended region radial from the origin. This on occasion means
examination of defined ”finite patches” of that radial region.

10. Defining 2D Upper Visible Point Vectors in origin-radial regions

These lattice point vectors count the visible from the origin points in the infinite
radial region of the first quadrant bounded by the positive y axis and the line y = x.
The visible lattice points in 3D space are similarly a countable set, and in fact in
nD space with n a positive integer greater than unity. In 3D the set of visible points
can be counted as shown below. In order to count the entire first 3D hyperquadrant
it suffices to count the following vectors 〈a, b, c〉 such that 0 < a < b < c has

A set of identities involving n dimensional visible lattice points was discovered by
Campbell (1994). The visible lattice points in the 2 dimensional first quadrant (see
Weisstein, Eric W. ”Visible Point.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/VisiblePoint.html) correspond to the countable
set of rational numbers between 0 and 1, listed here as

1
2
1
3

2
3

1
4

3
4

1
5

2
5

3
5

4
5

1
6

5
6

1
7

2
7

3
7

4
7

5
7

6
7

1
8

3
8

5
8

7
8

1
9

2
9

4
9

5
9

7
9

8
9

1
10

3
10

7
10

9
10

etc.

giving rise to the visible from the origin vector (VPV) lattice points 〈x, y〉 with
x < y and gcd(x, y) = 1 in the first 2D quadrant.

http://mathworld.wolfram.com/VisiblePoint.html


18 GEOFFREY B CAMPBELL

etc.
〈1, 10〉 〈3, 10〉 〈7, 10〉 〈9, 10〉
〈1, 9〉 〈2, 9〉 〈4, 9〉 〈5, 9〉 〈7, 9〉 〈8, 9〉
〈1, 8〉 〈3, 8〉 〈5, 8〉 〈7, 8〉
〈1, 7〉 〈2, 7〉 〈3, 7〉 〈4, 7〉 〈5, 7〉 〈6, 7〉
〈1, 6〉 〈5, 6〉
〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

These are the countable list of upper first quadrant 2D Visible Point Vectors. That
is, the VPVs in the infinitely extended radial region of the 2D first quadrant above
the line y = x.

11. Examples of 2D VPV finite generating functions

11.1. 2D Distinct Upper VPV Coefficients - Order 2.

(11.1) (1 + xy2) and (1− xy2)

3
∑

r
2 1 1
1 0
0 1 1

y/x 0 1 2

∑

c 1 1

3
∑

r
2 −1 −1
1 0
0 1 1

y/x 0 1 2

∑

c 1 −1

11.2. 2D Distinct Upper VPV Coefficients - Order 3.

(11.2) (1 + xy2)(1 + xy3)(1 + x2y3) and (1− xy2)(1− xy3)(1− x2y3)
∑

r
8 1 1
7 0
6 1 1
5 1 1 2
4 0
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4

∑

c 1 2 2 2 1

∑

r
8 −1 −1
7 0
6 1 1
5 1 1 2
4 0
3 −1 −1 −2
2 −1 −1
1 0
0 1 1

y/x 0 1 2 3 4

∑

c 1 −2 0 2 −1

Note that row totals in the left side grid generate from

(1 + xy2)(1 + xy3)(1 + x2y3) where x = 1,

expanding to

y8 + y6 + 2y5 + 2y3 + y2 + 1.
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Also row totals in the right side grid generate from

(1− xy2)(1− xy3)(1− x2y3) where x = 1,

expanding to

−y8 + y6 + 2y5 − 2y3 − y2 + 1.

Likewise, the left side grid column totals generate from

(1 + xy2)(1 + xy3)(1 + x2y3) where y = 1,

expanding to

x4 + 2x3 + 2x2 + 2x+ 1;

whilst the right side grid column totals generate from

(1− xy2)(1− xy3)(1− x2y3) where y = 1,

expanding to

−x4 + 2x3 − 2x+ 1.

Combinatorial interpretation: Consider the three vectors

(11.3)
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p 2, up(Dvpv, 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct parts
from (11.3). Then

(11.4)

3
∏

k=2

k−1
∏

j=1;
gcd(j,k)=1

(1 + xjyk) =

8
∑

b=2

b−1
∑

a=1

p 2, up(Dvpv, 〈a, b〉)xayb,

and each entry in the left side grid after (11.2) gives each numerical value.
Let p 2,up(Dvpv,odd, 〈a, b〉), denote the number of partitions of 〈a, b〉 into an odd

number of distinct parts from (11.3). Let p 2, up(Dvpv,even, 〈a, b〉), denote the number
of partitions of 〈a, b〉 into an even number of distinct parts from (11.3).Then
(11.5)

3
∏

k=2

k−1
∏

j=1;
gcd(j,k)=1

(1 + xjyk) =

8
∑

b=2

b−1
∑

a=1

[p 2, up(Dvpv,odd, 〈a, b〉)− p 2,up(Dvpv,even, 〈a, b〉)]xayb,

and each entry in the right side grid after (11.2) gives each numerical value.

11.3. 2D Distinct Upper VPV Coefficients - Order 4.

(11.6) (1 + xy2)(1 + xy3)(1 + x2y3)(1 + xy4)(1 + x3y4)
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∑

r
16 1 1
15 0
14 1 1
13 1 1 2
12 1 1 2
11 1 1 2
10 1 1 1 3
9 1 1 1 1 4
8 2 2
7 1 1 1 1 4
6 1 1 1 3
5 1 1 2
4 1 1 2
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8

∑

c 1 3 4 5 6 5 4 3 1

Note that column totals generate from

(1 + xy2)(1 + xy3)(1 + x2y3)(1 + xy4)(1 + x3y4) where y = 1,

expanding to

x8 + 3x7 + 4x6 + 5x5 + 6x4 + 5x3 + 4x2 + 3x+ 1.

Likewise, row totals generate from

(1 + xy2)(1 + xy3)(1 + x2y3)(1 + xy4)(1 + x3y4) where x = 1,

expanding to

y16 + y14 + 2y13 + 2y12 + 2y11 + 3y10 + 4y9

+2y8 + 4y7 + 3y6 + 2y5 + 2y4 + 2y3 + y2 + 1.

Combinatorial interpretation: Consider the aggregate of vectors

(11.7)
〈1, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p 2, up(Dvpv, 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct parts
from (11.7). Then

(11.8)
4
∏

k=2

k−1
∏

j=1;
gcd(j,k)=1

(1 + xjyk) =
20
∑

b=2

b−1
∑

a=1

p 2, up(Dvpv, 〈a, b〉)xayb,

and each entry in the grid after (11.6) above gives each numerical value.
We continue in this way by considering the generating function

(11.9) (1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x3y4)
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which expanded gives us the grid,
∑

r
16 −1 −1
15 0
14 1 1
13 1 1 2
12 1 1 2
11 −1 −1 −2
10 −1 −1 −1 −3
9 −1 −1 −1 −1 −4
8 2 2
7 1 1 1 1 4
6 1 1 1 3
5 1 1 2
4 −1 −1 −2
3 −1 −1 −2
2 −1 −1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8

∑

c 1 −3 2 1 2 −1 −2 3 −1

Note that column totals generate from

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x3y4) where y = 1,

expanding to
−x8 + 3x7 − 2x6 − x5 + x3 + 2x2 − 3x+ 1.
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Likewise, row totals generate from

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x3y4) where x = 1,

expanding to

−y16 + y14 + 2y13 + 2y12 − 2y11 − 3y10 − 4y9 + 4y7 + 3y6 + 2y5 − 2y4 − 2y3 − y2 + 1.

Combinatorial interpretation: Consider the aggregate of vectors

(11.10)
〈1, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p 2,up(D(vpv,odd); 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct odd
number of parts from (11.7). Also let p 2, up(D(vpv,even); 〈a, b〉), denote the number of
partitions of 〈a, b〉 into distinct even number of parts from (11.7).Then
(11.11)
4
∏

k=2

k−1
∏

j=1;
gcd(j,k)=1

(1−xjyk) =
20
∑

b=2

b−1
∑

a=1

[p 2,up(D(vpv,odd); 〈a, b〉)−p 2,up(D(vpv,even); 〈a, b〉)]xayb,

and each entry in the grid after (11.9) above gives each numerical value.

11.4. 2D Distinct Upper VPV Coefficients - Order 5.

(1+xy2)(1+xy3)(1+x2y3)(1+xy4)(1+x3y4)(1+xy5)(1+x2y5)(1+x3y5)(1+x4y5)
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generates the grid
∑

r
36 1 1
35 0
34 1 1
33 1 1 2
32 1 1 2
31 1 2 2 1 6
30 1 1 1 3
29 2 2 2 2 8
28 1 2 4 2 1 10
27 1 2 3 3 2 1 12
26 2 4 5 4 2 17
25 1 2 4 4 2 1 14
24 1 3 5 6 5 3 1 24
23 1 4 6 6 4 1 22
22 2 3 6 7 6 3 2 29
21 2 5 7 7 5 2 28
20 1 3 6 7 6 3 1 27
19 1 3 6 8 8 6 3 1 36
18 4 6 8 6 4 28
17 1 3 6 8 8 6 3 1 36

16 1 3 6 7 6 3 1 27
15 2 5 7 7 5 2 28
14 2 3 6 7 6 3 2 29
13 1 4 6 6 4 1 22
12 1 3 5 6 5 3 1 24
11 1 2 4 4 2 1 14
10 2 4 5 4 2 17
9 1 2 3 3 2 1 12
8 1 2 4 2 1 10
7 2 2 2 2 8
6 1 1 1 3
5 1 2 2 1 6
4 1 1 2
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

∑

c 1 4 8 14 23 32 41 50 55 56 55 50 41 32 23 14 8 4 1

Note that column totals generate from

(1+xy2)(1+xy3)(1+x2y3)(1+xy4)(1+x3y4)(1+xy5)(1+x2y5)(1+x3y5)(1+x4y5)

where y = 1, expanding to

1 + 4x+ 8x2 + 14x3 + 23x4 + 32x5 + 41x6 + 50x7 + 55x8 + 56x9 + 55x10 + 50x11

+41x12 + 32x13 + 23x14 + 14x15 + 8x16 + 4x17 + x18.

Likewise, row totals generate from

(1+xy2)(1+xy3)(1+x2y3)(1+xy4)(1+x3y4)(1+xy5)(1+x2y5)(1+x3y5)(1+x4y5)

where x = 1, expanding to

1 + y2 + 2y3 + 2y4 + 6y5 + 3y6 + 8y7 + 10y8 + 12y9 + 17y10 + 14y11

+24y12 + 22y13 + 29y14 + 28y15 + 27y16 + 36y17 + 28y18 + 36y19

+27y20 + 28y21 + 29y22 + 22y23 + 24y24 + 14y25 + 17y26 + 12y27

+10y28 + 8y29 + 3y30 + 6y31 + 2y32 + 2y33 + y34 + y36.
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Combinatorial interpretation: Consider the aggregate of vectors

(11.12)

〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p 2,vpv(D, 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct parts from
(11.12). Then we have the generating function

(11.13)

5
∏

k=2

k−1
∏

j=1;
gcd(j,k)=1

(1 + xjyk) =

36
∑

b=2

b−1
∑

a=1

p 2,vpv(D, 〈a, b〉)xayb,

encoding all possible partitions of this kind, so each entry in the previous page
18× 36 grid gives all numerical values of p2(D, 〈a, b〉).

Next we see that
(11.14)
(1−xy2)(1−xy3)(1−x2y3)(1−xy4)(1−x3y4)(1−xy5)(1−x2y5)(1−x3y5)(1−x4y5)

is a generating function for the grid
∑

r
36 −1 −1
35 0
34 1 1
33 1 1 2
32 1 1 2
31 1 1 2
30 −1 −1 −1 −3
29 −2 −2 −2 −2 −8
28 −1 −2 −2 −2 −1 −8
27 −1 −1 −1 −1 −4
26 2 1 2 5
25 1 2 4 4 2 1 14
24 1 3 3 6 3 3 1 20
23 1 2 2 2 2 1 10
22 −1 −3 −1 −5
21 −2 −3 −5 −5 −3 −2 −20

20 −1 −3 −6 −5 −6 −3 −1 −25
19 −1 −1 4 −4 −4 −4 −1 −1 −20
18 0
17 1 1 4 4 4 4 1 1 20
16 1 3 6 5 6 3 1 25
15 2 3 5 5 3 2 20
14 1 3 1 5
13 −1 −2 −2 −2 −2 −1 −10
12 −1 −3 −3 −6 −3 −3 −1 −20
11 −1 −2 −4 −4 −2 −1 −14
10 −2 −1 −2 −5
9 1 1 1 1 4
8 1 2 2 2 1 8
7 2 2 2 2 8
6 1 1 1 3
5 −1 −1 −2
4 −1 −1 −2
3 −1 −1 −2
2 −1 −1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

∑

c 1 −4 4 2 −3 0 −7 10 −1 0 1 −10 7 0 3 −2 −4 4 −1
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Note that column totals generate from

(1−xy2)(1−xy3)(1−x2y3)(1−xy4)(1−x3y4)(1−xy5)(1−x2y5)(1−x3y5)(1−x4y5),

where y = 1 expanding to

1− 4x+ 4x2 + 2x3 − 3x4 − 7x6 + 10x7 − x8 + x10 − 10x11

+7x12 + 3x14 − 2x15 − 4x16 + 4x17 − x18.

Likewise, row totals generate from

(1−xy2)(1−xy3)(1−x2y3)(1−xy4)(1−x3y4)(1−xy5)(1−x2y5)(1−x3y5)(1−x4y5),

where x = 1 expanding to

1− y2 − 2y3 − 2y4 − 2y5 + 3y6 + 8y7 + 8y8 + 4y9 − 5y10 − 14y11

−20y12 − 10y13 + 5y14 + 20y15 + 25y16 + 20y17 − 20y19 − 25y20

−20y21 − 5y22 + 10y23 + 20y24 + 14y25 + 5y26 − 4y27 − 8y28

−8y29 − 3y30 + 2y31 + 2y32 + 2y33 + y34 − y36.

Combinatorial interpretation: Consider the aggregate of vectors

(11.15)

〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p 2, up(D(vpv,odd); 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct odd
number of parts from (11.15). Also let p 2,up(D(vpv,even); 〈a, b〉), denote the number
of partitions of 〈a, b〉 into distinct even number of parts from (11.15).Then
(11.16)
5
∏

k=2

k−1
∏

j=1;
gcd(j,k)=1

(1−xjyk) =
36
∑

b=2

b−1
∑

a=1

[p 2,up(D(vpv,odd); 〈a, b〉)−p 2,up(D(vpv,even); 〈a, b〉)]xayb,

and each entry in the grid after (11.14) above gives each numerical value.

11.5. 2D weighted Upper VPV Coefficients - Order 5. The following product

is five of the factors in the known VPV infinite product for
(

1−y
1−xy

)
1

1−x
.

(11.17) (1− xy2)1/2

(1− xy3)1/3(1− x2y3)1/3

(1− xy4)1/4(1− x3y4)1/4

(1− xy5)1/5(1− x2y5)1/5(1− x3y5)1/5(1− x4y5)1/5.

This product is encoded by the grid
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∑

r

13
...

...
...

...
...

...
...

...
12 −301

9600
−163279
1555200

86923
3110400

360869
2073600

86923
3110400

−163279
1555200

−301
9600

−2431243
6220800

11 41
1440

127
3240

−899
17280

−899
17280

127
3240

41
1440

811
25920

10 −2
25

1171
14400

−1511
14400

23
6400

−1511
14400

1171
14400

−2
25

−12143
57600

9 1
20

−23
810

61
432

61
432

−23
810

1
20

211/648
8 −13

480
317
1440

583
5760

317
1440

−13
480

2807/5760
7 11

60
9
40

9
40

11
60

49/60
6 1

72
1

144
1
72

11/144
5 −1

5
−1
30

−1
30

−1
5

−7/15
4 1

4
1
8

1
4

−5/8
3 −1

3
−1
3

−2/3
2 −1

2
−1/2

1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9

∑

c 1 −77
60

−2531
7200

. . . see below

Note that column totals generate from

(1− xy2)1/2(1− xy3)1/3(1− x2y3)1/3(1− xy4)1/4(1− x2y4)1/4(1− x3y4)1/4

(1− xy5)1/5(1− x2y5)1/5(1− x3y5)1/5(1− x4y5)1/5 where y = 1,

expanding to

1− 77

60
x− 2531

7200
x2+

360127

1296000
x3+

54348601

311040000
x4+

52396725643

93312000000
x5− 15725249008811

33592320000000
x6

+
536095858573681

2015539200000000
x7 − 221227534655582777

967458816000000000
x8 − 15078454659730017851

522427760640000000000
x9

+
55218367281675862901707

313456656384000000000000
x10 +O(x11)

However, only the first three grid columns are complete. Likewise, row totals
generate from

(1− xy2)1/2(1− xy3)1/3(1− x2y3)1/3(1− xy4)1/4(1− x2y4)1/4(1− x3y4)1/4

(1− xy5)1/5(1− x2y5)1/5(1− x3y5)1/5(1− x4y5)1/5 where x = 1,

expanding to

1− 1

2
y2 − 2

3
y3 − 5

8
y4 − 7

15
y5 +

11

144
y6 +

49

60
y7 +

2807

5760
y8 +

211

648
y9 − 12143

57600
y10

+
811

25920
y11 − 2431243

6220800
y12 +

19889

259200
y13 +

626597

2488320
y14 − 7647377

46656000
y15 +O(y15).
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Combinatorial interpretation: Consider the sub-aggregate of the countable
list of upper first quadrant 2D Visible Point Vectors.

(11.18)

〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p 2,up(W, 〈a, b〉), denote the weighted sum of partitions of 〈a, b〉 into parts of

the form
(

1/k
n

)

〈j, k〉 for integers n ≥ 0, with 1 ≤ j < k ≤ 5, gcd(j, k) = 1, so that
each 〈j, k〉 from (11.18). Then

(11.19)

5
∏

k=2

k−1
∏

j=1,
gcd(j,k)=1

(1− xjyk)1/k =

∞
∑

b=2

b−1
∑

a=1

p 2,up(W, 〈a, b〉)xayb,

and each entry in the grid after (11.17) gives each numerical value of p 2,up(W, 〈a, b〉).
While the above argument of partitions of vectors looks a bit disheveled and

onerous, a priori there is another interpretation which appears more natural.

The Light Diffusion Model: Consider the following mapping of the (11.18)
vectors plus the origin point 〈0, 0〉, where each ◦ is considered as an infinitesimal
small lens that receives light intensity Ln, and radiates it out at intensity Ln+1 with
each Ln+1 = f(Ln). ie. Ln+1 is a function of Ln.

(11.20)

5 〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
4 〈1, 4〉 〈3, 4〉
3 〈1, 3〉 〈2, 3〉
2 〈1, 2〉
1
0 〈0, 0〉

y/x 0 1 2 3 4

7→

5 ↑ ◦ ◦ ◦ ◦
4 ↑ ◦ ◦ ր
3 ↑ ◦ ◦ ր
2 ↑ ◦ ր
1 ↑ ր
0 ◦

y/x 0 1 2 3 4

Suppose the origin lens ◦ radiates with intensity Υ upward along x = 0 and across
to the diagonal y = x in the radial region between lines. The arrows in the right
side grid here depict this phenomenon. Each visible point designated by vectors
〈a, b〉 (with gcd(a, b) = 1 and 1 ≤ a < b ≤ 5) will receive the light ray at intensity
Υ, then in turn radiate that light onward in the same shaped radial upward sector
around to the diagonal with intensity f(Υ), where f is some defined function. Each
lens receiving light transmits that light further to a point visible to it with a new
intensity of f(f(Υ)).

The product generating function (11.17) for our present exercise gives us a means
to examine light intensity radiating from an initial point, the origin, and extending
via visible points in a radial region from the origin. The Visible Point Vector (VPV)
identities can be construed as encoding this type of light diffusion.

12. Defining radial from origin region 2D Upper All Vectors aggregates

These are all lattice point vectors count in the infinite radial region of the first
quadrant bounded by the positive y axis and the line y = x. The visible lattice points
in 3D space are similarly a countable set, and so also are the n-component Vectors
in nD space with n a positive integer greater than unity. In order to count the
entire first 3D hyperquadrant comprising all a, b, and c positive integer components
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of 〈a, b, c〉 it suffices to count the following vectors 〈a, b, c〉 such that 0 < a < b < c
and apply symmetries in ways to be shown later in this paper.

A set of identities involving n dimensional visible lattice points were discovered
by Campbell (1994). However, there has not been any emphasis on the all vector
analogues of the VPV identities, despite it seeming to be an important area of
research requiring a clear framework base from which to launch researches.

The Upper All Vector (UAV) lattice points 〈x, y〉 with x < y in the first 2D
quadrant are:

etc.
〈1, 10〉 〈2, 10〉 〈3, 10〉 〈4, 10〉 〈5, 10〉 〈6, 10〉 〈7, 10〉 〈8, 10〉 〈9, 10〉
〈1, 9〉 〈2, 9〉 〈3, 9〉 〈4, 9〉 〈5, 9〉 〈6, 9〉 〈7, 9〉 〈8, 9〉
〈1, 8〉 〈2, 8〉 〈3, 8〉 〈4, 8〉 〈5, 8〉 〈6, 8〉 〈7, 8〉
〈1, 7〉 〈2, 7〉 〈3, 7〉 〈4, 7〉 〈5, 7〉 〈6, 7〉
〈1, 6〉 〈2, 6〉 〈3, 6〉 〈4, 6〉 〈5, 6〉
〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈2, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

These are the countable list of upper first quadrant 2D Vectors. That is, the vectors
in the infinitely extended radial region of the 2D first quadrant between the y-axis
and the line y = x.

13. Examples of 2D Upper All Vectors finite generating functions

13.1. 2D Distinct Upper All Vectors Coefficients - Order 2. Note that for
Orders 2 and 3 the Upper All Vectors set is identical to the Upper VPSs.

(13.1) (1 + xy2) and (1− xy2)

3
∑

r
2 1 1
1 0
0 1 1

y/x 0 1 2

∑

c 1 1

3
∑

r
2 −1 −1
1 0
0 1 1

y/x 0 1 2

∑

c 1 −1

13.2. 2D Distinct Upper All Vectors Coefficients - Order 3. Note that for
Order 3 the Upper All Vectors set is identical to the Upper VPVs set.

(13.2) (1 + xy2)(1 + xy3)(1 + x2y3) and (1− xy2)(1− xy3)(1− x2y3)
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∑

r
8 1 1
7 0
6 1 1
5 1 1 2
4 0
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4

∑

c 1 2 2 2 1

∑

r
8 −1 −1
7 0
6 1 1
5 1 1 2
4 0
3 −1 −1 −2
2 −1 1
1 0
0 1 1

y/x 0 1 2 3 4

∑

c 1 −2 0 2 −1

13.3. 2D Distinct Upper All Vectors Coefficients - Order 4.

