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1 Introduction

The H∞-control is a technique used in control theory to design robust stabilizing feedback controllers that force
a system to achieve stability with a prescribed performance even if the system output may be corrupted by
perturbations. This method involves a transfer function which incorporates the effects of the input perturbations
towards the output observation. The aim is to determine the optimal feedback controller which minimizes the
effect of these perturbations on the output, by ensuring that the L2-norm of the transfer function is smaller
that the L2-norm of the perturbation with a certain prescribed bound. This turns out in finding a suboptimal
control solution constructed by means of a mathematical optimization problem. The formal H∞-control theory
was initiated by Zames in [34], as an optimization problem with an operator norm, in particular, the H∞-norm.
State space formulations were initially developed in [18] and [23] and continued later by the formulation of
the necessary and sufficient conditions for the existence of an admissible controller in terms of solutions of
algebraic Riccati equations. The state-space approach for linear infinite-dimensional H∞-control problems was
developed in further works and we cite here e.g., [2], [3], [4], [9], [21], [22], [25], [30], [31], [32], [33], [5], the last
for Navier-Stokes equations.

In this paper we discuss the H∞-control problem for linear infinite dimensional systems of parabolic type
and give applications for equations with singular Hardy potentials, of the type λ

|x|2 , which as far as we know

is a novel approach. Following the papers [2], [3], [4], where the H∞-control abstract problem was solved
with assumptions proper for the hyperbolic case, we prove here a main result stating the formulation of the
H∞-control problem in the parabolic case, relying on appropriate assumptions for parabolic operators. This
is further applied to three parabolic control systems with Hardy potentials and with distributed or boundary
controls. There is an extensive literature on Hardy-type inequalities with the singularity located inside the
domain or on the boundary, focusing also on controllability studies (see e.g., [15], [16], [29]). Besides the high
mathematical interest in such singular equations revealed in the past decades, a parabolic operator with a
Hardy potential term describes a non-standard growth condition which may affect the behavior of the solutions
to diffusive physical models, as for example of heat transfer or diffusion of contaminants in fluids. Also, it
may represent an equivalent formulation of a system of two equations in which a state in one equation is
represented as a fundamental solution by the other one. Operators with other similar potentials can arise for
example in quantum mechanics, [1] or in combustion theory, [10], [16]. Linear parabolic equations with Hardy
potentials have been studied in connection with stationary Schrödinger equations −∆y + V (x)y + E(x)y = f
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with the singular potential V ∈ L∞(Ω\x0) arising from the uncertainty principle. The robust stabilization of
the corresponding dynamic control system yt−∆y+V (x)y+E(x)y = B1w+B2u, via the H∞-control method,
with the control u and the exogenous perturbation w has direct implication for the equilibrium solution to the
above Schrödinger equation. The content of the paper is briefly described below.

In Section 2 we present the mathematical formulation of the H∞-control problem. In Section 3, after
specifying the work hypotheses we provide the main result stating the existence of the feedback controller
determined via a Riccati equation. In Sections 4 and 5 there are given applications for parabolic equations
in the N -dimensional case with a distributed control and a boundary control, respectively, and with Hardy
potentials with interior singularity, while in Section 6 it is treated the 1-D case with a boundary singular Hardy
potential.

2 Problem presentation and preliminaries

In this section we briefly explain the state-space approach of the H∞-control problem for the linear system

y′(t) = Ay(t) +B1w(t) +B2u(t), t ∈ R+ := (0,+∞) (2.1)

z(t) = C1y(t) +D1u(t), t ∈ R+, (2.2)

y(0) = y0, (2.3)

where A, B1, B2, C1, D1 are linear operators satisfying hypotheses that will be immediately specified. Here, y
is the system state, u is the control input, w is an exogenous input, or an unknown perturbation and z is the
performance output.

At this point we put down a few notation, definitions and results necessary for explaining the problem. Let
X be a real Hilbert space with the scalar product and norm denoted by (·, ·)X and ‖·‖X , respectively and X ′

is its dual. The symbol 〈·, ·〉X′,X is the pairing between X ′ and X. Let A be a linear closed operator on X with
the domain D(A) := {y ∈ X ; Ay ∈ X} dense in X. By A∗ we denote the the adjoint of A. If Y is another
Hilbert space, L(X,Y ) represent the space of all linear continuous operators from X to Y.

Let H, U, W, Z be real Hilbert spaces identified with their duals. For the beginning we assume:

(i1) A is the infinitesimal generator of an analytic C0-semigroup eAt on the Hilbert space H, eAt is compact
for t > 0, and

B1 ∈ L(W,H), B2 ∈ L(U, (D(A∗))′), C1 ∈ L(H,Z), D1 ∈ L(U,Z). (2.4)

Here, (D(A∗))′ is the dual of the domain of A∗, where D(A∗) is organized as a Hilbert space with the
scalar product (y1, y2)D(A∗) = (A∗y1, A

∗y2)H + (y1, y2)H for y1, y2 ∈ D(A∗).

We note that the space (D(A∗))′ is the completion of H in the norm |‖y‖| =
∥∥(A− λ0I)

−1y
∥∥
H
, λ0 ∈ ρ(A).

Also, we define the extension of the operator A from H to (D(A∗))′, denoted for convenience still by A, by

〈Ay, ψ〉(D(A∗))′,D(A) = (y,A∗ψ)H , for y ∈ H, ψ ∈ D(A∗). (2.5)

We shall work with both operators and if not seen clearly from the context which operator is used, we shall
specify this.
Let us consider the uncontrolled system y′(t) = Ay(t), t ∈ R+, y(0) = y0, with A the infinitesimal generator of
a C0-semigroup on H.

Definition 2.1 The operator A generates an exponentially stable semigroup eAt if
∥∥eAt

∥∥
L(H,H)

≤ Ce−αt, for all t ≥ 0, (2.6)

where α and C are positive constants.

Relation (2.6) still reads
∥∥eAty

∥∥
H

≤ Ce−αt ‖y‖H , for all y ∈ H and all t ≥ 0. (2.7)

Moreover, a result of Datko (see [14]) asserts that relation (2.7) is equivalent to
∫ ∞

0

‖y(t)‖2H dt <∞. (2.8)
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Definition 2.2 The pair (A,C1) in system (2.1)-(2.2) is exponentially detectable if there exists K ∈ L(Z,H)
such that A+KC1 generates an exponentially stable semigroup.

In order to state our H∞-control problem, we recall some issues about such a problem. Assume that under
certain conditions system (2.1)-(2.3) has a mild solution y ∈ C([0, T ];H) for all T > 0 and u can be represented
as a feedback controller u = Fy, where generally F : U → H is a linear closed and densely defined operator.
Then, the solution (y(t), z(t)) becomes dependent only on w(t) and reads

y(t) = e(A+B2F )ty0 +

∫ t

0

e(A+B2F )(t−s)B1w(s)ds, t ∈ [0,∞), (2.9)

z(t) = (C1 +D1F )e
(A+B2F )ty0 + (C1 +D1F )

∫ t

0

e(A+B2F )(t−s)B1w(s)ds. (2.10)

The latter equation can be still written

z(t) = f0(t) + (GFw)(t), t ≥ 0 (2.11)

where f0(t) = (C1 +D1F )e
(A+B2F )ty0 ∈ Z, t ≥ 0, and GF : L2(R+,W ) → L2(R+, Z), defined by

(GFw)(t) = (C1 +D1F )

∫ t

0

e(A+B2F )(t−s)B1w(s)ds ∈ Z, t ≥ 0, (2.12)

shows the transfer of the influence of the perturbation input w to the output. Roughly speaking, the H∞-control
problem means to find a feedback controller which stabilizes exponentially the system (with y0 = 0), with a
certain specified performance for the output GFw, depending on a given constant γ. Such a feedback control
F is called a suboptimal solution and the H∞ problem can be formulated as follows: given γ > 0, find the
feedback control F which exponentially stabilizes system (2.1)-(2.2) such that ‖GF ‖L(L2(R+,W ),L2(R+,Z)) < γ.

To be more precise in what concerns the relation with the Hardy space H∞, we briefly recall a well-known
result property of vector-valued Hardy classes (see e.g., [26], [27], [13], Theorem A6.26). The space H∞ is
defined as the vector space of bounded holomorphic functions on the right half plane, C+ = {z ∈ C; Re z > 0},
with the norm ‖f‖H∞ = sup|z|<1 |f(z)| . Let us take the Laplace transform in system (2.1)-(2.2) and get

ẑ(ζ) = C1(ζI −A−B2F )
−1y0 + ĜF (ζ)ŵ(ζ). (2.13)

The function ĜF : C+ → L(W,Z),

ĜF (ζ) = (C1 +D1F )(ζI +A+B2F )
−1B1 (2.14)

is the transfer function in the frequency domain, giving a relationship between the input and output of the
system. It plays an important role in control theory by providing an insight in how disturbances in the system
can affect the output. The results in the papers cited before express the fact that the L2-operator norm of the
gain in the time domain is equal to the Hardy H∞(L(W,Z))-norm of the transfer operator in the frequency
domain, i.e.,

‖GF ‖L(L2(R+,W ),L2(R+,Z)) := sup
w∈L2(R+,W )

‖GFw‖L2(R+,Z)

‖w‖L2(R+,W )

= sup
ζ∈C+

∥∥∥ĜF (ζ)
∥∥∥
L(W,Z)

=:
∥∥∥ĜF

∥∥∥
H∞

< γ. (2.15)

Notation and some necessary results. We end this section by recalling some other notation and results
necessary in the paper. We denote by Hm(Ω) the Sobolev spaces W 2,m(Ω), for m ≥ 1 and by H1

0 (Ω) the
space {y ∈ H1(Ω); tr(y) = 0 on Γ}, where tr(y) is the trace operator of y on Γ := ∂Ω. Moreover, H−1(Ω)
denotes the dual of H1

0 (Ω). Given a Banach space X and T ∈ (0,∞] we define by Lp(0, T ;X) the space of Lp

X-valued functions on (0, T ), p ∈ [1,∞], by C([0, T ];X) the space of continuous X-valued functions on (0, T )
and W 1,p(0, T ;X) = {u ∈ Lp(0, T ;X); du/dt ∈ Lp(0, T ;X)}.

Let L : D(L) ⊂ H → H be a linear operator defined on the Hilbert space H. We say that L is m-accretive if
L is accretive, meaning that (Ly, y)H ≥ 0, ∀y ∈ D(L), and if R(I+L) = H, where R is the range. The operator
L is quasi m-accretive or ω-m-accretive if ωI + L is m-accretive for some ω > 0.
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Hardy inequalities. Let N > 3 and let Ω be an open bounded subset of RN , with 0 ∈ Ω. Then we have

∫

Ω

|∇y(x)|
2
dx ≥ HN

∫

Ω

|y(x)|
2

|x|2
dx, for all y ∈ H1

0 (Ω), (2.16)

where HN = (N−2)2

4 is optimal (see [11], p. 452, Theorem 4.1).
Let Ω = (0, 1). Then we have

∫ 1

0

|y′(x)|
2
dx ≥

1

4

∫ 1

0

y(x)

|x|
2 dx, ∀y ∈ H1(0, 1), y(0) = 0, (2.17)

see [12], p. 217, or Lemma A.1, p. 234.
We recall the Young’s inequality for convolutions (f ∗ g)(t) =

∫∞

0
f(t− τ)g(τ)dτ,

‖f ∗ g‖Lr(0,∞) ≤ ‖f‖Lp(0,∞) ‖g‖Lq(0,∞) , where
1

p
+

1

q
= 1 +

1

r
, 1 ≤ p, q, r ≤ ∞. (2.18)

For simplicity, where there is no risk of confusion, the Lp(Ω)-norm will be denoted by ‖·‖p , p ∈ [1,∞],

instead of ‖·‖Lp(Ω) . We set R = (−∞,∞) and R+ = (0,∞). Also, |·| will represent the Euclidian norm in RN ,

for any N = 1, 2, ..., accordingly. In the further calculations C, C1, ..., CN , CT denote positive constants (which
may change from line to line), CN depending on N, via λ < HN and CT depending on T.

3 The main result

Besides (i1) we assume the following hypotheses:

(i2) the next relation takes place:

∥∥∥B∗
2e

A∗t
∥∥∥
L(H,U)

∈ L1(0, T ), for all T > 0, (3.1)

(i3) the pair (A,C1) is exponentially detectable (that is there exists K ∈ L(Z,H) such that A+KC1 generates
an exponentially stable semigroup) and

∫ ∞

0

∥∥∥B∗
2e

(A∗+C∗

1K
∗)ty

∥∥∥
U
dt ≤ C ‖y‖H , for all y ∈ H, (3.2)

(i4) ‖D∗
1D1u‖U∗ = ‖u‖U and D∗

1C1 = 0.

