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Abstract

Using recent results in mathematics, I point out that free energies and scale-dependent central
charges away from criticality can be represented in compact form where modular invariance is
manifest. The main example is the near-critical Ising model on a thermal torus, but the methods
are not restricted to modular symmetry, and apply to automorphic symmetries more generally.
One application is finite-size effects.
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1 Introduction

Modular invariance is often studied together with conformal invariance, but modular invariance is in
itself a more basic property of any theory in two dimensions defined with periodic boundary conditions.
In the standard representation of the torus as a lattice in the complex plane, physical quantities should
not depend on the arbitrary choice of lattice basis. The group of modular transformations is generated
by the S and T transformations, that correspond to switching lattice basis vectors (S transformation)
and shifting one of the basis vectors by the other (T transformation).

Physical quantities should not depend on arbitrary choices, like picking a gauge, or a frame of
reference. However, sometimes for practical reasons one makes a choice, and then attempts to provide
evidence that this choice did not matter. This is how the Ising model on the torus away from its
critical temperature has been treated in the literature.

Alternatively, invariance can be built into the calculation from the beginning, here called “mani-
fest” invariance. In gauge theory, working exclusively with gauge invariant quantities makes gauge
invariance manifest. This effectively means that it has been proven prior to the calculation of interest



that the method guarantees invariance, so the proof does not need to be revisited, as long as the
assumptions are adhered to (i.e. no quantities have hidden gauge dependence).

The same applies to modular invariance: it can be shown using 19th century mathematics that
the partition function Z(7) of the critical Ising model is invariant under the modular group generated
by S and T, so any quantity expressed in terms of Z(7) is also invariant. The relevant mathematics
is the theory of Jacobi theta functions, subsumed into one of its 20th century successors, such as the
theory of Jacobi forms [4].

If we introduce a mass scale by deviating from the critical point, the dispersion relation becomes
that of a massive field, with the square root familiar from the Dirac or Klein-Gordon equations.
The original proof no longer applies; ordinary Jacobi forms contain no square roots. The naive
interpretation of this situation is that invariance is completely broken. But by the first paragraph of
this introduction, that cannot be: physical quantities in the massive theory still cannot depend on
the arbitrary choice of lattice basis. In the literature it is shown by perturbative expansion in the
mass to lowest nontrivial order that the series coefficients can be expressed in the partition functions of
various known massless theories. This is good evidence for modular invariance also in the massive case,
but a low-order perturbative statement is not a general proof. More importantly, with this strategy
invariance must be checked on a case by case basis and in each case seems to occur “by accident”.

The purpose of this paper is to point out that more recent results in mathematics such as [5]
allow straightforward generalization of classical Jacobi forms (that can be called “massless”, in this
context) to “massive Jacobi forms”, with the square roots built in from the beginning. By using those
objects instead of the classical objects, which to a working physicist amounts to replacing some powers
by some Bessel functions, we can now rely on the mathematics literature for the proofs, and claim
“manifest” invariance in the near-critical Ising model, in the same sense as in the critical Ising model.

The methods also apply more broadly, not just to other models defined on a torus, but to sym-
metries also in other dimensions, or without periodic boundary conditions. This parallels the general-
ization of modular forms, based on the the Lie group SL(2), to automorphic forms, that exist for any
Lie group, or more general symmetries like Kac-Moody algebras.

A short plan of this work is as follows. In section 2, the Ising model away from criticality in general
is reviewed, including in section 3 how to check the deformed partition function using conformal
perturbation theory. In section 4, the mathematical background is reformulated from a physics point
of view, with details and proofs in the appendices. With this as a new starting point, section 5 and
6 recalculates known quantities in a way that naturally leads to section 7, which contains the main
new result of this paper: a mass expansion that is manifestly modular invariant at any order, in eq.
(60) together with eq. (63). However, as explained above, framing the mathematical results in the
context of statistical physics, as done in sections 4,5 and 6, is as central an objective of this paper as
the specific result in section 7. Section 8 outlines how this is relevant to finite-size effects.