(13.3) (1 + xy2)(1 + xy3)(1 + x2y3)(1 + xy4)(1 + x2y4)(1 + x3y4)
∑

r
20 1 1
19 0
18 1 1
17 1 1 2
16 1 1 1 3
15 1 1 2
14 1 2 1 4
13 1 2 2 1 6
12 1 2 1 4
11 1 2 2 1 6
10 2 2 2 6
9 1 2 2 1 6
8 1 2 1 4
7 1 2 2 1 6
6 1 2 1 4
5 1 1 2
4 1 1 1 3
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10

∑

c 1 3 5 8 10 10 10 8 5 3 1

Note that column totals generate from

(1 + xy2)(1 + xy3)(1 + x2y3)(1 + xy4)(1 + x2y4)(1 + x3y4) where y = 1,

expanding to

x10 + 3x9 + 5x8 + 8x7 + 10x6 + 10x5 + 10x4 + 8x3 + 5x2 + 3x+ 1.
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Likewise, row totals generate from

(1 + xy2)(1 + xy3)(1 + x2y3)(1 + xy4)(1 + x2y4)(1 + x3y4) where x = 1,

expanding to

y20 + y18 + 2y17 + 3y16 + 2y15 + 4y14 + 6y13 + 4y12 + 6y11

+6y10 + 6y9 + 4y8 + 6y7 + 4y6 + 2y5 + 3y4 + 2y3 + y2 + 1.

Combinatorial interpretation: Consider the aggregate of vectors

(13.4)
〈1, 4〉 〈2, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p2(D, 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct parts from
(13.4). Then

(13.5)

4
∏

k=2

k−1
∏

j=1

(1 + xjyk) =

20
∑

b=2

b−1
∑

a=1

p2(D, 〈a, b〉)xayb,

and each entry in the grid after (13.3) above gives each numerical value.

Next we consider the following product

(13.6) (1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x2y4)(1− x3y4)

which is the generating function for the grid
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∑

r
20 1 1
19 0
18 −1 −1
17 −1 −1 −2
16 −1 −1 1 −3
15 1 1 2
14 1 2 1 4
13 1 2 2 1 6
12 1 1 2
11 −1 −2 −2 −1 −6
10 −2 −2 −2 −6
9 −1 −2 −2 −1 −6
8 1 1 2
7 1 2 2 1 6
6 1 2 1 4
5 1 1 2
4 −1 −1 −1 −3
3 −1 −1 −2
2 −1 −1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10

∑

c 1 −3 1 4 −2 −2 −2 4 1 −3 1

We see that column totals generate from

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x2y4)(1− x3y4) where y = 1,

expanding to

x10 − 3x9 + x8 + 4x7 − 2x6 − 2x5 − 2x4 + 4x3 + x2 − 3x+ 1.

Likewise, row totals generate from

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x2y4)(1− x3y4) where x = 1,

expanding to

y20 − y18 − 2y17 − 3y16 + 2y15 + 4y14 + 6y13 + 2y12 − 6y11

−6y10 − 6y9 + 2y8 + 6y7 + 4y6 + 2y5 − 3y4 − 2y3 − y2 + 1.

Combinatorial interpretation: Consider the aggregate of vectors

(13.7)
〈1, 4〉 〈2, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p2, e(D, 〈a, b〉), respectively p2, o(D, 〈a, b〉), denote the number of partitions of
〈a, b〉 from (13.7) into an even respectively odd number of distinct parts. Then

(13.8)

4
∏

k=2

k−1
∏

j=1

(1− xjyk) =

20
∑

b=2

b−1
∑

a=1

[p2, e(D, 〈a, b〉)− p2, o(D, 〈a, b〉)]xayb,
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and each entry in the grid after (13.6) above gives each numerical value.

13.4. 2D Unrestricted Upper All Vectors Partitions - Order 4.

(13.9)
1

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x2y4)(1− x3y4)

encodes the following part sector of the infinitely extended radial grid

...
...

...
...

...
...

...
...

...
∑

r
20 1 4 11 21 31 37 31 21 11 4 173
19 1 1 5 12 21 28 21 12 5 1 134
18 2 7 15 23 28 23 15 7 2 122
17 2 7 14 20 20 14 7 2 86
16 1 4 10 17 21 17 10 4 1 85
15 1 5 10 15 15 10 5 1 62
14 2 6 12 15 12 6 2 55
13 2 6 10 10 6 2 36
12 1 4 8 11 8 4 1 37
11 1 4 7 7 4 1 24
10 2 5 8 5 2 22
9 2 4 4 2 12
8 1 3 5 3 1 13
7 1 3 3 1 8
6 2 3 2 7
5 1 1 2
4 1 2 1 4
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

∑

c 1 3 8 17 33 58 97 153 233 342 489 681 930 1245 1641

Note that column totals generate from

1

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x2y4)(1− x3y4)
where y = 1,

expanding to

1 + 3x+ 8x2 + 17x3 + 33x4 + 58x5 + 97x6 + 153x7 + 233x8 + 342x9

+489x10 + 681x11 + 930x12 + 1245x13 + 1641x14 + 2130x15 + 2730x16

+3456x17 + 4330x18 +O(x19)

Likewise, row totals generate from

1

(1− xy2)(1− xy3)(1− x2y3)(1− xy4)(1− x2y4)(1− x3y4)
where x = 1,

expanding to

1 + y2 + 2y3 + 4y4 + 2y5 + 7y6 + 8y7 + 13y8 + 12y9 + 22y10 + 24y11 + 37y12
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+36y13 + 55y14 + 62y15 + 85y16 + 86y17 + 122y18 + 134y19 + 173y20 + 182y21

+239y22 + 260y23 + 326y24 + 344y25 + 431y26 + 470y27 + 569y28 + 602y29

+734y30 + 794y31 + 938y32 +O(y33)

Combinatorial interpretation: Consider the aggregate of vectors

(13.10)
〈1, 4〉 〈2, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p2,up(U, 〈a, b〉), denote the number of partitions of 〈a, b〉 into unrestricted parts
from (13.10). Then

(13.11)
4
∏

k=2

k−1
∏

j=1

1

(1− xjyk)
=

∞
∑

b=2

b−1
∑

a=1

p2,up(U, 〈a, b〉)xayb,

and each entry in the grid after (13.9) above gives each numerical value.
Observable Features. Just quickly inspecting the grid suggests the following

points for the 2D Unrestricted Upper All Vectors Partitions of Order 4:

(a) The grid table extends indefinitely and therefore is not simply a finite patch
as are most of the distinct partitions grids so far given.

(b) The grid bounds are best defined by the radial region between the lines y = 4x
and y = x with some of the vectors actually on y = 4x.

(c) Each row of number entries is a symmetric finite sequence.

13.5. 2D Distinct Upper All Vectors Coefficients - Order 5.

(1+xy2)(1+xy3)(1+x2y3)(1+xy4)(1+x2y4)(1+x3y4)(1+xy5)(1+x2y5)(1+x3y5)(1+x4y5)
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is encoded by the grid
∑

r
40 1 1
39 0
38 1 1
37 1 1 2
36 1 1 1 3
35 1 2 2 1 6
34 1 2 1 4
33 2 3 3 2 10
32 1 3 4 3 1 12
31 1 3 5 5 3 1 18
30 2 5 6 5 2 20
29 1 4 6 6 4 1 8
28 1 4 7 10 7 4 1 34
27 2 6 9 9 6 2 34
26 2 5 10 12 10 5 2 46
25 3 7 11 11 7 3 42
24 2 6 11 13 11 6 2 51
23 1 4 10 14 14 10 4 1 58

22 2 7 12 15 12 7 2 53
21 1 5 11 15 15 11 5 1 64
20 2 6 12 14 12 6 2 54
19 1 5 11 15 15 11 5 1 64
18 2 7 12 15 12 7 2 57
17 1 4 10 14 14 10 4 1 58
16 2 6 11 13 11 6 2 51
15 3 7 11 11 7 3 42
14 2 5 10 12 10 5 2 46
13 2 6 9 9 6 2 34
12 1 4 7 10 7 4 1 34
11 1 4 6 6 4 1 22
10 2 5 6 5 2 20
9 1 3 5 5 3 1 18
8 1 3 4 3 1 12
7 2 3 3 2 10
6 1 2 1 4
5 1 2 2 1 6
4 1 2 1 4
3 1 1 2
2 1 1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

∑

c 1 4 9 18 31 46 64 82 96 106 110 106 96 82 64 46 31 18 9 4 1

Note that column totals generate from

(1+xy2)(1+xy3)(1+x2y3)(1+xy4)(1+x2y4)(1+x3y4)(1+xy5)(1+x2y5)(1+x3y5)(1+x4y5)

where y = 1, expanding to

x20 + 4x19 + 9x18 + 18x17 + 31x16 + 46x15 + 64x14 + 82x13 + 96x12 + 106x11

+110x10 + 106x9 + 96x8 + 82x7 + 64x6 + 46x5 + 31x4 + 18x3 + 9x2 + 4x+ 1.

Likewise, row totals generate from again

(1+xy2)(1+xy3)(1+x2y3)(1+xy4)(1+x2y4)(1+x3y4)(1+xy5)(1+x2y5)(1+x3y5)(1+x4y5)

where x = 1, expanding to

1 + y2 + 2y3 + 3y4 + 6y5 + 4y6 + 10y7 + 12y8 + 18y9 + 20y10 + 22y11 + 34y12

+34y13 + 46y14 + 42y15 + 51y16 + 58y17 + 57y18 + 64y19 + 54y20 + 64y21

+57y22 + 58y23 + 51y24 + 42y25 + 46y26 + 34y27 + 34y28 + 22y29 + 20y30
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+18y31 + 12y32 + 10y33 + 4y34 + 6y35 + 3y36 + 2y37 + y38 + y40.

Combinatorial interpretation: Consider the aggregate of vectors

(13.12)

〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈2, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p2(D, 〈a, b〉), denote the number of partitions of 〈a, b〉 into distinct parts from
(13.12). Then we have the generating function

(13.13)
4
∏

k=2

k−1
∏

j=1

(1 + xjyk) =
20
∑

b=2

b−1
∑

a=1

p2(D, 〈a, b〉)xayb,

encoding all possible partitions of this kind, so each entry in the previous page
20× 40 grid gives all numerical values of p2(D, 〈a, b〉).

Next we see that

(1−xy2)(1−xy3)(1−x2y3)(1−xy4)(1−x2y4)(1−x3y4)(1−xy5)(1−x2y5)(1−x3y5)(1−x4y5)

is encoded by the grid
∑

r
36 −1 −1
35 0
34 1 1
33 1 1 2
32 1 1 2
31 1 1 2
30 −1 −2 −1 −3
29 −2 −2 −2 −2 −8
28 −1 −2 −2 −2 −1 −8
27 −1 −1 −1 −1 −4
26 2 1 2 5
25 1 2 4 4 2 1 14
24 1 3 3 6 3 3 1 20
23 1 2 2 2 2 1 10
22 −1 −3 −1 −5
21 −2 −3 −5 −5 −3 −2 −20

20 −1 −3 −6 −5 −6 −3 −1 −25
19 −1 −1 4 −4 −4 −4 −1 −1 −20
18 0
17 1 1 4 4 4 4 1 1 20
16 1 3 6 5 6 3 1 25
15 2 3 5 5 3 2 20
14 1 3 1 5
13 −1 −2 −2 −2 −2 −1 −10
12 −1 −3 −3 −6 −3 −3 −1 −20
11 −1 −2 −4 −4 −2 −1 −14
10 −2 −1 −2 −5
9 1 1 1 1 4
8 1 3 2 3 1 10
7 2 3 3 2 8
6 1 2 1 3
5 −1 −1 −2
4 −1 −1 −2
3 −1 −1 −2
2 −1 −1
1 0
0 1 1

y/x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

∑

c 1 −4 4 2 −3 0 −7 10 −1 0 1 −10 7 0 3 −2 −4 4 −1
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Note that column totals generate from

(1−xy2)(1−xy3)(1−x2y3)(1−xy4)(1−x2y4)(1−x3y4)(1−xy5)(1−x2y5)(1−x3y5)(1−x4y5)

where y = 1, expanding to

1− 4x+ 3x2 + 6x3 − 7x4 − 2x5 − 4x6 + 10x7 + 6x8 − 10x9 + 2x10 − 10x11

+6x12 + 10x13 − 4x14 − 2x15 − 7x16 + 6x17 + 3x18 − 4x19 + x20.

Likewise, row totals generate from again

(1−xy2)(1−xy3)(1−x2y3)(1−xy4)(1−x2y4)(1−x3y4)(1−xy5)(1−x2y5)(1−x3y5)(1−x4y5)

where x = 1, expanding to

1− y2 − 2y3 − 3y4 − 2y5 + 4y6 + 10y7 + 10y8 + 6y9 − 8y10 − 22y11 − 28y12

−14y13 + 10y14 + 34y15 + 45y16 + 30y17 − 5y18 − 40y19 − 50y20 − 40y21

−5y22 + 30y23 + 45y24 + 34y25 + 10y26 − 14y27 − 28y28 − 22y29 − 8y30

+6y31 + 10y32 + 10y33 + 4y34 − 2y35 − 3y36 − 2y37 − y38 + y40.

Combinatorial interpretation: Consider the aggregate of vectors

(13.14)

〈1, 5〉 〈2, 5〉 〈3, 5〉 〈4, 5〉
〈1, 4〉 〈2, 4〉 〈3, 4〉
〈1, 3〉 〈2, 3〉
〈1, 2〉

Let p(2,e)(D, 〈a, b〉), denote the number of partitions of 〈a, b〉 into an even number
of distinct parts from (13.14). Let p(2,o)(D, 〈a, b〉), denote the number of partitions
of 〈a, b〉 into an odd number of distinct parts from (13.14). Then we have the
generating function

(13.15)
4
∏

k=2

k−1
∏

j=1

(1− xjyk) =
20
∑

b=2

b−1
∑

a=1

[p(2,e)(D, 〈a, b〉)− p(2,o)(D, 〈a, b〉)]xayb,

encoding all 20× 40 grid numerical values of p(2,e)(D, 〈a, b〉)− p(2,o)(D, 〈a, b〉), with
respect to 〈a, b〉).

14. Introducing the VPV identities

In the 1990s and up to 2000 the author published a series of papers introducing
the so-called Visible Point Vector (VPV) identities. In these papers such as for
example Campbell [13], [14], [16], the identities of the present note were given.
They attracted some interest, but most people did not see them as much more than
curiosities. Perhaps the proofs in the early papers were too obscure or cryptic. So,
our approach here is to introduce the deeper n-dimensional identities by first trying
to simply derive the easier 2-dimensional VPV identities.
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15. Deriving the 2D first quadrant VPV identity.

We will derive the 2D VPV identity for the first quadrant integer lattice points.
Let (j, k) = 1 mean that j and k are coprime integers. We see that

( ∞
∑

m=1

ym

ma

)( ∞
∑

n=1

zn

nb

)

=

(

y1

1a
+

y2

2a
+

y3

3a
+

y4

4a
+

y5

5a
+

y6

6a
+

y7

7a
+ · · ·

)(

z1

1b
+

z2

2b
+

z3

3b
+

z4

4b
+

z5

5b
+

z6

6b
+

z7

7b
+ · · ·

)

=
y1z1

1a1b
+

y2z1

2a1b
+

y3z1

3a1b
+

y4z1

4a1b
+

y5z1

5a1b
+

y6z1

6a1b
+

y7z1

7a1b
+ · · ·

+
y1z2

1a2b
+

y2z2

2a2b
+

y3z2

3a2b
+

y4z2

4a2b
+

y5z2

5a2b
+

y6z2

6a2b
+

y7z2

7a2b
+ · · ·

+
y1z3

1a3b
+

y2z3

2a3b
+

y3z3

3a3b
+

y4z3

4a3b
+

y5z3

5a3b
+

y6z3

6a3b
+

y7z3

7a3b
+ · · ·

+
y1z4

1a4b
+

y2z4

2a4b
+

y3z4

3a4b
+

y4z4

4a4b
+

y5z4

5a4b
+

y6z4

6a4b
+

y7z4

7a4b
+ · · ·

+
y1z5

1a5b
+

y2z5

2a5b
+

y3z5

3a5b
+

y4z5

4a5b
+

y5z5

5a5b
+

y6z5

6a5b
+

y7z5

7a5b
+ · · ·

+
y1z6

1a6b
+

y2z6

2a6b
+

y3z6

3a6b
+

y4z6

4a6b
+

y5z6

5a6b
+

y6z6

6a6b
+

y7z6

7a6b
+ · · ·

+
y1z7

1a7b
+

y2z7

2a7b
+

y3z7

3a7b
+

y4z7

4a7b
+

y5z7

5a7b
+

y6z7

6a7b
+

y7z7

7a7b
+ · · ·

+
... +

... +
... +

... +
... +

... +
...

. . .

=
∞
∑

m,n≥1

ymzn

manb

=
∞
∑

h≥1
(j,k)=1

(yjzk)h

ha+b(jakb)

=

∞
∑

(j,k)=1

1

(jakb)

∞
∑

h=1

(yjzk)h

ha+b

=

∞
∑

(j,k)=1

1

(jakb)
log

(

1

1− yjzk

)

if a + b = 1.

Therefore, we have shown that
( ∞
∑

m=1

ym

ma

)( ∞
∑

n=1

zn

nb

)

=

∞
∑

(j,k)=1

1

(jakb)
log

(

1

1− yjzk

)

if a + b = 1.

Exponentiating both sides gives us the 2D first quadrant VPV identity,

(15.1)
∏

(j,k)=1
j,k≥1

(

1

1− yjzk

)
1

jakb

= exp

{( ∞
∑

j=1

yj

ja

)( ∞
∑

k=1

zk

kb

)}

if a + b = 1.



38 GEOFFREY B CAMPBELL

This approach will be useful to return to when considering derivation of 2D iden-
tities from first principles. Clearly, we have summed on the 2D first quadrant lattice
points, that is on points with positive integer coordinates. We give immediate in-
teresting cases of (15.1) now.

Taking a = 0, b = 1 gives

(15.2)
∏

(j,k)=1
j,k≥1

(

1

1− yjzk

)
1
k

=

(

1

1− z

)
y

1−y

=
∞
∑

n=0

zn(−1)n
( y

y−1

n

)

= 1− yz

y − 1
+

yz2

2!(y − 1)2
+

(y − 2)yz3

3!(y − 1)3
+

(y − 2)y(2y − 3)z4

4!(y − 1)4

+
(y − 2)y(2y − 3)(3y − 4)z5

5!(y − 1)5
+O(z6).

A partition grid part for
(

1
1−z

)
y

1−y for coefficients of yazb with 0 ≤ a ≤ 9, 0 ≤ b ≤
10 is

10 362880
10!

1389456
10!

3588732
10!

7684388
10!

14669429
10!

25869458
10!

43015399
10!

68326540
10!

104604811
10!

9 40320
9!

149904
9!

377612
9!

790728
9!

1478985
9!

2559101
9!

4179861
9!

6527781
9!

9833391
9!

8 5040
8!

18108
8!

44308
8!

90409
8!

165140
8!

279512
8!

447168
8!

684762
8!

1012368
8!

7 720
7!

2484
7!

5872
7!

11619
7!

20635
7!

34026
7!

53116
7!

79470
7!

114918
7!

6 120
6!

394
6!

893
6!

1702
6!

2921
6!

4666
6!

7070
6!

10284
6!

14478
6!

5 24
5!

74
5!

159
5!

289
5!

475
5!

729
5!

1064
5!

1494
5!

2034
5!

4 6
4!

17
4!

34
4!

58
4!

90
4!

131
4!

182
4!

244
4!

318
4!

3 2
3!

5
3!

9
3!

14
3!

20
3!

27
3!

35
3!

44
3!

54
3!

2 1
2!

2
2!

3
2!

4
2!

5
2!

6
2!

7
2!

8
2!

9
2!

1 1 1 1 1 1 1 1 1 1
0 1
b/a 0 1 2 3 4 5 6 7 8 9

Or equivalent to (15.2) is it’s reciprocal of both sides,

(15.3)
∏

(j,k)=1
j,k≥1

(

1− yjzk
)

1
k = (1− z)

y
1−y

=

∞
∑

n=0

zn(−1)n
( y

1−y

n

)

= 1 +
yz

y − 1
+

y(2y − 1)z2

2!(y − 1)2
+

y(2y − 1)(3y − 2)z3

3!(y − 1)3
+

y(2y − 1)(3y − 2)(4y − 3)z4

4!(y − 1)4

+
y(2y − 1)(3y − 2)(4y − 3)(5y − 4)z5

5!(y − 1)5
+O(z6).

A partition grid part for (1− z)
y

1−y for coefficients of yazb with 0 ≤ a ≤ 9, 0 ≤
b ≤ 10 is
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10 −362880
10!

663696
10!

517572
10!

−77572
10!

−667381
10!

−1003552
10!

−990011
10!

−637670
10!

−26939
10!

9 −40320
9!

69264
9!

60724
9!

1344
9!

−64041
9!

−108509
9!

−119061
9!

−93141
9!

−35631
9!

8 −5040
8!

8028
8!

7964
8!

1537
8!

−6444
8!

−12808
8!

−15728
8!

−14454
8!

−9072
8!

7 −720
7!

1044
7!

1184
7!

435
7!

−643
7!

−1644
7!

−2296
7!

−2442
7!

−2022
7!

6 −120
6!

154
6!

203
6!

112
6!

−49
6!

−224
6!

−370
6!

−456
6!

−462
6!

5 −24
5!

26
5!

42
5!

31
5!

5
5!

−29
5!

−64
5!

−94
5!

−114
5!

4 −6
4!

5
4!

10
4!

10
4!

6
4!

−1
4!

−10
4!

−20
4!

−30
4!

3 −2
3!

1
3!

3
3!

4
3!

4
3!

3
3!

1
3!

−2
3!

−6
3!

2 1
2!

0
2!

−1
2!

−2
2!

−3
2!

−4
2!

−5
2!

−6
2!

−7
2!

1 1 1 1 1 1 1 1 1 1
0 1
b/a 0 1 2 3 4 5 6 7 8 9

From the case of (15.3) with y2 and z2 replacing y and z, and dividing both sides
of (15.3) into it we have,

(15.4)
∏

(j,k)=1
j,k≥1

(

1 + yjzk
)

1
k =

(1− z2)
y2

1−y2

(1− z)
y

1−y

.

=

∞
∑

n=0

Γ
(

n+ y
1−y

)

Γ
(

y
1−y

) 3F2

(

1

2
− n

2
,−n

2
,− y2

1− y2
;
1

2
− n

2
− y

2(1− y)
, 1− n

2
− y

2(1− y)
; 1

)

zn

n!
.

So, in (15.1) we have derived the VPV 2D first quadrant identity summed upon the
visible points in that quadrant as depicted in yellow shaded area of Figure 1.