Let us comment a little these hypotheses. The L1-admissibility hypothesis of the observation operator B∗
2 in

(i2) is made in order to ensure the existence of a mild solution to (2.1) in L2(0, T ;H) for every T > 0, with
initial condition y0 and inputs u ∈ L2(0, T ;U) and w ∈ L2(0, T ;W ). In an ideal situation when B2 ∈ L(U,H),
eqs. (2.1)-(2.3) have a unique mild solution y ∈ C([0, T ];H), for every T > 0, given by

y(t) = eAty0 +

∫ t

0

eA(t−s)B1w(s)ds +

∫ t

0

eA(t−s)B2u(s)ds, t ∈ [0,∞). (3.3)

But generally, B2 may be not continuous from U to H, in some situations its range being in a larger abstract
space, indicated before to be (D(A∗))′. The unique solution to (2.1)-(2.3) is in this case in C([0,∞); (D(A∗))′).
Consequently, the previous formula should be written in a weak sense, that is for all t ≥ 0, we have

(y(t), ϕ)H = (eAty0, ϕ)H +

∫ t

0

(
eA(t−s)(B1w(s), ϕ)H + (u(s), B∗

2e
A∗(t−s)ϕ)U

)
ds, ∀ϕ ∈ H, y0 ∈ H. (3.4)
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Assumption (i2) ensures that y ∈ L2(0, T ;H), and this follows by proving that
∫ T

0
(y(t), ϕ(t))Hdt < C ‖ϕ‖L2(0,T ;H) ,

for ϕ ∈ L2(0, T ;H). Indeed, this is clearly seen for the first two terms in (3.4), since B1w ∈ L2(R+;H). For the
last term we calculate

∫ T

0

∫ t

0

(
u(s), B∗

2e
A∗(t−s)ϕ(t)

)
U
dsdt =

∫ T

0

∫ T

s

(
u(s), B∗

2e
A∗(t−s)ϕ(t)

)
U
dtds (3.5)

≤

(∫ T

0

‖u(s)‖2U ds

)1/2


∫ T

0

∥∥∥∥∥

∫ T

0

B∗
2e

A∗(t−s)ϕ(t)dt

∥∥∥∥∥

2

U

ds




1/2

≤ ‖u‖L2(0,T ;U)





(∫ T

0

∥∥∥B∗
2e

A∗t
∥∥∥
L(H,U)

dt

)(∫ T

0

‖ϕ(t)‖2H dt

)1/2




≤ ‖u‖L2(0,T );U)

(∫ T

0

∥∥∥B∗
2e

A∗t
∥∥∥
L(H,U)

dt

)
‖ϕ‖L2(0,T ;H) ≤ C ‖ϕ‖L2(0,T ;H) ,

where we used (i2) and the Young’s inequality for convolution (2.18) with p = 1, q = r = 2. Then, it follows
that y ∈ L2(0, T ;H) and the last term in (3.3) is in H .

Regarding (3.2) we mention that the corresponding result related to L2 instead of L1 is a particular case
of Theorem 5.4.2 in [28], so that we expect that (3.1) and the detectability hypothesis imply (3.2), at least in
some cases. However, we keep here relation (3.2) as a hypothesis and check it in the applications, by different
proofs according the case. In applications, the first relation in hypothesis (i4) may be weaken to D∗

1D1 ≥ ǫI
(see e.g., [5]). However, for certain choices of operators D1 and C1, relations (i4) may be proved as they are.

Theorem 3.1 below is the main result concerning the H∞-control problem under hypotheses (i1)-(i4) and it
gives a representation for the feedback operator F which is a suboptimal solution to our H∞-control problem.

This theorem was proved, under some appropriate hypotheses for the hyperbolic case in [2] and [3]. Actually,
instead of (3.1) there it was used the L2-admissibility condition

∫ T

0

∥∥∥B∗
2e

A∗ty
∥∥∥
2

U
dt ≤ CT ‖y‖2H , for every y ∈ H and T > 0. (3.6)

For the treatment of specific parabolic problems intended to be achieved in the paper, we have in mind to adapt
that approach to the case covered by assumptions (i1)− (i4) to obtain the following main result.

Theorem 3.1 Let hypotheses (i1) − (i4) hold and let γ > 0. Assume that there exists F ∈ L(H,U) such that
A+B2F generates an analytic exponentially stable C0-semigroup on H and

‖GF ‖L(L2(R+;W ),L2(R+;Z)) < γ. (3.7)

Then, there exists a Hilbert space X ⊂ H with dense and continuous injection and an operator

P ∈ L(H,H) ∩ L(X , D(A∗)), P = P ∗ ≥ 0, (3.8)

which satisfies the algebraic Riccati equation

A∗Py + P (A−B2B
∗
2P + γ−2B1B

∗
1P )y + C∗

1C1y = 0, ∀y ∈ X , (3.9)

where B∗
2P ∈ L(X , U) and the operators

ΛP := A−B2B
∗
2P + γ−2B1B

∗
1P, Λ1

P := A−B2B
∗
2P (3.10)

with the domain X generate exponentially stable semigroups on H. Moreover, the feedback control

F̃ = −B∗
2P (3.11)

solves the H∞-problem, that is
∥∥GF̃

∥∥
L(L2(R+;W ),L2(R+;Z))

< γ.

Conversely, assume that there exists a solution P to equation (3.9) with the properties (3.8) and such that the
corresponding operators ΛP and Λ1

P generate exponentially stable semigroups on H. Then, the feedback operator

F̃ = −B∗
2P solves the H∞-problem (3.7).
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The space X will be defined in the theorem proof before Lemma 3.5, in (3.45). Moreover, we shall show in
Lemma 3.5 that if the operator ΛP with the domain D(ΛP ) = {y ∈ H ; ΛP y = (A−B2B

∗
2P+γ−2B1B

∗
1P )y ∈ H}

is closed, then X = D(ΛP ). This will happen in all examples given the next sections.

Proof of Theorem 3.1. We assume first that there exists a solution F ∈ L(H,U) to the H∞-control problem
such that AF := A + B2F generates an analytic exponentially stable C0-semigroup and (3.7) holds. We must
prove that there exists P satisfying (3.8)-(3.11).

The state-space approach of the above H∞-control problem comes back to solve the differential game

sup
w∈L2(R+,W )

inf
u∈L2(R+,U)

1

2

∫ ∞

0

(‖z(t)‖
2
Z − γ2 ‖w(t)‖

2
W )dt, (3.12)

subject to (2.1)-(2.3), which ensures a prescribed bound on the Hardy norm H∞ of the transfer operator (see
e.g., [3]).

Let J : L2(R+;U)× L2(R+;W ) → [−∞,∞] be defined as

J(u,w) =
1

2

∫ ∞

0

{‖C1y(t) +D1u(t)‖
2
Z − γ2 ‖w(t)‖2W }dt (3.13)

and consider first a minimization problem, for a fixed w ∈ L2(R+;W ),

inf
u∈L2(R+;U)

J(u,w), (3.14)

subject to system (2.1)-(2.2). By hypothesis (i4) we see that

J(u,w) =
1

2

∫ ∞

0

{‖C1y(t)‖
2
Z + ‖u(t)‖

2
U − γ2 ‖w(t)‖

2
W }dt, (3.15)

so u→ J(u,w) is strictly convex, whence it easily can be shown that (3.14) has a unique solution

u∗ = Γw (3.16)

with Γ : L2(R+;W ) → L2(R+;U).
We denote by yu

∗

the solution to (2.1) corresponding to u∗ (realizing the minimum in (3.14)) and w, that
is, yu

∗

:= yu
∗,w.

Lemma 3.2 There exists p ∈ C(R+;H) ∩ L2(R+;H) satisfying

p′(t) = −A∗
F p(t) + C∗

1C1y
u∗

(t) + F ∗u∗(t), t ∈ R+, (3.17)

u∗(t) = B∗
2p(t), a.e. t > 0. (3.18)

Proof. We note first that the solution to the equation y′(t) = AF y(t) + B1w(t) with y0 ∈ H, where AF =
A+B2F is exponentially stable on H , is in L2(R+;H). Indeed,

‖y(t)‖H ≤ Ce−αt ‖y0‖H +

∫ t

0

∥∥∥eAF (t−s)w(s)
∥∥∥
H
ds

≤ Ce−αt ‖y0‖H +

∫ t

0

e−α(t−s) ‖w(s)‖W ds, t ≥ 0,

and by applying the Young’s inequality for convolution (2.18) with r = 2, p = 1 and q = 2 we obtain

∫ ∞

0

‖y(t)‖
2
H dt ≤ C

{
‖y0‖

2
H +

∫ ∞

0

(∫ t

0

e−α(t−s) ‖w(s)‖W ds

)2

dt

}
(3.19)

≤ C ‖y0‖
2
H + C

(∫ ∞

0

e−αtdt

)2 ∫ ∞

0

‖w(t)‖
2
W dt ≤ C(‖y0‖

2
H + ‖w‖

2
L2(0,∞;W )) <∞.
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We specify that the solution to (3.17) should be understand in the following mild sense

p(t) = −

∫ ∞

t

e−A∗

F (s−t)(C∗
1C1y

u∗

(s) + F ∗u∗(s))ds,

and so C([0,∞);H) because F ∗ ∈ L(U,H), C∗
1C1 ∈ L(H,H). Since A∗

F generates an analytic C0-semigroup it
follows by its regularizing effect that p ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(A∗

F )), for all T > 0.
We introduce v := u− Fy and write problem (3.14) as

inf
v∈L2(R+;U)

1

2

∫ ∞

0

{‖C1y(t)‖
2
Z + ‖Fy(t) + v(t)‖

2
U − γ2 ‖w(t)‖

2
W }dt (3.20)

subject to y′(t) = AF y(t)+B1w(t)+B2v(t), t ≥ 0, y(0) = y0. Since the functional is weakly lower semicontinous
and convex, it follows that (3.20) has a unique solution v∗ = u∗ − Fyu

∗

, with u∗ the solution to (3.14) and yu
∗

the solution to (2.1) corresponding to u∗ and w.
We set the variation vλ = v∗ + λV, where λ > 0, V ∈ L2(R+;U) and write the system in variations

Y ′(t) = AFY (t) +B2V (t), Y (0) = 0, (3.21)

where Y (t) = limλ→0
yvλ−yv∗

λ weakly in L2(R+;H). Eq. (3.21) can be still written as Y ′(t) = AY (t) +
B2(FY (t) + V (T )) and so it is easily seen that it has a unique solution Y belonging to W 1,2(R+; (D(A∗

F ))
′) ∩

L2(R+;H), the latter following in the same way as shown before for y(t) in (3.5).
Writing that v∗ realizes the minimum in (3.20), in particular that J(vλ, w) ≥ J(v∗, w), we deduce

∫ ∞

0

{
(C1y

u∗

(t), C1Y (t))Z + (Fyu
∗

(t) + v∗(t), FY (t) + V (t))U

}
dt ≥ 0.

If λ→ −λ we obtain the reverse inequality, so that in conclusion

∫ ∞

0

{
(C∗

1C1y
u∗

(t) + F ∗Fyu
∗

(t) + F ∗v∗(t), Y (t))H + (Fyu
∗

(t) + v∗(t), V (t))U

}
dt = 0, (3.22)

for all V ∈ L2(R+;U). By testing the first equation (3.21) by p(t) ∈ D(A∗
F ), solution to (3.17) and integrating

with respect to t from 0 to ∞, we obtain

∫ ∞

0

(p′(t) + A∗
F p(t), Y (t))Hdt+

∫ ∞

0

(B∗
2p(t), V (t))Udt = 0, (3.23)

which by (3.17) yields

∫ ∞

0

(
C∗

1C1y
u∗

(t) + F ∗u∗(t), Y (t)
)
H
dt = −

∫ ∞

0

(B∗
2p(t), V (t))Udt. (3.24)

By comparison with (3.22), where we write v∗ = u∗ − Fyu
∗

, this yields

∫ ∞

0

(−B∗
2p(t) + u∗(t), V (t))Udt = 0, for all V ∈ L2(R+;U). (3.25)

Therefore, we obtain (3.18) as claimed.
Then, the dual system (3.17) can be still written by the replacement of v∗ as

p′(t) = −A∗p(t) + C∗
1C1y

u∗

(t), a.e. t ∈ R+. (3.26)

Now, let us consider the function ϕ : L2(R+;W ) → R+, ϕ(w) = −J(Γw,w),that is

ϕ(w) =
1

2

∫ ∞

0

(
γ2 ‖w(t)‖

2
W −

∥∥∥C1y
u∗

(t) +D1u
∗(t)
∥∥∥
2

Z

)
dt,
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where yu
∗

is the solution to (2.1) corresponding to (u∗, w). By (2.11) and (2.12) we have

C1y
u∗

(t) +D1u
∗(t) = GFw(t) − f0(t)

and so
∥∥∥(C1y

u∗

(t) +D1u
∗(t)

∥∥∥
2

Z
= ‖GFw(t)‖

2
Z − 2(GFw(t), f0(t))Z + ‖f0(t)‖

2
Z

≤ (1 + δ) ‖GFw(t)‖
2
Z + Cδ ‖f0(t)‖

2
Z , ∀t ≥ 0.

Now, we integrate from 0 to ∞, note that f0 ∈ L2(R+;H), and get,

∫ ∞

0

∥∥∥(C1y
u∗

(t) +D1u
∗(t)

∥∥∥
2

Z
dt ≤ (1 + δ)(γ2 − ε)

∫ ∞

0

‖w(t)‖
2
+ Cδ,

where ε is fixed and the last inequality is implied by (3.7). We can find δ and δ̃ such that (1+δ)(γ2−ε) ≤ γ2− δ̃,

which is verified with the choice δ̃ < ε− δ(γ2 − ε) and δ < ε
γ2−ε . Then

ϕ(w) ≥ δ̃

∫ ∞

0

‖w(t)‖2W dt+ C,

and it turns out that ϕ attains its minimum on L2(R+;W ) in a unique point w∗.

Lemma 3.3 We have
w∗(t) = −γ−2B∗

1p(t), a.e. t > 0, (3.27)

where p ∈W 1,2(0, T ;H) is the solution to (3.26).