Here are a few comments on related work. In [7] there is a computation of correlation function
on the torus, extended to the Ashkin-Teller model in [9]. In [10], a comparison is made with lattice
regularization, and the large-mass limit is considered. Perhaps most relevant for this paper, a few
papers on finite-size effects are reviewed in section 8. A recent paper that relates high- and low-
temperature expansions is [34]. The paper [35], that constructs tensor currents in the two-dimensional
theory of free massive fermions, was communicated to me by the authors. Since the present paper uses
the formulation of the Ising model as free massive fermions as the main example, it will be interesting
to see if the results of [35] can be expressed usefully in language more closely aligned with that used
here.

1.1 Physical mass scales and the Jacobi group

Before introducing the example of the Ising model, here are a few general remarks to make the
statements in the introduction more precise. One way to state the issue is that the parameter m in
the differential operator 0,0, +m? is not modular invariant, whereas the combination u = m?m is,
where 79 = Im 7.



To see this, first a quick review (for a pedagogical introduction, see Ch.1 of [16]). Consider a torus
lattice generated by complex numbers w; and wy. Modular transformations I' act on this lattice as

(211 . d c w1
(:)2 o b a
for integers a, b, ¢, d, where ad — bc = 1. It is convenient to rotate and rescale the lattice so the new

1
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first basis element is 1, then the lattice is parametrized by the torus parameter 7 = wo/w;. The

modular transformation I above acts on 7 as I' : 7 — (a7 +b)/(cT+d). A marked point z on the torus
transforms under I' as z — z/(cr + d). This amounts to! the simple statement that the coordinates
Jacobi group [4].

of a marked point z must change under I as in fig. 1. The joint action on 7 and z is the action of the
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FIGURE 1: A point w = aws + fw; in terms of T = wo/w; is z = a7 + B. Switching the lattice
basis vectors as @1 = wy and W = —w; (S modular transformation) makes 7 = —1/7 and z = z/7.
Here ~ Z means shifted by a lattice vector from Zz.

For example, the modular S transformation is represented on the lattice basis as @1 = wy and

Wy = —wi, as in figure 1. To get from the left to the right panel in the figure, one can multiply by
w1 to go back to the (w1, ws) basis, then transform to @; = we and Wy = —w;, then scale @; to 1
by dividing the “tilde coordinates” by w;. Note that although the lattices generated by (wi,ws) and

(w1, @9) are the same, by definition of modular transformations, the area in the figure is changed from
point z on the torus to Z = z/7.

Im 7 in the left panel to Im 7 in the right panel. As illustrated in figure 1, S also transforms a marked
differential operator

Here is a consequence of these simple observations. For a massive scalar field theory, consider the
9.0, + m? .

(2)

Now consider a general modular transformation, not just the S transformation. As stated above,
2z — z/(ct +d), so 0.0, — 0.0.|cr + d|?>. To be able to add m? and 9.0., they must transform the
same way. This means m? transforms as m? — m?|er + d|%.

The good news is that the imaginary part 7 transforms under the Jacobi group as 75 — 72 /|cT+d|?,

which is the opposite of how eq. (2) transforms. So we can easily make eq. (2) invariant under the
Jacobi group by simply multiplying by 7. Indeed, the differential operator

T 28252 + m27' P
is invariant under the Jacobi group.

(3)
From a physics point of view, using (3) instead of (2) is a minor modification. An invariant
quantity like the partition function can be series expanded in the combination u :=m

219 in (3), and
each term will be separately invariant. Physically, this can be understood as saying that if the mass
!The overall sign is fixed as follows. Without the marked point z, we identify under the overall sign flip (a, b, ¢, d) —

—(a, b, c,d), since it has no effect on (a7 + b)/(ct + d). In the standard theory of Jacobi forms [4], this freedom is fixed
as z — z/(cT + d). This action is sensitive to an overall sign flip: there is no a7 + b in the numerator to compensate.



measured by an observer on the torus is expressed in units of inverse area of the torus, that number
is invariant if we relabel the torus lattice, as it should if that relabelling has no physical meaning.