We note that from the power series in z for (15.3), the series is finite when y =
1
2
, 2
3
, 3
4
, 4
5
, 5
6
, . . . leading us to the following identities,

∏

(j,k)=1
j,k≥1

(

1−
(

1

2

)j

zk

)
1
k

= 1− z,

∏

(j,k)=1
j,k≥1

(

1−
(

2

3

)j

zk

)
1
k

= (1− z)2 = 1− 2z + z2,

∏

(j,k)=1
j,k≥1

(

1−
(

3

4

)j

zk

)
1
k

= (1− z)3 = 1− 3z + 3z2 − z3,

∏

(j,k)=1
j,k≥1

(

1−
(

4

5

)j

zk

)
1
k

= (1− z)4 = 1− 4z + 6z2 − 4z3 + z4,

∏

(j,k)=1
j,k≥1

(

1−
(

5

6

)j

zk

)
1
k

= (1− z)5 = 1− 5z + 10z2 − 10z3 + 5z4 − z5,
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and so on. These infinite products tell an interesting story as they are a product
of infinite series that reduce to a finite polynomial.

Similarly, for (15.2), the series is finite when y = 2, 3
2
, 4
3
, 5
4
, 6
5
, . . . leading us to the

following identities,

∏

(j,k)=1
j,k≥1

(

1

1− 2jzk

)
1
k

= (1− z)2 = 1− 2z + z2,

∏

(j,k)=1
j,k≥1

(

1

1−
(

3
2

)j
zk

)
1
k

= (1− z)3 = 1− 3z + 3z2 − z3,

∏

(j,k)=1
j,k≥1

(

1

1−
(

4
3

)j
zk

)
1
k

= (1− z)4 = 1− 4z + 6z2 − 4z3 + z4,

∏

(j,k)=1
j,k≥1

(

1

1−
(

5
4

)j
zk

)
1
k

= (1− z)5 = 1− 5z + 10z2 − 10z3 + 5z4 − z5,

∏

(j,k)=1
j,k≥1

(

1

1−
(

6
5

)j
zk

)
1
k

= (1− z)6 = 1− 6z + 15z2 − 20z3 + 15z4 − 6z5 + z6,

and so on.
Another obvious case of (15.1) to consider is where a = b = 1

2
, so then

(15.5)
∏

(j,k)=1
j,k≥1

(

1

1− yjzk

)
1√
jk

= exp

{( ∞
∑

j=1

yj√
j

)( ∞
∑

k=1

zk√
k

)}

,

and equivalently,

(15.6)
∏

(j,k)=1
j,k≥1

(

1− yjzk
)

1√
jk = exp

{

−
( ∞
∑

j=1

yj√
j

)( ∞
∑

k=1

zk√
k

)}

.

From the case of (15.5) with y2 and z2 replacing y and z, and dividing both sides
of (15.5) into it we have

(15.7)
∏

(j,k)=1
j,k≥1

(

1 + yjzk
)

1√
jk = exp

{( ∞
∑

j=1

yj√
j

)( ∞
∑

k=1

zk√
k

)

−
( ∞
∑

j=1

y2j√
j

)( ∞
∑

k=1

z2k√
k

)}

.
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Figure 1. VPV first quadrant 2D lattice points region.

16. Deriving the n-dimensional first hyperquadrant VPV identity.

They are however, generating functions for weighted vector partitions, and evi-
dently contribute a new branch to the literature on partitions of vectors.

So, we establish the following conventions for the VPV identities.

Definition 16.1. We use the notation (x1, x2, x3, ..., xn), to mean “the greatest com-
mon divisor of all of x1, x2, x3, ..., xn together; the same as gcd (x1, x2, x3, ..., xn)”.
It is important to distinguish between this and the ordered n-tuple utilized for the
vector 〈x1, x2, x3, ..., xn〉. In either case we will be concerned with lattice points in the
relevant Euclidean space, hence any vector or gcd will be over integer coordinates.

Definition 16.2. Any Euclidean vector 〈x1, x2, x3, ..., xn〉 for which (x1, x2, x3, ..., xn) =
1 we call a visible point vector, abbreviated VPV.

Theorem 16.1. The first hyperquadrant VPV identity. If i = 1, 2, 3, ..., n then for
each xi ∈ C such that |xi| < 1 and bi ∈ C such that

∑n
i=1 bi = 1,

(16.1)
∏

(a1,a2,...,an)=1
a1,a2,...,an≥1

(

1

1− x1
a1x2

a2x3
a3 · · ·xn

an

)
1

a1
b1a2

b2a3
b3 ···anbn
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= exp

{

n
∏

i=1

( ∞
∑

j=1

xi
j

jbi

)}

= exp

{

n
∏

i=1

Libi(xi)

}

.

There follow numerous example corollaries of this theorem, all of them susceptible
to the combinatorial analysis of the previous sections. However, firstly we give the
lemma and proof underpinning theorem 16.1.

Lemma 16.1. Consider an infinite region raying out of the origin in any Euclidean
vector space. The set of all lattice point vectors apart from the origin in that region
is precisely the set of positive integer multiples of the VPVs in that region.

Proof. Each VPV will have integer coordinates whose greatest common divisor
is unity. Viewed from the origin, all other lattice points are obscured behind
the VPV end points. If x is a VPV in the region then all vectors in that re-
gion from the origin with direction of x preserved are enumerated by a sequence
1x, 2x, 3x, ..., and the greatest common divisor of the components of nx is clearly
n. This is because if the scalar n is non-integer at least one of the coordinates of
nx would be a non-integer. Therefore, if the VPVs in the region are countably
given by x1, x2, x3, ..., then all lattice point vectors from the origin in the region are
1x1, 2x1, 3x1, ...; 1x2, 2x2, 3x2, ...; 1x3, 2x3, 3x3, ... etc. Completion of the proof comes
with recognition that the set of all VPVs in any rayed from the origin region in any
Euclidean vector space is a countable set. Proof of this last assertion is by induction
on the dimension, knowing that the lattice points are countable in any two dimen-
sional region. As we count each lattice point vector in the desired region we decide
whether it is a VPV simply by observing whether its coordinates are relatively prime
as a whole. �

This then brings us to the proof of theorem 16.1.

Proof. We start with the multiple sum

∑

a1,a2,...,an∈Z+

x1
a1x2

a2x3
a3 · · ·xn

an

a1b1a2b2a3b3 · · · anbn
=

n
∏

i=1

∞
∑

j=1

xi
j

jbi

which, due to Lemma 16.1, also equals, letting b =
∑n

i=1 bi,

∑

(a1,a2,...,an)=1
a1,a2,...,an≥1

(

x1
a1x2

a2 · · · xn
an

1b
+

(x1
a1x2

a2 · · ·xn
an )2

2b
+

(x1
a1x2

a2 · · ·xn
an )3

3b
+ · · ·

)

1

a1b1a2b2a3b3 · · · anbn

=
∑

(a1,a2,...,an)=1
a1,a2,...,an≥1

− log(1− x1
a1x2

a2 · · ·xn
an)

a1b1a2b2a3b3 · · ·anbn

Exponentiating both sides then yields Theorem 7.1. �

The cases of theorem 16.1 with n = 2, n = 3, n = 4, n = 5, are stated easily in the
forms,

Corollary 16.1. If |y| < 1, |z| < 1, and s+ t = 1, then

(16.2)
∏

(a,b)=1
a,b≥1

(

1

1− yazb

)
1

asbt

= exp

{( ∞
∑

j=1

yj

js

)( ∞
∑

k=1

zk

kt

)}

.
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Corollary 16.2. If |x| < 1, |y| < 1, |z| < 1 and s+ t+ u = 1, then

(16.3)
∏

(a,b,c)=1
a,b,c≥1

(

1

1− xaybzc

)
1

asbtcu

= exp

{( ∞
∑

i=1

xi

is

)( ∞
∑

j=1

yj

jt

)( ∞
∑

k=1

zk

ku

)}

.

Corollary 16.3. If |w| < 1, |x| < 1, |y| < 1, |z| < 1 and r + s+ t+ u = 1, then
(16.4)
∏

(a,b,c,d)=1
a,b,c,d≥1

(

1

1− waxbyczd

)
1

arbsctdu

= exp

{( ∞
∑

h=1

wh

hr

)( ∞
∑

i=1

xi

is

)( ∞
∑

j=1

yj

jt

)( ∞
∑

k=1

zk

ku

)}

.

Corollary 16.4. If |v| < 1, |w| < 1, |x| < 1, |y| < 1, |z| < 1 and q+r+s+ t+u = 1,
then

(16.5)
∏

(a,b,c,d,e)=1
a,b,c,d,e≥1

(

1

1− vawbxcydze

)
1

aqbrcsdteu

= exp

{( ∞
∑

g=1

vg

gq

)( ∞
∑

h=1

wh

hr

)( ∞
∑

i=1

xi

is

)( ∞
∑

j=1

yj

jt

)( ∞
∑

k=1

zk

ku

)}

.

The reader will recognize the polylogarithm occurring in the right sides of (16.2)
through to (16.5). The many known particular values of the polylogarithms as
combinations of generalized Mordell–Tornheim–Witten (MTW) zeta-function val-
ues along with their derivatives, and recently found connections with multiple zeta
values (MZVs) implies a lot of possible future research. For example, taking the
substitution where bk = 1

n
for all 1 ≤ k ≤ n, we have interesting new identities such

as,

(16.6)
∏

(a,b)=1
a,b≥1

(

1

1− yazb

)
1√
(ab)

= exp

{( ∞
∑

j=1

yj√
j

)( ∞
∑

k=1

zk√
k

)}

,

(16.7)
∏

(a,b,c)=1
a,b,c≥1

(

1

1− xaybzc

)
1

3√
abc

= exp

{( ∞
∑

i=1

xi

3
√
i

)( ∞
∑

j=1

yj

3
√
j

)( ∞
∑

k=1

zk

3
√
k

)}

.

(16.8)
∏

(a,b,c,d)=1
a,b,c,d≥1

(

1

1− waxbyczd

)
1

4√
abcd

= exp

{( ∞
∑

h=1

wh

4
√
h

)( ∞
∑

i=1

xi

4
√
i

)( ∞
∑

j=1

yj

4
√
j

)( ∞
∑

k=1

zk

4
√
k

)}

.

(16.9)
∏

(a,b,c,d,e)=1
a,b,c,d,e≥1

(

1

1− vawbxcydze

)
1

5√
abcde

= exp

{( ∞
∑

g=1

vg

5
√
g

)( ∞
∑

h=1

wh

5
√
h

)( ∞
∑

i=1

xi

5
√
i

)( ∞
∑

j=1

yj

5
√
j

)( ∞
∑

k=1

zk

5
√
k

)}

.
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17. Hyperquadrant lattices and their hyperdiagonal line functions

The above equations (16.6) to (16.9) when represented by their 2D, 3D, 4D and
5D grids in their respective first quadrants and first hyperquadrants, obviously be-
come unwieldy to visualize after the 2D extended rectangular lattice, or relevant
3D extended cubic lattice. What human consciousness can say they see a 4D ex-
tended tesseract (4D cube) lattice, or a 5D extended hypercube lattice? However
we understand this dimensional concept, there is a logical higher space extension
also of the 2D first quadrant diagonal of lattice points upon the line y = x. In the
3D cube first hyperquadrant in an x-y-z plane of lattice points there is the diagonal
line represented by the equation x = y = z and the coefficients of those lattice
point vectors arise from setting the generating function f(x, y, z) to say f(z, z, z)
which then is a generating function for a particular cluster of 3D diagonal lattice
point vectors in that hyperquadrant. Similarly for the 4D case generating function
f(w, x, y, z) calculate f(z, z, z, z) to give the 4D hyperdiagonal generating function
for a cluster of lattice points along the line with equation w = x = y = z through
the 4D extended tesseract (hypecube). And so on for the 5D function generated by
f(v, w, x, y, z) giving us the function f(z, z, z, z, z) generating the coefficients (vector
partition sums) for the lattice points along the 5D line v = w = x = y = z. It’s
tricky, especially when impossible to visualize, but this concept can be applied to
any of our 2D, 3D, 4D, etc lattice point vector grids throughout our present volume.
It applies to VPV identities as hyperquadrant lattice functions, square hyperpyra-
mid lattice functions and skewed hyperpyramid lattice point vector identities. This
includes the many possibilities of applying polylogarithm formulas and Parametric
Euler sum identities; examples given in our present book being just the starting
place of a large number of possibilities.

We are reminded by (16.2) of the functional equation due originally to Riemann
in his famous paper [36] on the Riemann zeta function. Both have the s + t = 1
caveat. Riemann’s zeta function reflection formula is equivalent to

(17.1) Γ
(s

2

)

π−s/2ζ(s) = Γ

(

t

2

)

π−t/2ζ(t)

where s + t = 1, but equation (16.2) is quite a different relationship in a context
amenable to the critical line Riemann zeta function ζ

(

1
2
+ it

)

for nontrivial zeroes.
There are several further corollary cases that we can state here, that may be

susceptible to the analysis of the earlier sections. There are natural and simple
cases of Theorem 16.1 to consider.

18. Some hyperdiagonal line generating functions

We return to the second most recent section and the (16.6) to (16.9) equations
and find particular cases that follow easily from setting v = w = x = y = z into
them. So we have 2D, 3D, 4D and 5D examples of the hyperdiagonal generating
functions mentioned in our previous section.

If |z| < 1, then

(18.1)
∏

gcd(a,b)=1
a,b≥1

(

1

1− za+b

)
1√
(ab)

= exp







( ∞
∑

k=1

zk√
k

)2





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= 1+ z2+
√
2z3+

(

1 +
2√
3

)

z4+

(

1 +

√

2

3
+
√
2

)

z5+

(

2 +
1√
2
+

2√
3
+

2√
5

)

z6

+

(

1 +

√

2

5
+ 4

√

2

3
+
√
2 +

1√
3

)

z7 +

(

8

3
+

3√
2
+

5√
3
+

2√
5
+

2√
7
+

2√
15

)

z8

+

(

2 +

√

2

7
+ 3

√

2

5
+ 4

√

2

3
+

17

3
√
2
+
√
3 +

1√
5

)

z9

+

(

14

3
+ 2

√

3

5
+

3√
2
+ 3

√
3 +

4√
5
+

7√
6
+

2√
7
+

2√
21

)

z10 +O(z11).

The coefficients of zn for positive integer n in (18.1) are the diagonal entries on the
2D y-z grid for identity (16.6), namely, lattice points along the line y = z in the
first quadrant.

(18.2)
∏

gcd(a,b,c)=1
a,b,c≥1

(

1

1− za+b+c

)
1

3√
abc

= exp







( ∞
∑

k=1

zk

3
√
k

)3






= 1 + z3 +
3
3
√
2
z4 +

(

3
3
√
4
+

3
√
9

)

z5 +

(

1 +
3
3
√
4
+

3
√
36

)

z6

+

(

3 +
3

√

9

4
+

3
3
√
2
+

3
√
3 +

3
3
√
5

)

z7 ++O(z8).

The coefficients of zn for positive integer n in (18.2) are the diagonal entries on
the 3D x-y-z grid for identity (16.7), namely, lattice points along the 3D line with
equation x = y = z in the first hyperquadrant with x, y and z all positive integers.

(18.3)
∏

gcd(a,b,c,d)=1
a,b,c,d≥1

(

1

1− za+b+c+d

)
1

4√
abcd

= exp







( ∞
∑

k=1

zk

4
√
k

)4






,

(18.4)
∏

gcd(a,b,c,d,e)=1
a,b,c,d,e≥1

(

1

1− za+b+c+d+e

)
1

5√
abcde

= exp







( ∞
∑

k=1

zk

5
√
k

)5






.

Each of the equations (18.1) to (18.4) can give us a combinatorial theorem on
relation between two arithmetical functions. For example, (18.1) can be rewritten
as the equation

(18.5)
∞
∏

k=2

(

1

1− zk

)

∑ 1√
(ab)

= exp







( ∞
∑

k=1

zk√
k

)2






,

where
∑

1√
(ab)

is the sum over all possible coprime a and b positive integers such

that a + b = k.
Similarly, (18.2) can be rewritten as the equation
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(18.6)

∞
∏

k=3

(

1

1− zk

)

∑ 1
3√
abc

= exp







( ∞
∑

k=1

zk

3
√
k

)3






,

where
∑

1
3√
abc

is the sum over all possible triplewise coprime a, b and c positive

integers such that a + b+ c = k.
The identities (18.5) and (18.6) seem a priori to have some useful aspect in relation

to examining the abc Conjecture. This is due to the feature of the identities having
coprime numbers in both a sum and also in a product within each term of the infinite
product left sides.

We note also that both (18.5) and (18.6) may fit the conditions allowing us to
apply the saddle point asymptotic Theorem of Meinardus, thereby determining the
asymptotic behaviour of coefficients of the infinite products that seem to relate to
the abc Conjecture.

Let us first enlarge the theorem’s positive coordinate hyperquadrant to include
lattice points on each axis except for the highest or nth dimension. In other words,
the product operator for variable z on each left side of (18.7) to (18.10) runs over
each integer 1, 2, 3,... whereas for the non-z variables v, w, x, y, the product is over
0, 1, 2, 3,....

In our general term notation, with b1 + b2 + b3 + ... + bn = 1, applied to slightly
enlarge the number of lattice point vectors in the n-space hyperquadrant radial from
the origin region, we sum on the particular lattice points with vectors defined by
〈b1, b2, b3, ..., bn〉 such that

bk =

{

0, 1 ≤ k ≤ n− 1;

1, k = n.

Using this we can easily obtain the following infinite products in respectively 2-D,
3-D, 4-D and 5-D space involving weighted VPV partitions in their combinatorial
interpretations.

Corollary 18.1. For each of |v|, |w|, |x|, |y|, |z| < 1,

(18.7)
∏

(a,b)=1
a≥0,b>0

(

1− yazb
)

1
b = (1− z)

1
1−y ,

(18.8)
∏

(a,b,c)=1
a,b≥0,c>0

(

1− xaybzc
)

1
c = (1− z)

1
(1−x)(1−y) ,

(18.9)
∏

(a,b,c,d)=1
a,b,c≥0,d>0

(

1− waxbyczd
)

1
d = (1− z)

1
(1−w)(1−x)(1−y) ,

(18.10)
∏

(a,b,c,d,e)=1
a,b,c,d≥0,e>0

(

1− vawbxcydze
)

1
e = (1− z)

1
(1−v)(1−w)(1−x)(1−y) .
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The above four infinite products and their reciprocals are worth deeper analysis
as simple examples of weighted VPV partitions, giving us exact results reminiscent
of the integer partition theorems. (18.7) to (18.10) are slight variations on particular
cases of (18.1) to (18.2) and their 4-D and 5-D forms. They may be interesting to
examine in the ”near bijection” context that has been applied to the classical Euler
pentagonal number theorem. This is a large topic probably beyond the scope of our
present note.

Let us take the example of equation (18.8). The right side product is a case of
the binomial theorem, which when applied gives us,

(18.11)
∏

(a,b,c)=1
a,b≥0,c>0

(

1− xaybzc
)

1
c = (1− z)

1
(1−x)(1−y)

= 1− z

n1!
+

(n− 1)z2

n22!
+

(n− 1)(2n− 1)z3

n33!
+

(n− 1)(2n− 1)(3n− 1)z4

n44!

+
(n− 1)(2n− 1)(3n− 1)(4n− 1)z5

n55!
+ · · · , where n = (1− x)(1− y).

Looking closer at this, we see that (18.11) encodes a theorem about weighted
3-dimensional VPV partitions in the first hyperquadrant including the x and y axes
but not the z axis.

It is also clear that the power series terminates to a polynomial in z whenever
(1− x)(1− y) equals any of 1, 1

2
, 1
3
, 1
4
, . . . . For partitions of these VPVs in the first

hyperquadrant of Euclidean 3-space, each vector 〈a, b, c〉 has integer coordinates
that satisfy a, b ≥ 0, c > 0. By a weighted partition, we mean a”stepping stone
jump while carrying a weight determined by a coefficient” from one integer lattice
point to the next, jumping always”away from the origin by a nonincreasing length”,
that origin being the point 〈0, 0, 0〉. ie. The distance

√
a2 + b2 + c2 from 〈0, 0, 0〉 to

the starting point 〈a, b, c〉 of the jump is less than the distance
√

h2 + j2 + k2 from
〈0, 0, 0〉 to the destination point 〈h, j, k〉 of the jump. From the perspective of the
weighted partition sum vale, the order of the weighted summands is unimportant.
However, switching orders of summands creates different paths to the same vector
being partitioned.

The next set of natural cases we consider in our general term notation, with
b1 + b2 + b3 + ... + bn = 1, is as follows. We adjust the number of lattice point
vectors in the n-space hyperquadrant radial from the origin region. We sum on the
particular lattice points with vectors defined by 〈b1, b2, b3, ..., bn〉 such that

bk =

{

1, 1 ≤ k ≤ n− 1;

2− n, k = n.

This leads to cases of (16.2) to (16.5) given here as the following identities in 2D,
3D, 4D and 5D.

If |y| < 1, |z| < 1, then

(18.12)
∏

(a,b)=1
a,b≥1

(

1

1− yazb

)
1

a1b0

= exp

{( ∞
∑

i=1

yi

i1

)( ∞
∑

j=1

zj

j0

)}

.
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If |x| < 1, |y| < 1, |z| < 1 then

(18.13)
∏

(a,b,c)=1
a,b,c≥1

(

1

1− xaybzc

)
1

a1b1c−1

= exp

{( ∞
∑

i=1

xi

i1

)( ∞
∑

j=1

yj

j1

)( ∞
∑

k=1

zk

k−1

)}

.

If |w| < 1, |x| < 1, |y| < 1, |z| < 1 then
(18.14)
∏

(a,b,c,d)=1
a,b,c,d≥1

(

1

1− waxbyczd

)
1

a1b1c1d−2

= exp

{( ∞
∑

h=1

wh

h1

)( ∞
∑

i=1

xi

i1

)( ∞
∑

j=1

yj

j1

)( ∞
∑

k=1

zk

k−2

)}

.

If |v| < 1, |w| < 1, |x| < 1, |y| < 1, |z| < 1 then

(18.15)
∏

(a,b,c,d,e)=1
a,b,c,d,e≥1

(

1

1− vawbxcydze

)
1

a1b1c1d1e−3

= exp

{( ∞
∑

g=1

vg

g1

)( ∞
∑

h=1

wh

h1

)( ∞
∑

i=1

xi

i1

)( ∞
∑

j=1

yj

j1

)( ∞
∑

k=1

zk

k−3

)}

.

It is not hard to see that these identities can be easily written up to 5D, 6D, 7D
space etc. So, if we do this for 2D to 5D, and sum the elementary power series in
the exponential term right hand sides, we arrive at

Corollary 18.2. For each of |v|, |w|, |x|, |y|, |z| < 1,

(18.16)
∏

(a,b)=1
a,b≥1

(

1− yazb
)

1
a = (1− y)

z
1−z ,

(18.17)
∏

(a,b,c)=1
a,b,c≥1

(

1− xaybzc
)

c
ab = ((1− x)(1− y))

z
(1−z)2 ,

(18.18)
∏

(a,b,c,d)=1
a,b,c,d≥1

(

1− waxbyczd
)

d2

abc = ((1− w)(1− x)(1− y))
z(1+z)

(1−z)3 ,

(18.19)
∏

(a,b,c,d,e)=1
a,b,c,d,e≥1

(

1− vawbxcydze
)

e3

abcd = ((1− v)(1− w)(1− x)(1− y))
z(1+4z+z2)

(1−z)4 .