Proof. Recall that u∗ = Γw and that yu
∗

satisfies the problem

(yu
∗

)′(t) = Ayu
∗

(t) +B1w(t) +B2Γw(t), t ∈ R+, y
∗(0) = y0

and proceed by giving variations to w, that is wλ = w∗ +λw̃, w ∈ L2(R+;H). Then, the system in variations is

Y ′(t) = AY (t) +B1w̃(t) +B2Γw̃(t), t ∈ R+, Y (0) = 0 (3.28)

and the condition of optimality reads
∫ ∞

0

(γ2w∗(t)− Γ∗Γw∗(t), w̃(t))W dt−

∫ ∞

0

(C∗
1C1y

u∗

(t), Y (t))Hdt = 0, (3.29)

for all w̃ ∈ L2(R+;W ). Let us recall the dual system (3.26) and test (3.28) by p(t) and integrate for t ∈ (0,∞).
We get ∫ ∞

0

(p′(t) +A∗p(t), Y (t))Hdt+

∫ ∞

0

(B∗
1p(t) + Γ∗B∗

2p(t), w̃(t))W dt = 0. (3.30)

The latter and (3.29) gives

∫ ∞

0

(γ2w∗(t)− Γ∗Γw∗(t), w̃(t))W dt+

∫ ∞

0

(B∗
1p(t) + Γ∗B∗

2p(t), w̃(t))W dt = 0,

so that, since −Γ∗Γw∗(t) + Γ∗B∗
2p(t) = −Γ∗u∗(t) + Γ∗u∗(t) = 0, we obtain

∫ ∞

0

(γ2w∗(t) +B∗
1p(t), w̃(t))W dt = 0,

for all w̃ ∈ L2(R+;W ), that implies (3.27), as claimed.
Thus, we have proved that (3.12) has a unique solution (u∗, w∗) with the corresponding state denoted y∗,

characterized by the Euler-Lagrange system

y∗′(t) = Ay∗(t) +B1w
∗(t) +B2u

∗(t), t ∈ R+, y
∗(0) = y0, (3.31)
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p′(t) = −A∗p(t) + C∗
1C1y

∗(t), t ∈ R+, (3.32)

u∗(t) = B∗
2p(t), a.e. t > 0. (3.33)

w∗(t) = −γ−2B∗
1p(t), a.e. t > 0, (3.34)

where we already know that

y∗ ∈ C([0,∞); (D(A∗))′) ∩ L2(0, T ;H), ∀T > 0,

p ∈ C([0,∞);H) ∩ L2(R+;H).

Lemma 3.4 Let y0 ∈ H. Then,

y∗ ∈ C([0,∞);H) ∩W 1,2(δ, T ;H), ∀δ, 0 < δ ≤ T <∞, (3.35)

p ∈W 1,2(0, T ;H) ∩ L2(0, T ;D(A∗)), ∀T > 0. (3.36)

Proof. Since A∗ generates an analytic C0-semigroup and C∗
1C1y

∗ ∈ L2(R+;H) we see by (3.32) that (3.36)
holds. Moreover, by (3.31) and (3.33) we have

y∗(t) = eAty0 +

∫ t

0

eA(t−s)B1w
∗(s)ds+

∫ t

0

eA(t−s)B2B
∗
2p(s)ds (3.37)

= eAty0 + g1(t) + g2(t), ∀t ≥ 0.

The first two terms are in C([0,∞);H) ∩W 1,2(δ, T ;H). By (3.36), B2B
∗
2p ∈ W 1,2(0, T ; (D(A∗))′) and so we

may represent it as B2B
∗
2p = (A− ωI)f, with f ∈W 1,2(0, T ;H), for ω sufficiently large. This yields

g2(t) =

∫ t

0

eA(t−s)(A− ωI)f(s)ds = −ω

∫ t

0

eA(t−s)f(s)ds−

∫ t

0

(
d

ds
eA(t−s)

)
f(s)ds

= −ω

∫ t

0

eA(t−s)f(s)ds− f(t) + eAtf(0) +

∫ t

0

eA(t−s)f ′(s)ds, ∀t ≥ 0.

Since eAt is an analytic semigroup it follows that g(t) =
∫ t

0 e
A(t−s)f ′(s)ds, the solution to g′(t) = Ag(t) + f(t),

g(0) = 0 ∈ D(A), is in W 1,2(0, T ;H), as the first two terms. Though f(0) /∈ D(A), the third term is in
C([0,∞);H) ∩W 1,2(δ, T ;H), ∀0 < δ ≤ T < ∞ and so is g2 and y∗, too. Moreover, since A∗ is analytic, then
(3.36) holds.
Proof (of Theorem 3.1, continued). Now we set

Py0 := −p(0), for y0 ∈ H (3.38)

and note that P ∈ L(H,H).
Moreover, by adding (3.31) multiplied by p(t) with (3.32) multiplied by y∗(t) and integrating on (0,∞) we

get

−2(y0, p(0))H =

∫ ∞

0

{
〈Ay∗(t), p(t)〉(D(A∗))′,D(A∗) + (w∗(t), B∗

1p(t))W + (u∗(t), B∗
2p(t))U

}
dt

+

∫ ∞

0

{
−〈Ay∗(t), p(t)〉(D(A∗))′,D(A∗) + (C∗

1C1y
∗(t), p(t))H

}
dt (3.39)

=

∫ ∞

0

{
−γ2 ‖w∗(t)‖

2
W + ‖u∗(t)‖

2
U + ‖C1y

∗(t)‖
2
Z

}
dt

whence

(Py0, y0)H = −(p(0), y0)H =
1

2

∫ ∞

0

(
‖C1y

∗(t)‖
2
Z + ‖u∗(t)‖

2
U − γ2 ‖w∗(t)‖

2
W

)
dt

= sup
w∈L2(R+;W )

inf
u∈L2(R+;U)

1

2

∫ ∞

0

(
‖C1y(t)‖

2
Z + ‖u(t)‖

2
U − γ2 ‖w(t)‖

2
W

)
dt

≥ inf
u∈L2(R+;U)

1

2

∫ ∞

0

(
‖C1y(t)‖

2
Z + ‖u(t)‖

2
U

)
dt ≥ 0,
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hence P ≥ 0.
Moreover, P = P ∗. Indeed, let y0, z0 ∈ H and (y∗, p), (z∗, q) be the corresponding solutions to (3.31)-(3.34).

Namely, (z∗, q) satisfy

z∗′(t) = Az∗(t) +B1w
∗(t) +B2u

∗(t), t ∈ R+, y
∗(0) = y0,

q′(t) = −A∗q(t) + C∗
1C1z

∗(t), t ∈ R+.

We see that
d

dt
(p(t), z∗(t))H =

d

dt
(q(t), y∗(t))H , ∀t ≥ 0

and this yields (Py0, z0)H = (y0, P z0)H , as claimed.
We recall that by the dynamic programming principle (see e.g., [6], p. 104), the minimization problem (3.14)

for w = w∗, is equivalent with the following problem

inf
u∈L2(R+;U)

1

2

∫ ∞

t

(
‖C1y(s)‖

2
Z + ‖u(s)‖

2
U − γ2 ‖w∗(s)‖

2
W

)
ds

subject to (2.1)-(2.2) in St = {(t,∞); y(t) = y∗(t)}, for every t ≥ 0. Since u∗ is the solution to this problem it
follows by (3.38) that

p(t) = −Py∗(t), ∀t ≥ 0. (3.40)

We denote by TP (t) : H → H the family of operators

TP (t)y0 = y∗(t), ∀t ≥ 0 (3.41)

where y∗(t) is the solution to (3.31) with u∗ and w∗ given by (3.32)-(3.34). By (3.35) it follows that TP (t) is a
C0-semigroup on H.

Let us denote by AP the infinitesimal generator of TP (t), that is

dy∗

dt
(t) = AP y

∗(t), ∀t ≥ 0, y∗(0) = y0, (3.42)

or, equivalently
y∗(t) = eAP ty0, t ≥ 0, ∀y0 ∈ H. (3.43)

If y0 ∈ D(AP ) we have
y∗ ∈ C1([0, T ];H) ∩ C([0, T ];D(AP )), ∀T > 0. (3.44)

Here, D(AP ) = {y ∈ H ; AP y ∈ H} is the domain of AP . The space X in Theorem 3.1 is actually

X := D(AP ). (3.45)

Now, replacing in the right-hand side of (3.31) u∗ and w∗ by (3.33)-(3.34), (3.32) and (3.40) we get

y∗′(t) = Λ̃P y
∗(t) (3.46)

where Λ̃P is the operator

Λ̃P : H → (D(A∗))′, Λ̃P y = Ay −B2B
∗
2Py + γ−2B1B

∗
1Py ∈ (D(A∗))′

and A is the extension from H to (D(A∗))′.

We define by ΛP : D(ΛP ) ⊂ H → H the restriction of the operator Λ̃P to H, namely

ΛP y = (A−B2B
∗
2P + γ−2B1B

∗
1P )y, y ∈ D(ΛP ), (3.47)

D(ΛP ) = {y ∈ H ; (A−B2B
∗
2P + γ−2B1B

∗
1P )y ∈ H}.
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Lemma 3.5 We have
P ∈ L(X , D(A∗)), (3.48)

B∗
2P ∈ L(X ;U), (3.49)

AP y = ΛP y, for all y ∈ X ⊂ D(ΛP ) (3.50)

and ΛP generates a C0-semigroup on H.
Moreover, if ΛP is closed in H, then

X = D(AP ) = D(ΛP ). (3.51)

Proof. Let y0 ∈ D(AP ). We know by (3.44) that y∗ ∈ C1([0, T ];H) and AP y
∗ ∈ C([0, T ];H) for all T > 0, and

so by (3.32) it follows therefore that p′ ∈ C([0, T ];H) and so A∗p ∈ C([0, T ];H). Hence, A∗p(0) ∈ H. It follows
that p(0) ∈ D(A∗) and so Py0 ∈ D(A∗). This implies (3.48). Since P ∈ (X , D(A∗)) and B∗

2 ∈ L(D(A∗), U) it
follows (3.49).

We have by (3.42) and (3.44) that

d

dt
(y∗(t), ϕ)H = (AP y

∗(t), ϕ)H , ∀t ≥ 0, ϕ ∈ H.

On the other hand, by (3.46) we have (see the weak form (3.4) applied to Λ̃P : H → (D(A∗))′)

d

dt
(y∗(t), ϕ)H =

〈
dy∗

dt
(t), ϕ)

〉

(D(A∗))′,D(A∗)

=
〈
Λ̃P y

∗(t), ϕ
〉
(D(A∗))′,D(A∗)

, ∀t ≥ 0, ∀ϕ ∈ D(A∗).

Hence,

(AP y
∗(t), ϕ)H =

〈
Λ̃P y

∗(t), ϕ
〉
(D(A∗))′,D(A∗)

, ∀t ≥ 0, ∀ϕ ∈ D(A∗).

Recalling that y∗ ∈ C1([0,∞);H) ⊂ C([0,∞); (D(A∗))′) and letting t→ 0 we get

(AP y0, ϕ)H =
〈
Λ̃P y0, ϕ

〉
(D(A∗))′,D(A∗)

, ∀ϕ ∈ D(A∗).

This implies that Λ̃P y0 ∈ H, namely y0 ∈ D(ΛP ), and AP y0 = ΛP y0 on D(AP ) ⊂ D(ΛP ), that is (3.50).
Since these two operators coincide on D(AP ) then ΛP generates a C0-semigroup on H.
Now, D(AP ) ⊂ D(ΛP ) ⊂ H and since D(AP ) is dense in H it follows that D(ΛP ) is dense in H and D(AP )

is dense in D(ΛP ).
Assume that ΛP is closed and let y0 ∈ D(ΛP ). There exists (yn0 )n ⊂ D(AP ), y

n
0 → y0 in H and by (3.50)

we have
(AP y

n
0 , ϕ)H = (ΛP y

n
0 , ϕ)H , ϕ ∈ H,

which implies (using the adjoint of A∗
P which is the generator of a C0-semigroup on H) that

(yn0 , A
∗
Pϕ)H = (ΛP y

n
0 , ϕ)H , ϕ ∈ D(A∗

P ) ⊂ H.

Since ΛP is closed, by letting n→ ∞ we obtain

(y0, A
∗
Pϕ)H = (ΛP y0, ϕ)H , ϕ ∈ D(A∗

P ).

Then, ϕ→ (y0, A
∗
Pϕ)H is a linear continuous functional on H and |(y0, A

∗
Pϕ)H | ≤ C ‖ϕ‖H , so that y0 ∈ D(AP )

and (3.50) is proved.
Proof. (of Theorem 3.1, continued). To prove that P is a solution to the Riccati equation (3.9) we use the
relation

d

dt
(y∗(t), p(t))H = 〈(y∗)′(t), p(t)〉(D(A∗))′,D(A∗) + (y∗(t), p′(t))H

and calculate by (3.31)-(3.34) and (3.40) a relation as done for (3.39) but integrating from t to ∞. We get

(Py∗(t), y∗(t))H = (−p(t), y∗(t))H

=
1

2

∫ ∞

t

(
‖C1y

∗(t)‖2Z + ‖u∗(t)‖2U − γ2 ‖w∗(t)‖2W

)
dt, t ≥ 0.
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If y0 ∈ D(AP ) this implies by differentiating (by using (3.42) and (3.44)) that

(Py∗(t), AP y
∗(t))H + (PAP y

∗(t), y∗(t))H + ‖C1y
∗(t)‖

2
Z

+ ‖B∗
2Py

∗(t)‖2U − γ2
∥∥γ−2B∗

1Py
∗(t)

∥∥2
W

= 0, t ≥ 0

and since, by (3.48), B∗
2P ∈ L(D(AP ), D(A∗)) we obtain for t → 0 the equation

2(Py0, AP y0)H + ‖C1y0‖
2
Z + ‖B∗

2Py0‖
2
U − γ−2 ‖B∗

1Py0‖
2
W = 0, ∀y0 ∈ D(AP ). (3.52)

By differentiating along z ∈ D(AP ) we get

(Py0, AP z)H + (Pz,AP y0)H + ((B2B
∗
2 − γ−2B1B

∗
1 )Pz, Py0)H + (C∗

1C1y0, z)H = 0,

for all y0, z ∈ D(AP ). But here AP y = ΛP y for y ∈ D(AP ) and we can replace AP by ΛP in the previous
equation obtaining after all calculations

(A∗Py0, z)H +
(
P (A−B2B

∗
2 + γ−2B1B

∗
1)Py0, z

)
H
+ (C∗

1C1y0, z)H = 0

for all y0, z ∈ D(AP ), namely (3.9).
For proving that the semigroup eΛP t is exponentially stable we use the detectability assumption (i3). Let us

take K ∈ L(Z,H) and write eq. (3.31) in the following form

y∗′(t) = (A+KC1)y
∗(t) +B2u

∗(t) +B1w
∗(t)−KC1y

∗(t), t ≥ 0,

or equivalently,

y∗(t) = e(A+KC1)ty0 +

∫ t

0

e(A+KC1)(t−s)(B2u
∗(s) +B1w

∗(s))ds

−

∫ t

0

e(A+KC1)(t−s)KC1y
∗(s)ds, for all t ≥ 0.