To be clear, the statement that m transforms if defined as in (2) does not mean that the physical
Ising model away from criticality somehow fails to be modular invariant. As was argued in the previous
section, that would make no sense: the mass represents the correlation length. The statement here
is that the parameter m in eq. (2), which is sometimes also called mass, is not an invariant label
characterizing the amount of deviation from criticality, whereas p is.

2 Mass deformation of the critical Ising model

2.1 Ising model

The Ising model away from criticality was formulated in a way useful for this analysis in a beautiful

1987 paper by Saleur and Itzykson [1], the main starting point for this work. The model has correlation
length £ = 1/| M|, where

T—1T.

4

o (4)

with a the lattice spacing. In the scaling regime the theory is described by a massive fermion field ¢
on a torus 7:

M x

Zising = ), / DYDY exp (2 /T d*z (O — PO + mu?w)> = (det(~V2 + M)V (5)
b.c.

b.c.

where V2 = 70,0, and M? = mym?. (As in the previous section, note that d?z is not invariant, but
d?z /79 is.) The sum over topologically distinct boundary conditions (b.c.) has 4 terms, denoted D, g
for o, 8 = 0 (periodic) and 1/2 (antiperiodic):

1

Z1sing = 5 (D%,%(M) + Dy 1 (M) + D1 o(M) + DO,O(M)) : (6)

Here the functional determinants D, g are computed? by (-function regularization in [1]:

D 75(]\4) e~ TT27al(t) H (1_e—2m'6—27ri7-1(n+a)—27r72 (n+a)2+t2) (7)

n=—oo
where 71 = Re7, 79 = Im 7, and the dependence on the mass parameter M is through

Mw|

t= ,
2

(8)
where as reviewed in the previous section, the torus lattice in the complex plane is specified by two
complex numbers w; and we. From eq. (1), we see |wi| — |7 + d||wi1], so t in (8) is not invariant. In
eq. (7), the expressions 7, (t) for the values o = 0,1/2 considered here are

o0

1
olt) = é_t+tzln(4m—v\/m)+i/o d)\(l—)\)Z; 9)

(n? 4 At2)3/2

n=1
(1) = ——= 4 Pl(re /7 /A)+t4/1d)\(1>\)§: ! (10)
N = T 2 2 Jo £ (n—1/2)2 + A2)32

with the Euler-Mascheroni constant v = 0.5772. .. (the v without subscript).

?In [1], there is a different ordering of indices, so Dthere = Dhere In general there is an absolute value, but there as

here, each factor is real. See also appendix A.5 for a comment on Do 0.



These somewhat awkward representations for -, (¢) have the advantage that the sums inside the
integrals clearly converge, whereas convergence is less clear if we first perform the integrals. Alternative
representations will be introduced below.

The sum of terms in (6) gives

ZISing = = _2W72E1(Z H ( + e 2mi(n+1/2)m1— 27T72\/m) (11)

+ n=—o0
27r7'2 El EQ) E H < + 627r’in7'1—27r7'2\/n2+t2>)
n=—oo

where the zero-point energies are given by Ei = 7;,9/2, E2 = 79/2, and to facilitate comparison
with [1], the combinations appearing in (11) are

o

_ ,i 2 v 14/ _
2F, = T +t°In(me 7/ 12 /A) + 2t ; d\(1 E: = 1/2 ISVEEE (12)
1 1 1 > 1 1
20E;,—Fy) = —=+t—t’In4 t4/ d\(1 =\ — .
(Br — E») vl wd ot | ( )nZ::l <((n T2 AR (2 )\t2)3/2)

As a check, at criticality ¢ = 0, eq. (12) gives Ey = —1/24 (antiperiodic), F2 = 1/12 (periodic), as
expected for fermions.