The identities (18.17) to (18.19) are new to the literature. The index functions
on the right sides will be recognized by many as the well-known values of the non-
positive integer polylogarithms, Li0(z), Li−1(z), Li−2(z), Li−3(z).

So next we briefly give definitions and versions of the abc Conjecture, before in
the section ensuing that, continuing discussion of equation (18.17) in the context of
the conjecture. This shows plausible uses of VPV identities to examine known open
problems from a new perspective.
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19. Diversionary note on the abc Conjecture

The abc Conjecture (also known as the Oesterlé–Masser conjecture) is a conjecture
in number theory, first proposed by Joseph Oesterlé (1988) and David Masser (1985)
(see [35] and [34]). It is stated in terms of three positive integers, a, b and c (hence
the name) that are relatively prime and satisfy a + b = c. If d denotes the product
of the distinct prime factors of abc, the conjecture essentially states that d is usually
not much smaller than c. In other words: if a and b are composed from large powers
of primes, then c is usually not divisible by large powers of primes. A number of
famous conjectures and theorems in number theory would follow immediately from
the abc Conjecture or its versions. Goldfeld (1996) (see [26]) described the abc
Conjecture as the most important unsolved problem in Diophantine analysis.

The abc Conjecture originated as the outcome of attempts by Oesterlé and
Masser to understand the Szpiro conjecture about elliptic curves, which involves
more geometric structures in its statement than the abc Conjecture. The abc Con-
jecture was shown to be equivalent to the modified Szpiro’s conjecture [40, 41].

Various attempts to prove the abc Conjecture have been made, but none are
currently accepted by the mainstream mathematical community and as of 2022, the
conjecture is still largely regarded as unproven.

Before we state the conjecture we introduce the notion of the radical of an integer:
for a positive integer n, the radical of n, denoted rad(n), is the product of the distinct
prime factors of n. For example

rad(16) = rad(24) = rad(2) = 2,
rad(17) = 17,
rad(18) = rad(2× 32) = 2× 3 = 6,
rad(1000000) = rad(26 × 56) = 2× 5 = 10.
If a, b, and c are coprime positive integers such that a + b = c, it turns out that

”usually” c < rad(abc). The abc Conjecture deals with the exceptions. Specifically,
it states that:

Conjecture 19.1. abc Conjecture (version I). For every positive real number ε,
there exist only finitely many triples (a, b, c) of coprime positive integers, with a+b =
c, such that c > rad(abc)1+ε.

An equivalent formulation:
abc Conjecture (version II). For every positive real number ε, there exists a con-

stant Kε such that for all triples (a, b, c) of coprime positive integers, with a+ b = c:
c < Kεrad(abc)

1+ε.
Another equivalent formulation:
abc Conjecture (version III). For every positive real number ε, there exist only

finitely many triples (a, b, c) of coprime positive integers with a + b = c such that
q(a, b, c) > 1 + ε.

This third equivalent formulation of the conjecture involves the quality q(a, b, c)
of the triple (a, b, c), defined as

q(a, b, c) =
log(c)

log (rad(abc))
.

For example:

q(4, 127, 131) = log(131)
log(rad(4×127×131))

= log(131)
log(2×127×131)

= 0.46820...

q(3, 125, 128) = log(128)
log(rad(3×125×128))

= log(128)
log(30)

= 1.426565...
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A typical triple (a, b, c) of coprime positive integers with a + b = c will have
c < rad(abc), i.e. q(a, b, c) < 1. Triples with q > 1 such as in the second example
are rather special, they consist of numbers divisible by high powers of small prime
numbers.

Whereas it is known that there are infinitely many triples (a, b, c) of coprime
positive integers with a+ b = c such that q(a, b, c) > 1, the conjecture predicts that
only finitely many of those have q > 1.01 or q > 1.001 or even q > 1.0001, etc.
In particular, if the conjecture is true, then there must exist a triple (a, b, c) that
achieves the maximal possible quality q(a, b, c).

20. Applying a 3D VPV identity to the abc Conjecture

Three versions of the abc Conjecture were presented in the previous section. This
enables us to relate the following identity and try to gain some insight into the
conjecture. The feature in common between the abc Conjecture and a 3D VPV
identity is the aspect that a+b = c may be approached with gcd(a, b, c) = 1. Hence,
there is scope to examine this potential crossover between theories.

So, in the context of present analysis in section 3 of this note, we consider equation
(18.17), taking the case where x = 1/z, y = 1/z so that the identity becomes

(20.1)
∏

(a,b,c)=1
a,b,c≥1

(

1− zc−a−b
)

c
ab =

(

1− z

z

)
2z

(1−z)2

,

valid evidently, for 0 < |z| < 1. The right side of (20.1) approaches unity as
z → 0. Just the fact of convergence of the infinite product to an existing limit has
relevance to the abc Conjecture. The abc Conjecture is concerned with cases where
a+ b = c, and also asserts:

”For every positive real number ε, there exist only finitely many triples (a, b, c) of
coprime positive integers, with a+ b = c, such that c > rad(abc)1+ε.”

In the infinite product we have covered off all cases where a+ b = c, and conver-
gence of the product to a limit implies certain things about the comparison of both
c− a− b and c

ab
terms as c increases.

21. Hyperdiagonal line generating functions for different nD
slopes

At the start of section 18 of this note we saw how to calculate the hyperdiagonal
generating function for an nD generated vector partition grid. Basically, we have
the

Statement 21.1. If the nD generating function for the entire nD grid is the n
variable fn(z1, z2, z3, ..., zn), the equation of the nD hyperdiagonal line from the origin
is z1 = z2 = z3 = ... = zn and so the generating function for the nD vector partitions
along that line is given by the single variable function fn(z, z, , ..., z).

That is, even though an nD space grid is impossible for humans to envision, we
can define a straight line through the hyperdiagonal from the nD origin point, and
formulate an exact value of the vector partition function at any point along that
hyperdiagonal line.
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Furthermore, taking an arbitrary lattice point vector 〈a1, a2, a3, ..., an〉 in the nD
grid we can show that the vector partition function (or nD coefficient) for that lattice
point is exactly evaluated as follows.

Statement 21.2. If the nD generating function for the entire nD grid is the n vari-
able fn(z1, z2, z3, ..., zn), the equation of the nD hyper-radial-from-origin line from
the origin to the arbitrary point 〈a1, a2, a3, ..., an〉 is based on knowing values of

(21.1) 〈a1, a2, a3, ..., an〉 = r〈c1, c2, c3, ..., cn〉
where 〈c1, c2, c3, ..., cn〉 is a VPV with gcd(c1, c2, c3, ..., cn) = 1 and r is the unique
positive integer that makes this true. So the straight line from the origin to the point
〈a1, a2, a3, ..., an〉 has the defining equation c1z1 = c2z2 = c3z3 = ... = cnzn and so the
generating function for the nD vector partitions along that line is given by the single
variable function fn(c1z, c2z, c3z, ..., cnz), which has the coefficient of zr equal to the
vector partition function (or nD coefficient) for that lattice point 〈a1, a2, a3, ..., an〉
exactly evaluated.

22. Exercises

Derive from corollary 18.2 that:
For each of |v|, |w|, |x|, |y|, |z| < 1,

(22.1)
∏

gcd(a,b)=1
a≥0,b>0

(

1 + yazb
)

1
b =

(1− z2)
1

1−y2

(1− z)
1

1−y

=

∞
∑

n=0

Γ
(

n+ 1
1−y

)

Γ
(

1
1−y

) 3F2

(

1

2
− n

2
,−n

2
,

−1

1− y2
;
1

2
− n

2
− 1

2(1− y)
, 1− n

2
− 1

2(1− y)
; 1

)

zn

n!
.

(22.2)
∏

gcd(a,b,c)=1
a,b≥0,c>0

(

1 + xaybzc
)

1
c =

(1− z2)
1

(1−x2)(1−y2)

(1− z)
1

(1−x)(1−y)

=
∞
∑

n=0

Γ(n+ 1
(1−x)(1−y)

) F(n)zn

Γ( 1
(1−x)(1−y)

)n!
,

where F(n) is the hypergeometric series

3F2

(

1

2
− n

2
,
−n

2
,

−1

(1− x2)(1− y2)
;
1

2
− n

2
− 1

2(1− x)(1− y)
, 1− n

2
− 1

2(1− x)(1− y)
; 1

)

.

The reader can verify this, by entering the code
series (1− z2)∧(1/((1− x2)(1− y2)))/(1− z)∧(1/((1− x)(1− y))) at z = 0.

at an online calculating engine.

(22.3)
∏

gcd(a,b,c,d)=1
a,b,c≥0,d>0

(

1 + waxbyczd
)

1
d =

(1− z2)
1

(1−w2)(1−x2)(1−y2)

(1− z)
1

(1−w)(1−x)(1−y)

,

(22.4)
∏

gcd(a,b,c,d,e)=1
a,b,c,d≥0,e>0

(

1 + vawbxcydze
)

1
e =

(1− z2)
1

(1−v2)(1−w2)(1−x2)(1−y2)

(1− z)
1

(1−v)(1−w)(1−x)(1−y)

.

Derive from corollary 5.2 that
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For each of |v|, |w|, |x|, |y|, |z| < 1,

(22.5)
∏

gcd(a,b)=1
a,b≥1

(

1 + yazb
)

1
a =

(1− y2)
z2

1−z2

(1− y)
z

1−z

,

(22.6)
∏

gcd(a,b,c)=1
a,b,c≥1

(

1 + xaybzc
)

c
ab =

((1− x2)(1− y2))
z2

(1−z2)2

((1− x)(1− y))
z

(1−z)2
,

(22.7)
∏

gcd(a,b,c,d)=1
a,b,c,d≥1

(

1 + waxbyczd
)

d2

abc =
((1− w2)(1− x2)(1− y2))

z2(1+z2)

(1−z2)3

((1− w)(1− x)(1 − y))
z(1+z)

(1−z)3

,

(22.8)

∏

gcd(a,b,c,d,e)=1
a,b,c,d,e≥1

(

1 + vawbxcydze
)

e3

abcd =
((1− v2)(1− w2)(1− x2)(1− y2))

z2(1+4z2+z4)

(1−z2)4

((1− v)(1− w)(1− x)(1− y))
z(1+4z+z2)

(1−z)4

.

23. VPV identities in square hyperpyramid regions.

In the 1990s and up to 2000 the author published papers that culminated in
the 2000 paper on hyperpyramid VPV identities. (See Campbell [10, 11, 13, 14,
15, 16] then [17].) These were not at the time taken any further than statement
of a general theorem and a few prominent examples. However, since then, these
identities have not been developed further in the literature, despite there being
evidently a large number of ways the Parametric Euler Sum Identities of the 21st
century along with experimental computation results are definitely applicable. Add
to this the possibility that light diffusion lattice models, random walk regimes, and
stepping stone weighted partitions seem fundamentally applicable in contexts of
VPV identities, and it becomes clear that the transition from integer partitions to
vector partitions may be a path for future researches.

So, we here give the simplest n-space hyperpyramid VPV theorem due to the
author in [17]. The so-called ”Skewed Hyperpyramid n-space Identities” from [17] we
shall cover in a later paper. The application of the determinant coefficient technique
of our current earlier work is strikingly applicable and bearing some semblance to
the q-binomial variants. Note that for each of (7.11) to (7.15) the left side products
are taken over a set of integer lattice points inside an inverted hyperpyramid on the
Euclidean cartesian space.

In the first 15 years of the 21st century the summations found by the Borwein
brothers Peter and Jonathan, their father David with their colleagues, see [7] to [8]
have renewed interest in the old Euler Sums. Their results give us particular values of
polylogarithms and related functions involving the generalized Harmonic numbers.
This work has been developed some way over nearly two decades so now we speak of
the Mordell-Tornheim-Witten sums, which are polylogarithm generalizations all seen
to be applicable to the VPV identities, but that connection is not yet fully worked
through. These newer results can, many of them, be substituted into VPV identities
to give us exact results for weighted vector partitions. To make sense of these new
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results, we need to go back to fundamental definitions and ideas for partitions of
vectors as distinct from those well considered already for integer partitions.

As with our previous paper on the first hyperquadrant identities, we begin with
the simple derivation of the 2D case, then look at the 3D case, before stating and
proving the result in the n dimensional generalization.

24. Deriving 2D VPV identities in extended triangle regions.

As we did in the hyperquadrant paper, we again start with a simple 2D summa-
tion. Consider

∞
∑

n=1

(

n
∑

m=1

ym

ma

)

zn

nb

=

(

y1

1a

)

z1

1b
+

(

y1

1a
+

y2

2a

)

z2

2b
+

(

y1

1a
+

y2

2a
+

y3

3a

)

z3

3b
+

(

y1

1a
+

y2

2a
+

y3

3a
+

y4

4a

)

z4

4b

+

(

y1

1a
+

y2

2a
+

y3

3a
+

y4

4a
+

y5

5a

)

z5

5b
+

(

y1

1a
+

y2

2a
+

y3

3a
+

y4

4a
+

y5

5a
+

y6

6a

)

z6

6b
+ · · ·

=
y1z1

1a1b

+
y1z2

1a2b
+

y2z2

2a2b

+
y1z3

1a3b
+

y2z3

2a3b
+

y3z3

3a3b

+
y1z4

1a4b
+

y2z4

2a4b
+

y3z4

3a4b
+

y4z4

4a4b

+
y1z5

1a5b
+

y2z5

2a5b
+

y3z5

3a5b
+

y4z5

4a5b
+

y5z5

5a5b

+
y1z6

1a6b
+

y2z6

2a6b
+

y3z6

3a6b
+

y4z6

4a6b
+

y5z6

5a6b
+

y6z6

6a6b

+
y1z7

1a7b
+

y2z7

2a7b
+

y3z7

3a7b
+

y4z7

4a7b
+

y5z7

5a7b
+

y6z7

6a7b
+

y7z7

7a7b

+
... +

... +
... +

... +
... +

... +
...

. . .

=
∞
∑

m,n≥1;m≤n

ymzn

manb

=
∑

h,j,k≥1
j≤k; (j,k)=1

(yjzk)h

ha+b(jakb)

=
∑

j,k≥1
j≤k; (j,k)=1

1

(jakb)

∞
∑

h=1

(yjzk)h

ha+b

=
∑

j,k≥1
j≤k; (j,k)=1

1

(jakb)
log

(

1

1− yjzk

)

if a+ b = 1.
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Therefore, we have shown that
∞
∑

n=1

(

n
∑

m=1

ym

ma

)

zn

nb
=

∑

j,k≥1
j≤k; (j,k)=1

1

(jakb)
log

(

1

1− yjzk

)

if a+ b = 1.

Exponentiating both sides gives us the 2D first extended triangle VPV identity,
where in this 2D case the nD pyramid reduces to the form of a triangle shaped
array of lattice point vectors, and so we can state the

Theorem 24.1. The 2D triangle VPV identity. For |y| < 1, |z| < 1,

(24.1)
∏

j,k≥1
j≤k; (j,k)=1

(

1

1− yjzk

)
1

jakb

= exp

{ ∞
∑

n=1

(

n
∑

m=1

ym

ma

)

zn

nb

}

if a+ b = 1.

As with our earlier exploits into the 2D first quadrant case, for the present result
we take some simple example cases where new and interesting results arise.

So, let us take the case where a = 0, b = 1, giving us

∏

j,k≥1
j≤k; (j,k)=1

(

1

1− yjzk

)
1
k

= exp

{ ∞
∑

n=1

(

n
∑

m=1

ym

)

zn

n

}

= exp

{ ∞
∑

n=1

(

y
1− yn

1− y

)

zn

n

}

= exp

{

y

1− y
log

(

1− yz

1− z

)}

.

So, we arrive then at the following pair of equivalent results,

(24.2)
∏

j,k≥1
j≤k; (j,k)=1

(

1

1− yjzk

)
1
k

=

(

1− yz

1− z

)
y

1−y

,

and

(24.3)
∏

j,k≥1
j≤k; (j,k)=1

(

1− yjzk
)

1
k =

(

1− z

1− yz

)
y

1−y

.

From here, multiply both sides of (24.2) and the case of (24.3) with y 7→ y2 and
z 7→ z2 to get,

(24.4)
∏

j,k≥1; j≤k
gcd(j,k)=1

(

1 + yjzk
)

1
k =

(

1− yz

1− z

)
y

1−y
(

1− z2

1− y2z2

)

y2

1−y2

.

Particular cases:
y = 1

2
gives us from (24.3) and (24.4) the remarkable two results that

∏

j,k≥1; j≤k
gcd(j,k)=1

(

1− zk

2j

)

1
k

=
2− 2z

2− z
= 1− z

2
− z2

4
− z3

8
− z4

16
− z5

32
− . . .
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=
(

1− z

2

)

√

(

1− z2

21

)

3

√

(

1− z3

21

)(

1− z3

22

)

4

√

(

1− z4

21

)(

1− z4

23

)

5

√

(

1− z5

21

)(

1− z5

22

)(

1− z5

23

)(

1− z5

24

)

6

√

(

1− z6

21

)(

1− z6

25

)

... ,

∏

j,k≥1; j≤k
gcd(j,k)=1

(

1 +
zk

2j

)

1
k

=
2− z

2− 2z
3

√

4− z2

4− 4z2

=
(

1 +
z

2

)

√

(

1 +
z2

21

)

3

√

(

1 +
z3

21

)(

1 +
z3

22

)

4

√

(

1 +
z4

21

)(

1 +
z4

23

)

5

√

(

1 +
z5

21

)(

1 +
z5

22

)(

1 +
z5

23

)(

1 +
z5

24

)

6

√

(

1 +
z6

21

)(

1 +
z6

25

)

....

These two equations can be easily verified on a calculating engine like Mathemat-
ica or WolframAlpha by expanding each side into it’s Taylor series around z = 0 and
comparing coefficients of like powers of z. Next, take the cases of (24.3) and (24.4)
with y = 2, both of which converge if |z| < 2, so then, after a slight adjustment to
both sides by a factor of 1− 2z,

∏

j,k≥1; j<k
gcd(j,k)=1

(

1− 2jzk
)

1
k =

1− 2z

(1− z)2
= 1− z − 2z2 − 3z3 − 4z4 − 5z5 − . . .− nzn − . . .
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=
√

(1− 21z2)
3
√

(1− 21z3) (1− 22z3)
4
√

(1− 21z4) (1− 23z4)
5
√

(1− 21z5) (1− 22z5) (1− 23z5) (1− 24z5)
6
√

(1− 21z6) (1− 25z6)
7
√

(1− 21z7) (1− 22z7) (1− 23z7) (1− 24z7) (1− 25z7) (1− 26z7)
... ,

which is also easy to verify on a calculating engine term by term from the power
series of each side. The notably simple coefficients make this result somewhat tan-
talizing, as there seems no obvious reason for such coefficients to come out of the
products of binomial series roots. We remark at this juncture that equations (24.3)
and it’s reciprocal equation (24.4) are amenable to applying the limit as y approaches
1. In fact we have as follows that,

lim
y→1

(

1− z

1− yz

)
y

1−y

= e
z

z−1

and also from considering equation (24.4) there is the limit, easily evaluated,

lim
y→1

(

1− yz

1− z

)
y

1−y
(

1− z2

1− y2z2

)

y2

1−y2

= e
z

1−z2 .

Therefore, applying these two limits to equations (24.3) and (24.4) respectively
we obtain the two interesting results that

(24.5)

∞
∏

k=1

(

1− zk
)

ϕ(k)
k = e

z
z−1 ,

(24.6)

∞
∏

k=1

(

1 + zk
)

ϕ(k)
k = e

z
1−z2 ,

where ϕ(k) is the Euler totient function, the number of positive integers less than
and coprime to k.

Next we take (24.1) with the case that a = 1 and b = 0, so then

∏

j,k≥1
j≤k; (j,k)=1

(

1

1− yjzk

)
1
j

= exp

{ ∞
∑

n=1

(

n
∑

m=1

ym

m

)

zn

}

= exp

{

1

1− z

∞
∑

n=1

ynzn

n

}

= exp

{

1

1− z
log

(

1

1− yz

)}

.

This leads us to establish that

(24.7)
∏

j,k≥1
j≤k; (j,k)=1

(

1

1− yjzk

)
1
j

=

(

1

1− yz

)
1

1−z

,
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which is equivalent to

(24.8)
∏

j,k≥1
j≤k; (j,k)=1

(

1− yjzk
)

1
j = (1− yz)

1
1−z .

From multiplying both sides of (24.7) in which y 7→ y2 and z 7→ z2 with both
sides of (24.8) we obtain

(24.9)
∏

j,k≥1
j≤k; (j,k)=1

(

1 + yjzk
)

1
j =

(1− y2z2)
1

1−z2

(1− yz)
1

1−z

.

Particular cases:
z = 1

2
gives us from (24.8) and (24.9) the remarkable result that

∏

j,k≥1; j≤k
gcd(j,k)=1

(

1− yj

2k

)
1
j

=
(

1− y

2

)2

= 1− y

4
+

y2

4
.

=

(

1− y1

21

)

(

1− y1

22

)

(

1− y1

23

)

√

(

1− y2

23

)

(

1− y1

24

)

3

√

(

1− y3

24

)

(

1− y1

25

)

√

(

1− y2

25

)

3

√

(

1− y3

25

)

4

√

(

1− y4

25

)

(

1− y1

26

)

5

√

(

1− y5

26

)

... ,

and the curious result,

∏

j,k≥1; j≤k
gcd(j,k)=1

(

1 +
yj

2k

)
1
j

=
3

√

(

2 + y

2− y

)2

= 1 +
2y

3
+

2y2

9
+

17y3

162
+

11y4

243
+ . . .

=

(

1 +
y1

21

)

(

1 +
y1

22

)
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(

1 +
y1

23

)

√

(

1 +
y2

23

)

(

1 +
y1

24

)

3

√

(

1 +
y3

24

)

(

1 +
y1

25

)

√

(

1 +
y2

25

)

3

√

(

1 +
y3

25

)

4

√

(

1 +
y4

25

)

(

1 +
y1

26

)

5

√

(

1 +
y5

26

)

... .

These two equations can be verified on a calculating engine like Mathematica
or WolframAlpha by expanding each side into it’s Taylor series around z = 0 and
comparing coefficients of like powers of y. However, the calculation is an infinite
series for each coefficient, unlike in the previous examples, where it is a finite sum.