Since B1w
∗, KC1y

∗ ∈ L2(R+;H) and e(A+KC1)t is exponentially stable it remains to show that

t→

∫ t

0

e(A+KC1)(t−s)B2u
∗(s)ds ∈ L2(R+;H). (3.53)

To this end, for each ψ ∈ L2(R+;H), using the Young’s inequality (2.18) (with p = 1, q = r = 2) and (3.2) we
calculate

∫ ∞

0

(
ψ(t),

∫ t

0

e(A+KC1)(t−s)B2u
∗(s)ds

)

H

dt

=

∫ ∞

0

(∫ ∞

s

B∗
2e

(A∗+C∗

1K
∗)(t−s)ψ(t)dt, u∗(s)

)

U

ds

≤

(∫ ∞

0

(∫ ∞

s

∥∥∥B∗
2e

(A∗+C∗

1K
∗)(t−s)ψ(t)

∥∥∥
U
dt

)2

ds

)1/2(∫ ∞

0

‖u∗(s)‖2U ds

)1/2

≤ ‖u∗‖L2(0,∞;U)

(∫ ∞

0

(∫ ∞

0

∥∥∥B∗
2e

(A∗+C∗

1K
∗)(t−s)

∥∥∥
L(H,U)

‖ψ(t)‖H dt

)2

ds

)1/2

≤ ‖u∗‖L2(0,∞;U)

(∫ ∞

0

∥∥∥B∗
2e

(A∗+C∗

1K
∗)s
∥∥∥
L(H,U)

ds

)(∫ ∞

0

‖ψ(s)‖
2
H ds

)1/2

≤ C ‖u∗‖L2(0,∞;U) ‖ψ‖L2(0,∞;U) ≤ C1 ‖ψ‖L2(0,∞;U) ,

and this implies (3.53), as claimed.

12



We shall prove now that the operator Λ1
P := A−B2B

∗
2P generates an exponentially stable C0-semigroup in

H with the domain {y ∈ H ; (A − B2B
∗
2P )y ∈ H} = D(AP ). The solution y∗(t) to (3.31) is in L2(R+;H) can

be written also as

y∗(t) = eΛ
1
P ty0 + γ−2

∫ t

0

eΛ
1
P (t−s)B1B

∗
1Py

∗(s)ds

and since the second term on the right-hand side is in L2(R+;H), it follows that eΛ
1
P ty0 ∈ L2(R+;H).

Now, we shall prove (3.7). Let us consider the equation

y′(t) = (A−B2B
∗
2P )y(t) +B1w(t), t ≥ 0, y(0) = 0, (3.54)

with w ∈ L2(R+;W ). As seen earlier, this equation has a unique mild solution and by (3.4) we have

d

dt
(y(t), ϕ)H = (y(t), (A∗ −B2B

∗
2P )ϕ)H + (B1w(y), ϕ)H , ∀ϕ ∈ D(A∗). (3.55)

Let p(t) = −Py(t), t > 0. Since by (3.48) P ∈ L(D(AP ), D(A∗)) it follows that p(t) ∈ D(A∗) and p is the solution
to eq. (3.32) with y∗ replaced by y. Moreover, as seen earlier by (3.32) it follows that A∗p, p′ ∈ L2(R+;H) and
we have by (3.55)

d

dt
(y(t), p(t))H = (y(t), (A∗ −B2B

∗
2P )p(t))H + (B1w(t), p(t))H + (y′(t), p(t))H .

Then we calculate using (3.40) and (3.9)

d

dt
(Py(t), y(t))H = 2(Py(t), y′(t))H

= 2(Py(t), Ay(t))H − 2 ‖B∗
2Py(t)‖

2
H + 2(B1w(t), Py(t))H

= ‖B∗
2Py(t)‖

2
H − γ−2 ‖B∗

1Py(t)‖
2
H − ‖C1y(t)‖

2
H − 2 ‖B∗

2Py(t)‖
2
H + 2(B1w(t), Py(t))H

= −‖B∗
2Py(t)‖

2
H − ‖C1y(t)‖

2
H − γ−2 ‖B∗

1Py(t)‖
2
H + 2(w(t), B∗

1Py(t))W , a.e. t > 0.

Integrating this from 0 to ∞ we obtain

0 =

∫ ∞

0

(
−‖B∗

2Py(t)‖
2
H − ‖C1y(t)‖

2
H − γ−2 ‖B∗

1Py(t)‖
2
H + 2(w(t), B∗

1Py(t))W

)
dt,

since y(0) = 0 and limt→∞(Py(t), y(t))H = 0. Therefore,

∫ ∞

0

(
‖C1y(t)‖

2
H + ‖B∗

2Py(t)‖
2
H

)
dt

=

∫ ∞

0

(
−γ−2 ‖B∗

1Py(t)‖
2
H + 2(w(t), B∗

1Py(t))H − γ2 ‖w(t)‖
2
W

)
dt+

∫ ∞

0

γ2 ‖w(t)‖
2
W dt

=

∫ ∞

0

γ2 ‖w(t)‖
2
W dt−

∫ ∞

0

γ2 ‖w̃(t)‖
2
W dt,

where
w̃(t) = w(t)− γ−2B∗

1Py(t). (3.56)

If we prove that there exists α > 0 such that

‖w̃‖L2(0,∞;W ) ≥ α ‖w‖L2(0,∞;W ) , ∀w ∈ L2(R+;W ), (3.57)

it follows that
γ2
(
‖w‖

2
L2(R+;W ) − ‖w̃‖

2
L2(R+;W )

)
≤ γ2(1− α) ‖w‖

2
L2(R+;W )

and therefore ∫ ∞

0

(
‖C1y(t)‖

2
H + ‖B∗

2Py(t)‖
2
H

)
dt ≤ (γ2 − δ) ‖w‖

2
L2(R+;W )
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with δ > 0 independent on w. Therefore,

∫ ∞

0

(
‖C1y(t)‖

2
H + ‖B∗

2Py(t)‖
2
H

)
dt ≤ (γ2 − δ)

∫ ∞

0

‖w(t)‖2W dt,

which by (2.12) implies (3.7). We note that once (3.57) proved, α can be chosen smaller such that α < 1. It
remains to prove (3.57) and this will be done in Lemma 3.6 given at the end of this section.

Therefore, G corresponding to F̃ := −B∗
2P has the property

∥∥GF̃w
∥∥
L2(R+;Z)

< γ ‖w‖L2(R+;W ) , that is F̃

is the feedback operator which solves the H∞-control problem. This ends the proof of the the first part of
Theorem 3.1.

Assume now that P is a solution to equation (3.9), satisfying (3.8), such that ΛP = A−(B2B
∗
2−γ

−2B1B
∗
1)P

generates an exponentially stable semigroup on X . We set y∗(t) = eΛP ty0, for y0 ∈ H, so that y∗ ∈ C([0,∞);H)∩
L2(R+;H). Let us define p(t) = −Py∗(t), for t ≥ 0. Then, p ∈ L2(R+;H)∩C([0,∞);H) and by replacing Py∗(t)
in (3.9) we get that p satisfies equation (3.32) with the regularity obtained in Lemma 3.4. The , as before.
Finally, we show that the operator Λ1

P generates an exponentially stable semigroup and that the controller

F̃ y = −B∗
2Py stabilizes equation y′(t) = (A + B2F̃ )y(t) + B1w(t), y(0) = 0, arguing as before beginning from

(3.54). This ends the proof of Theorem 3.1.
It remains to prove (3.57). We set

Φ(w) = ‖w̃‖
2
L2(R+;W ) . (3.58)

Lemma 3.6 We have
Φ(w) ≥ α ‖w‖2L2(0,∞;W ) , for all w ∈ L2(R+;W ), (3.59)

where α > 0.

Proof. We proceed by reduction to absurdity. Assume that (3.59) does not hold and argue from this a
contradiction. Thus, let (wn)n ⊂ L2(R+;W ) be such that ‖wn‖L2(R+;W ) = 1, ∀n ∈ N and Φ(wn) → 0 as

n→ ∞. Hence, by (3.58) and eq. (3.54) we have

Φ(wn) =

∥∥∥∥wn − γ−2B∗
1P

∫ t

0

e(A−B2B
∗

2P )tB1wn(s)ds

∥∥∥∥
L2(R+;W )

→ 0, as n→ ∞. (3.60)

On the other hand, on a subsequence, we have wn → w weakly in L2(R+;W ), and since Φ is weakly lower
semicontinuous in L2(R+;W ) (because it is continuous and convex) we have by (3.60) that Φ(w) = 0 which
implies that

w(t) = γ−2B∗
1P

∫ t

0

e(A−B2B
∗

2P )tB1w(s)ds, ∀t ≥ 0.

By Gronwall’s lemma we deduce that w(t) = 0. Now, if we prove that

wn → w strongly in L2(R+;W ) as n→ ∞

(namely, that (wn)n is compact in L2(R+;W )) we arrive to a contradiction because, the choice ‖wn‖L2(R+;W ) = 1

implies ‖w‖L2(R+;W ) = 1, which was found before to be 0.

To prove that (wn)n is compact in L2(R+;W ), by (3.60) it suffices to show that the sequence

zn(t) = γ−2B∗
1P

∫ t

0

e(A−B2B
∗

2P )tB1wn(s)ds, t ≥ 0

is compact in L2(R+;W ), that is, it contains a convergent subsequence. Taking into account that

‖zn‖L2(T,∞;W ) → 0 as T → ∞, uniformly in n, (3.61)

since A − B2B
∗
2P generates an exponentially stable semigroup, it suffices to prove that (zn)n is compact in

L2(0, T ;W ), for each T > 0. We set
S(t) = e(A−B2B

∗

2P )t, t ≥ 0 (3.62)
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and prove that {S(t)} is compact for each t > 0. This means that the set {S(t)y0; y0 ∈ H ; ‖y0‖H ≤ M} is
relatively compact in H. Since A−B2B

∗
2P = ΛP −γ−2B1B

∗
1P and B1B

∗
1P ∈ L(H,H) and ΛP = AP on D(AP )

it suffices to show that TP (t) = eAP t is compact for each t > 0. This follows by density by showing first that
{TP (t)y0; y0 ∈ D(AP ), ‖AP y0‖H + ‖y0‖H ≤ M} is relatively compact in H. To this end, for ε > 0, we write
TP (t)y0 in the following form

TP (t)y0 = eAty0 −

∫ t

0

eA(t−s)(B2B
∗
2Py(s)− γ−2B1B

∗
1Py(s))ds (3.63)

= eAty0 − eAε

∫ t−ε

0

eA(t−s−ε)(B2B
∗
2Py(s)− γ−2B1B

∗
1Py(s))ds

−

∫ t

t−ε

eA(t−s)(B2B
∗
2Py(s)− γ−2B1B

∗
1Py(s))ds,

where y(t) = TP (t)y0. If M = {y0 ∈ D(AP ); ‖AP y0‖H + ‖y0‖H ≤M}, relation (3.63) yields

TP (t)M =
{
eAty0; y0 ∈ M

}

−

{
eAε

∫ t−ε

0

eA(t−s−ε)(B2B
∗
2Py(s)− γ−2B1B

∗
1Py(s))ds; y0 ∈ M

}

−

{∫ t

t−ε

eA(t−s)(B2B
∗
2Py(s)− γ−2B1B

∗
1Py(s))ds; y0 ∈ M

}
= M1 +M2 +M3.

In the sum above, M1 is relatively compact because eAt is compact by (i1). Next, we write M2 = M21 +M22

where M2i =
{
eAε

∫ t−ε

0
eA(t−s−ε)BiB

∗
i Py(s)ds; y0 ∈ M

}
, i = 1, 2. M21 is relatively compact because eAε is

compact and
∫ t−ε

0 eA(t−s−ε)B1B
∗
1Py(s)ds is bounded,

∥∥∥∥
∫ t−ε

0

eA(t−s−ε)B1B
∗
1Py(s)ds

∥∥∥∥
H

≤ C

∫ t

0

‖B1B
∗
1Py(s)‖U ds

≤ C

∫ t

0

‖B∗
1Py(s)‖H ds ≤ Ct ‖y0‖H .

