Strong domination number of Hajós sum and vertex-sum of two graphs

Nima Ghanbari ${ }^{* 1}$ and Saeid Alikhani ${ }^{\dagger 2}$
${ }^{1}$ Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
${ }^{2}$ Department of Mathematical Sciences, Yazd University, Yazd, Iran

Abstract

Let $G=(V, E)$ be a simple graph. A set $D \subseteq V$ is a strong dominating set of G, if for every vertex $x \in V \backslash D$ there is a vertex $y \in D$ with $x y \in E(G)$ and $\operatorname{deg}(x) \leq \operatorname{deg}(y)$. The strong domination number $\gamma_{\mathrm{st}}(G)$ is defined as the minimum cardinality of a strong dominating set. In this paper, we study the strong domination number of Hajós sum and vertex-sum of two graphs.

Keywords: Strong domination number, strong dominating set, Hajós sum, vertex-sum.
AMS Subj. Class.: 05C15, 05C25.

1 Introduction

A dominating set of a graph $G=(V, E)$ is a subset D of V such that every vertex in $V \backslash D$ is adjacent to at least one member of D. The minimum cardinality of all dominating sets of G is called the domination number of G and is denoted by $\gamma(G)$. This parameter has been extensively studied in the literature and there are hundreds of papers concerned with domination. We recommend a fundamental book [8] about domination in general. The various different domination concepts are well-studied now, however new concepts are introduced frequently and the interest is growing rapidly.

A set $D \subseteq V$ is a strong dominating set of G, if for every vertex $x \in \bar{D}=V \backslash D$ there is a vertex $y \in D$ with $x y \in E(G)$ and $\operatorname{deg}(x) \leq \operatorname{deg}(y)$. The strong domination number $\gamma_{\mathrm{st}}(G)$ is defined as the minimum cardinality of a strong dominating set. A γ_{st}-set of G is a strong dominating set of G of minimum cardinality $\gamma_{\mathrm{st}}(G)$. If D is a strong dominating set in a graph

[^0]

Figure 1: Hajós construction of K_{6} and C_{6}.
G, then we say that a vertex $u \in \bar{D}$ is strong dominated by a vertex $v \in D$ if $u v \in E(G)$, and $\operatorname{deg}(u) \leq \operatorname{deg}(v)$.

The strong domination number was introduced in [10] and some upper bounds on this parameter presented in [9,10]. Similar to strong domination number, a set $D \subset V$ is a weak dominating set of G, if every vertex $v \in V \backslash S$ is adjacent to a vertex $u \in D$ such that $\operatorname{deg}(v) \geq \operatorname{deg}(u)$ (see [6]). The minimum cardinality of a weak dominating set of G is denoted by $\gamma_{w}(G)$. Boutrig and Chellali proved that the relation $\gamma_{w}(G)+\frac{3}{\Delta+1} \gamma_{s t}(G) \leq n$ holds for any connected graph of order $n \geq 3$. Alikhani, Ghanbari and Zaherifard [3] examined the effects on $\gamma_{s t}(G)$ when G is modified by the edge deletion, the edge subdivision and the edge contraction. Also they studied the strong domination number of k-subdivision of G.

Motivated by enumerating of the number of dominating sets of a graph and domination polynomial (see e.g. [1, 4]), the enumeration of the strong dominating sets for certain graphs has studied in [14]. Study of the strong domination number of graph operation is a natural and interesting subject and for join and corona product has studied ([14]). In this paper, we consider other kinds of graph operations which are called Hajós sum and vertex sum of two graphs. The Hajós sum is useful when either of the network is disrupted and certain node(s) is(are) not functioning. Then that node(s) is(are) to be identified(fused) with the node of a network which is functioning properly and thus new network is constructed.

2 Hajós sum

In this section, we study the strong domination number of Hajós sum of two graphs. First we recall its definition. Given graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with disjoint vertex sets, an edge $x_{1} y_{1} \in E_{1}$, and an edge $x_{2} y_{2} \in E_{2}$, the Hajós sum $G_{3}=G_{1}\left(x_{1} y_{1}\right)+{ }_{H} G_{2}\left(x_{2} y_{2}\right)$ is the graph obtained as follows: begin with $G_{3}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$; then in G_{3} delete the edges $x_{1} y_{1}$ and $x_{2} y_{2}$, identify the vertices x_{1} and x_{2} as $v_{H}\left(x_{1} x_{2}\right)$, and add the edge $y_{1} y_{2}$ [7]. Figure 1 shows the Hajós sum of K_{6} and C_{6} with respect to $x_{1} y_{1}$ and $x_{2} y_{2}$.