25. Deriving 3D VPV identities in square pyramid regions.

As we did in the hyperquadrant section, we start with a simple 3D summation.
Consider the sum, whose shape resembles a 3D pyramid here, given by

∞
∑

n=1

(

n
∑

l=1

xl

la

)(

n
∑

m=1

ym

mb

)

zn

nc

=

(

x1

1a

)(

y1

1b

)

z1

1c

+

(

x1

1a
+

x2

2a

)(

y1

1b
+

y2

2b

)

z2

2c

+

(

x1

1a
+

x2

2a
+

x3

3a

)(

y1

1b
+

y2

2b
+

y3

3b

)

z3

3c

+

(

x1

1a
+

x2

2a
+

x3

3a
+

x4

4a

)(

y1

1b
+

y2

2b
+

y3

3b
+

y4

4b

)

z4

4c

+

(

x1

1a
+

x2

2a
+

x3

3a
+

x4

4a
+

x5

5a

)(

y1

1b
+

y2

2b
+

y3

3b
+

y4

4b
+

y5

5b

)

z5

5c

+

(

x1

1a
+

x2

2a
+

x3

3a
+

x4

4a
+

x5

5a
+

x6

6a

)(

y1

1b
+

y2

2b
+

y3

3b
+

y4

4b
+

y5

5b
+

y6

6b

)

z6

6c
+ · · ·

=
x1y1z1

1a1b1c

+
x1y1z2

1a1b2c
+

x1y2z2

1a2b2c

+
x2y1z2

2a1b2c
+

x2y2z2

2a2b2c

+
x1y1z3

1a1b3c
+

x1y2z3

1a2b3c
+

x1y3z3

1a3b3c
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+
x2y1z3

2a1b3c
+

x2y2z3

2a2b3c
+

x2y3z3

2a3b3c

+
x3y1z3

3a1b3c
+

x3y2z3

3a2b3c
+

x3y3z3

3a3b3c

+
x1y1z4

1a1b4c
+

x1y2z4

1a2b4c
+

x1y3z4

1a3b4c
+

x1y4z4

1a4b4c

+
x2y1z4

2a1b4c
+

x2y2z4

2a2b4c
+

x2y3z4

2a3b4c
+

x2y4z4

2a4b4c

+
x3y1z4

3a1b4c
+

x3y2z4

3a2b4c
+

x3y3z4

3a3b4c
+

x3y4z4

3a4b4c

+
x4y1z4

4a1b4c
+

x4y2z4

4a2b4c
+

x4y3z4

4a3b4c
+

x4y4z4

4a4b4c

+
x1y1z5

1a1b5c
+

x1y2z5

1a2b5c
+

x1y3z5

1a3b5c
+

x1y4z5

1a4b5c
+

x1y5z5

1a5b5c

+
x2y1z5

2a1b5c
+

x2y2z5

2a2b5c
+

x2y3z5

2a3b5c
+

x2y4z5

2a4b5c
+

x2y5z5

2a5b5c

+
x3y1z5

3a1b5c
+

x3y2z5

3a2b5c
+

x3y3z5

3a3b5c
+

x3y4z5

3a4b5c
+

x3y5z5

3a5b5c

+
x4y1z5

4a1b5c
+

x4y2z5

4a2b5c
+

x4y3z5

4a3b5c
+

x4y4z5

4a4b5c
+

x4y5z5

4a5b5c

+
x5y1z5

5a1b5c
+

x5y2z5

5a2b5c
+

x5y3z5

5a3b5c
+

x5y4z5

5a4b5c
+

x5y5z5

5a5b5c

+
... +

... +
... +

... +
...
. . .

=

∞
∑

l,m,n≥1; l,m≤n

xlymzn

lambnc

=
∑

h,l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(xlymzn)h

ha+b+c(lambnc)

=
∑

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

1

(lambnc)

∞
∑

h=1

(xlynzn)h

ha+b+c

=
∑

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

1

(lambnc)
log

(

1

1− xlybzc

)

if a+ b+ c = 1.

Therefore, we have shown that if a+ b+ c = 1 then
∞
∑

n=1

(

n
∑

l=1

xl

la

)(

n
∑

m=1

ym

mb

)

zn

nc
=

∑

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

1

(lambnc)
log

(

1

1− xlybzc

)

.

Exponentiating both sides gives us the 3D ”pyramid VPV identity”, where in this
3D case the pyramid takes the form of layered square shaped arrays of lattice point
vectors as shown in the above workings.

The identity is summarized in the
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Figure 2. 3D hyperpyramid sum form (pyramid version).

Theorem 25.1. The 3D square pyramid VPV identity. If |x|, |y|, |z| < 1,
with a+ b+ c = 1,
(25.1)

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
1

lambnc

= exp

{ ∞
∑

n=1

(

n
∑

l=1

xl

la

)(

n
∑

m=1

ym

mb

)

zn

nc

}

.

As we did for the 2D particular cases, we can examine some obvious example
corollaries arising from this theorem. Firstly, take the case where a = b = 0, c = 1,
so then,

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
1
n

= exp

{ ∞
∑

n=1

(

n
∑

l=1

xl

)(

n
∑

m=1

ym

)

zn

n

}

= exp

{

xy

(1− x)(1− y)
log

(

1− xyz

1− z

)}

,

which brings us after exponentiating both sides to a set of 3D infinite products.
So, we have
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(25.2)
∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
1
n

=

(

1− xyz

1− z

)
xy

(1−x)(1−y)

,

and the equivalent identity,

(25.3)
∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1− xlymzn
)

1
n =

(

1− z

1− xyz

)
xy

(1−x)(1−y)

.

We see that (25.2) and (25.3) are generalizations of the 2D identities (24.2) and
(24.3) from the previous section. Writing (25.3) in longhand gives us,

(

1− z

1− xyz

)
xy

(1−x)(1−y)

=
√

1− xyz2

3
√

(1− xyz3)(1− x2yz3)

3
√

(1− xy2z3)(1− x2y2z3)

4
√

(1− xyz4)(1− x2yz4)(1− x3yz4)

4
√

(1− xy2z4)(1− x3y2z4)

4
√

(1− xy3z4)(1− x2y3z4)(1− x3y3z4)

5
√

(1− xyz5)(1− x2yz5)(1− x3yz5)(1− x4yz5)

5
√

(1− xy2z5)(1− x2y2z5)(1− x3y2z5)(1− x3y2z5)

5
√

(1− xy3z5)(1− x2y3z5)(1− x3y3z5)(1− x3y3z5)

5
√

(1− xy4z5)(1− x2y4z5)(1− x3y4z5)(1− x3y4z5)

6
√

(1− xyz6)(1− x2yz6)(1− x3yz6)(1− x4yz6)(1− x5yz6)

6
√

(1− xy2z6)(1− x3y2z6)(1− x5y2z6)

6
√

(1− xy3z6)(1− x2y3z6)(1− x4y3z6)(1− x5y3z6)

6
√

(1− xy4z6)(1− x3y4z6)(1− x5y4z6)

6
√

(1− xy5z6)(1− x2y5z6)(1− x3y5z6)(1− x4y5z6)(1− x5y5z6) etc.
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26. VPV identities in nD square hyperpyramid regions.

The n dimensional square hyperpyramid VPV Identity is encoded in the following

Theorem 26.1. The nD square hyperpyramid VPV identity. If i = 1, 2, 3, ..., n
then for each xi ∈ C such that |xi| < 1 and bi ∈ C such that

∑n
i=1 bi = 1,

(26.1)
∏

gcd(a1,a2,...,an)=1
a1,a2,...,an−1<an
a1,a2,...,an≥1

(

1

1− x1
a1x2

a2x3
a3 · · ·xn

an

)
1

a1
b1a2

b2a3
b3 ···anbn

= exp

{ ∞
∑

k=1

n−1
∏

i=1

(

k
∑

j=1

xi
j

jbi

)

xn
k

kbn

}

= exp

{ ∞
∑

k=1

(

k
∑

j=1

x1
j

jb1

)(

k
∑

j=1

x2
j

jb2

)(

k
∑

j=1

x3
j

jb3

)

· · ·
(

k
∑

j=1

xn−1
j

jbn−1

)

xn
k

kbn

}

.

This result is quite straight-forward to prove using the technique of our two pre-
vious sections. It was also given in Campbell [17] by summing on the VPV’s in the
n-space hyperpyramid, defined by the inequalities

(26.2) x1 < xn, x2 < xn, x3 < xn, ..., xn−1 < xn

in the first n-space hyperquadrant, and applying the following

Lemma 26.1. Consider an infinite region raying out of the origin in any Euclidean
vector space. The set of all lattice point vectors apart from the origin in that region
is precisely the set of positive integer multiples of the VPVs in that region.

The corresponding theorem from Campbell [12] was summed very simply over all
lattice point vectors in the first hyperquadrant.

Further consequences of the above theorem are given as follows.
The 2D case of theorem 26.1 is

Corollary 26.1. If |yz| and |z| < 1 and s+ t = 1 then,

(26.3) exp

{( ∞
∑

k=1

zk

kt

)}

∏

(a,b)=1
a<b

a>0,b>1

(

1

1− yazb

)
1

asbt

= exp

{

z1

1t
+

(

1 +
y1

1s

)

z2

2t
+

(

1 +
y1

1s
+

y2

2s

)

z3

3t
+ · · ·

}

The 3D case of theorem 26.1 is

Corollary 26.2. If |xyz|, |yz| and |z| < 1 and r + s + t = 1 then,

(26.4) exp

{ ∞
∑

k=1

zk

kt

}

∏

(a,b,c)=1
a,b<c

a,b>0,c>1

(

1

1− xaybzc

)
1

arbsct

= exp

{

z1

1t
+

(

1 +
x1

1r

)(

1 +
y1

1s

)

z2

2t
+

(

1 +
x1

1r
+

x2

2r

)(

1 +
y1

1s
+

y2

2s

)

z3

3t
+ · · ·

}

The 4D case of theorem 26.1 is
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Corollary 26.3. If |wxyz|, |xyz|, |yz| and |z| < 1 and r + s + t+ u = 1 then,
(26.5)

exp

{ ∞
∑

k=1

zk

ku

}

∏

(a,b,c,d)=1
a,b,c<d

a,b,c>0,d>1

(

1

1− waxbyczd

)
1

arbsctdu

= exp {P3(r, w; s, x; t, y; u, z)}

where P3, is a 4D hyperpyramid function,

P3(r, w; s, x; t, y; u, z) =
z1

1u
+

(

1 +
w1

1r

)(

1 +
x1

1s

)(

1 +
y1

1t

)

z2

2u

+

(

1 +
w1

1r
+

w2

2r

)(

1 +
x1

1s
+

x2

2s

)(

1 +
y1

1t
+

y2

2t

)

z3

3u
+ · · ·

The approach we adopt to give the reader an intuitive sense for these identities
is to state corollaries and then examples from them. The 2D case through to the
5D case of (26.1) are given in the following examples of the square hyperpyramid
identity.

Corollary 26.4. For |y|, |z| < 1,

(26.6)
∏

(a,b)=1
a<b

a≥0,b>0

(

1

1− yazb

)
1
b

=

(

1− yz

1− z

)
1

1−y

= 1+
z

1!
+

∣

∣

∣

∣

1 −1
1−y2

1−y
1

∣

∣

∣

∣

z2

2!
+

∣

∣

∣

∣

∣

∣

∣

1 −1 0
1−y2

1−y
1 −2

1−y3

1−y
1−y2

1−y
1

∣

∣

∣

∣

∣

∣

∣

z3

3!
+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
1−y2

1−y
1 −2 0

1−y3

1−y
1−y2

1−y
1 −3

1−y4

1−y
1−y3

1−y
1−y2

1−y
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!
+ etc.

In this case it is fairly easy to find the Taylor coefficients for the (26.6) right side
function. Hence we get a closed form evaluation of the determinant coefficients. In
Mathematica, and WolframAlpha one easily sees that the Taylor series is

(

1− yz

1− z

)
1

1−y

= 1 + z + (y + 2)
z2

2!
+ (2y2 + 5y + 6)

z3

3!
+ (6y3 + 17y2 + 26y + 24)

z4

4!

+ (24y4 + 74y3 + 129y2 + 154y + 120)
z5

5!
+O(z6)

and that the expansion is encapsulated by
∑∞

n=0 cnz
n where c0 = 1, c1 = 1 with the

recurrence

nycn + (n + 2)cn+2 = (2 + n+ y + ny)cn+1.

Incidentally, also in Mathematica, and WolframAlpha one easily sees, for example,
that the code

Det[{1,−1, 0, 0}, {(1−y2)/(1−y), 1,−2, 0}, {(1−y3)/(1−y), (1−y2)/(1−y), 1,−3},

{(1− y4)/(1− y), (1− y3)/(1− y), (1− y2)/(1− y), 1}]
nicely verifies the coefficient given by
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∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
1−y2

1−y
1 −2 0

1−y3

1−y
1−y2

1−y
1 −3

1−y4

1−y
1−y3

1−y
1−y2

1−y
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 6y3 + 17y2 + 26y + 24.

Corollary 26.5. For each of |x|, |y|, |z| < 1,

(26.7)
∏

(a,b,c)=1
a,b<c

a,b≥0,c>0

(

1

1− xaybzc

)
1
c

=

(

(1− xz)(1 − yz)

(1− z)(1− xyz)

)
1

(1−x)(1−y)

= 1 +
z

1!
+

∣

∣

∣

∣

∣

1 −1
(1−x2)(1−y2)
(1−x)(1−y)

1

∣

∣

∣

∣

∣

z2

2!
+

∣

∣

∣

∣

∣

∣

∣

1 −1 0
(1−x2)(1−y2)
(1−x)(1−y)

1 −2
(1−x3)(1−y3)
(1−x)(1−y)

(1−x2)(1−y2)
(1−x)(1−y)

1

∣

∣

∣

∣

∣

∣

∣

z3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
(1−x2)(1−y2)
(1−x)(1−y)

1 −2 0
(1−x3)(1−y3)
(1−x)(1−y)

(1−x2)(1−y2)
(1−x)(1−y)

1 −3
(1−x4)(1−y4)
(1−x)(1−y)

(1−x3)(1−y3)
(1−x)(1−y)

(1−x2)(1−y2)
(1−x)(1−y)

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!
+ etc.

Corollary 26.6. For each of |w|, |x|, |y|, |z| < 1,
(26.8)
∏

(a,b,c,d)=1
a,b,c<d

a,b,c≥0,d>0

(

1

1− waxbyczd

)
1
d

=

(

(1− wz)(1− xz)(1− yz)(1− wxyz)

(1− z)(1− wxz)(1− wyz)(1− xyz)

)
1

(1−w)(1−x)(1−y)

,

= 1 +
z

1!
+

∣

∣

∣

∣

∣

1 −1
(1−w2)(1−x2)(1−y2)
(1−w)(1−x)(1−y)

1

∣

∣

∣

∣

∣

z2

2!

+

∣

∣

∣

∣

∣

∣

∣

1 −1 0
(1−w2)(1−x2)(1−y2)
(1−w)(1−x)(1−y)

1 −2
(1−w3)(1−x3)(1−y3)
(1−w)(1−x)(1−y)

(1−w2)(1−x2)(1−y2)
(1−w)(1−x)(1−y)

1

∣

∣

∣

∣

∣

∣

∣

z3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
(1−w2)(1−x2)(1−y2)
(1−w)(1−x)(1−y)

1 −2 0
(1−w3)(1−x3)(1−y3)
(1−w)(1−x)(1−y)

(1−w2)(1−x2)(1−y2)
(1−w)(1−x)(1−y)

1 −3
(1−w4)(1−x4)(1−y4)
(1−w)(1−x)(1−y)

(1−w3)(1−x3)(1−y3)
(1−w)(1−x)(1−y)

(1−w2)(1−x2)(1−y2)
(1−w)(1−x)(1−y)

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!
+ etc.

Corollary 26.7. For each of |v|, |w|, |x|, |y|, |z| < 1,

(26.9)
∏

(a,b,c,d,e)=1
a,b,c,d<e

a,b,c,d≥0,e>0

(

1

1− vawbxcydze

)
1
e
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=

(

(1− vz)(1− wz)(1− xz)(1 − yz)

(1− z)(1− vwz)(1− vxz)(1 − vyz)

)
1

(1−v)(1−w)(1−x)(1−y)

×
(

(1− vwxz)(1− vwyz)(1− vxyz)(1− wxyz)

(1− wxz)(1− wyz)(1− xyz)(1− vwxyz)

)
1

(1−v)(1−w)(1−x)(1−y)

.

= 1 +
z

1!
+

∣

∣

∣

∣

∣

1 −1
(1−v2)(1−w2)(1−x2)(1−y2)

(1−v)(1−w)(1−x)(1−y)
1

∣

∣

∣

∣

∣

z2

2!

+

∣

∣

∣

∣

∣

∣

∣

1 −1 0
(1−v2)(1−w2)(1−x2)(1−y2)

(1−v)(1−w)(1−x)(1−y)
1 −2

(1−v3)(1−w3)(1−x3)(1−y3)
(1−v)(1−w)(1−x)(1−y)

(1−v2)(1−w2)(1−x2)(1−y2)
(1−v)(1−w)(1−x)(1−y)

1

∣

∣

∣

∣

∣

∣

∣

z3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
(1−v2)(1−w2)(1−x2)(1−y2)

(1−v)(1−w)(1−x)(1−y)
1 −2 0

(1−v3)(1−w3)(1−x3)(1−y3)
(1−v)(1−w)(1−x)(1−y)

(1−v2)(1−w2)(1−x2)(1−y2)
(1−v)(1−w)(1−x)(1−y)

1 −3
)1−v4)(1−w4)(1−x4)(1−y4)

(1−v)(1−w)(1−x)(1−y)
(1−v3)(1−w3)(1−x3)(1−y3)

(1−v)(1−w)(1−x)(1−y)
(1−v2)(1−w2)(1−x2)(1−y2)

(1−v)(1−w)(1−x)(1−y)
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!

+ etc.

Next we drill down further by taking corollaries of corollaries of equations (26.7)
through to (26.9). Hence, we observe the emergence of binomial coefficients in the
right side indices of the following (26.10) through to (26.12) results.

Corollary 26.8. For each of |y|, |z| < 1,

(26.10)
∏

(a,b,c)=1
a,b<c

a,b≥0,c>0

(

1

1− ya+bzc

)
1
c

=

(

(1− yz)2

(1− z)(1− y2z)

)
1

(1−y)2

= 1 +
z

1!
+

∣

∣

∣

∣

∣

1 −1
(

1−y2

1−y

)2

1

∣

∣

∣

∣

∣

z2

2!
+

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0
(

1−y2

1−y

)2

1 −2
(

1−y3

1−y

)2 (

1−y2

1−y

)2

1

∣

∣

∣

∣

∣

∣

∣

∣

z3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
(

1−y2

1−y

)2

1 −2 0
(

1−y3

1−y

)2 (

1−y2

1−y

)2

1 −3
(

1−y4

1−y

)2 (

1−y3

1−y

)2 (

1−y2

1−y

)2

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!
+ etc.

Corollary 26.9. For each of |y|, |z| < 1,

(26.11)
∏

(a,b,c,d)=1
a,b,c<d

a,b,c≥0,d>0

(

1

1− ya+b+czd

)
1
d

=

(

(1− yz)3(1− y3z)

(1− z)(1 − y2z)3

)
1

(1−y)3
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= 1 +
z

1!
+

∣

∣

∣

∣

∣

1 −1
(

1−y2

1−y

)3

1

∣

∣

∣

∣

∣

z2

2!
+

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0
(

1−y2

1−y

)3

1 −2
(

1−y3

1−y

)3 (

1−y2

1−y

)3

1

∣

∣

∣

∣

∣

∣

∣

∣

z3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
(

1−y2

1−y

)3

1 −2 0
(

1−y3

1−y

)3 (

1−y2

1−y

)3

1 −3
(

1−y4

1−y

)3 (

1−y3

1−y

)3 (

1−y2

1−y

)3

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!
+ etc.

Corollary 26.10. For each of |y|, |z| < 1,

(26.12)
∏

(a,b,c,d,e)=1
a,b,c,d<e

a,b,c,d≥0,e>0

(

1

1− ya+b+c+dze

)
1
e

=

(

(1− yz)4(1− y3z)4

(1− z)(1 − y2z)6(1− y4z)

)
1

(1−y)4

= 1 +
z

1!
+

∣

∣

∣

∣

∣

1 −1
(

1−y2

1−y

)4

1

∣

∣

∣

∣

∣

z2

2!
+

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0
(

1−y2

1−y

)4

1 −2
(

1−y3

1−y

)4 (

1−y2

1−y

)4

1

∣

∣

∣

∣

∣

∣

∣

∣

z3

3!

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
(

1−y2

1−y

)4

1 −2 0
(

1−y3

1−y

)4 (

1−y2

1−y

)4

1 −3
(

1−y4

1−y

)4 (

1−y3

1−y

)4 (

1−y2

1−y

)4

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z4

4!
+ etc.

Beyond 3D space, it is humanly impossible to visualize the 4D or 5D grids that
would depict the coefficients in these identities. However, the above equation (26.12)
represents combinatorially a statement about radial-from-origin 5D lattice points
pertaining to a select cluster of vectors or lattice points (depending on preference)
on a 2D manifold through the 5D lattice space. The radial-from-origin aspect is
always evident from the product restriction on left side where gcd(a, b, c, d, e) = 1.

27. Finite Euler Sums

Consider the following well known summations:

(27.1)

n
∑

k=1

k1 =
n

2
+

n2

2
,

(27.2)
n
∑

k=1

k2 =
n

6
+

n2

2
+

n3

3
,

(27.3)
n
∑

k=1

k3 =
n2

4
+

n3

3
+

n4

4
,
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(27.4)

n
∑

k=1

k4 =
−n

30
+

n3

3
+

n4

2
+

n5

5
,

and their generalizations:

(27.5)

n
∑

k=1

k1zk =
z − (1 + n)zn+1 + nzn+2

(1− z)2
,

(27.6)
n
∑

k=1

k2zk =
−n2zn+3 + (2n2 + 2n− 1)zn+2 − (n2 + 2n+ 1)zn+1 + z2 + z

(1− z)3
,

(27.7)

n
∑

k=1

k3zk =
A

(1− z)4
, where

A = n3zn+4+(3n3+6n2−4)zn+2−(3n3+3n2−3n+1)zn+3−(n+1)3zn+1+z3+4z2+z.

(27.8)
n
∑

k=1

k4zk = − B

(1− z)5
, where

B = n4zn+5 + (−4n4 − 4n3 +6n2− 4n+1)zn+4 + (6n4 +12n3− 6n2− 12n+11)zn+3

+ (4n4 + 12n3 + 6n2 − 12n− 11)zn+2 + (n+ 1)4zn+1 − z4 − 11z3 − 11z2 − z.

These kind of finite sums lend themselves to substitution in the hyperpyramid
identities; in fact for both the square and skewed hyperpyramid versions. It is
illustrative here to give a few examples in 2D and 3D of the uses for the Euler Sums
in the context of VPV identities here.

27.1. The 2D square hyperpyramid VPV identity. Recall from an earlier pa-
per that:

If |y|, |z| < 1, with a + b = 1,

(27.9)
∏

m,n≥1
m≤n; gcd(m,n)=1

(

1

1− ymzn

)
1

manb

= exp

{ ∞
∑

n=1

(

n
∑

m=1

ym

ma

)

zn

nb

}

.