Then,
∥∥∥∥
∫ t−ε

0

eA(t−s−ε)B2B
∗
2Py(s)ds

∥∥∥∥
H

= sup
ϕ∈H,‖ϕ‖H≤1

(∫ t−ε

0

eA(t−s−ε)B2B
∗
2Py(s)ds, ϕ

)

H

≤ sup
‖ϕ‖H≤1

∫ t−ε

0

(
B∗

2Py(s), B
∗
2e

A∗(t−s−ε)ϕ
)
U
ds ≤ sup

‖ϕ‖H≤1

∫ t−ε

0

‖B∗
2Py(s)‖U

∥∥∥B∗
2e

A∗(t−s−ε)ϕ
∥∥∥
U
ds

≤ sup
‖ϕ‖H≤1

∫ t−ε

0

‖Py(s)‖D(A∗)

∥∥∥B∗
2e

A∗(t−s−ε)
∥∥∥
L(H,U)

‖ϕ‖H ds

≤

∫ t−ε

0

‖y(s)‖D(AP )

∥∥∥B∗
2e

A∗(t−s−ε)
∥∥∥
L(H,U)

ds

≤

∫ t−ε

0

‖AP y(s)‖H

∥∥∥B∗
2e

A∗(t−s−ε)
∥∥∥
L(H,U)

ds ≤ C ‖AP y0‖H

∫ t−ε

0

∥∥∥B∗
2e

A∗(t−s−ε)
∥∥∥
L(H,U)

ds ≤ CT ,

hence M22 is relatively compact, too. We also have
∥∥∥∥
∫ t

t−ε

eA(t−s)B1B
∗
1Py(s)ds

∥∥∥∥
H

≤ C

∫ t

t−ε

‖B2B
∗
2Py(s)‖H ds ≤ Cε

and similarly we estimate that the term corresponding to B2B
∗
2P is bounded by Cε. Since ε is arbitrary it follows

that TP (t)M is compact and, as mentioned earlier, it follows by density that the set {TP (t)y0; ‖y0‖H ≤M} is
compact for each M and t > 0, fixed. Now, coming back to zn we write

zn(t) = γ−2B∗
1PS(ε)

(∫ t−ε

0

S(t− s− ε)B1wn(s)ds

)
+ γ−2B∗

1P

∫ t

t−ε

S(t− s)B1wn(s)ds
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and get

∥∥∥∥
∫ t−ε

0

S(t− s− ε)B1wn(s)ds

∥∥∥∥
H

≤ C

∥∥∥∥
∫ t−ε

0

e−β(t−s−ε)B1w(s)ds

∥∥∥∥
H

≤ C

∫ t−ε

0

‖B1wn(s)‖H ds ≤ C ‖w‖L2(R+;W ) ≤ C, ∀t ≥ 0,

hence,
{
S(ε)

(∫ t−ε

0 S(t− s− ε)B1wn(s)ds
)}

is compact in H.

Taking into account that
∥∥∥
∫ t

t−ε S(t− s)B1w(s)ds
∥∥∥
H

≤ Cε, it follows that (zn(t))n is compact in H, for every

t > 0. Also, it is equi-uniformly continuous, that is ‖zn(t+ h)− zn(t)‖H ≤ ε if |h| ≤ δ(ε), for any t. The latter
follows because the semigroup S(t) is continuous for t > 0 in the uniform operator topology (see [24], p. 48,
Theorem 3.2), and this means that ‖(S(t+ h)− S(t))θ‖H ≤ δ1(h) ‖θ‖H , where δ1(h) → 0, and θ ∈ H. Then,

‖zn(t+ h)− zn(t)‖H ≤ C1

∫ t+h

t

‖S(t+ h− s)B1Pwn(s)‖H ds

+C2

∫ t

0

‖(S(t+ h− s)− S(t− s))B1Pwn(s)‖H ds

≤ C1

∫ t+h

t

e−β(t+h−s) ‖wn(s)‖H ds+ C2δ2(h),

where δ2(h) → 0 as h→ 0. Then, by Ascoli-Arzelà’s theorem, (zn)n is compact in C([0, T ];H), for every T > 0
and so zn → z strongly in L2(0, T ;H), for every T > 0. Recalling (3.61) we note that

‖zn − z‖
2
L2(R+;H) =

∫ T

0

‖zn(t)− z(t)‖
2
H dt+

∫ ∞

T

‖zn(t)− z(t)‖
2
H dt→ 0, as n→ ∞

because the first term tends to 0 by the compactness argument developed before and
∫ ∞

T

‖zn(t)− z(t)‖
2
H dt ≤ 2

∫ ∞

T

‖zn(t)‖
2
H dt+

∫ ∞

T

‖z(t)‖
2
H dt→ 0

by (3.61) and the fact that A−B2B
∗
2P generates an exponentially stable semigroup.

Going back to (3.60), it follows that ‖(wn − zn)(t)‖W → 0, a.e. t > 0, and so (wn)n is compact, as claimed.
This ends the proof of Lemma 3.5 and also of Theorem 3.1.

Remark 3.7 Theorem 3.1 reduces the existence of a robust feedback controller F satisfying (3.7) to the existence
of a solution P to (3.9) in the same way as for B1 = B2 = D1 = 0, C1 = I, the Lyapunov equation A∗P+PA = I
is related to the stability of the semigroup eAt. In the specific examples discussed in the next sections we shall
show that the operatorial equation (3.9) reduces to a nonlinear integro-differential elliptic equation.

4 The case of a N-D distributed control

Let Ω be an open bounded subset of RN , N > 3 with the boundary Γ = ∂Ω sufficiently smooth and assume
that 0 ∈ Ω. We consider the following singular system

yt −∆y −
λy

|x|2
− a(x)y = B1w +B2u, in (0,∞)× Ω, (4.1)

y = 0, on (0,∞)× Γ, (4.2)

y(0) = y0, in Ω, (4.3)

z = C1y +D1u, in (0,∞)× Ω, (4.4)

where λ > 0, |·| denotes the Euclidian norm in RN , for any N = 1, 2, ..., according the case and a has the
expression

a(x) = a0χΩ0
(x), a0 > 0, Ω0 ⊂ Ω. (4.5)
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In this problem
y0 ∈ L2(Ω) (4.6)

and we choose
H =W = Z = L2(Ω), U = R, (4.7)

B1w = χω1
(x)w, B2u = b(x)u, (4.8)

C1y = χΩC (x)y, D1u = d(x)u, x ∈ Ω, u ∈ R,

where Ω0, ΩC , ω1 are open sets of Ω, χω is characteristic functions of the set ω ⊂ Ω,

ω1 ⊑ Ω, Ω0 ⊑ ΩC ⊂ Ω, (4.9)

and
b ∈ L2(Ω), d ∈ L2(Ω), d(x) = χΩ\ΩC .. (4.10)

We begin by checking the hypotheses (i1)− (i4).

(i1) By their expressions we see that

B1, C1 ∈ L(L2(Ω), L2(Ω)), B2, D1 ∈ L(R, L2(Ω))

and B∗
2 : L2(Ω) → R is defined by

B∗
2v =

∫

Ω

b(x)v(x)dx, for v ∈ L2(Ω). (4.11)

We recall the Hardy inequality (2.16) and consider λ < HN . We introduce the self-adjoint operator

A : D(A) ⊂ L2(Ω) → L2(Ω), Ay = ∆y +
λy

|x|2
+ ay, (4.12)

with
D(A) = {y ∈ H1

0 (Ω); Ay ∈ L2(Ω)}. (4.13)

It is clear that D(A) = L2(Ω) because D(A) contains C∞
0 (Ω\{0}). Then, equation (4.1) can be equivalently

written
y′(t) = Ay(t) +B1w(t) +B2u(t), t ≥ 0. (4.14)

In order to show that A generates a C0-semigroup on L2(Ω), we have to prove that A is ω-m-dissipative on
L2(Ω), or that −A is ω-m-accretive on L2(Ω) (see [7], p. 155).

Lemma 4.1 Let λ < HN . The operator −A is ω-m-accretive on L2(Ω), for ω > a0.

Proof. This means to show that −A is ω-accretive, that is ((ωI−A)y, y)2 ≥ 0 for some ω > 0 and all y ∈ L2(Ω)
and that ωI −A is surjective. To this end we shall use several times the Hardy inequality (2.16) which ensures
that y

x ∈ L2(Ω) if y ∈ H1
0 (Ω). We have

((ωI −A)y, y)2 = ω

∫

Ω

|y|
2
dx+

∫

Ω

|∇y|
2
dx− λ

∫

Ω

|y|
2

|x|
2 dx− a0

∫

Ω0

|y|
2
dx

≥

(
1−

λ

HN

)∫

Ω

|∇y|2 dx+ (ω − a0)

∫

Ω

|y|2 dx

≥
1

2

(
1−

λ

HN

)
‖∇y‖

2
2 +

HN

2

(
1−

λ

HN

)∥∥∥y
x

∥∥∥
2

2
+ (ω − a0) ‖y‖

2
2

which shows that −A is ω-accretive on L2(Ω) for λ < HN and ω > a0.
To prove the surjectivity of ωI − A, we show that the range R(ωI − A) = L2(Ω). Thus, let f ∈ L2(Ω) and

prove that the equation
ωy −Ay = f (4.15)
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has a solution y ∈ D(A), by the equivalent variational formulation expressed by the minimization problem

min
y∈H1

0
(Ω)

{
J(y) =

∫

Ω

(
1

2
|∇y|

2
−
λ

2

y2

|x|
2 −

ω − a(x)

2
y2 − fy

)
dx

}
, (4.16)

subject to (4.14) and y(0) = y0 ∈ L2(Ω). For ω > a0 we have

1

2

(
1−

λ

HN

)∫

Ω

|∇y|
2
dx+ (ω − a0)

∫

Ω

y2dx−
1

2(ω − a0)

∫

Ω

|f |
2
dx ≤ J(ϕ) <∞

so that J has an infimum d. Taking a minimizing sequence (yn)n we have

d ≤ J(yn) ≤ d+
1

n
(4.17)

and so
‖∇yn‖2 + ‖yn‖2 +

∥∥∥yn
x

∥∥∥
2
≤ CN for ω > a0.

Further, C, CN , CT denote some constants (which may change from line to line), CN depending on N, via
λ < HN and CT depending on T.

We deduce that on a subsequence denoted still by n it follows that

yn → y weakly in H1
0 (Ω),

yn
x

→ l weakly in L2(Ω)

and by compactness yn → y strongly in L2(Ω). Then yn

x → y
x a.e. on Ω and l = y

x by the Vitali’s theorem. We
can now pass to the limit in (4.17), relying on the weakly lower semicontinuity of J and get that J(y) = d, that
is y realizes the minimum in (4.16).

Next, we give a variation yσ = y+ση, for σ > 0 and η ∈ H1
0 (Ω), and particularize the condition of optimality,

namely J(ỹ) ≥ J(y) for any ỹ ∈ H1
0 (Ω) for ỹ = yσ. We calculate

lim
σ→0

J(yσ)− J(y)

σ
=

∫

Ω

(
(ω − a(x))yη +∇y · ∇η −

λyη

|x|2
− fη

)
dx ≥ 0.

Repeating the calculus for σ → −σ we get the reverse inequality, so that finally we can write

∫

Ω

〈
(ω − a(x))y −∆y −

λy

|x|
2 − f, η

〉

H−1(Ω),H1
0
(Ω)

dx = 0 for all η ∈ H1
0 (Ω),

which implies that y is the weak solution to the equation (4.15). The solution is also unique because J is strictly
convex and the system is linear. By (4.15) we see that Ay ∈ L2(Ω), so that y ∈ D(A).

In conclusion, A generates an analytic C0-semigroup on L2(Ω) for λ < HN .
Moreover, since as earlier seen, the operator (ωI − A)−1 is a compact operator for ω > a0, it follows that

eAt is compact for all t > 0.

(i2) Let y0 ∈ L2(Ω), u ∈ L2(R+,R), w ∈ L2(R+;L
2(Ω)). Since B1w + B2u ∈ L2(0, T ;L2(Ω)) and y0 ∈

D(A) = L2(Ω), eq. (4.14) with y(0) = y0 has a unique mild solution y ∈ C([0, T ], L2(Ω)), given by (3.3) for any
T > 0 (see [7], p. 131, Corollary 4.1). The solution also satisfies y ∈ L2(0, T ;H1

0(Ω)) ∪W
1,2(0, T ;H−1(Ω)).

In order to prove (i3) we provide the following lemma.

Lemma 4.2 Let λ < HN . Then, the pair (A,C1) is exponentially detectable.

Proof. Let K ≡ −kI, with k ≥ a0 and set A1 = A+KC1. This is still ω-m-accretive, so that A1 generates a
C0-semigroup on L2(Ω), S1(t) = eA1t. Hence y(t) = eA1ty0 satisfies

dy

dt
(t) = A1y(t), t ≥ 0, y(0) = y0. (4.18)
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Recalling the expression of C1, multiplying (4.18) by y(t) and applying again (2.16) we get

1

2

d

dt
‖y(t)‖

2
2 +

(
1−

λ

HN

)
‖∇y(t)‖

2
2 + k

∫

ΩC

|y(t)|
2
ds ≤ a0

∫

Ω0

|y(t)|
2
dx. (4.19)

We take into account that Ω0 ⊑ ΩC and k ≥ a0, and integrate from 0 to t. We obtain

1

2
‖y(t)‖

2
2 +

(
1−

λ

HN

)∫ t

0

‖∇y(s)‖
2
2 ds+ (k − a0)

∫

Ω0

|y(t)|
2
ds ≤

1

2
‖y0‖

2
2 , ∀t > 0.