The partition function Zigng in (11) was already found by Ferdinand and Fisher in 1969 [3]. In [1]
a problem is noted: although Zigne in (11) should be modular invariant:

ZIsing(Wla w2, M) = ZIsing(‘:}la wa, M) s (13)

invariance is not manifest when Zigng is expressed in terms of 7 and ¢. One could argue that there is
only scale invariance at the critical point ¢ = 0, so that working with 7 is not a good choice anyway.
More technically, one could be worried that square roots like v/n? + ¢2 in (11) might invalidate the
simple S transformation property of the partition function, compared to at criticality, where ¢t = 0.
In [1], perturbative expansion in M is used to argue for modular invariance also in the sense of acting
on T:

M 1 Z1V Ae” 1 2.0 p3DapnDq, 1

2Z121/2 47‘(‘ ™ 47‘( Zl/2 8(Z121/2 2

(14)
where each term only depends on Z; /5, Z1 (the fermion/boson partition functions at M = 0) and the
parameters M and A. This gives evidence that Zig,g is modular invariant, by invariance of the ¢t = 0
ingredients. But this is no proof, since it only refers to the displayed terms in the expansion in M.3

Note that (14) is (apart from the anomalous term with the logarithm) an expansion in the dimen-
sionless parameter M?A, with A the area of the parallelogram spanned by w; and ws, rather that just
an expansion in the mass parameter M itself. Expressed in 7 = wg/wj, the modular-invariant area is
A = |w1|*m2, so M?2A = (27t)?1o, where t? and 73 each transform, but their product is invariant. We
see that ¢ corresponds to the non-invariant m parameter of the previous section, and the modular-
invariant parameter 1 = m?7 used in this paper corresponds to the M2A combination for the (wy,ws)
lattice, but here expressed intrinsically in the 7 frame.

The interested reader is referred to [1] for more details on eq. (14), since it is not needed here: it
is replaced by the simpler expansion eq. (60) below.

Some readers may still wonder: is the 7 frame really useful away from criticality, perhaps it would
be better to stay in the (w;,ws) lattice? For some questions that may indeed be the best choice. But
“near-critical” in the title of this paper means that surely the powerful methods of Jacobi forms at
criticality should confer some advantage to embedding them in a similar setting away from criticality.
It could well be that far from criticality, this picture is not very useful.

3This expression differs between [1] and [2] in the convention for terms involving A.



2.2 The running central charge

In the 75 — oo limit, we can neglect the exponentially suppressed terms in (11):
ZIsing — 6_27”—2E1 ((1 + .. ) + 627”'2(E1—E2)(1 + .. )) N e—27r7'2E1 (15)

as long as B — F < 0, which by the second equation in (12) holds for ¢ < 1/4, if terms of order t?
and higher are neglected, i.e. the theory is not far from criticality. Close to ¢ = 0 we have F; < 0,
S0 Zising diverges as 75 — 0o. The zero-point energy determines the running central charge as used
in [1,2]4
In Z(t
o) = tim 220 _ gy, (16)

Ta—00  2TTo

If A is viewed as fixed, the logarithmic term Iny/72/A in E; in eq. (12) dominates as 19 — 00, as it
must for a divergent specific heat. The arbitrariness in the choice of renormalization point only affects
terms of order t2.

In particular, the t* term in the expansion®

C(t) = Co + Cot® + Oyt + ... (17)
is finite and unambiguous:

t4 1

- 1
. = —Z ; d)\(l_)\);((n—1/2)2—|—)\t2)3/2

Cy = C(t)

4

o0
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2n —1

t4
n=1

o0

P DieTsy

A theme in this paper is to recalculate Cy in several different ways.

The calculation (18) illustrates the comment above about convergence: after integration, the sum
of each of the three terms on the second line in (18) individually diverge, only the total is finite, so
convergence is not apparent. By contrast, the representation advocated in later sections of this paper
is more explicit than an integral representation, but still convergent by inspection.

|

C(3)tt.