Let us set by definition gcd(m,n) := (m,n) and apply equations (27.1) through
to (27.4) substituted respectively into (27.9). This corresponds to the cases of (27.9)
with:

y = 1, a = −1, implying from condition a+ b = 1 that b = 2;
y = 1, a = −2, implying from condition a+ b = 1 that b = 3;
y = 1, a = −3, implying from condition a+ b = 1 that b = 4;
y = 1, a = −4, implying from condition a+ b = 1 that b = 5;

so the resulting substitutions give us respectively the four equations

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m1

n2

= exp

{ ∞
∑

n=1

(

n

2
+

n2

2

)

zn

n2

}
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= exp

{

1

2
log

(

1

1− z

)

+
1

2

z

1− z

}

,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m2

n3

= exp

{ ∞
∑

n=1

(

n

6
+

n2

2
+

n3

3

)

zn

n3

}

= exp

{

1

6
Li2(z) +

1

2
log

(

1

1− z

)

+
1

3

z

1− z

}

,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m3

n4

= exp

{ ∞
∑

n=1

(

n2

4
+

n3

3
+

n4

4

)

zn

n4

}

= exp

{

1

4
Li2(z) +

1

3
log

(

1

1− z

)

+
1

4

z

1− z

}

,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m4

n5

= exp

{ ∞
∑

n=1

(−n

30
+

n3

3
+

n4

2
+

n5

5

)

zn

n5

}

= exp

{−1

30
Li3(z) +

1

3
log

(

1

1− z

)

+
1

2

z

(1− z)2
+

1

5

z

1− z

}

.

Based on the above equations and their reciprocal equations, we may assert the
following four theorems.

Theorem 27.1. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m1

n2

=

√

1

1− z
exp

{

1

2

z

1− z

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− zn)
m1

n2 =
√
1− z exp

{−1

2

z

1− z

}

.

Theorem 27.2. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m2

n3

=

√

1

1− z
exp

{

1

6
Li2(z) +

1

3

z

1− z

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− zn)
m2

n3 =
√
1− z exp

{−1

6
Li2(z)−

1

3

z

1− z

}

.

Theorem 27.3. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m3

n4

= 3

√

1

1− z
exp

{

1

4
Li2(z) +

1

4

z

1− z

}

,
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∏

m,n≥1
m≤n; (m,n)=1

(1− zn)
m3

n4 = 3
√
1− z exp

{−1

4
Li2(z)−

1

4

z

1− z

}

.

Theorem 27.4. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− zn

)
m4

n5

= 3

√

1

1− z
exp

{

z(7 − 2z)

10(1− z)2
− 1

30
Li3(z)

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− zn)
m4

n5 = 3
√
1− z exp

{

z(2z − 7)

10(1− z)2
+

1

30
Li3(z)

}

.

The above four theorems give us a single variable equation in each case that
encodes a statement about ”weighted integer partitions” of a kind not normally
discussed in the partition literature. However equations (27.5) through to (27.8)
substituted respectively into (27.9) can supply us with two-variable 2D generaliza-
tions of theorem 27.1 to theorem 27.4. This corresponds to the cases of (27.9) with:

a = −1, implying from condition a + b = 1 that b = 2;
a = −2, implying from condition a + b = 1 that b = 3;
a = −3, implying from condition a + b = 1 that b = 4;
a = −4, implying from condition a + b = 1 that b = 5;

so the resulting substitutions (putting y for z in each case) give us respectively the
four 2D equation workings,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m1

n2

= exp

{ ∞
∑

n=1

(

y − (1 + n)yn+1 + nyn+2

(1− y)2

)

zn

n2

}

= exp

{

yLi2(z)

(1− y)2
− yLi2(yz)

(1− y)2
− y

(1− y)2
log

(

1

1− yz

)

+
y2

(1− y)2
log

(

1

1− yz

)}

= (1− yz)
y

1−y exp

{

y

(1− y)2
(Li2(z)− Li2(yz))

}

;

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m2

n3

= exp

{ ∞
∑

n=1

(−n2yn+3 + (2n2 + 2n− 1)yn+2 − (n2 + 2n+ 1)yn+1 + y2 + y

(1− y)3

)

zn

n3

}

= exp

{ ∞
∑

n=1

(−y(y + 1)(yn − 1) + 2n(y − 1)yn+1 − n2(y − 1)2yn+1

(1− y)3

)

zn

n3

}

=

(

1

1− yz

)
y

1−y

exp

{

y(y + 1)

(1− y)3
(Li3(z)− Li3(yz))−

2y

(1− y)2
Li2(yz)

}

;
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∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m3

n4

= exp

{ ∞
∑

n=1

(

n3yn+4 + (3n3 + 6n2 − 4)yn+2

(1− y)4

)

zn

n4

}

× exp

{ ∞
∑

n=1

(−(n+ 1)3yn+1 + y3 + 4y2 + y

(1− y)4

)

zn

n4

}

= exp

{ ∞
∑

n=1

(−y(y2 + 4y + 1)(yn − 1) + 3n(y2 − 1)yn+1 − 3n2((y − 1)2yn+1) + n3(y − 1)3yn+1

(1− y)4

)

zn

n4

}

= (1− yz)
y

1−y exp

{

y(y2 + 4y + 1)

(1− y)4
(Li4(z)− Li4(yz)) +

3y(1 + y)

(1− y)3
Li3(yz) +

3y

(1− y)2
Li2(yz)

}

;

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m4

n5

= exp

{ ∞
∑

n=1

(

−n4yn+5 + (−4n4 − 4n3 + 6n2 − 4n+ 1)yn+4

(1− y)5

)

zn

n5

}

× exp

{ ∞
∑

n=1

(

−(6n4 + 12n3 − 6n2 − 12n+ 11)yn+3

(1− y)5

)

zn

n5

}

× exp

{ ∞
∑

n=1

(

−(−4n4 − 12n3 − 6n2 + 12n+ 11)yn+2 + (n + 1)4yn+1

(1− y)5

)

zn

n5

}

× exp

{ ∞
∑

n=1

(

+
y4 + 11y3 + 11y2 + z

(1− y)5

)

zn

n5

}

= exp

{

y(y + 1)(y2 + 10y + 1)

(1− y)5
(Li5(yz)− Li5(z))

}

× exp

{

4

(1− y)5
((−y4 + 3y3 + y)Li4(yz) + 3Li4(z))

}

× exp

{

6

(1− y)5
((y4 − y3 + y)Li3(yz)− Li3(z))

}

× exp

{

4

(1− y)5
((y − 3y3 − y4)Li2(yz)− 3Li2(z))

}

× exp

{

1

(1− y)5
((y5 − 4y4 + 6y3 + y)Li1(yz)− 4Li1(z))

}

=
(1− z)

4
(1−y)5

(1− yz)
y5−4y4+6y3+y

(1−y)5

× exp

{

y(y + 1)(y2 + 10y + 1)

(1− y)5
(Li5(yz)− Li5(z))

}

× exp

{

4

(1− y)5
((−y4 + 3y3 + y)Li4(yz) + 3Li4(z))

}
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× exp

{

6

(1− y)5
((y4 − y3 + y)Li3(yz)− Li3(z))

}

× exp

{

4

(1− y)5
((y − 3y3 − y4)Li2(yz)− 3Li2(z))

}

.

Based on the above equations and their reciprocal equations, we may assert the
following four 2D theorems.

Theorem 27.5. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m1

n2

= (1− yz)
y

1−y exp

{

y

(1− y)2
(Li2(z)− Li2(yz))

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− ymzn)
m1

n2 =

(

1

1− yz

)
y

1−y

exp

{

− y

(1 − y)2
(Li2(z)− Li2(yz))

}

.

Theorem 27.6. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m2

n3

=

(

1

1− yz

)
y

1−y

× exp

{

y(y + 1)

(1− y)3
(Li3(z)− Li3(yz))−

2y

(1− y)2
Li2(yz)

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− ymzn)
m2

n3 = (1− yz)
y

1−y

× exp

{

−y(y + 1)

(1− y)3
(Li3(z)− Li3(yz)) +

2y

(1− y)2
Li2(yz)

}

,

Theorem 27.7. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m3

n4

= (1− yz)
y

1−y

× exp

{

y(y2 + 4y + 1)

(1− y)4
(Li4(z)− Li4(yz)) +

3y(1 + y)

(1− y)3
Li3(yz) +

3y

(1− y)2
Li2(yz)

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− ymzn)
m3

n4 =

(

1

1− yz

)
y

1−y

×exp

{

−y(y2 + 4y + 1)

(1− y)4
(Li4(z)− Li4(yz))−

3y(1 + y)

(1− y)3
Li3(yz)−

3y

(1− y)2
Li2(yz)

}

.
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Theorem 27.8. For |z| < 1,

∏

m,n≥1
m≤n; (m,n)=1

(

1

1− ymzn

)
m4

n5

=

{

(1− z)4

(1− yz)y
5−4y4+6y3+y

}
1

(1−y)5

× exp

{

y(y + 1)(y2 + 10y + 1)

(1− y)5
(Li5(yz)− Li5(z))

}

× exp

{

4

(1− y)5
((−y4 + 3y3 + y)Li4(yz) + 3Li4(z))

}

× exp

{

6

(1− y)5
((y4 − y3 + y)Li3(yz)− Li3(z))

}

× exp

{

4

(1− y)5
((y − 3y3 − y4)Li2(yz)− 3Li2(z))

}

,

∏

m,n≥1
m≤n; (m,n)=1

(1− ymzn)
m4

n5 =

{

(1− yz)y
5−4y4+6y3+y

(1− z)4

}
1

(1−y)5

× exp

{−y(y + 1)(y2 + 10y + 1)

(1− y)5
(Li5(yz)− Li5(z))

}

× exp

{ −4

(1− y)5
((−y4 + 3y3 + y)Li4(yz) + 3Li4(z))

}

× exp

{ −6

(1− y)5
((y4 − y3 + y)Li3(yz)− Li3(z))

}

× exp

{ −4

(1− y)5
((y − 3y3 − y4)Li2(yz)− 3Li2(z))

}

.

27.2. The 3D square hyperpyramid VPV identity. Recall from an earlier pa-
per that:

If |x|, |y|, |z| < 1, with a+ b+ c = 1,
(27.10)

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
1

lambnc

= exp

{ ∞
∑

n=1

(

n
∑

l=1

xl

la

)(

n
∑

m=1

ym

mb

)

zn

nc

}

.

In one of the simpler examples we can give, let us apply equations (27.1) and
(27.2) to (27.10). This corresponds to the case of (27.10) with x = y = 1, a = −1,
b = −2, implying from condition a+b+c = 1 that c = 4. The resulting substitution
is

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− zn

)
lm2

n4

= exp

{ ∞
∑

n=1

(

n

2
+

n2

2

)(

n

6
+

n2

2
+

n3

3

)

zn

n4

}

= exp

{ ∞
∑

n=1

(

n2

12
+

n3

3
+

5n4

12
+

n5

6

)

zn

n4

}
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= exp

{

1

12
Li2(z) +

1

3
Li1(z) +

5

12
Li0(z) +

1

6
Li−1(z)

}

= exp

{

1

12
Li2(z) +

1

3
log

(

1

1− z

)

+
5

12

z

1− z
+

1

6

z

(1− z)2

}

= exp

{

1

12
Li2(z) +

z(7− 5z))

12(1− z)2
+

1

3
log

(

1

1− z

)}

= 3

√

(

1

1− z

)

exp

{

1

12
Li2(z) +

z(7 − 5z))

12(1− z)2

}

.

Therefore we have proven that if |z| < 1,

(27.11)

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− zn

)
lm2

n4

= 3

√

(

1

1− z

)

exp

{

1

12

(

Li2(z) +
z(7 − 5z)

(1− z)2

)}

,

and the equivalent result,

(27.12)
∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(1− zn)
lm2

n4 = 3
√

(1− z) exp

{

− 1

12

(

Li2(z) +
z(7 − 5z)

(1− z)2

)}

.

There is a corresponding example we can give, if we apply equations (27.5) and
(27.6) to (27.10). This corresponds to the case of (27.10) with a = −1, b = −2,
implying from condition a + b + c = 1 that c = 4. The resulting substitution gives
us

(27.13)
∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
lm2

n4

= exp

{ ∞
∑

n=1

A(n, x)B(n, y)
zn

n4

}

where

A(n, x) =
x− (1 + n)xn+1 + nxn+2

(1− x)2

and

B(n, y) =
−n2yn+3 + (2n2 + 2n− 1)yn+2 − (n2 + 2n + 1)yn+1 + y2 + y

(1− y)3
,

which, after expanding and simplifying is equivalent to

(27.14)
∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
lm2

n4



74 GEOFFREY B CAMPBELL

=

(

1

1− xyz

)
xy

(1−x)2(1−y)3

×exp

{−xy(2x+ y − 3)

(1− x)3(1− y)4
Li2(xyz) +

xy

(1− x)3(1− y)3
Li2(yz) +

xy(y + 1)

(1− x)3(1− y)5
Li4(xyz)

}

×exp

{−xy(xy + x+ y − 3)

(1− x)3(1− y)5
Li3(xyz)−

xy(y + 1)

(1− x)2(1− y)5
Li3(xz)−

xy(y + 1)

(1− x)3(1− y)5
Li4(xz)

}

×exp

{ −2xy

(1− x)3(1− y)4
Li3(yz)−

xy(1 + y)

(1− x)3(1− y)5
Li4(yz) +

xy(1 + y)

(1− x)3(1− y)5
Li4(z)

}

.

The necessary workings and simplification in going from (27.13) to arrive at
(27.14) are given in the following page and a half of analysis.

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
lm2

n4

= exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(n3xn+1yn+1 − 2n3xn+1yn+2 + n3xn+1yn+3)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(−n3xn+2yn+1 + 2n3xn+2yn+2 − n3xn+2yn+3)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(+3n2xn+1yn+1 − 4n2xn+1yn+2 + n2xn+1yn+3)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(−2n2xn+2yn+1 + 2n2xn+2yn+2 − n2xyn+1)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(+2n2xyn+2 − n2xyn+3 + 3nxn+1yn+1)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(+xn+1yn+1 − nxn+1yn+2 + xn+1yn+2)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(−nxn+2yn+1 − nxn+2yn+2 − ny2xn+1 − y2xn+1)
zn

n4

}

×exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(+ny2xn+2 − nyxn+1 − yxn+1 + nyxn+2 − 2nxyn+1)
zn

n4

}

× exp

{

1

(1− x)3(1− y)5

∞
∑

n=1

(−xyn+1 + 2nxyn+2 − xyn+2 + xy2 + xy)
zn

n4

}

which works out through the following analysis to

∏

l,m,n≥1
l,m≤n; gcd(l,m,n)=1

(

1

1− xlymzn

)
lm2

n4
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= exp

{

1

(1− x)3(1− y)5
(xyLi1(xyz)− 2xy2Li1(xyz) + xy3Li1(xyz))

}

× exp

{

1

(1− x)3(1− y)5
(−x2yLi1(xyz) + 2x2y2Li1(xyz)− x2y3Li1(xyz))

}

× exp

{

1

(1− x)3(1− y)5
(+3xyLi2(xyz)− 4xy2Li2(xyz) + xy3Li2(xyz))

}

× exp

{

1

(1− x)3(1− y)5
(−2x2yLi2(xyz) + 2x2y2Li2(xyz)− xyLi2(yz))

}

× exp

{

1

(1− x)3(1− y)5
(+2xy2Li2(yz)− xy3Li2(yz) + 3xyLi3(xyz))

}

× exp

{

1

(1− x)3(1− y)5
(+xyLi4(xyz)− xy2Li3(xyz) + xy2Li4(xyz))

}

×exp

{

1

(1− x)3(1− y)5
(−x2yLi3(xyz)− x2y2Li3(xyz)− xy2Li3(xz)− xy2Li4(xz))

}

×exp

{

1

(1− x)3(1− y)5
(+x2y2Li3(xz) − xyLi3(xz)− xyLi4(xz) + x2yLi3(xz)− 2xyLi3(yz))

}

×exp

{

1

(1− x)3(1− y)5
(−xyLi4(yz) + 2xy2Li3(yz)− xy2Li4(yz) + xy2Li4(z) + xyLi4(z))

}

= exp

{

1

(1− x)3(1− y)5
((x− 1)x(y − 1)2y log(1− xyz))

}

× exp

{

1

(1− x)3(1− y)5
(x(y − 1)y(2x+ y − 3)Li2(xyz))

}

× exp

{

1

(1− x)3(1− y)5
(−x(y − 1)2yLi2(yz))

}

× exp

{

1

(1− x)3(1− y)5
(xy(y + 1)Li4(xyz))

}

× exp

{

1

(1− x)3(1− y)5
(−xy(xy + x+ y − 3)Li3(xyz))

}

× exp

{

1

(1− x)3(1− y)5
((x− 1)xy(y + 1)Li3(xz)− xy(y + 1)Li4(xz))

}

×exp

{

1

(1− x)3(1− y)5
(+2x(y − 1)yLi3(yz)− xy(1 + y)Li4(yz) + xy(1 + y)Li4(z))

}

=

(

1

1− xyz

)
xy

(1−x)2(1−y)3

×exp

{−xy(2x+ y − 3)

(1− x)3(1− y)4
Li2(xyz) +

xy

(1− x)3(1− y)3
Li2(yz) +

xy(y + 1)

(1− x)3(1− y)5
Li4(xyz)

}

×exp

{−xy(xy + x+ y − 3)

(1− x)3(1− y)5
Li3(xyz)−

xy(y + 1)

(1− x)2(1− y)5
Li3(xz)−

xy(y + 1)

(1− x)3(1− y)5
Li4(xz)

}

×exp

{ −2xy

(1− x)3(1− y)4
Li3(yz)−

xy(1 + y)

(1− x)3(1− y)5
Li4(yz) +

xy(1 + y)

(1− x)3(1− y)5
Li4(z)

}

.
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The casual reader will appreciate that the simple summations arising from sub-
stituted equations (27.1) through to (27.4) yield much more immediate and simple
results than the more elaborate and impressive substituted equations (27.5) through
to (27.8).

28. Elementary ideas for binary Partitions

A binary partition is an integer partition where each number (part) in the sum
is of the form 2n for non-negative integers n. The unrestricted binary integer par-
titions function b(n) was first studied by Euler in the 18th century. We extend the
unrestricted and the distinct integer binary partition function to partitions of 2D
and 3D vectors into parts that are of forms 〈2a, 2b〉 and 〈2c, 2d, 2e〉 respectively for
non-negative integers a, b, c, d. Unrestricted partitions of this type are b(i, j) is the
number of solutions of 〈i, j〉 =

∑〈2a, 2b〉 for non-increasing, non-negative integers
a, b in 2D; and b(i, j, k) is the number of solutions of 〈i, j, k〉 =

∑

〈2c, 2d, 2e〉 for
non-increasing, non-negative integers c, d, e in 3D.

The generating function for unrestricted binary partitions is, for |q| < 1,

∑

n≥0

b(n)qn =
∑

n≥0

p(n| integer parts 2j)qn =
∞
∏

n=0

1

1− q2n
(28.1)

= 1 + q + 2q2 + 2q3 + 4q4 + 4q5 + 6q6 + 6q7 + 10q8

+10q9 + 14q10 + 14q11 + 20q12 + 20q13 + 26q14 + 26q15

+36q16 + 36q17 + 46q18 + 46q19 + 60q20 +O(q21).

Then, for example the four binary partitions of 5 are

4 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

so p(5) = 4.

29. A few finite and infinite products for binary partitions

Consider the following finite products:-

(1 + x) =
1− x2

1− x
,

(1 + x)(1 + x2) =
1− x4

1− x
,

(1 + x)(1 + x2)(1 + x4) =
1− x8

1− x
,

(1 + x)(1 + x2)(1 + x4)(1 + x8) =
1− x16

1− x
,

and generally

(1 + x)(1 + x2)(1 + x4) · · · (1 + x2n) =
1− x2(n+1)

1− x
.

It is easy to see how this leads to the well-known results:-

(29.1) (1 + x)(1 + x2)(1 + x4) · · · (1 + x2n) · · · = 1

1− x
=
∑

n≥0

xn,
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for |x| < 1; and

(

1 + x1/2

2

)(

1 + x1/4

2

)(

1 + x1/8

2

)

· · ·
(

1 + x2−n

2

)

· · · = 1− x

log( 1
x
)
,

for |x| 6= 1 or 0.
We note that (29.1) encodes that every positive integer is a unique partition into

distinct non-negative powers of 2.

30. 2D version of every integer is a unique sum of distinct binary

powers

We are fortunate to have the identities from the previous section. They permit
us easy access to some very simple 2D binary partition results. Let us start by
considering the following identities, each easy to prove from the finite products
above.

(30.1)
(1 + xy) ×(1 + x2y)

×(1 + xy2) ×(1 + x2y2)
=

1−x3y3

(1−xy)
× 1−x4y2

(1−x2y)

× (1−xy2)
1−x2y4

= x6y6+x5y5+x5y4+x4y5+x4y4+x4y3+x3y4+2x3y3+x3y2+x2y3+x2y2+x2y+xy2+xy+1

= 1 +

+x6y6

+x4y5 +x5y5

+x3y4 +x4y4 +x5y4

+x2y3 +2x3y3 +x4y3

+xy2 +x2y2 +x3y2

+xy +x2y

,

where in this last equation we’ve taken poetic licence to mimick the partition grid,
which would look like this

6 1
5 1 1
4 1 1 1
3 1 2 1
2 1 1 1
1 1 1
0 1

0 1 2 3 4 5 6

In a similar fashion we see easily that

(30.2)
(1 + xy) (1 + x2y) (1 + x4y)
(1 + xy2) (1 + x2y2) (1 + x4y2)
(1 + xy4) (1 + x2y4) (1 + x4y4)

=

(1−x8y8)
(1−xy)

(1−x8y4)
(1−x2y)

(1−x8y2)
(1−x4y)

(1−x4y8)
(1−xy2)
(1−x2y8)
(1−xy4)

= x21y21 + x20y20 + x19y20 + x17y20 + x20y19 + x19y19 + x18y19 + x17y19 + x16y19

+ x15y19 + x19y18 + 2x18y18 + x17y18 + 2x16y18 + 2x15y18 + x14y18 + x13y18 + x20y17

+ x19y17 + x18y17 + 2x17y17 + 2x16y17 + 2x15y17 + 3x14y17 + x13y17 + x12y17 + x11y17

+x19y16+2x18y16+2x17y16+3x16y16+3x15y16+3x14y16+3x13y16+2x12y16+x11y16
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+x10y16+x19y15+2x18y15+2x17y15+3x16y15+4x15y15+4x14y15+4x13y15+3x12y15

+2x11y15+2x10y15+x9y15+x18y14+3x17y14+3x16y14+4x15y14y14+6x14y14+5x13

+ 5x12y14 + 4x11y14 + 2x10y14 +2x9y14 + x8y14 + x18y13 + x17y13 + 3x16y13 +4x15y13

+5x14y13+6x13y13+6x12y13+5x11y13+5x10y13+3x9y13+2x8y13+ x7y13+ x17y12

+ 2x16y12 + 3x15y12 + 5x14y12 + 6x13y12 + 7x12y12 + 6x11y12 + 6x10y12 + 4x9y12

+ 3x8y12 + 2x7y12 + x6y12 + x17y11 + x16y11 + 2x15y11 + 4x14y11 + 5x13y11 + 6x12y11

+ 7x11y11 + 6x10y11 + 6x9y11 + 5x8y11 + 2x7y11 + 2x6y11 + x5y11 + x16y10 + 2x15y10

+2x14y10+5x13y10+6x12y10+6x11y10+7x10y10+6x9y10+5x8y10+4x7y10+2x6y10

+ x5y10 + x4y10 + x15y9 + 2x14y9 + 3x13y9 + 4x12y9 + 6x11y9 + 6x10y9 + 7x9y9

+ 6x8y9 + 5x7y9 + 3x6y9 + 2x5y9 + x4y9 + x14y8 + 2x13y8 + 3x12y8 + 5x11y8

+ 5x10y8 + 6x9y8 + 6x8y8 + 5x7y8 + 4x6y8 + 3x5y8 + x4y8 + x3y8 + x13y7 + 2x12y7

+ 2x11y7 + 4x10y7 + 5x9y7 + 5x8y7 + 6x7y7 + 4x6y7 + 3x5y7 + 3x4y7 + x3y7

+ x12y6 + 2x11y6 + 2x10y6 + 3x9y6 + 4x8y6 + 4x7y6 + 4x6y6 + 3x5y6 + 2x4y6

+ 2x3y6 + x2y6 + x11y5 + x10y5 + 2x9y5 + 3x8y5 + 3x7y5 + 3x6y5 + 3x5y5

+ 2x4y5 + 2x3y5 + x2y5 + x10y4 + x9y4 + x8y4 + 3x7y4 + 2x6y4 + 2x5y4 + 2x4y4

+ x3y4 + x2y4 + xy4 + x8y3 + x7y3 + 2x6y3 + 2x5y3 + x4y3 + 2x3y3 + x2y3

+ x6y2 + x5y2 + x4y2 + x3y2 + x2y2 + xy2 + x4y + x2y + xy + 1

It is clear that this identity can be extended to any finite case which can then be
proved by induction. The infinite case is evident also. We see the coefficients in the
above expansion are represented by the grid below.