From here and the Poincaré inequality it follows that

∫ t

0

‖y(s)‖
2
2 ds ≤ CN ‖y0‖

2
2 , for all t > 0, (4.20)

with CN a constant depending on HN . Letting t→ ∞ in (4.20) we finally get that

∫ ∞

0

‖y(s)‖
2
2 ds ≤ CN ‖y0‖

2
2 . (4.21)

This means by Datko’s result, previously recalled, that eA+KC1 generates an exponentially stable semigroup,
that is there exists α > 0 such that

∥∥∥e(A+KC1)ty
∥∥∥
2
≤ Ce−αty2 for all y ∈ L2(Ω).

Then,

∫ ∞

0

∥∥∥B∗
2e

(A∗+C∗

1K
∗)ty

∥∥∥
U
dt ≤ C

∫ ∞

0

∥∥∥e(A∗+C∗

1K
∗)ty

∥∥∥
2
dt

≤ C ‖y‖2

∫ ∞

0

e−αtdt = C ‖y‖2 , ∀y ∈ L2(Ω),

that is (3.2) is verified.
(i4) By (4.10) we have

‖D1u‖
2
2 = u2 ‖d‖L2(Ω\ΩC) = u2

and

D∗
1C1y =

∫

Ω

d(x)χΩC (x)y(x)dx = 0.

The hypotheses being checked, we can formulate the H∞-control problem for system (4.1)-(4.4) as in Theorem
3.1.

In order to explicit Theorem 3.1 and to give a differential formulation for it, as announced in Remark 3.7,
we recall that the linear continuous operator P ∈ L(L2(Ω), L2(Ω)) can be represented by the L. Schwartz kernel
theorem (see e.g., [20], p. 166) as an integral operator with a kernel P0 ∈ L2(Ω× Ω), namely

Pϕ(x) =

∫

Ω

P0(x, ξ)ϕ(ξ)dξ, for all ϕ ∈ C∞
0 (Ω). (4.22)

By (4.8) and (4.11) we have

B1B
∗
1ϕ(x) = χω1

(x)ϕ(x), C1C
∗
1ϕ(x) = χΩC (x)ϕ(x),

B1B
∗
1Pϕ(x) = χω1

(x)

∫

Ω

P0(x, ξ)ϕ(ξ)dξ,

PB1B
∗
1Pϕ(x) =

∫

Ω

∫

Ω

χω1
(ξ)P0(x, ξ)P0(ξ, ξ)ϕ(ξ)dξdξ (4.23)
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B2B
∗
2ϕ(x) = b(x)

∫

Ω

b(x)ϕ(x)dx, x ∈ Ω,

B2B
∗
2Pϕ(x) = b(x)

∫

Ω

∫

Ω

b(x)P0(x, ξ)ϕ(ξ)dxdξ, x ∈ Ω,

PB2B
∗
2Pϕ(x) =

∫

Ω

∫

Ω

∫

Ω

P0(x, ξ)P0(x, ξ)b(ξ)b(x)ϕ(ξ)dxdξdξ. (4.24)

Moreover, by a straightforward calculation we obtain

A∗Pϕ(x) =

∫

Ω

(
∆xP0(x, ξ) +

λP0(x, ξ)

|x|2
+ a(x)P0(x, ξ)

)
ϕ(ξ)dξ, (4.25)

PAϕ(x) =

∫

Ω

ϕ(ξ)

(
∆ξP0(x, ξ) +

λP0(x, ξ)

|ξ|2
+ a(ξ)P0(x, ξ)

)
dξ, (4.26)

and by denoting E := B2B
∗
2 − γ−2B1B

∗
1 , we have

PEPϕ(x) =

∫

Ω

ϕ(ξ)dξ

∫

Ω

∫

Ω

P0(x, ξ)P0(x, ξ)b(ξ)b(x)dxdξ

−γ−2

∫

Ω

ϕ(ξ)dξ

∫

Ω

χω1
(ξ)P0(x, ξ)P0(ξ, ξ)dξ.

For x ∈ Ω we define the distribution µx ∈ D′(Ω) by

µx(ϕ) = χΩC (x)ϕ(x) =

∫

Ω

δ(x− ξ)χΩC (ξ)ϕ(ξ)dξ, ∀ϕ ∈ C∞
0 (Ω),

where δ is the Dirac distribution. Then, by replacing all these in (3.9), we deduce the equation

∆xP0(x, ξ) + ∆ξP0(x, ξ) + λP0(x, ξ)

(
1

|x|2
+

1

|ξ|2

)
+ (a(x) + a(ξ))P0(x, ξ)

−

∫

Ω

∫

Ω

P0(x, ξ)P0(x, ξ)b(ξ)b(x)dxdξ + γ−2

∫

Ω

χω1
(ξ)P0(x, ξ)P0(ξ, ξ)dξ (4.27)

= −δ(x− ξ)χΩC (ξ), in D′(Ω× Ω).

This equation is accompanied by the conditions

P0(x, ξ) = 0, ∀(x, ξ) ∈ Γ× Γ, (4.28)

P0(x, ξ) = P (ξ, x), ∀(x, ξ) ∈ Ω× Ω, (4.29)

P0(x, ξ) ≥ 0, ∀(x, ξ) ∈ Ω× Ω (4.30)

and so we can enounce the following

Theorem 4.3 Let γ > 0 and let A, B1, B2, C1 and D1 be given by (4.12) and (4.8), respectively. Then there

exists F̃ ∈ L(L2(Ω),R) which solves the H∞-control problem for system (4.1)-(4.4) if and only if there exists a
solution P0 ∈ D(A) ×D(A) to (4.27)-(4.28), satisfying (4.29)-(4.30). Moreover, in this case

F̃ y = −

∫

Ω

∫

Ω

b(x)P0(x, ξ)y(ξ)dξdx, ∀y ∈ L2(Ω), (4.31)

is a feedback controller which solves the H∞-problem for system (4.1)-(4.4).

In this case it is easily seen that ΛP = A−B2B
∗
2P + γ−2B1B

∗
1P has the domain D(ΛP ) = D(A), and since

ΛP is closed it follows that X = D(A). Moreover, by (4.31) we see that F̃ ∈ L(L2(Ω),R).
A direct approach of problem (4.27)-(4.30) is an interesting problem by itself but is beyond the objective of

this work.
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5 Dirichlet boundary control

As in the previous section let Ω be an open bounded subset of RN , N > 3 with the boundary Γ = ∂Ω sufficiently
smooth and such that 0 ∈ Ω. Consider the following system

yt −∆y −
λy

|x|2
− a(x)y = B1w, in (0,∞)× Ω, (5.32)

y = ũ, on (0,∞)× Γ, (5.33)

y(0) = y0, in Ω, (5.34)

z = C1y +D1u, in (0,∞)× Ω, (5.35)

where y0 ∈ L2(Ω), a is again given by (4.5) and

ũ(t, x) =

m∑

j=1

αj(x)uj(t), uj(t) ∈ R a.e. t ∈ (0,∞), j = 1, ...,m, (5.36)

α = (α1, ..., αm) ∈
(
L2(Γ)

)m
, αj ≥ 0 a.e. x ∈ Γ.

We assume in addition that
D0αj

x
∈ L2(Ω), j = 1, ...,m. (5.37)

The expression (5.36) allows the possibility to consider combinations of conditions on subsets of the boundary
for the controls uj(t) ∈ R. The hypothesis (5.37) will be justified later.

(i1) For this problem we choose

H =W = Z = L2(Ω), U = R
m, (5.38)

B1w = χω1
(x)w, C1y = χΩC (x)y, D1u =

m∑

j=1

dj(x)uj , x ∈ Ω, (5.39)

u = (u1, ..., um), with the conditions ω1 ⊑ Ω, Ω0 ⊑ ΩC , and

dj ∈ L2(Ω), dj(x) = 0 on ΩC ,

∫

Ω\ΩC

djdkdx = δjk. (5.40)

Thus, B1 ∈ L(L2(Ω), L2(Ω)), C1 ∈ L(L2(Ω), L2(Ω)) and D1 : U → L2(Ω). The operator B2 will be further
defined. The operator A is the same as before, that is

A : D(A) ⊂ L2(Ω) → L2(Ω), Ay = ∆y +
λy

|x|2
+ a(x)y, (5.41)

D(A) =
{
y ∈ H1

0 (Ω); Ay ∈ L2(Ω)
}
. (5.42)

By Lemma 4.1, for λ < HN and ω > a0, it follows that −A is ω-m-accretive on L2(Ω) and self-adjoint, so
that A generates a C0 compact semigroup eAt on L2(Ω). Moreover, as we shall see later, if y ∈ D(A) then
y ∈ H2(Ω\{0}).

In order to write equation (5.32) in the operatorial form, we need some preliminaries. Let us consider the
problem

∆θ = 0 in Ω, θ = v on Γ, for t > 0. (5.43)

The boundary condition is meant in the sense of the trace of θ on Γ, generally denoted by tr(θ). But, if any
confusion is avoided we shall no longer indicate the trace by the symbol tr . The unique solution to this problem
is the well-known Dirichlet map, v → θ, here denoted by D0v. If v ∈ L2(Γ), then D0 : L2(Γ) → H1/2(Ω) and it
satisfies ‖D0v‖H1/2(Ω) ≤ C ‖v‖L2(Γ) (see e.g. [19]).

In our case, v = ũ ∈ L2(R+;L
2(Γ)) and so D0ũ(t) ∈ H1/2(Ω) and

‖D0ũ(t)‖H1/2(Ω) ≤ C ‖ũ(t)‖L2(Γ) , a.e. t > 0.
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Moreover, since ũ is given by (5.36) and D0 is linear we have

D0ũ(t) =

m∑

j=1

uj(t)D0αj , t > 0. (5.44)

Let us introduce the operator

A0 : D(A0) = D(A) ⊂ L2(Ω) → L2(Ω), A0y = ∆y +
λy

|x|2
. (5.45)

This operator is m-dissipative on L2(Ω) by a similar proof as in Lemma 4.1. Let us determine the Dirichlet
mapping v → Dv corresponding to A0, that is

∆Dv +
λDv

|x|2
= 0 in Ω, Dv = v on Γ. (5.46)

Lemma 5.1 For λ < HN , Dv associated to A0 exists and it is unique for v ∈ L2(Γ) satisfying D0v
x ∈ L2(Ω).

Moreover, one has

Dv ∈ H1/2(Ω) and ‖Dv‖H1/2(Ω) ≤ C

(
‖v‖L2(Γ) +

∥∥∥∥
D0v

x

∥∥∥∥
L2(Ω)

)
. (5.47)

Proof. Let t be fixed and denote ϕ = Dv −D0v and consider the equation

∆ϕ+
λϕ

|x|
2 = −

λD0v

|x|
2 in Ω, ϕ = 0 on Γ. (5.48)

We assert that problem (5.48) has a unique solution in D(A) and prove it via a variational technique, by showing
that the solution to (5.48) is given by the minimization of the functional Ψ(ϕ),

min
ϕ∈H1

0
(Ω)

{
Ψ(ϕ) =

∫

Ω

(
1

2
|∇ϕ|

2
−

1

2

λϕ2

|x|
2 −

λϕD0v

|x|
2

)
dx

}
. (5.49)

It is easily seen that (
1

2
−

λ

HN

)∫

Ω

|∇ϕ|
2
dx− λ

∫

Ω

∣∣∣∣
D0v

x

∣∣∣∣
2

dx ≤ Ψ(ϕ) <∞,

so that Ψ has an infimum d. We note here the necessity of the assumption D0v
x ∈ L2(Ω). Next, we proceed as

in Lemma 4.1 and show that ϕ ∈ H1
0 (Ω) is the unique weak solution to the equation (5.48). By (5.48) we note

that by multiplying by ϕ we get

‖∇ϕ‖22 +
λ

2

∥∥∥ϕ
x

∥∥∥
2

2
≤
λ

2

∥∥∥∥
D0v

x

∥∥∥∥
2

2

.

Then, it follows that Dv = ϕ+D0v which is the Dirichlet map for (5.46), has the properties Dv ∈ H1/2(Ω),
Dv
x = ϕ

x + D0v
x ∈ L2(Ω) and ‖Dv‖H1/2(Ω) ≤ ‖ϕ+D0v‖H1/2(Ω) ≤ C

(
‖ϕ‖H1

0
(Ω) + ‖D0v‖H1/2(Ω)

)
, implying

(5.47).
Lemma 5.1 implies that the operator D : L2(Γ) → L2(Ω) with the domain

{
v ∈ L2(Γ); D0v

x ∈ L2(Ω)
}
is closed

and densely defined. We denote by D∗ : L2(Ω) → L2(Γ) its adjoint.
Now, we can write the operatorial form of the system. Let u = (u1, ..., um) and assume for the beginning

that
u ∈ W 1,2(0, T ;Rm), w ∈W 1,2(0, T ;L2(Ω)), T ≥ 0

and note that Dũ(t) is well defined due to (5.37), Dũ(t) ∈ H1/2(Ω) and

‖Dũ(t)‖H1/2(Ω) ≤ C
m∑

j=1

|uj(t)|

(
‖αj‖L2(Γ) +

∥∥∥∥
D0αj

x

∥∥∥∥
L2(Ω)

)
, a.e. t > 0.
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We and write the difference system (5.32) and (5.46),

(y −Dũ)t −∆(y −Dũ)−
λ(y −Dũ)

|x|2
− a(x)(y −Dũ)

= B1w − (Dũ)t + a(x)Dũ, in (0,∞)× Ω,

y −Dũ = 0, on (0,∞)× Γ, (y −Dũ)(0) = y0 − θ̃0 in Ω,

where θ̃0 = Dũ(0). The solution to the previous system reads

(y −Dũ)(t) = eAt(y0 − θ̃0) +

∫ t

0

eA(t−s)(B1w + aDũ)(s)ds −

∫ t

0

eA(t−s)(Dũ)t(s)ds.