The following theorem gives the lower bound and the upper bound for the strong domination number of Hajós sum of two graphs.

Theorem 2.1. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with disjoint vertex sets, $x_{1} y_{1} \in E_{1}$ and $x_{2} y_{2} \in E_{2}$. Also, suppose that x_{1} and x_{2} are not pendant vertices. Then for the Hajós sum

$$
G_{3}=G_{1}\left(x_{1} y_{1}\right)+_{H} G_{2}\left(x_{2} y_{2}\right),
$$

we have:

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)-\operatorname{deg}\left(x_{1}\right)-\operatorname{deg}\left(x_{2}\right)+2 \leq \gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1
$$

Proof. First we find the upper bound. Since x_{1} and x_{2} are not pendant vertices, then by the definition of the Hajós sum we know that $\operatorname{deg}\left(v_{H}\left(x_{1} x_{2}\right)\right)=\operatorname{deg}\left(x_{1}\right)+\operatorname{deg}\left(x_{2}\right)-2$. Also, $\operatorname{deg}_{G_{3}}\left(y_{1}\right)=\operatorname{deg}_{G_{1}}\left(y_{1}\right)$, and $\operatorname{deg}_{G_{3}}\left(y_{2}\right)=\operatorname{deg}_{G_{2}}\left(y_{2}\right)$. Suppose that D_{i} is a γ_{st}-set of G_{i}, for $i=1,2$. We have the following cases:
(i) y_{1} is strong dominated by x_{1}, and y_{2} is strong dominated by x_{2}. Without loss of generality, suppose that $\operatorname{deg}\left(y_{1}\right) \geq \operatorname{deg}\left(y_{2}\right)$. Let

$$
D_{3}=\left(D_{1} \backslash\left\{x_{1}\right\}\right) \cup\left(D_{2} \backslash\left\{x_{2}\right\}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right), y_{1}\right\} .
$$

D_{3} is a strong dominating set of G_{3}, because y_{2} is strong dominated by y_{1}, and every other vertices in $\overline{D_{3}}$ is strong dominated by the same vertices as before or $v_{H}\left(x_{1} x_{2}\right)$. So we have

$$
\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)
$$

(ii) y_{1} is strong dominated by x_{1}, and y_{2} is not strong dominated by x_{2}. In this case, we may have $y_{2} \in D_{2}$ or $y_{2} \in \overline{D_{2}}$, and we may have $x_{2} \in D_{2}$ or $x_{2} \in \overline{D_{2}}$. Let

$$
D_{3}=\left(D_{1} \backslash\left\{x_{1}\right\}\right) \cup\left(D_{2} \backslash\left\{x_{2}\right\}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right), y_{1}\right\} .
$$

D_{3} is a strong dominating set of G_{3}, because if $y_{2} \in \overline{D_{2}}$, then it is strong dominated by the same vertex as before, and every other vertices in $\overline{D_{3}}$ is strong dominated by the same vertices as before or $v_{H}\left(x_{1} x_{2}\right)$. So, in the worst case, which is $x_{2} \in \overline{D_{2}}$, we have

$$
\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1
$$

(iii) y_{1} is not strong dominated by x_{1}, and y_{2} is not strong dominated by x_{2}. By a similar discussion as part (ii),

$$
D_{3}=\left(D_{1} \backslash\left\{x_{1}\right\}\right) \cup\left(D_{2} \backslash\left\{x_{2}\right\}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\},
$$

is a strong dominating set of G_{3}, and in the worst case, we have

$$
\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1
$$

(iv) x_{1} is strong dominated by y_{1}, and x_{2} is strong dominated by y_{2}. Then clearly

$$
D_{3}=D_{1} \cup D_{2} \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\},
$$

is a strong dominating set of G_{3}, and we have

$$
\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1
$$

(v) x_{1} is strong dominated by y_{1}, and x_{2} is not strong dominated by y_{2}. Then we may have y_{2} is strong dominated by x_{2}, which we have the result by similar argument as case (ii). Otherwise, by a similar argument as part (ii),

$$
D_{3}=\left(D_{1} \cup D_{2} \backslash\left\{x_{2}\right\}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}
$$