21 1

20 1 1 1

19 1 1 1 1 1 1
18 1 1 2 2 1 2 1
17 1 1 1 3 2 2 2 1 1 1
16 1 1 2 3 3 3 3 2 2 1
15 1 2 3 3 4 4 4 3 2 2 1
14 1 2 2 4 5 5 6 4 3 3 1
13 1 1 2 3 5 5 6 6 5 4 3 1 1
12 1 2 3 4 6 6 7 6 5 3 2 1
11 1 2 2 5 6 6 7 6 5 4 2 1 1
10 1 1 2 4 5 6 7 6 6 5 2 2 1
9 1 2 3 5 6 7 6 6 4 3 2 1
8 1 1 3 4 5 6 6 5 5 3 2 1
7 1 3 3 4 6 5 5 4 2 2 1
6 1 2 2 3 4 4 4 3 2 2 1
5 1 2 2 3 3 3 3 2 1 1
4 1 1 1 2 2 2 3 1 1 1
3 1 2 1 2 2 1 1
2 1 1 1 1 1 1
1 1 1 1
0 1

x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Note the generating function for the diagonal where y = x in bold is (if xy = z)

z21 + z20 + z19 + 2z18 + 2z17 + 3z16 + 4z15 + 6z14 + 6z13 + 7z12 + 7z11 + 7z10

+7z9 + 6z8 + 6z7 + 4z6 + 3z5 + 2z4 + 2z3 + z2 + z + 1

= (z+1)(z2+1)(z4+1)(z4+z3+z2+z+1)(z10−z9+z7−z6+2z5−z4+z3−z+1).
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31. The 2D binary, n-ary and 10-ary formulas

A 2D generalization of our earlier formula for distinct binary partitions has the
cases:

(31.1) (p+ q) =
p2 − q2

p− q
,

(31.2) (p+ q)(p2 + q2) =
p4 − q4

p− q
,

(31.3) (p+ q)(p2 + q2)(p4 + q4) =
p8 − q8

p− q
,

...

(31.4) (p+ q)(p2 + q2)(p4 + q4) · · · (p2n−1

+ q2
n−1

) =
p2

n − q2
n

p− q
.

Hence, adding together both sides of (31.1) to (31.4) gives the identity,

(31.5)

1+(p+q)+(p+q)(p2+q2)+(p+q)(p2+q2)(p4+q4)+. . .+(p+q)(p2+q2)(p4+q4) · · · (p2n−1

+q2
n−1

)

=
(p+ p2 + p4 + . . .+ p2

n
)− (q + q2 + q4 + . . .+ q2

n
)

p− q
.

This is an interesting fundamental result in distinct 2D binary partitions. Before
going further on this we repeat these equations, this time including the expansions.

(31.6) (p+ q) =
p2 − q2

p− q

(31.7) (p+ q)(p2 + q2) =
p4 − q4

p− q
,

= p3 + p2q + pq2 + q3,

(31.8) (p+ q)(p2 + q2)(p4 + q4) =
p8 − q8

p− q
,

= p7 + p6q + p5q2 + p4q3 + p3q4 + p2q5 + pq6 + q7,

(31.9) (p+ q)(p2 + q2)(p4 + q4)(p8 + q8) =
p16 − q16

p− q

= p15 + p14q + p13q2 + p12q3 + p11q4 + p10q5 + p9q6 + p8q7

+ p7q8 + p6q9 + p5q10 + p4q11 + p3q12 + p2q13 + pq14 + q15,
...

(31.10) (p+ q)(p2 + q2)(p4 + q4) · · · (p2n−1

+ q2
n−1

) =
p2

n − q2
n

p− q

= p2
n−1 + p2

n−2q + p2
n−3q2 + p2

n−4q3 + . . .+ p3q2
n−4 + p2q2

n−3 + pq2
n−2 + q2

n−1,
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where each term paqb has the restriction that a and b are positive integers and
a+ b = 2m − 1, for every m ∈ N+.

The above identities combine to give us a theorem for 2D binary component
partitions into distinct parts. Therefore we have the

Theorem 31.1. The number B2(a, b) for a and b both non negative integers, of
vector partitions with parts of the form 〈2α, 2β〉 with α ≥ 0 and β ≥ 0, into distinct
parts is

B2(a, b) =

{

1, if condition B2 holds,
0, otherwise.

where condition B2 is : a and b are positive integers and a+ b = 2m − 1, for

every m ∈ N+. The generating function identity encoding this is

(31.11) 1 +

∞
∑

k=0

k
∏

j=0

(p2
k

+ q2
k

) = 1 +
∑

a,b≥0

B2(a, b)p
aqb

=
(p+ p2 + p4 + . . .+ p2

m
+ . . .)− (q + q2 + q4 + . . .+ q2

m
+ . . .)

p− q
.

= 1+ (p+ q) + (p+ q)(p2 + q2) + . . .+ (p+ q)(p2 + q2)(p4 + q4) · · · (p2m + q2
m

) + . . .

Part of the partition grid for the generating function form

(p+ p2 + p4 + . . .+ p2
m
+ . . .)− (q + q2 + q4 + . . .+ q2

m
+ . . .)

p− q
,

is as shown below.

21 1
20 1
19 1
18 1
17 1
16 1
15 1 1
14 1 1
13 1 1
12 1 1
11 1 1
10 1 1
9 1
8 1
7 1 1
6 1 1
5 1 1
4 1 1
3 1 1 1
2 1 1 1
1 1 1 1
0 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

We note that in the above grid, each 1 occurs at coordinates that add to 2m − 1
for some positive integer m. Note also, that the above grid depicts the binary case
of the n-ary generalization for n = 2, 3, 4, 5, 6, . . .. Considering examples using the
n = 10, 10-ary, or decimal, case allows us to bring in familiar base ten numbering,
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so providing a familiar presentation instead of asking the reader to think in number
systems base n generally.

So next, our objective is to write down the base n, n-ary version of the above
binary 2D generating function.

To start the rationale, let us rewrite equations (31.6) to (31.10), using binary
numbers as the indices in the expanded polynomials. This will enable us to write
the base n version of the binary cases given above.

(31.12) (p+ q) =
p2 − q2

p− q
= p12 + q12 ,

(31.13) (p+ q)(p2 + q2) =
p4 − q4

p− q
= p112 + p102q + pq102 + q112 ,

(31.14) (p+ q)(p2 + q2)(p4 + q4) =
p8 − q8

p− q

= p1112 + p1102q + p1012q102 + p1002q112 + p112q1002 + p102q1012 + pq1102 + q1112 ,

(31.15) (p+ q)(p2 + q2)(p4 + q4)(p8 + q8) =
p16 − q16

p− q

= p11112+p11102q+p11012q102+p11002q112+p10112q1002+p10102q1012+p10012q1102+p10002q1112

+p1112q10002+p1102q10012+p1012q10102+p1002q10112+p112q11002+p102q11012+pq11102+q11112 ,
...

(31.16)

(p+ q)(p2 + q2)(p4 + q4) · · · (p2n−1

+ q2
n−1

) =
p2

m − q2
m

p− q
= 1 +

∑

a,b≥0;
a+b6=0

B2(a, b)p
aqb

= p
∑m−1

k=0 2k + p
∑m−2

k=0 2kq + p
∑m−3

k=0 2kq2 + . . .+ p2q
∑m−3

k=0 2k + pq
∑m−2

k=0 2k + q
∑m−1

k=0 2k ,

where each term paqb has the restriction that a and b are positive integers and
a+ b = 2m − 1, for every m ∈ N+.

The above identities combine to give us an approach for 2D n-ary component
partitions into distinct parts. All we need do is replace a2 in binary, with an in
n-ary.

Therefore we see the base n or n-ary partition analogy case is:

(31.17) (p+ q) = p1n + q1n ,

(31.18) (p+ q)(pn + qn) = p11n + p10nq + pq10n + q11n ,

(31.19) (p+ q)(pn + qn)(pn
2

+ qn
2

)

= p111n + p110nq + p101nq10n + p100nq11n + p11nq100n + p10nq101n + pq110n + q111n ,

(31.20) (p+ q)(pn + qn)(pn
2

+ qn
2

)(pn
3

+ qn
3

)

= p1111n+p1110nq+p1101nq10n+p1100nq11n+p1011nq100n+p1010nq101n+p1001nq110n+p1000nq111n

+p111nq1000n+p110nq1001n+p101nq1010n+p100nq1011n+p11nq1100n+p10nq1101n+pq1110n+q1111n ,
...
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(31.21) (p+ q)(p10 + q10)(p10
2

+ q10
2

) · · · (p10n−1

+ q10
n−1

)

= p
∑m−1

k=0 nk

+p
∑m−2

k=0 nk

q1+p
∑m−3

k=0 nk

q10n + . . .+p10nq
∑m−3

k=0 nk

+p1q
∑m−2

k=0 nk

+ q
∑m−1

k=0 nk

,

where each term paqb has the restriction a and b are positive integers base n with
digits comprised of only 1s and 0s, and a + b =

∑m−1
k=0 nk, for every m ∈ N+.

The above identities combine to give us a theorem for 2D base n or n-ary com-
ponent partitions into distinct parts. Therefore we have the

Theorem 31.2. The number Bn(a, b) for a and b both non negative integers, of
vector partitions with parts of the form 〈2α, 2β〉 with α ≥ 0 and β ≥ 0, into distinct
parts is

Bn(a, b) =

{

1, if condition Bn holds,
0, otherwise,

where condition Bn is : a and b are positive integers base n with digits

comprised of only 1s and 0s, and a+ b =
∑m−1

k=0 nk, for every m ∈ N+. The
generating function identity encoding this is

(31.22) 1 +

∞
∑

k=0

k
∏

j=0

(pn
k

+ qn
k

) = 1 +
∑

a,b≥0;
a+b6=0

Bn(a, b)p
aqb

= 1+(p+ q)+(p+ q)(pn+ qn)+ . . .+(p+ q)(pn+ qn)(pn
2

+ qn
2

) · · · (pnm

+ qn
m

)+ . . .

The base 10 or decimal case in which n = 10 is derived by the set of successive
equations:

(31.23) (p+ q) = p1 + q1

(31.24) (p+ q)(p10 + q10) = p11 + p10q1 + p1q10 + q11,

(31.25) (p+ q)(p10 + q10)(p10
2

+ q10
2

)

= p111 + p110q1 + p101q10 + p100q11 + p11q100 + p10q101 + p1q110 + q111,

(31.26) (p+ q)(p10 + q10)(p10
2

+ q10
2

)(p10
3

+ q10
3

)

= p1111 + p1110q1 + p1101q10 + p1100q11 + p1011q100 + p1010q101 + p1001q110 + p1000q111

+ p111q1000 + p110q1001 + p101q1010 + p100q1011 + p11q1100 + p10q1101 + p1q1110 + q1111,

...

(31.27) (p+ q)(p10 + q10)(p10
2

+ q10
2

) · · · (p10m−1

+ q10
m−1

)

= p
∑m−1

k=0 10k+p
∑m−2

k=0 10kq1+p
∑m−3

k=0 10kq10+ . . .+p10q
∑m−3

k=0 10k+p1q
∑m−2

k=0 10k+q
∑m−1

k=0 10k ,

where each term paqb has the restriction that a and b are positive integers in base 10
with digits comprised of only 1s and 0s, and a+ b =

∑m−1
k=0 10k, for every m ∈ N+.

The above identities combine to give us a theorem for 2D base 10 component
partitions into distinct parts. Therefore we have the
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Theorem 31.3. The number B10(a, b) for a and b both non negative integers, of
vector partitions with parts of the form 〈2α, 2β〉 with α ≥ 0 and β ≥ 0, with α+β 6= 0,
into distinct parts is

B10(a, b) =

{

1, if condition B10 holds,
0, otherwise,

where condition B10 is : a and b are positive integers base 10 with digits

comprised of only 1s and 0s, and a + b =
∑m−1

k=0 10k, for every m ∈ N+.

The generating function identity encoding this is

(31.28) 1 +
∞
∑

k=0

k
∏

j=0

(p10
k

+ q10
k

) = 1 +
∑

a,b≥0;
a+b6=0

B10(a, b)p
aqb

= 1+(p+q)+(p+q)(p10+q10)+. . .+(p+q)(p10+q10)(p10
2

+q10
2

) · · · (p10m+q10
m

)+. . .

32. Some binary integer partition preliminary results

We start by revisiting the elementary identity,

(32.1) (1 + x)(1 + x2)(1 + x4) · · · (1 + x2n) · · · = 1

1− x
, for |x| < 1.

By considering both sides of (32.1) as power series it is clear that every positive
integer is a sum of distinct binary powers in exactly one way. Hence, each positive
integer has a unique binary representation. That is 110 = 12, 210 = 102, 310 = 112,
410 = 1002, 510 = 1012, 610 = 1102, etc.

Next, we give an infinite product relationship that is easily derived from the
following cases of (32.1).

(1 + x)(1 + x2)(1 + x4)(1 + x8)(1 + x16)(1 + x32) · · · =
1

1− x
,

(1 + x2)(1 + x4)(1 + x8)(1 + x16)(1 + x32) · · · =
1

1− x2
,

(1 + x4)(1 + x8)(1 + x16)(1 + x32) · · · =
1

1− x4
,

(1 + x8)(1 + x16)(1 + x32) · · · =
1

1− x8
,

(1 + x16)(1 + x32) · · · =
1

1− x16
,

etc.

Now, the product of all left sides here is equal to the product of all right sides
here so we arrive at for |x| < 1,

(32.2) (1 + x)(1 + x2)2(1 + x4)3(1 + x8)4 · · · (1 + x2n)n+1 . . .

=
1

(1− x)(1− x2)(1− x4)(1− x8) · · · = B(x).

This gives us an alternative generating function for the integer binary partition
function. It is also suggestive of the theorem,
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Theorem 32.1. The number of unrestricted binary partitions b(n) of a positive
integer n is equal to the number of partitions of n such that

n = a12
0 + a22

1 + a32
2 + a42

3 + . . .+ am2
m−1,

where 0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 2, 0 ≤ a3 ≤ 3, . . . , 0 ≤ am ≤ m. Another way of putting
this is partitions of n into powers of 2 where 20 is used at most once, 21 is used at
most twice, 22 is used at most 3 times, etc and generally, 2m−1 is used at most m
times.

Although this theorem and (32.2) is shallow in the sense of it being fundamental
for integer binary partitions, it doesn’t seem to be in the literature. Whether this
result is known is immaterial, as we will apply it to vector partitions with binary
components for 2D and 3D cases, and assert the nD generalization.

Next, let us consider the 2D infinite binary product given as B2(y, z) below. This
product enumerates the number of partitions of vector 〈a, b〉 into distinct parts of
the form 〈2c, 2d〉 for c and d non-negative integers under vector addition.

We see that each rightward, downward sloping diagonal of B2(y, z) is a case of
(32.1). Therefore, the following 2D equivalence is seen, leading to a new theorem
on 2D binary partitions of vectors 〈a, b〉 for a and b positive integers.

33. Some easy 2D binary partition transform generating functions

Theorem 33.1. Distinct 2D binary vector partition transform. The follow-
ing infinite 2D binary product relation holds for |y| < 1, |z| < 1. The first product
here is the generating function for the number of partitions of 2D vector 〈m,n〉 into
distinct vectors whose components are non-negative powers of 2. The relation is

(33.1)
∏

m,n≥0

(1 + y2
m

z2
n

) =
1

1− xy

∏

k≥1

1

(1− y2kz)(1 − yz2k)
=
∑

m,n≥0

b2(m,n)ymzn.

In longhand expansion this equation is as per below. Each diagonal of the first
tableaux here is a case of (32.1). The second tableaux here relates to the right side
of the equation in the theorem, after successive application of (32.1). We arrive then
at

(33.2) B2(y, z) =

(1 + y2
0

z2
0

)(1 + y2
0

z2
1

)(1 + y2
0

z2
2

)(1 + y2
0

z2
3

)(1 + y2
0

z2
4

)(1 + y2
0

z2
5

) · · ·
(1 + y2

1

z2
0

)(1 + y2
1

z2
1

)(1 + y2
1

z2
2

)(1 + y2
1

z2
3

)(1 + y2
1

z2
4

)(1 + y2
1

z2
5

) · · ·
(1 + y2

2

z2
0

)(1 + y2
2

z2
1

)(1 + y2
2

z2
2

)(1 + y2
2

z2
3

)(1 + y2
2

z2
4

)(1 + y2
2

z2
5

) · · ·
(1 + y2

3

z2
0

)(1 + y2
3

z2
1

)(1 + y2
3

z2
2

)(1 + y2
3

z2
3

)(1 + y2
3

z2
4

)(1 + y2
3

z2
5

) · · ·
(1 + y2

4

z2
0

)(1 + y2
4

z2
1

)(1 + y2
4

z2
2

)(1 + y2
4

z2
3

)(1 + y2
4

z2
4

)(1 + y2
4

z2
5

) · · ·
(1 + y2

5

z2
0

)(1 + y2
5

z2
1

)(1 + y2
5

z2
2

)(1 + y2
5

z2
3

)(1 + y2
5

z2
4

)(1 + y2
5

z2
5

) · · ·
...

...
...

...
...

...
. . .

=
1

(1− yz)

× 1

(1− yz21)(1− yz22)(1− yz23)(1− yz24)(1− yz25) · · ·
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× 1

(1− zy21)(1− zy22)(1− zy23)(1− zy24)(1− zy25) · · · .

This identity is equivalent to stating that

Theorem 33.2. The number of distinct vector 2D binary partitions of a 2D vector
〈m,n〉 in the first quadrant is equal to the number of unrestricted 2D binary partitions
of 2D vector 〈m,n〉 into binary component vectors with parts having a component
as 1.

It is almost intuitively obvious from the above tableau that

B2(y, z) = (1 + yz)
B2(y

2, z)B2(y, z
2)

B2(y2, z2)
.

Clearly also it is seen that our earlier discussed 2D binary vector unrestricted
partition generating function B2(y, z), satisfies

B2(y, z) =
B2(y, z)

B2(y2, z2)
.

Obviously then this has implications from the set of functional equations already
given. Again consider the equation

(33.3) (1 + y2
0

z2
0

)(1 + y2
0

z2
1

)(1 + y2
0

z2
2

)(1 + y2
0

z2
3

)(1 + y2
0

z2
4

)(1 + y2
0

z2
5

) · · ·
= 1 + yb(1)z + yb(2)z2 + yb(3)z3 + · · ·+ yb(n)zn + · · · :=

∑

n≥0

yb(n)zn,

where b(n) is the number of 1s in the binary number representing n. Hence for
example, b(25) = 1, b(25 + 23 + 21) = 3, b(211 + 25 + 23 + 21) = 4, b(7) = 3,
b(2100 + 26 + 25 + 23 + 1) = 5, and so on, with the convenient definition b(0) = 0.

Hence, substituting cases of (33.3) into (33.2) and comparing them to (33.1) we
see that

(33.4) B2(y, z) = (
∑

n≥0

yb(n)zn)(
∑

n≥0

y2b(n)zn)(
∑

n≥0

y4b(n)zn)(
∑

n≥0

y8b(n)zn) · · ·

=
∑

m,n≥0

b2(m,n)ymzn.

In the future notes we can explore such things a bit further. We next give a
different example, albeit a little contrived.

Next, let us consider the 2D infinite binary product tableau given below. This
product enumerates the number of partitions of vector 〈a, b〉 into at most d+1 parts
of the form 〈2c, 2d〉 for c and d non-negative integers under vector addition. The
tableau is easily transformed by applying (32.2) repeatedly to each diagonal from
left down, and replacing each successive term of LHS of the case of (32.2) with the
corresponding successive term of the RHS of (32.2).

Hence the following 2D binary vector partition identity result ensues.
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Theorem 33.3. Unrestricted 2D binary vector partition transform. The
following infinite 2D binary product relation holds for |y| < 1, |z| < 1. The second
product here is the generating function for the number of partitions of 2D vector
〈m,n〉 into unrestricted vectors whose components are non-negative powers of 2.
The relation is

∏

m,n≥0

(1 + y2
m

z2
n

)n+1 =
∏

m,n≥0

1

(1− y2mz2n)
=
∑

m,n≥0

b2(m,n)ymzn.