3 Perturbative approach

Previous sections concerned specifically the massive deformation of the critical Ising model. More
generally, one can add to the Hamiltonian of any critical theory a perturbing operator V:

G
V=—[d 19
or ) F¢ (19)

where the field ¢ has any weight (h, h). It is useful to form the dimensionless coupling constant

T o

We can view the mass in the previous section as a perturbation of this kind, with ¢ = ¥, so G = m,
g = t and the weight h = 1/2. With this formalism we can also consider other perturbations, for
example a magnetic field perturbation, with ¢ being the spin operator o with h = 1/16, but this will
not be explored in this work.

“The definition differs between [1] and [2] by an overall factor of 12.
®In [1], Co is related to the usual central charge by a factor of 12, due to the factor in the previous foonote.



The perturbed partition function (matrix element)®

n sz - -
Zo(9,m2) = WMZ (27r) /<|zl|§'“§|mn|S1 (1_11 (:vcfi)lh) et o)t 2l 20

p<

where the complex torus coordinates z; were transformed to complex sphere coordinates x; = e27%/@1
and a cutoff p around the origin in each x; plane was introduced.

As in (16), a coupling-constant-dependent “central charge” C(g) is defined from this as

In Z,
Clg) = lim 120l0:72) (22)
Ta—+00 21T
The quantity C(g) in (22) can be computed in perturbation theory,
C(9) =Co+g°Ca+¢'Cy+ ... (23)

where Cy = ¢/12, the usual central charge. For example, to compute the first correction Cy we only
need the 2-point function:

1
Olp(z1, Z1)p(22, Z2)|0) = — 1 (24)
| 12]
where 19 = 1 — 2. Inserting (24) in (21), we obtain the 2nd order term in Zy(g, 72) as
2 1 2 1 2
g d°xq d°zo 1
Zo(g, T = / / 25
(9,72) 2 2m)2 ), (w122 ) 2222 oy — zof ™ (25)

which gives (more details for interested readers in Appendix C):

_ 1 I'(n+ 2h) 2 o1 T(1/2 — h)[(h)
02_1;)2714-2]1 < n!T(2h) ) =27 4hI‘(1—h)I‘(h_|_1/2) (26)

which converges for h < 1/2, in particular for the spin operator h = 1/16. For the mass operator
h =1/2, eq. (25) can be defined by a limiting procedure as h — 1/2 from below.
In [2] it is stated that it would be preferable to compute C(g) without expanding in mass:

Un progres trés intéressant serait de trouver des expressions compactes pour ces quantités
au liew d’un développement en puissances du couplage.
Diverses indications suggerent que cet espoir n’est pas exclu.

Such nonperturbative calculations could be feasible with the method presented below. The first
step taken here is only to repackage existing results in a manifestly invariant way.

3.1 Example: thermal perturbation and central charge

We come back to the mass operator as a perturbation away from T" = T,. The first coefficient in the
running central charge Cy is clearly divergent: (26) has a pole as h — 1/2. There is a finite term
C5 finite = In2, which we can attempt to match to the finite piece at order t2 in the previous section,
but the value depends on the renormalization prescription.

The 4th order coefficient in the ¢ expansion is finite and unambigious:

o[ [ e E ) e

5The book [2] has x; instead of x;, this is a typo.




which matches with the exact result (18) expanded to this order. So this is a useful check of the
perturbative prescription. To show (27) using (21), one needs the correlation function

_ _ _ _ 1
(Olp(x1,Z1)p(x2, T2)p(x3, T3) (24, T4)|0)connected = ————————— + similar terms (28)
13224714723
that follows from representing the correlation function as a Pfaffian of 1/x;;. Performing the integrals
like in the 2-point case above gives for the n-point term:

oo

HZQ(_IYL-H (2271 o 2) FZE:Z/:n')

7 635

4 31 6
B+ 1O =52 C(N+

3577

2n _
¢(2n—1)t T

S SO+ (29)

More details are given in [1]. The multiple integral in (27), leading to (29), will be reproduced by a
single integral in (52) below.