is a strong dominating set of G_{3}, and in the worst case, we have

$$
\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1
$$

(vi) x_{1} is not strong dominated by y_{1}, and x_{2} is not strong dominated by y_{2}. Then we may have y_{1} is strong dominated by x_{1}, and y_{2} is strong dominated by x_{2}, which gives us the result by case (i), or we may have y_{1} is strong dominated by x_{1}, and y_{2} is not strong dominated by x_{2}, which gives us the result by case (ii). Otherwise, by similar argument as before,

$$
D_{3}=\left(D_{1} \backslash\left\{x_{1}\right\}\right) \cup\left(D_{2} \backslash\left\{x_{2}\right\}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\},
$$

is a strong dominating set of G_{3}, and in the worst case, we have

$$
\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1
$$

So, in general, we have $\gamma_{\mathrm{st}}\left(G_{3}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)+1$. Now, we find the lower bound. Suppose that S_{3} is a γ_{st}-set of G_{3}. We find strong dominating sets of G_{1} and G_{2} based on S_{3}. We consider the following cases:
(i) $v_{H}\left(x_{1} x_{2}\right) \in S_{3}$. Here we consider the following sub-cases:
(a) $y_{1} \in S_{3}$ and $y_{2} \in S_{3}$. If $v_{H}\left(x_{1} x_{2}\right)$ is not strong dominating any vertices in $\overline{S_{3}}$, then

$$
S_{1}=\left(S_{3} \backslash\left(V\left(G_{2}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{x_{1}\right\}
$$

is a strong dominating set of G_{1}, and

$$
S_{2}=\left(S_{3} \backslash\left(V\left(G_{1}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{x_{2}\right\}
$$

is a strong dominating set of G_{2}. But, if $v_{H}\left(x_{1} x_{2}\right)$ is strong dominating some vertices in $\overline{S_{3}}$, then after forming G_{1} and G_{2} from G_{3}, then if $\operatorname{deg}\left(x_{1}\right) \geq \max \{\operatorname{deg}(u) \mid u \in$
$\left.N\left(x_{1}\right)\right\}$, and $\operatorname{deg}\left(x_{2}\right) \geq \max \left\{\operatorname{deg}(v) \mid v \in N\left(x_{2}\right)\right\}$, we consider S_{1} and S_{2} as mentioned. If $\operatorname{deg}\left(x_{1}\right) \geq \max \left\{\operatorname{deg}(u) \mid u \in N\left(x_{1}\right)\right\}$, But $\operatorname{deg}\left(x_{2}\right) \ngtr \max \{\operatorname{deg}(v) \mid v \in$ $\left.N\left(x_{2}\right)\right\}$, we consider S_{1} as mentioned, and let

$$
S_{2}=\left(S_{3} \backslash\left(V\left(G_{1}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup N\left(x_{2}\right),
$$

then one can easily check that S_{2} is a strong dominating set of G_{2}. If $\operatorname{deg}\left(x_{1}\right) \not \ni$ $\max \left\{\operatorname{deg}(u) \mid u \in N\left(x_{1}\right)\right\}$, and $\operatorname{deg}\left(x_{2}\right) \ngtr \max \left\{\operatorname{deg}(v) \mid v \in N\left(x_{2}\right)\right\}$, we consider

$$
S_{1}=\left(S_{3} \backslash\left(V\left(G_{2}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup N\left(x_{1}\right),
$$

and

$$
S_{2}=\left(S_{3} \backslash\left(V\left(G_{1}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup N\left(x_{2}\right) .
$$

Here S_{1} and S_{2} are strong dominating sets of G_{1} and G_{2}, respectively. So in the worst case we have

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right) \leq \gamma_{\mathrm{st}}\left(G_{3}\right)-1+\operatorname{deg}\left(x_{1}\right)-1+\operatorname{deg}\left(x_{2}\right)-1
$$

(b) $y_{1} \in S_{3}$ and $y_{2} \notin S_{3}$. If $v_{H}\left(x_{1} x_{2}\right)$ is not strong dominating any vertices in $\overline{S_{3}}$, then one can easily check that

$$
S_{1}=\left(S_{3} \backslash\left(V\left(G_{2}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{x_{1}\right\}
$$

is a strong dominating set of G_{1}, and one of the

$$
S_{2}=\left(S_{3} \backslash\left(V\left(G_{1}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{x_{2}\right\}
$$

or

$$
S_{2}^{\prime}=\left(S_{3} \backslash\left(V\left(G_{1}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{y_{2}\right\}
$$

is a strong dominating set of G_{2} (or possibly both are strong dominating sets of G_{2}). Otherwise, by similar argument as part (a), we conclude that