Proof : The equation from the theorem in longhand is as follows. Each diagonal
of the first tableaux here is a case of (32.1). The second tableaux here relates to the
right side of the equation in the theorem, after successive application of (32.1). We
arrive then at

(1 + y2
0

z2
0

)1(1 + y2
0

z2
1

)1(1 + y2
0

z2
2

)1(1 + y2
0

z2
3

)1(1 + y2
0

z2
4

)1(1 + y2
0

z2
5

)1 · · ·

(1 + y2
1

z2
0

)1(1 + y2
1

z2
1

)2(1 + y2
1

z2
2

)2(1 + y2
1

z2
3

)2(1 + y2
1

z2
4

)2(1 + y2
1

z2
5

)2 · · ·

(1 + y2
2

z2
0

)1(1 + y2
2

z2
1

)2(1 + y2
2

z2
2

)3(1 + y2
2

z2
3

)3(1 + y2
2

z2
4

)3(1 + y2
2

z2
5

)3 · · ·

(1 + y2
3

z2
0

)1(1 + y2
3

z2
1

)2(1 + y2
3

z2
2

)3(1 + y2
3

z2
3

)4(1 + y2
3

z2
4

)4(1 + y2
3

z2
5

)4 · · ·

(1 + y2
4

z2
0

)1(1 + y2
4

z2
1

)2(1 + y2
4

z2
2

)3(1 + y2
4

z2
3

)4(1 + y2
4

z2
4

)5(1 + y2
4

z2
5

)5 · · ·

(1 + y2
5

z2
0

)1(1 + y2
5

z2
1

)2(1 + y2
5

z2
2

)3(1 + y2
5

z2
3

)4(1 + y2
5

z2
4

)5(1 + y2
5

z2
5

)6 · · ·
...

...
...

...
...

...
. . .

=
1

(1− y20z20)(1− y20z21)(1− y20z22)(1− y20z23)(1− y20z24)(1− y20z25) · · ·

× 1

(1− y21z20)(1− y21z21)(1− y21z22)(1− y21z23)(1− y21z24)(1− y21z25) · · ·

× 1

(1− y22z20)(1− y22z21)(1− y22z22)(1− y22z23)(1− y22z24)(1− y22z25) · · ·

× 1

(1− y23z20)(1− y23z21)(1− y23z22)(1− y23z23)(1− y23z24)(1− y23z25) · · ·

× 1

(1− y24z20)(1− y24z21)(1− y24z22)(1− y24z23)(1− y24z24)(1− y24z25) · · ·

× 1

(1− y25z20)(1− y25z21)(1− y25z22)(1− y25z23)(1− y25z24)(1− y25z25) · · ·
...

= B2(y, z). �

So, the generating function B2(y, z) for 2D unrestricted binary vector partitions
has an alternate generating function, as did B(z) for binary integer unrestricted
partitions. Hence we can state the following



VECTOR PARTITION IDENTITIES 87

Theorem 33.4. The number of unrestricted binary vector partitions, b2(m,n) of a
vector 〈m,n〉 is equal to the number of partitions of vector 〈m,n〉 into 2D vectors
with each λi = 0, 1, 2, 3, . . .

〈2λ1 , 20〉, 〈2λ2, 21〉, 〈2λ3 , 22〉, 〈2λ4 , 23〉, . . . , 〈2λm , 2m−1〉, . . . ,
where 2λ1 = 20 is used at most once, 2λ2 = 21 is used at most twice, 2λ3 = 22 is used
at most 3 times, etc and generally, 2λm = 2m−1 is used at most m times.

Theorem 33.5. 2D binary vector partition transform with triangular

numbers. The following infinite 2D binary product relation holds for |y| < 1,
|z| < 1. The second product here is the generating function for the number of
partitions of 2D vector 〈m,n〉 into unrestricted vectors whose components are non-
negative powers of 2.

∏

m,n≥0

(1 + y2
m

z2
n

)
(m+1)(m+2)

2 =
∏

m,n≥0

1

(1− y2mz2n)m+1
.

Proof : The equation from the theorem in longhand is as follows. Each diagonal
of the first tableaux here is a case of (32.2). The second tableaux here relates to the
right side of the equation in the theorem, after successive application of (32.2). We
arrive then at

(1 + y2
0

z2
0

)1(1 + y2
0

z2
1

)1(1 + y2
0

z2
2

)1(1 + y2
0

z2
3

)1(1 + y2
0

z2
4

)1(1 + y2
0

z2
5

)1 · · ·
(1 + y2

1

z2
0

)1(1 + y2
1

z2
1

)3(1 + y2
1

z2
2

)3(1 + y2
1

z2
3

)3(1 + y2
1

z2
4

)3(1 + y2
1

z2
5

)3 · · ·
(1 + y2

2

z2
0

)1(1 + y2
2

z2
1

)3(1 + y2
2

z2
2

)6(1 + y2
2

z2
3

)6(1 + y2
2

z2
4

)6(1 + y2
2

z2
5

)6 · · ·
(1 + y2

3

z2
0

)1(1 + y2
3

z2
1

)3(1 + y2
3

z2
2

)6(1 + y2
3

z2
3

)10(1 + y2
3

z2
4

)10(1 + y2
3

z2
5

)10 · · ·
(1 + y2

4

z2
0

)1(1 + y2
4

z2
1

)3(1 + y2
4

z2
2

)6(1 + y2
4

z2
3

)10(1 + y2
4

z2
4

)15(1 + y2
4

z2
5

)15 · · ·
(1 + y2

5

z2
0

)1(1 + y2
5

z2
1

)3(1 + y2
5

z2
2

)6(1 + y2
5

z2
3

)10(1 + y2
5

z2
4

)15(1 + y2
5

z2
5

)21 · · ·
...

...
...

...
...

...
. . .

=
1

(1− y20z20)(1− y20z21)(1− y20z22)(1− y20z23)(1− y20z24)(1− y20z25) · · ·

× 1

(1− y21z20)(1− y21z21)2(1− y21z22)2(1− y21z23)2(1− y21z24)2(1− y21z25)2 · · ·

× 1

(1− y22z20)(1− y22z21)2(1− y22z22)3(1− y22z23)3(1− y22z24)3(1− y22z25)3 · · ·

× 1

(1− y23z20)(1− y23z21)2(1− y23z22)3(1− y23z23)4(1− y23z24)4(1− y23z25)4 · · ·

× 1

(1− y24z20)(1− y24z21)2(1− y24z22)3(1− y24z23)4(1− y24z24)5(1− y24z25)5 · · ·

× 1

(1− y25z20)(1− y25z21)2(1− y25z22)3(1− y25z23)4(1− y25z24)5(1− y25z25)6 · · ·
...

�

So, we have here stated that the generating functions for two differently derived
classes of 2D partitions, say C12(y, z) and C22(y, z) have equivalence. Hence we
can state the following
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Theorem 33.6. Define C12(y, z) as the generating function for partitions of vector
〈m,n〉 for m and n positive integers such that each partition involves precisely for
λ = 0, 1, 2, 3, . . ., the parts,

〈2λ, 20〉, 〈2λ, 21〉, 〈2λ, 22〉, 〈2λ, 23〉, . . . , 〈2λ, 2m−1〉, . . . ,
where 2λ = 20 is used at most once, 2λ = 21 is used at most three times, 2λ = 22 is

used at most six times, etc and generally, 2λ = 2m−1 is used at most m(m+1)
2

times.
Define C22(y, z) as the generating function for partitions of vector 〈m,n〉 for m

and n positive integers such that each partition involves precisely for λ = 0, 1, 2, 3, . . .,
the parts,

〈2λ, 20〉, 〈2λ, 21〉, 〈2λ, 22〉, 〈2λ, 23〉, . . . , 〈2λ, 2m−1〉, . . . ,
where 2λ = 20 is used at most once, 2λ = 21 is used at most three times, 2λ = 22 is

used at most six times, etc and generally, 2λ = 2m−1 is used at most m(m+1)
2

times.

34. A binary partition 2 -space variation of extended q-binomial
theorem.

We can apply the method to other vector partition generating functions. An
example is now given. The following theorem is based around the ideas associated
with the elementary identity

(1 + x)
(

1 + x2
) (

1 + x4
) (

1 + x8
)

· · · = 1

1− x
.

In fact the combinatorial interpretation of this is ”each positive integer is uniquely
represented by a sum of distinct powers of 2”. So, we are here looking at an extension
of this result in the

Theorem 34.1.

(34.1)
∏

k≥0

(

1

1− qt2k

)

=
∏

j,k≥0
j≤k

(

1 + q2
j

t2
k
)

= 1 +
∞
∑

k=1

Akt
k

where

Ak =
1

k!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q −1 0 0 · · · 0
q2 + 2q q −2 0 · · · 0

q3 q2 + q q −3 · · · 0

q4 + 2q2 + 4q q3 q2 + q q
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. −(k − 1)
∑

2j |k
j≥0

2jqk/2
j ∑

2j |(k−1)
j≥0

2jq(k−1)/2j
∑

2j |(k−2)
j≥0

2jq(k−2)/2j
∑

2j |(k−3)
j≥0

2jq(k−3)/2j · · · q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The combinatorial interpretation of (34.1) is

Theorem 34.2. If B(j, k) is the number of vector partitions of 〈j, k〉 into distinct
parts of kind 〈2a, 2b〉 in which a ≤ b with non-negative integers a and b, then B(j, k)
equals also the number of partitions into “unrestricted” parts of kind 〈1, 2b〉 in which
b is a non negative integer, and B(j, k) is the coefficient of qjtk in (34.1).

Each side of (34.1) satisfies the equation f(t)(1 − qt) = f(t2) and this equation
also leads to a set of recurrences solvable using Cramer’s rule.

In Mathematica, Maple or Wolframalpha online we can easily check that
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(34.2)
∏

k≥0

(

1

1− qt2k

)

= 1 + qt+ q(q + 1)t2 + q2(q + 1)t3 + q(q3 + q2 + q + 1)t4

+ q2(q3 + q2 + q + 1)t5 + q2(q4 + q3 + q2 + 2q + 1)t6

+ q3(q4 + q3 + q2 + 2q + 1)t7

+ q(q7 + q6 + q5 + 2q4 + 2q3 + q2 + q + 1)t8

+ q2(q7 + q6 + q5 + 2q4 + 2q3 + q2 + q + 1)t9

+ q2(q8 + q7 + q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q + 1)t10 + . . .

Also, as a matter of interest, utilizing a form
∏∞

k=0

∏k
j=0(1+q2

j
t2

k
), on calculating

engines, the two product expansions in (34.1) can be easily verified; both of them
yielding the series given in (34.2).

So in longhand we have that

1

(1− qt)(1− qt2)(1− qt4)(1− qt8)(1− qt16)...

= (1 + qt)

(1 + qt2)(1 + q2t2)

(1 + qt4)(1 + q2t4)(1 + q4t4)

(1 + qt8)(1 + q2t8)(1 + q4t8)(1 + q4t8)

(1 + qt16)(1 + q2t16)(1 + q4t16)(1 + q4t16)(1 + q8t16)

...

So let us define αk(q) and β2(j, k) from

(34.3)
∏

k≥0

(

1

1− qt2k

)

=
∏

j,k≥0
j≤k

(

1 + q2
j

t2
k
)

= 1 +
∞
∑

k=1

αk(q)t
k =

∞
∑

j=0,k=0

β2(j, k)q
jtk.

So we see from (34.2) that

α1(q) = q,

α2(q) = q(q + 1),

α3(q) = q2(q + 1),

α4(q) = q(q3 + q2 + q + 1),

α5(q) = q2(q3 + q2 + q + 1),

α6(q) = q2(q4 + q3 + q2 + 2q + 1),

α7(q) = q3(q4 + q3 + q2 + 2q + 1),

α8(q) = q(q7 + q6 + q5 + 2q4 + 2q3 + q2 + q + 1),

α9(q) = q2(q7 + q6 + q5 + 2q4 + 2q3 + q2 + q + 1),

α10(q) = q2(q8 + q7 + q6 + 2q5 + 2q4 + 2q3 + 2q2 + 2q + 1),

and so on. Hence, from this we see that
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β2(1, 1) = 1, β2(1, 2) = 1, β2(2, 2) = 1, β2(1, 3) = 0, β2(2, 3) = 1, β2(1, 4) = 1, β2(2, 4) = 1, etc.

All of the β2(j, k) values are encoded in the following grid table.
Partition grid for 1/((1− qt)(1− qt2)(1− qt4)(1− qt8)...) =

∑∞
j,k≥0 β2(j,k)q

jtk

...
...

...
...

...
...

...
...

...
...

...
...

...
...

13 1 2 2 3 3 2 2 2 1 1 1
12 1 2 2 3 3 2 2 2 1 1 1
11 1 2 2 2 2 2 1 1 1
10 1 2 2 2 2 2 1 1 1
9 1 1 1 2 2 1 1 1
8 1 1 1 2 2 1 1 1
7 1 2 1 1 1
6 1 2 1 1 1
5 1 1 1 1
4 1 1 1 1
3 1 1
2 1 1
1 1

1 2 3 4 5 6 7 8 9 10 11 12 13
To illustrate theorem 34.2, we give an arbitrary case for the 2D vector 〈3, 6〉:

Corollary 34.1. β2(3, 6) = 2 is the number of vector partitions of 〈3, 6〉 into distinct
parts of kind 〈2a, 2b〉 in which a ≤ b with non-negative integers a and b. The two
partitions are 〈2, 4〉+ 〈1, 2〉 and 〈1, 4〉+ 〈2, 2〉. Also β2(3, 6) = 2 equals the number
of partitions into “unrestricted” parts of kind 〈1, 2b〉 in which b is a non negative
integer. The two partitions are 〈1, 2〉+ 〈1, 2〉+ 〈1, 2〉 and 〈1, 4〉+ 〈1, 1〉+ 〈1, 1〉. Then
also β2(3, 6) = 2 is the coefficient of q3t6 in (34.1).

The vector partitions β2(j, k) defined for (34.1) are easily visualized by number
entries in the 2D grid above.

We see that our methods set up the platform possible research for partitions
into binary component vectors, and for other n-space infinite product generating
functions.

35. First quadrant 2D binary partitions

We employ the first quadrant expansion of binary powers in x and y.

(1+xy)(1+x2y)(1+x4y)(1+x8y)(1+x16y)(1+x32y)(1+x64y)(1+x128y)(1+x256y) · · ·

(1+xy2)(1+x2y2)(1+x4y2)(1+x8y2)(1+x16y2)(1+x32y2)(1+x64y2)(1+x128y2) · · ·
(1+xy4)(1+x2y4)(1+x4y4)(1+x8y4)(1+x16y4)(1+x32y4)(1+x64y4)(1+x128y4) · · ·
(1+xy8)(1+x2y8)(1+x4y8)(1+x8y8)(1+x16y8)(1+x32y8)(1+x64y8)(1+x128y8) · · ·
(1+xy16)(1+x2y16)(1+x4y16)(1+x8y16)(1+x16y16)(1+x32y16)(1+x64y16)(1+x128y16) · · ·
(1+xy32)(1+x2y32)(1+x4y32)(1+x8y32)(1+x16y32)(1+x32y32)(1+x64y32)(1+x128y32) · · ·

etc.
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We note that each diagonal infinite product with terms going one row down and
one column right is a case of the product

(1 + z)(1 + z2)(1 + z4)(1 + z8)(1 + z16) · · · = 1

1− z
,

so the above tableau product is therefore equal to

1

(1− xy)

× 1

(1− x2y)(1− x4y)(1− x8y)(1− x16y)(1− x32y)(1− x64y)(1− x128y)(1− x256y) · · ·

× 1

(1− xy2)(1− xy4)(1− xy8)(1− xy16)(1− xy32)(1− xy64)(1− xy128)(1− xy256) . . .

Hence, we have described two equivalent generating functions for 2D first quadrant
binary component partitions. We see that this approach works to give us a theorem
on 2D vector partitions where the two vector components a and b of vector 〈a, b〉
are integers of the form a = 2j, b = 2k for all non-negative integers j and k. In the
usual notation the above identity is the generating function version of the theorem
just below it

(35.1)
1

1− xy

∏

j≥1

(

1

(1− x2jy)(1− xy2j)

)

=
∏

j,k≥0
j≤k

(

1 + x2jy2
k
)

So then we can formulate a

Theorem 35.1. Consider the set V1 of all first quadrant 2D vectors 〈a, b〉, where
the components a = 2j and b = 2k are binary powers with j, k ≥ 0. Next consider
the set V2 of all first quadrant 2D vectors 〈c, d〉, where the components are either:

(a) c = 1 and d = 1; or
(b) c = 1 and d = 2j with j ≥ 1; or
(c) c = 2k and d = 1 with k ≥ 1.

Then the number of partitions of vector 〈m,n〉 with m ≥ 1, n ≥ 1, into distinct
partitions from the set V1 is equal to the number of unrestricted partitions from the
set V2.

36. First quadrant lower diagonal 2D binary partitions

Consider the first quadrant lower diagonal expansion of binary powers in x and
y. Then for this we state the

Theorem 36.1.
(1 + xy)

(1 + xy2)(1 + x2y2)

(1 + xy4)(1 + x2y4)(1 + x4y4)

(1 + xy8)(1 + x2y8)(1 + x4y8)(1 + x8y8)

(1 + xy16)(1 + x2y16)(1 + x4y16)(1 + x8y16)(1 + x16y16)

(1 + xy32)(1 + x2y32)(1 + x4y32)(1 + x8y32)(1 + x16y32)(1 + x32y32)

etc.
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=
1

(1− xy)(1− xy2)(1− xy4)(1− xy8)(1− xy16)(1− xy32)(1− xy64)(1− xy128) · · ·
Hence, we have again described two equivalent generating functions for 2D first

quadrant binary component partitions. We then have another theorem on 2D vector
partitions.

Theorem 36.2. Consider the set U1 of all first quadrant 2D vectors 〈a, b〉, where
the components a = 2j and b = 2k are binary powers with 0 ≤ j ≤ k or equivalently
a ≤ b. Next consider the set U2 of all first quadrant 2D vectors 〈c, d〉, where the
components are either:

(a) c = 1 and d = 1; or
(b) c = 1 and d = 2j with j ≥ 0.

Then the number of partitions of vector 〈m,n〉 with m ≥ 1, n ≥ 1, into distinct
partitions from the set U1 is equal to the number of unrestricted partitions from the
set U2.

37. First hyperquadrant 3D binary partitions

Following similar logic for the 3D first hyperquadrant points for binary numbers
2a with positive integers a components of vector 〈m,n, p〉 it is easy to guess (and
we shall prove this) that

(37.1)
1

1− xyz

∏

a,b≥1

(

1

(1− xy2az2b)(1− x2ayz2b)(1− x2ay2bz)

)

=
∏

a,b,c≥0

(

1 + x2ay2
b

z2
c
)

So let us next look at the infinite product of binary powers in the 3D pyramid.

(1 + xyz)

(1 + xy2z)(1 + x2y2z)

(1 + xy2z2)(1+ x2y2z2)

(1 + xy4z)(1 + x2y4z)(1 + x4y4z)

(1 + xy4z2)(1 + x2y4z2)(1 + x4y4z2)

(1 + xy4z4)(1 + x2y4z4)(1+ x4y4z4)

(1 + xy8z)(1 + x2y8z)(1 + x4y8z)(1 + x8y8z)

(1 + xy8z2)(1 + x2y8z2)(1 + x4y8z2)(1 + x8y8z2)

(1 + xy8z4)(1 + x2y8z4)(1 + x4y8z4)(1 + x8y8z4)

(1 + xy8z8)(1 + x2y8z8)(1 + x4y8z8)(1+ x8y8z8)

etc

where we see for example, that the bold terms form the infinite product for 1
1−xyz

.

Hence, picking out every instance of the basic binary infinite product as we have
done for the bold product, we see quite easily that

(1 + xyz)

(1 + x1y2z1)(1 + x2y2z1)

(1 + x1y2z2)(1 + x2y2z2)

(1 + x1y4z)(1 + x2y4z1)(1 + x4y4z1)
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(1 + x1y4z2)(1 + x2y4z2)(1 + x4y4z2)

(1 + x1y4z4)(1 + x2y4z4)(1 + x4y4z4)

(1 + x1y8z1)(1 + x2y8z1)(1 + x4y8z1)(1 + x8y8z1)

(1 + x1y8z2)(1 + x2y8z2)(1 + x4y8z2)(1 + x8y8z2)

(1 + x1y8z4)(1 + x2y8z4)(1 + x4y8z4)(1 + x8y8z4)

(1 + x1y8z8)(1 + x2y8z8)(1 + x4y8z8)(1 + x8y8z8)

etc

=
1

(1− x1y1z1)

1

(1− x1y2z1)(1− x2y2z1)

1

(1− x1y2z2)

1

(1− x1y4z1)(1− x2y4z1)(1− x4y4z1)

1

(1− x1y4z2)

1

(1− x1y4z4)

1

(1− x1y8z1)(1− x2y8z1)(1− x4y8z1)(1− x8y8z1)

1

(1− x1y8z2)

1

(1− x1y8z4)

1

(1− x1y8z8)
etc

Both sides of this 3D equation enumerate vector partitions in 3-space. So the
transformation identity above has an interpretation in vector partitions implying
the

Theorem 37.1. Consider the infinitely extended 3D pyramid defined in the x-y-z
Euclidean space by the inequalities

0 ≤ x ≤ y, 1 ≤ z ≤ y, y ≥ 1.

Define all integer component lattice point vectors inside that pyramid to be of form
〈a, b, c〉 where:

0 ≤ a ≤ b, 1 ≤ c ≤ b, b ≥ 1.

Then b3(a, b, c), the number of 3D binary partitions of 〈a, b, c〉 have the two equivalent
forms:

Form A) All distinct 3D binary vector partitions of kind

(37.2) 〈a, b, c〉 =
∑

ai,aj ,ak≥0

〈2ai , 2aj , 2ak〉,
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Form B) All unrestricted 3D binary vector partitions of kind

(37.3) 〈a, b, c〉 =
∑

ai,aj ,ak≥0

(〈1, 2aj , 2ak〉+ 〈2ai , 1, 2ak〉+ 〈2ai , 2aj , 1〉) .

Another way of putting this is
”The number of distinct 3D binary vector partitions of 〈a, b, c〉 inside the infinite

extended pyramid 0 ≤ x ≤ y, 1 ≤ z ≤ y, y ≥ 1 equals the number of unrestricted
3D binary vector partitions of 〈a, b, c〉 with at least one component a, b, or c equal
to 1, in the same pyramid.”

Because this idea of vector partitions and their generating functions is greatly
assisted by visualizations, the above theorem is depicted next yet again, but with
the added help of a pyramidal structure beside the equations.

Figure 3. 3D Pyramid Binary Product Form.

(37.4)

=
1

(1− xyz)
× 1
{

(1− xy2z) (1− x2y2z)
(1− xy2z2)

}× 1






(1− xy4z) (1− x2y4z) (1− x4y4z)
(1− xy4z2)
(1− xy4z4)






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× 1














(1− xy8z) (1− x2y8z) (1− x4y8z) (1− x4y8z)
(1− xy8z2)
(1− xy8z4)
(1− xy8z8)















× etc.

38. Concluding remarks

This paper summarizes several chapters of a book on vector partitions currently
being written. The present paper excludes many areas related to the text herein.
For example, there is further work on the Rogers-Ramanujan identities links to
physics in statistical mechanics; to asymptotics of partitions, plane partitions and
functional equations as well as new work associated with congruences and continued
fractions. It is hoped the present paper will give the reader an appetite to follow
through developments of the topics given already, as it is clear that the research into
higher space lattice systems is only starting out.
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