4 Towards manifest modular invariance

For the purposes here, the expression Zigng in (11) can usefully be repackaged as follows. Consider
each piece D, g from (7) separately. In [5], and references therein, we find the following definition of
a deformed partition function:

0
Za,ﬁ,m (7_) _ e—STFCa’"LTQ H H (1 o e:l:Qmﬂ—QﬂTQ\/m2+(n:ta)2+27ri(n:ta)7'1> , (30)

n=—oo0 =+

with

_2p_T
Cam = 2Z:cos 27T€oz/ et

>1 £>1

where K is the standard K-Bessel function. Comparing with eq. (7), the D, g seems almost like it
could be expressed in (30), except there seem to be some additional signs + in e*2™% and by (n+a) in
(30). However, here we only consider zero or half-integer o and 3. Then, e*2™# is independent of +.
Also, the shift in (n41/2) is inconsequential when we sum over all n. We then see that (30) consists of
two copies of (7), if the cq,m and 7, (t) agree between these two expressions for the partition function,
when relating m and ¢. In section 4.1, I review the textbook argument that ¢, and v, (t) do match,
and in section 4.2 this will allow repackaging of D, s from (7) in manifestly modular invariant form.

4.1 Zero-point energy

The purpose in this subsection is to compare the Bessel-sum representation of cq g, in (31) to the
integral representations of 7,/(t) in (12). Neither merits the precise name “zero-point energy”, but
both have the same functional form as the zero-point energies E;, and only differ by an overall factor.

It is explained for example in the textbook [12]7, section 20.11, that the running central charge in
a mass-deformed theory is

12m [ 12m o (£1)" 1
ce(m) = $7Tm/ df cosh 0log(1 e~ 2mmeoshb) — m Z (D) Ki(2mnm) . (32)
0 n=1

™ n

(See also eq. (90), (91) and (99) of [13].) This is 24 times ¢, in (31) and the two choices a = 0 or
1/2 for the quasiperiodicities of the fermions correspond to the £1 in eq. (32). In particular, c; is
related to 7o, and c_ is related to 7y /.

The running central charges ¢4 and c_ are plotted in figure 2. It shows that ¢; — 1 and ¢ — 1/2
as m — 0. This normalization merits the use of ¢ for running central charge. (Recall from section 2.2

"there, r = 2m
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FIGURE 2: Running central charges for two fermion quasiperiodicities as function of the mass
parameter.

that there is a factor of 12 between C(t = 0) and the usual central charge, so there is an additional
factor of 2 between ¢, and |E;|.)

Now, it is shown in the textbook [12] that ¢y can be rewritten as follows (with a similar expression
for c_:)

1 2
c+(m):1—6m+6m2< logm + - —|—log( )—122( n? 4+ m? — n—g;> (33)

Individual terms in the sum over n are divergent, but the sum as a whole can be truncated. For
the interested reader, a few details how to show using elementary manipulations that cy in (32) equals
(33), are given in appendix B. In particular, the sum over a square root can be viewed as arising from
the fact that the Fourier transform of a square root is a Bessel function.

A clear alternative exposition of this is given in [35], appendix D.

The zero-point energies in eq. (12) are integral representations over a variable A, where the sum
over n is manifestly convergent before integration. Like in (18), the integral can be performed as®

t4/d/\( ST S 0/ s ST L A L AR AN AN (34)
2 Jo (n2 + \t2)3/2 n) 4nd  8nd  64nT

where we recognize the sum in (33). So together, egs. (34), (33) and (32) provide the connection
between the Bessel sum in (31) and the zero-point energies in (12). Similarly, the t* term in c_ gives
the Cy = —(7/8)((3) coefficient as in (18).

Since the zero-point energies in (31) match, the following section proceeds to discuss how the
expression (30) from [5] can be rewritten in a way that makes symmetries manifest.

4.2 Modular covariance

The massive non-holomorphic Kronecker-Fisenstein series is defined as a double sum:

K, (27r\/7’67'+d|) J2mi(cf—da) (35)

leT + d| ’

51»#(2’ T) = 2\//”'2

(¢,d)#(0,0)

where K is a K-Bessel function, and ¢, is given in (31).