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right) \leq \gamma_{\mathrm{st}}\left(G_{3}\right)-1+\operatorname{deg}\left(x_{1}\right)-1+\operatorname{deg}\left(x_{2}\right) .
$$

(c) $y_{1} \notin S_{3}$ and $y_{2} \notin S_{3}$. Then there exists $y_{1}^{\prime} \in V\left(G_{1}\right)$ such that y_{1} is strong dominated by that, and there exists $y_{2}^{\prime} \in V\left(G_{2}\right)$ and is strong dominating y_{2}. Then one can easily check that

$$
S_{1}=\left(S_{3} \backslash\left(V\left(G_{2}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{x_{1}\right\}
$$

is a strong dominating set of G_{1}, and

$$
S_{2}=\left(S_{3} \backslash\left(V\left(G_{1}\right) \cup\left\{v_{H}\left(x_{1} x_{2}\right)\right\}\right)\right) \cup\left\{x_{2}\right\}
$$

is a strong dominating set of G_{2}, and we have

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right) \leq \gamma_{\mathrm{st}}\left(G_{3}\right)+1
$$

(ii) $v_{H}\left(x_{1} x_{2}\right) \notin S_{3}$. Without loss of generality, suppose that there exists $x_{1}^{\prime} \in V\left(G_{1}\right)$ such that $v_{H}\left(x_{1} x_{2}\right)$ is strong dominated by x_{1}^{\prime}. We consider the following cases:
(a) $y_{1} \in S_{3}$ and $y_{2} \in S_{3}$. Then one can easily check that

$$
S_{1}=S_{3} \backslash V\left(G_{2}\right)
$$

is a strong dominating set of G_{1}, and

$$
S_{2}=\left(S_{3} \backslash V\left(G_{1}\right)\right) \cup\left\{x_{2}\right\}
$$

is a strong dominating set of G_{2}. So

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right) \leq \gamma_{\mathrm{st}}\left(G_{3}\right)+1
$$

(b) $y_{1} \in S_{3}$ and $y_{2} \notin S_{3}$. Then

$$
S_{1}=S_{3} \backslash V\left(G_{2}\right)
$$

is a strong dominating set of G_{1}, and

$$
S_{2}=\left(S_{3} \backslash V\left(G_{1}\right)\right) \cup\left\{x_{2}\right\}
$$

or

$$
S_{2}^{\prime}=\left(S_{3} \backslash V\left(G_{1}\right)\right) \cup\left\{y_{2}\right\}
$$

is a strong dominating set of G_{2} (or possibly both are strong dominating set of G_{2}). So

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right) \leq \gamma_{\mathrm{st}}\left(G_{3}\right)+1
$$

(c) $y_{1} \notin S_{3}$ and $y_{2} \notin S_{3}$. Then by considering similar sets as part (a), we have

$$
\gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right) \leq \gamma_{\mathrm{st}}\left(G_{3}\right)+1
$$

Therefore we have $\gamma_{\mathrm{st}}\left(G_{3}\right) \geq \gamma_{\mathrm{st}}\left(G_{1}\right)+\gamma_{\mathrm{st}}\left(G_{2}\right)-\operatorname{deg}\left(x_{1}\right)-\operatorname{deg}\left(x_{2}\right)+2$, and we are done.

Remark 2.2. The lower bounds in Theorem 2.1 is tight. Consider Figure 2. One can easily check that the set of black vertices in each graph is a strong dominating set of that and the equality holds. This idea can be generalized and therefore there is an infinite family of graphs such that the equality of the lower bound holds. Also, the upper bounds in Theorem 2.1 is tight. Consider Figure 3. By an easy argument, the set of black vertices in each graph is a strong dominating set of that and the equality of the upper bound holds. Since this idea can be generalized, then there is an infinite family of graphs such that the equality of the upper bound holds.

Figure 2: Hajós construction of G_{1} and G_{2}.

Figure 3: Hajós construction of G_{1} and G_{2}.