Integrating by parts the last right-hand side term we obtain

y(t)−Dũ(t) = eAty0 − eAtθ̃0 +

∫ t

0

eA(t−s)(B1w + a(x)Dũ)(s)ds

−Dũ(t) + eAtθ̃0 −

∫ t

0

eA(t−s)ADũ(s)dx

which yields

y(t) = eAty0 −

∫ t

0

eA(t−s)ADũ(s)dx +

∫ t

0

eA(t−s)(B1w + a(x)Dũ)(s)ds.

The formula is preserved by density if u ∈ L2(0, T ;Rm) and w ∈ L2(0, T ;L2(Ω)) and this represents the solution
to the equation

y′(t) = Ay(t) +B1w(t)−ADũ(t) + a(x)Dũ(t), y(0) = y0. (5.50)

Since Dũ(t) is not in D(A) one must interpret ADũ(t) by using the extension Ã of A to the whole space L2(Ω)
by

Ã : L2(Ω) → (D(A))′,
〈
Ãy, ψ

〉
(D(A))′,D(A)

= (y,Aψ), ∀ψ ∈ D(A), (5.51)

see (2.5). Now, we can define B2 : U → (D(A))′,

B2u = −Ã




m∑

j=1

ujDαj


+ a(x)

m∑

j=1

ujDαj = −

m∑

j=1

ujA0Dαj , (5.52)

where u = (u1, ..., um) ∈ U = Rm. Expression (5.52) is well defined since Dαj ∈ H1/2(Ω) ⊂ L2(Ω) and
a ∈ L∞(Ω). Eventually, we can express equations (5.32)-(5.33) as

y′(t) = Ay(t) +B1w(t) +B2ũ(t), t ≥ 0, (5.53)

y(0) = y0

with Ã defined in (5.51), B2 defined in (5.52) and ũ defined in (5.36).

(i2) For verifying (3.1) we need to calculate B∗
2 and D∗. We denote by ∂v

∂ν the normal derivative of v on the
boundary Γ. We give the following lemma.

Lemma 5.2 The operator B∗
2 : D(A) → Rm is given by

(B∗
2v)j = −

(
αj ,

∂v

∂ν

)

L2(Γ)

, for v ∈ D(A), j = 1, ...,m, (5.54)

where ∂v
∂ν ∈ L2(Γ).

The operator D∗ : L2(Ω) → L2(Γ), is defined by

D∗p =
∂

∂ν
(A−1

0 p) on Γ, for p ∈ L2(Ω). (5.55)
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Proof. We use the definition of B2 and for v ∈ D(A) we calculate

〈B2u, v〉(D(A))′,D(A) =

〈
−Ã




m∑

j=1

ujDαj


+ a

m∑

j=1

ujDαj , v

〉

(D(A))′,D(A)

(5.56)

= −
m∑

j=1

(ujDαj , Av)L2(Ω) +
m∑

j=1

(ujDαj , av)L2(Ω) =
m∑

j=1

uj (Dαj ,−Av + av)L2(Ω)

= u · (Dα,−Av + av)L2(Ω) = u · (Dα,−A0v)L2(Ω),

where (Dα,A0v)L2(Ω) denotes the vector with the components (Dαj ,−A0v)L2(Ω) for v ∈ D(A). Here we took
into account that −Av + av = −A0v with A0 defined in (5.45). Hence, we can define the components of
B∗

2 : D(A) → U∗ = U = Rm by

(B∗
2v)j = (Dαj ,−A0v)L2(Ω) , v ∈ D(A), j = 1, ...,m. (5.57)

For the computation of (Dαj ,−A0v)L2(Ω) let us consider the generic systems

∆Dβ +
λDβ

|x|
2 = 0, Dβ = β on Γ, β ∈ L2 (Γ) , (5.58)

−∆v −
λv

|x|2
= p, v = 0 on Γ, p ∈ L2(Ω). (5.59)

The second system has a unique solution v ∈ H1
0 (Ω). In order to make a rigorous calculus we assume first that

β ∈ H1 (Γ) and −A0 is replaced by for ε > 0 by

−A0,ε = −∆−
λ

|x|
2
+ ε

, D(A0,ε) = H2(Ω) ∩H1
0 (Ω). (5.60)

Thus, the equation −A0,εv = p has a unique solution vε ∈ H2(Ω)∩H1
0 (Ω) and all operations below make sense.

We multiply the approximating equation for Dβ by the solution vε. By applying the Green’s formula we obtain

∫

Ω

(
Dβ∆vε +

λvεDαj

|x|
2
+ ε

)
dx+

∫

Γ

(
vε
∂Dβ

∂ν
−Dβ

∂vε
∂ν

)
dx = 0

which implies, by using (5.59) and the boundary condition for Dαj , that

−

∫

Ω

pDβdx =

∫

Γ

β
∂vε
∂ν

dσ, ∀β ∈ L2(Γ).

Therefore, we have for each p ∈ L2(Ω)

(Dβ, p)L2(Ω) =

(
β,

∂

∂ν
(A−1

0,εp)

)

L2(Γ)

∀β ∈ H1 (Γ) ,

which can be written also as

(Dβ,−A0,εvε)L2(Ω) = −

(
β,
∂vε
∂ν

)

L2(Γ)

for β ∈ H1 (Γ) , vε ∈ D(A0,ε).

These remain true at limit as ε→ 0, hence

(Dβ, p)L2(Ω) =

(
β,

∂

∂ν
(A−1

0 p)

)

L2(Γ)

for β ∈ H1 (Γ) , p ∈ L2(Ω), (5.61)

(Dβ,−A0v)L2(Ω) = −

(
β,
∂v

∂ν

)

L2(Γ)

for β ∈ H1 (Γ) , v ∈ D(A0) = D(A) (5.62)
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and the latter makes sense since ∂v
∂ν ∈ H−1/2(Γ). We note that both A0,ε and A0 are surjective, because they

are m-accretive and coercive. Then, by (5.61) we can define D∗ : L2(Ω) → L2(Γ), by (5.55).
Going back to (5.57) and using (5.62) in which we set β := αj it turns out that we can define B∗

2 : D(A) → U
by

(B∗
2v)j = (Dαj ,−A0v)L2(Γ) = −

(
αj ,

∂v

∂ν

)

L2(Γ)

, for v ∈ D(A). (5.63)

It remains to show that ∂v
∂ν belongs to L2(Γ) if v ∈ D(A). Indeed, there exists (vε)ε ⊂ H2(Ω) ∩D(A) such that

vε → v strongly in D(A), ∂vε
∂ν → ∂v

∂ν strongly in H−1/2(Γ) as ε→ 0 and

(B∗
2vε)j = −

(
αj ,

∂vε
∂ν

)

L2(Γ)

. (5.64)

We recall that 0 ∈ Ω. We consider ϕ ∈ C4(Ω) defined by

ϕ(x) =

{
0, if x ∈ Ωδ

1, if x ∈ Ω\Ω2δ

where δ > 0 is such that Ωδ = {x ∈ Ω; ‖x‖ < δ} and 0 ∈ Ωδ. The function ϕvε ∈ H2(Ω\Ω2δ). Indeed, since
vε ∈ H2(Ω) it follows that there exists f ∈ L2(Ω) such that f = Avε and so ∆vε = f − λvε

|x|2
∈ L2(Ω\Ω2δ). We

have
∆(ϕvε) = ϕ∆vε + 2∇ϕ · ∇vε + vε∆ϕ ∈ L2(Ω).

This together with the boundary condition ϕvε = 0 on Γ implies that ϕvε ∈ H2(Ω\Ω2δ) and so vε ∈ H2(Ω\Ω2δ),
too, because ϕ = 1 on Ω\Ω2δ. Consequently,

∂vε
∂ν ∈ H1/2(Γ) ⊂ L2(Γ). This is preserved by density nearby the

boundary. Finally, (5.63) remains true by density for αj ∈ L2(Γ) and so this implies (5.54).

Now, we pass to the proof of (i2). Such a result is proved for the Laplace operator in [8], p. 320, Proposition
4.39, but here we give a complete different proof under our hypotheses.

To this end, we recall that Ay = A0y + ay with A0 defined in (5.45) and consider the problem

dy

dt
(t) +B0y(t)− ay = 0, in (0, T )× Ω, y(0) = y0 ∈ L2(Ω) (5.65)

where

B0 = −A0, B0 = −∆−
λ

|x|
2 , B0 : D(B0) = D(A0) → L2(Ω). (5.66)

The operator B0 is m-accretive, B0 = B∗
0 and B0 − aI is ω-m-accretive. The unique solution to problem (5.65)

has also the property y(t) ∈ D(A) = D(A0) a.e. t ∈ (0, T ) by the regularizing effect (see [7], p. 158 Theorem
4.11).

First, we determine two estimates. We multiply equation (5.65) first by y(t) and integrate over (0, t). We
obtain, using Gronwall’s lemma

‖y(t)‖22 +

∫ t

0

(B0y(s), y(s))2ds = CT ‖y0‖
2
2 , ∀t ∈ [0, T ]. (5.67)

Then, we multiply (5.65) by tB0y(t) which yields

1

2

d

dt
(tB0y(t), y(t))2 + t ‖B0y(t)‖

2
2 =

1

2
(B0y(t), y(t))2 + (ay(t), B0y(t))2. (5.68)

We integrate this and by (5.67) we get

t(B0y(t), y(t))2 +

∫ t

0

s ‖B0y(s)‖
2
2 ds ≤ C

∫ t

0

(B0y(s), y(s))2ds ≤ CT ‖y0‖
2
2 . (5.69)
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To prove (i2) we have to estimate

∥∥B∗
2e

Aty0
∥∥
Rm = ‖B∗

2y(t)‖Rm =

∥∥∥∥∥∥

(
−

(
αj ,

∂y(t)

∂ν

)

L2(Γ)

)m

j=1

∥∥∥∥∥∥
Rm

(5.70)

≤

m∑

j=1

‖αj‖L2(Γ)

∥∥∥∥
∂y(t)

∂ν

∥∥∥∥
L2(Γ)

,

thus, actually we have to estimate
∥∥∥∂y(t)

∂ν

∥∥∥
L2(Γ)

for t > 0. Since we shall relate this to the fractional powers of the

operator B0, for a rigorous computation involving its fractional powers we shall rely again on the approximation,
B0,ε = −A0,ε, see (5.60). We proceed with all calculations for the approximating equation (5.65) with B0,ε

instead ofB0 and pass to the limit at the end. Thus,D(B0,ε) = H2(Ω)∩H1
0 (Ω), B0,ε : D(B0,ε) ⊂ L2(Ω) → L2(Ω)

and it is m-accretive and self-adjoint.
Therefore, we recall that the fractional powers are defined by Bs

0,ε : D(Bs
0,ε) ⊂ L2(Ω) → L2(Ω), s ≥ 0, see

[24]. Then, D(Bs
0,ε) ⊂ H2s(Ω) with equality iff 2s < 3/2, see e.g., [17]. We have the interpolation inequality

∥∥Bs
0,εw

∥∥
2
≤ C

∥∥Bs1
0,εw

∥∥λ
2

∥∥Bs2
0,εw

∥∥1−λ

2
, for s = λs1 + (1 − λ)s2, (5.71)

and the relations ∥∥Bs
0,εw

∥∥
2
≤ C

∥∥Bs1
0,εw

∥∥
2
if s < s1, (5.72)

∥∥Bs
0,εw

∥∥
Hm(Ω)

≤ C
∥∥∥Bs+m/2

0,ε w
∥∥∥
2
. (5.73)

Now, we come back to ∂y
∂ν (t) and using the trace theorem and (5.73) applied to B0,ε we write for the

approximating solution
∥∥∥∥
∂yε
∂ν

(t)

∥∥∥∥
L2(Γ)

≤ C ‖yε(t)‖H3/2(Ω) ≤ C
∥∥∥B3/4

0,ε y(t)
∥∥∥
L2(Ω)

, (5.74)

so that we must estimate
∥∥∥B3/4

0,ε y(t)
∥∥∥
H
.