8This is discussed in [10]. There is a typo on the left-hand side of their equivalence, ¢ should be #>.
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The free energy is computed from minus the logarithm of the partition function Z in eq. (30).
Proposition 3.3 in [5] is that (35) is in fact equal to:

> —27To, /£ 24 omi T g
61#(277_) — 8o s + Z Zlog <1 e 27724/ 72+(n:|:a) +2mi(nta)T F2 zﬁ) ’ (36)

n=—oo0 =+

where 1 = m?

79, and z = a1 + B packages the two real quasi-periodicities o and 8 into a single
complex number. The term c, ;7 in (36) provides the ¢ = 0 terms in (35).

To provide some basic intuition where (35) comes from, first compare eq. (35) to eq. (32), which
is a one-dimensional lattice sum over n. It is conceivable to guess the form of the two-dimensional
lattice sum (35) over ¢ and d, recalling m = /u/7o.

The special case o« = 5 = 0 of (35) for the free energy of a massive relativistic boson was derived
in [14], eq. (3.6). In [34], a similar double-sum representation is discussed as the path integral for a
massive theory with winding around the periods of the torus.

Now, the massless y — 0 limit of the double sum representation (35) recovers a basic example of
an automorphic form: the ordinary non-holomorphic Kronecker-Eisenstein series

—s T mi(cf—da
ES(Z,T) =T Z WCQ (ef—da) . (37)
(e,d)#(0,0)

In this double sum form, it is easy to see that E(0,7) is modular invariant for any s. Interested
readers may refer to the standard proof in Appendix A, where I also try to explain why it is natural
to represent the fermion quasi-periodicities «,3 by a marked point z on the torus.

A slightly more compact way to write eq. (35) is as follows:

K, (27r %|w\)

e27ri0w
jwl

gl,u(z7 T) = 2\/ HT2 Z
w#0

) (38)

where w = ¢7 + d is the lattice vector and the phase is 0, = (¢f — da), and as before, a and 3 take
values 0 and 1/2 that distinguish the four fermion sectors.

In the product form (30) with a single product variable n, and without expanding in the mass
parameter, it takes a calculation to prove modular invariance, and it seems to occur by accident. The
following Mellin integral representation is given in [5]:

c+1i00
E1p(on7) = / () T(8) o (2, 7)ds (39)

270 Jo—ioo
for any real number ¢ > 0. Since p in (39) is invariant by definition, and the classical object (37)
is invariant, it follows that its massive deformation (39) is invariant. In other words, here modular
transformation properties of the massive (deformed) object follow from those of the corresponding
massless (undeformed) object. I show (39) below.
A more evocative way to see the invariance of (35) is to construct it as a sum over images under
the action of the modular group, a Poincaré series. This will not be pursued here, see [11] for details.
To summarize this section: the well-known modular invariance of the ordinary non-holomorphic
Eisenstein series E;(0,7) is a basic example of what “manifest” modular invariance means in this
paper, and the undeformed partition function Zygng(0) can be expressed in terms of Es. The point
here is that also the deformed partition function Zigng(p) for g # 0 can be expressed in terms of
the massive non-holomorphic Kronecker-Eisenstein series &£ ,, in (35), and its modular transformation
properties follow from (39).

5 Zero-point energies: real integration

One can now view physical quantities in the deformed theory as non-holomorphic modular forms.
This section concerns only the cylinder limit 79 — 0o, where we can only extract zero-point energies

11



and neglect finite-size effects. Since Ziging — |D|? as m — 0, and Zlsing — e 7Bl 4...)as 1 — 00
(g — 0), and in (31) we have Z — e 3™ (1 +...) as 75 — 00 (¢ — 0), we can extract Cy from (31)
as (now writing ¢y jo(p1) for ¢ /5, to make the dependence more explicit when differentiating)