3 Vertex-Sum

In this section, we focus on the strong domination number of vertex-sum graphs. Given disjoint graphs G_{1}, \ldots, G_{k} with $u_{i} \in V\left(G_{i}\right), i=1, \ldots, k$, the vertex-sum of G_{1}, \ldots, G_{k}, at the vertices u_{1}, \ldots, u_{k}, is the graph $G_{1}+{ }_{u} G_{2}+\cdots+{ }_{u} G_{k}$ obtained from G_{1}, \ldots, G_{k} by identifying the vertices $u_{i}, i=1, \ldots, k$, as the same vertex u. This definition is from [5] by Barioli, Fallat and Hogben. We call u the central vertex of the vertex-sum. The vertex-sum of t copies of a graph G at a vertex u is denoted by $G_{u}^{t}, t \geq 2$. For the sake of simplicity, we may assume that the vertex u belongs to all the G_{i}. Recently the distinguishing number and the distinguishing threshold of some vertex-sum graphs studied in [11]. The following theorem gives the lower bound and the upper bound for the strong domination number of vertex-sum of two graphs.

Theorem 3.1. For the vertex-sum of disjoint graphs $G_{1}, G_{2}, \ldots, G_{k}$ with $u_{i} \in V\left(G_{i}\right), i=$ $1,2, \ldots, k$, we have

$$
\left(\sum_{i=1}^{k} \gamma_{\mathrm{st}}\left(G_{i}\right)-\operatorname{deg}\left(u_{i}\right)\right)+1 \leq \gamma_{\mathrm{st}}\left(G_{1} \underset{u}{+} G_{2} \underset{u}{+} \ldots \underset{u}{ }+G_{k}\right) \leq\left(\sum_{i=1}^{k} \gamma_{\mathrm{st}}\left(G_{i}\right)\right)+1
$$

Proof. First we find the upper bound. Suppose that D_{i} is a γ_{st}-set of G_{i}, for $i=1,2, \ldots, k$. Then clearly

$$
D=\bigcup_{i=1}^{k} D_{i} \cup\{u\}
$$

is a strong dominating set of $G_{1} \underset{u}{+} G_{2} \underset{u}{+} \ldots+G_{k}$, and we are done. Now, we consider the lower bound and prove it. Suppose that S is a γ_{st}-set of $G_{1}+\underset{u}{ } G_{2}+\underset{u}{ } \ldots \underset{u}{ } G_{k}$. We find strong dominating sets of G_{i}, for $i=1,2, \ldots, k$, based on S. We have two cases:
(i) $u \notin S$. Then there exists $u^{\prime} \in S$ and is strong dominating u. Without loss of generality, suppose that $u^{\prime} \in V\left(G_{1}\right)$. Then one can easily check that

$$
S_{1}=S \backslash\left(\bigcup_{i=2}^{k} V\left(G_{i}\right)\right)
$$

is a strong dominating set of G_{1}, and for $i=2,3, \ldots, k$,

$$
S_{i}=\left(S \cup\left\{u_{i}\right\}\right) \backslash\left(\bigcup_{\substack{j=1 \\ j \neq i}}^{k} V\left(G_{j}\right)\right)
$$

is a strong dominating set of G_{i}. So we have

$$
\sum_{i=1}^{k} \gamma_{\mathrm{st}}\left(G_{i}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}+\underset{u}{ }+G_{2} \underset{u}{ }+\underset{k}{ }+G_{k}\right)+k-1,
$$

which is not in contradiction of the lower bound.
(ii) $u \in S$. If after forming each G_{i}, for all $i=1,2, \ldots, k, \operatorname{deg}\left(u_{i}\right) \geq \max \left\{\operatorname{deg}(v) \mid v \in N\left(u_{i}\right)\right\}$, then

$$
S_{i}=\left(S \cup\left\{u_{i}\right\}\right) \backslash\left(\bigcup_{\substack{j=1 \\ j \neq i}}^{k} V\left(G_{j}\right) \cup\{u\}\right)
$$

is a strong dominating set of G_{i}, for $i=1,2, \ldots, k$. So we have

$$
\sum_{i=1}^{k} \gamma_{\mathrm{st}}\left(G_{i}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}+\underset{u}{ }+G_{2} \underset{u}{\ldots}+G_{k}\right)+k-1
$$

which is not in contradiction of the lower bound. The worst case happens when after forming each G_{i}, for all $i=1,2, \ldots, k, \operatorname{deg}\left(u_{i}\right)<\max \left\{\operatorname{deg}(v) \mid v \in N\left(u_{i}\right)\right\}$. Then by considering

$$
S_{i}=\left(S \cup N\left(u_{i}\right)\right) \backslash\left(\bigcup_{\substack{j=1 \\ j \neq i}}^{k} V\left(G_{j}\right) \cup\{u\}\right)
$$

one can easily check that S_{i} is a a strong dominating set of G_{i}, for $i=1,2, \ldots, k$. So we have

$$
\sum_{i=1}^{k} \gamma_{\mathrm{st}}\left(G_{i}\right) \leq \gamma_{\mathrm{st}}\left(G_{1}+\underset{u}{ }+G_{2} \underset{u}{ }+\ldots+G_{k}\right)+\left(\sum_{i=1}^{k} \operatorname{deg}\left(u_{i}\right)\right)-1
$$