Next, we use (5.71) and write
∥∥∥B3/4

0,ε yε(t)
∥∥∥
2
≤ C ‖B0,εyε(t)‖

3/4
2 ‖yε(t)‖

1/4
2 . (5.75)

Further, we calculate via Hölder’s inequality

∫ t

0

‖B0,εyε(s)‖
3/4
2 ds =

∫ t

0

sp ‖B0,εyε(s)‖
3/4
2 s−pds (5.76)

≤

(∫ t

0

s8p/3 ‖B0,εyε(t)‖
2
2 ds

)3/8 (∫ t

0

s−8p/5ds

)5/8

=

(∫ t

0

s ‖B0,εyε(s)‖
2
2 ds

)3/8(∫ t

0

s−3/5ds

)5/8

≤ C

(∫ t

0

s ‖B0,εyε(s)‖
2
2 ds

)3/8 (
t2/5

)5/8
,

where we chose p = 3
8 . This together with (5.70), (5.74), (5.75) and (5.67) implies

∫ t

0

∥∥B∗
2,εe

Asy0
∥∥
Rm ds ≤ C

∫ t

0

∥∥∥∥
∂yε
∂ν

(s)

∥∥∥∥
L2(Γ)

ds ≤ C

∫ t

0

‖B0,εyε(s)‖
3/4
L2(Ω) ds (5.77)

≤ C

∫ t

0

‖B0,εyε(s)‖
3/4
2 ‖yε(s)‖

1/4
2 ds ≤ CT ‖y0‖

1/4
2

∫ t

0

‖B0,εyε(s)‖
3/4
2 ds

≤ CT ‖y0‖
1/4
2 ‖y0‖

3/4
2

(
t2/5

)5/8
≤ CT ‖y0‖2 , ∀t ∈ [0, T ].
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Passing to the limit by recalling (5.62) we get (i2) as claimed.
This hypothesis has also an important consequence. We note that (5.53) with the initial condition y(0) =

y0 ∈ L2(Ω) has a unique solution y ∈ C([0, T ]; (D(A))′),

y(t) = eAty0 +

∫ t

0

eA(t−s)(B1w(s) +B2u(s))ds, t ∈ [0,∞). (5.78)

We are going to show first that (i2) ensures in addition that y ∈ L2(0, T ;L2(Ω)).
Actually, we shall prove the following assertion: if (3.1) takes place then the solution y to (5.53) belongs to

L2(0, T ;L2(Ω)) if u ∈ L2(0, T ;U). Since in (5.78) the sum between the first and the last term corresponding to

the contribution of w is already in C([0, T ];L2(Ω)) we focus only on the term Y (t) :=
∫ t

0 e
A(t−s)B2u(s)ds and

show as in (3.5) that ‖Y ‖L2(0,T ;L2(Ω)) ≤ C ‖u‖L2(0,T ;U) . In conclusion, equation (5.53) with the initial condition

y0 ∈ L2(Ω) has a mild solution y ∈ L2(0, T ;L2(Ω)).

(i3) The first part of hypothesis (i3), that is the detectability of the pair (A,C1) follows as in Lemma 4.2.
Now we prove (3.2). We recall that

A1y = A0y + a0χΩ0
(x)y − kχΩC (x)y

with A0 defined in (5.45) and consider the problem

dy

dt
(t) +B0y(t) = a0χΩ0

(x)y − kχΩC (x)y, in (0, T )× Ω, y(0) = y0 ∈ L2(Ω) (5.79)

where B0 = −A0 is m-accretive, B0 = B∗
0 and A1 is m-accretive. Then, problem (5.79) has a unique solution

y(t) = S1(t)y0, where S1(t) is the C0-semigroup generated by A1. The solution y ∈ L2(0, T ;H1
0 (Ω)) and

y(t) ∈ D(A) a.e. t ∈ (0, T ).
Since A1 = A+KC1 generates an exponentially stable semigroup we have

‖y(t)‖2 ≤ e−αt ‖y0‖2 , α = k − a0. (5.80)

Moreover, S1(t) is analytic and so

‖A1y(t)‖2 ≤
CT

t
‖y(t)‖2 , ∀t ∈ (0, T ). (5.81)

Since ‖B0y‖H ≤ ‖A1y‖H + C ‖y‖H it follows that

‖B0y(t)‖2 ≤
CT

t
‖y(t)‖2 , ∀t ∈ (0, T ). (5.82)

The previous calculations for proving point (i2) hold here too, and by (5.77) we have

∥∥∥B∗
2e

(A+KC1)ty0

∥∥∥
Rm

= ‖B∗
2y(t)‖Rm =

∥∥∥∥∥∥

(
−

(
αj ,

∂y(t)

∂ν

)

L2(Γ)

)m

j=1

∥∥∥∥∥∥
Rm

(5.83)

≤

m∑

j=1

‖αj‖L2(Γ)

∥∥∥∥
∂y(t)

∂ν

∥∥∥∥
L2(Γ)

≤ C ‖B0y(t)‖
3/4
2 ‖y0‖

1/4
2 e−αt/4,

where y(t) = S1(t)y0 is the solution to (5.79). Thus,

∫ T

0

∥∥∥B∗
2e

(A+KC1)ty0

∥∥∥
Rm

dt ≤ CT ‖y0‖2 , for T ≥ 0. (5.84)

On the other hand, for t > T we have

‖A1y(t)‖2 = ‖A1S1(T )S1(t− T )y(t)‖2 ≤
CT

T
‖S1(t− T )y(t)‖2 ≤

CT

T
e−α(t−T ) ‖y0‖2 .
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Then we calculate

‖B0y(t)‖
3/4
H ≤ (‖A1y(t)‖H + C ‖y(t)‖H)

3/4
≤ C ‖A1y(t)‖

3/4
H + C ‖y(t)‖

3/4
H

≤
CT

T 3/4
e−3α(t−T )/4 ‖y0‖

3/4
2 + C ‖y0‖

3/4
2 ,

hence, by (5.83)

∥∥∥B∗
2e

(A∗+KC1)ty0

∥∥∥
U

≤

(
CT

T 3/4
e−3α(t−T )/4 + 1

)
‖y0‖

3/4
2 ‖y0‖

1/4
2 e−αt/4 (5.85)

=

(
CT

T 3/4
e−3α(t−T )/4 + e−αt/4

)
‖y0‖2 , for t > T.

In particular, let T = 1 and by (5.84) and (5.85) we finally get
∫ ∞

0

∥∥∥B∗
2e

(A∗+KC1)ty0

∥∥∥
U
dt (5.86)

=

∫ 1

0

∥∥∥B∗
2e

(A∗+KC1)ty0

∥∥∥
U
dt+

∫ ∞

1

∥∥∥B∗
2e

(A∗+KC1)ty0

∥∥∥
U
dt

≤ C1 ‖y0‖2 + ‖y0‖2

∫ ∞

1

(
C1e

−3α(t−1)/4 + e−αt/4
)
dt ≤ C ‖y0‖2 ,

for all y0 ∈ L2(Ω). In conclusion, we have obtained (3.2) as claimed.

(i4) The adjoint of D1 is D∗
1 : L2(Ω) → Rm

D∗
1v =

(∫

Ω

d1(x)v(x)dx, ...,

∫

Ω

dm(x)v(x)dx

)
.

Then, by (5.40), ‖D1u‖
2
L2(Ω) =

∫
Ω

(
m∑
j=1

dj(x)

)2

dx = 1, and
∫
Ω
dj(x)χΩC (x)ydx = 0, hence D∗

1C1y(ξ) = 0.

Then, calculating the operators in (3.9) we see that formulae (4.23), (4.25)-(4.26) are the same and using
(5.63) we get

PB2B
∗
2Pϕ(x) =

∫

Ω

ϕ(ξ)




m∑

j=1

Aj(ξ)Aj(x)


 dξ

where

Aj(ξ) =

∫

Γ

αj(σ)
∂P0

∂νσ
(σ, ξ)dσ.

Proceedings with all calculations as in Section 4 we have

Theorem 5.3 Let γ > 0 and let A, B1, C1 and D1 be given by (5.41) and (5.39), respectively and B2, B
∗
2 be

given by (5.52) and (5.54). Assume that P0 ∈ D(A) ×D(A) is a solution to equation

∆xP0(x, ξ) + ∆ξP0(x, ξ) + λP0(x, ξ)

(
1

|x|2
+

1

|ξ|2

)
+ (a(x) + a(ξ))P0(x, ξ)

−

m∑

j=1

Aj(x)Aj(ξ) + γ−2

∫

Ω

χω1
(ξ)P0(x, ξ)P0(ξ, ξ)dξ (5.87)

= −δ(x− ξ)χΩC (ξ), in D′(Ω× Ω),

with conditions (4.28)-(4.30). Then, the feedback control F̃ ∈ L(L2(Ω),Rm),

(F̃ y)j =

∫

Ω

y(ξ)

(
αj ,

∂P0

∂ν
(·, ξ)

)

L2(Γ)

dξ, j = 1, ...m, ∀y ∈ L2(Ω) (5.88)

solves the H∞-problem.
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In this case, by (5.51), (5.52) and (5.57) we have

ΛP y = A0


y +

∫

Ω

y(ξ)

m∑

j=1

(∫

Γ

αj(σ)
∂P0

∂νσ
(σ, ξ)dσ

)
Dαjdξ


 + ay + χω1

∫

Ω

P0(x, ξ)y(ξ)dξ

and we see that

D(ΛP ) =



y ∈ H ; y +

∫

Ω

y(ξ)

m∑

j=1

(∫

Γ

αj(σ)
∂P0

∂νσ
(σ, ξ)dσ

)
Dαjdξ ∈ D(A)



 .

Moreover, ΛP is closed because if yn → y in H , since A0 is closed we see that ΛP yn → ΛP y in H. Then, by
Lemma 3.5 we deduce that X = D(ΛP ).

6 Dirichlet boundary control in an 1D domain with a boundary

singularity

We briefly discuss here the H∞-boundary control problem for an one-dimensional parabolic equation with the
singularity on the boundary. Namely, let Ω = (0, 1) and consider the system

yt −∆y −
λy

|x|2
− a(x)y = B1w, in (0,∞)× Ω, (6.1)

y(t, 0) = 0, y(t, 1) = u for t ≥ 0, (6.2)

y(0) = y0, in Ω, (6.3)

z = C1y +D1u, in (0,∞)× Ω, (6.4)

where y0 ∈ L2(Ω), u ∈ R.

(i1) For this problem we choose H =W = Z = L2(Ω), U = R,

B1w = χω1
(x)w, C1y = χΩC (x)y, D1u = d(x)u, x ∈ Ω, (6.5)

with the conditions ω1 ⊑ Ω, Ω0 ⊂ ΩC , and

d ∈ L2(Ω), d(x) = 0 on ΩC ,

∫

Ω\ΩC

d2(x)dx = 1. (6.6)

Thus, B1 ∈ L(L2(Ω), L2(Ω)), C1 ∈ L(L2(Ω), L2(Ω)) and D1 : U → L2(Ω).
We deal again with the operator A : D(A) ⊂ L2(Ω) → L2(Ω), Ay = ∆y + λy

|x|2 , which is ω-m-accretive

on L2(Ω) and generates a compact C0-semigroup on L2(Ω). The difference here is that in the calculus of the
accretivity of −A we use the Hardy inequality (2.17) instead of (2.16). Next, we define

B : R → R× R, Bu = (0, u) (6.7)

and consider problem ∆θ = 0, θ = Bu on Γ = {0, 1} which provides the Dirichlet map D0u, associated to ∆
and Bu, expressed in this case by

D0u = ux. (6.8)

Next, the problem

∆Du+
λDu

|x|2
= 0, Du = Bu on Γ, (6.9)

provides the Dirichlet map associated to A0 defined in (5.45). Making the difference ϕ = Du −D0u we write
the equation

∆ϕ+
λϕ

|x|
2 = −

λu

x
, ϕ = 0 on Γ.
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By a similar calculus as in Lemma 5.1, where we note that in this case while solving (5.49) we have

(
1

2
−

λ

HN

)∫

Ω

|∇ϕ|
2
dx− |u|

2
≤ Ψ(ϕ) <∞,

we deduce that Ψ has a minimum. Thus, we find that ϕ ∈ H1
0 (Ω),

ϕ
x ∈ L2(Ω) and

Du = ϕ+ ux ∈ H1(Ω),
Du

x
∈ L2(Ω). (6.10)

We define
B2 : U = R → L2(Ω), B2u = −ÃDu+ a(x)Du = −uA0D(0, 1) (6.11)

where Ã is defined as in (5.51) and D(0, 1) is the Dirichlet map corresponding to the boundary data y(t, 0) = 1,
y(t, 1) = 1. Then, B∗

2 : D(A) → R and Lemma 5.2 implies that

B∗
2v = −v′(1), v ∈ D(A), D∗p = p′(1), (6.12)

where D∗ : L2(Ω) → R. We recall that p is in H2 in the neighborhood of the boundary x = 1.
Hypotheses (i2), (i3) and (i4) are proved as in Section 5.
Finally, we calculate the term PB2B

∗
2Pϕ(x), the other terms being the same as in the previous sections,

PB2B
∗
2Pϕ(x) =

∫

Ω

∫

Ω

∂P0

∂x
(1, ξ)

∂P0

∂ξ
(x, 1)ϕ(ξ)dξ

and replacing in (3.9) we get

Theorem 6.1 Let γ > 0 and let A, B1, C1 and D1 be given by (5.41) and (6.5), respectively and B2, B
∗
2 be

given by (6.7) and (6.12). Assume that P0 ∈ D(A)×D(A) is a solution to equation

∆xP0(x, ξ) + ∆ξP0(x, ξ) + λP0(x, ξ)

(
1

|x|2
+

1

|ξ|2

)
+ (a(x) + a(ξ))P0(x, ξ)

+

∫

Ω

∂P0

∂x
(1, ξ)

∂P0

∂ξ
(x, 1)dξ + γ−2

∫

Ω

χω1
(ξ)P0(x, ξ)P0(ξ, ξ)dξ (6.13)

= −δ(x− ξ)χΩC (ξ), (x, ξ) ∈ Ω× Ω,

with the boundary conditions P0(x, 0) = P0(x, 1) = 0 for x ∈ (0, 1) and by symmetry P0(0, ξ) = P0(1, ξ) = 0.

Then, the feedback control F̃ ∈ L(D(A),R),

F̃ y =

∫

Ω

y(ξ)
∂P0

∂x
(1, ξ)dξ, y ∈ L2(Ω) (6.14)

solves the H∞-problem.

In this case

ΛP y = A0

(
y +

∫

Ω

∂P0

∂x
(1, ξ)D(0, 1)y(ξ)dξ

)
+ ay + χω1

∫

Ω

P0(x, ξ)y(ξ)dξ

which is closed, so that

X = D(ΛP ) =

{
y ∈ L2(Ω); y +

∫

Ω

∂P0

∂x
(1, ξ)D(0, 1)y(ξ)dξ ∈ D(A)

}
.
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