Therefore we have the result.
As an immediate result of Theorem 3.1, we have:
Corollary 3.2. For the The vertex-sum of t copies of a graph G at a vertex u, we have

$$
t\left(\gamma_{\mathrm{st}}(G)-\operatorname{deg}(u)\right)+1 \leq \gamma_{\mathrm{st}}\left(G_{u}^{t}\right) \leq t \gamma_{\mathrm{st}}(G)+1
$$

Remark 3.3. Bounds in Theorem 3.1 are tight. For the upper bound, consider G_{i} as shown in Figure 4. The set of black vertices is a γ_{st}-set of G_{i}. Now, if we consider $G_{1} \underset{u}{+} G_{2}+\underset{u}{ }+\underset{u}{ } G_{k}$, then we need all black vertices and u in our strong dominating set. Therefore the equality holds. By generalizing this idea, we have an infinite family of graphs such that the equality of the upper bound holds. For the lower bound, consider G_{i} as shown in Figure 5. The set of black vertices, say S_{i}, is a γ_{st}-set of G_{i}. Now, if we consider $G_{1} \underset{u}{+} G_{2} \underset{u}{+} \ldots \underset{u}{+} G_{k}$, then clearly $\left(\bigcup_{i=1}^{k} S_{i} \cup\{u\}\right) \backslash\left(\bigcup_{i=1}^{k} N\left(u_{i}\right)\right)$ is a γ_{st}-set, and we are done. By generalizing this idea, we have an infinite family of graphs such that the equality of the lower bound holds.

Figure 4: Graph G_{i}, for $i=1,2, \ldots, k$.

Figure 5: Graph G_{i}, for $i=1,2, \ldots, k$.

References

[1] S. Akbari, S. Alikhani, Y.H. Peng, Characterization of graphs using domination polynomial, Europ. J. Combin., 31 (2010) 1714-1724. 1
[2] S. Alikhani, E. Deutsch, More on domination polynomial and domination root, Ars Combin. 134 (2017) 215-232.
[3] S. Alikhani, N. Ghanbari, H. Zaherifar, Strong domination number of some operations on a graph, submitted. Available at https://arxiv.org/abs/2210.11120. 1
[4] S. Alikhani, Y.H. Peng, Introduction to domination polynomial of a graph, Ars Combin. 114 (2014) 257-266. 1
[5] F. Barioli, S. Fallat, and L. Hogben. Computation of minimal rank and path cover number for certain graphs, Linear Algebra Appl. 392 (2004) 289--303. 3
[6] R. Boutrig, M. Chellali, A note on a relation between the weak and strong domination numbers of a graph, Opuscula Math. 32 (2012) 235-238. 1
[7] G. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin-LutherUniv. Halle-Wittenberg Math.-Natur. Reihe, 10 (1961) 116-117. 2
[8] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, NewYork (1998). 1
[9] D. Rautenbach, Bounds on the strong domination number graphs, Discrete Math., 215 (2000) 201-212. 1
[10] E. Sampathkumar, L.Pushpa Latha, Strong weak domination and domination balance in a graph, Discrete Math. 161 (1) (1996) 235-242. 1
[11] M.H. Shekarriz, S.A. Talebpour, B. Ahmadi, M.H. Shirdareh Haghighi, S. Alikhani, Distinguishing threshold for some graph operations, Iran J. Sci. Technol. Trans. Sci., https://doi.org/10.1007/s40995-022-01379-2. 3
[12] S.K. Vaidya, R.N. Mehta, Strong domination number of some cycle related graphs, Int. J. Math. 3 (2017) 72-80.
[13] S.K. Vaidya, S.H. Karkar, On Strong domination number of graphs, Saurashtra University, India 12 (2017) 604-612.
[14] H. Zaherifar, S. Alikhani, N. Ghanbari, On the strong dominating sets of graphs, J. Alg. Sys., 11 (1) (2023) 65-76. 1

[^0]: *E-mail: nima.ghanbari@uib.no
 ${ }^{\dagger}$ Corresponding author. Email: alikhani@yazd.ac.ir