2 2
Ci==21300)|,, = =23 5] _ 10 = =rd | _ vt (10)
where the 72 comes from m? = j/75. By the arguments in the previous secion, it could be a cause
of concern why a physical quantity should depend on 79, that depends on the choice of fundamental
domain (gauge). The situation will be clearer when we consider the full (two-dimensional) expansion
of the free energy below. For o = 1/2 in (31), and slightly generalizing the integrand with factors of
2571 and 1/(27)* that reduce to those in (31) when s = 1, we have

d? 1 & s—1 . d? _m2u/my
e #:001/27,1 = (277)25/0 x ;cos@ﬂﬁﬂ)e a2 H:Oe z dx
1 < 1 , m
= ST —(94(0 —1)—5—dx. 41
(27T)28 /0 x 2( 4( 77’m/ﬂ—> >7'22x2 €z ( )

Note that the =2 from the differentiation with respect to j lowered the power of z by 2. Here v, is

a Jacobi theta function -
2

94(0,7) = > (=1 (42)
n=-—00
The integral (41) is a Mellin transform of a Jacobi theta function. A similar integral was computed
already by Riemann in his 1859 paper on analytic number theory (see e.g. [15], or Problem 6.15 in [16]),
and a version of the integral in (41) is given for example in [27] section 6.9:

/Oooxg—l(m(o,m% —1)dx = (2175 — )7 ~¥/%1(5/2)¢(3) . (43)

To use this in (41), change variable of integration to y? = z/7:

1 / h ms—ll(m(o,m/w) — 1)”—4 dx = 272572572 / h Y255 (04(0,iy%) — 1) dy . (44)
(2m)% Jo 2 Tox? 0

We identify § — 1 in (43) with 2s — 5 in (44), so § = —2 for s = 1. Now the right-hand side of (43)
seems divergent for § = —2, but the functional equation for the Riemann zeta function ((s) states
that the right-hand side of (43) can be reflected § — 1 — § as follows:

7520(5/2)¢(5) = V22012 — 5/2)¢(1 - 3) . (45)
Using (45) and (43) in (44), and setting s =1 (§ = —2), we find

2d2

04 = —2’7—27,“2 .

i) =~ 2P (2 DrTE/0E) = —103) . (46)
This reproduces Cjy of earlier sections.

The reader not familiar with this type of calculation may find this section more complicated than
the original calculations in earlier sections. In particular, here we needed s-regularization, and we
needed the integral (43). As already noted, the 75 in intermediate steps may also seem inconvenient.
The purpose of this section is not to be convenient, but to show using elementary methods that the
possibly unfamiliar (35) gives the same results as found earlier. The next section describes a more
efficient alternative calculation, by residue calculus.

12



6 Zero-point energies: contour integration

Here is an alternative to the calculation in the previous section, that does not require integrating
Jacobi theta functions, and gives some additional insight. Equation (39) indicates that it may be
useful to Mellin transform the zero-point energy Ej(u) = 2¢4 /2.

Vi S (47)

2

E(p) =2
/=1

where \/p/m7 = m, and E is used as a shorthand for E; in this section. Mellin transforming from g
to s gives

[e's) 1 o0
E(s) = /0 prE(p)dp = _§7r—28—275sr(s)QZ(—n“le—?S—? (48)
/=1

— (22— 1)(27) 72 2s75¢ (25 + 2)T(s)? . (49)

[\

The Mellin transform E (s) has poles at zero and negative integers, and falls off at complex infinity.
The Mellin contour for the transformation back (effectively a Mellin-Barnes representation) can be
chosen to be the vertical line s = 1/2 + ix for real x, which can be closed by a semicircle at infinity on
the left side of the s complex plane, as indicated in figure 3. The contour integration picks up residues

FIGURE 3: The Mellin-dual energy E(s) in the complex s plane. The three arrows give an idea of

the integration contour, which closes at infinity. The argument arg(E(s)) sets the color.

as follows (in the remainder of this section 75 = 1 to reduce clutter, it can be restored by p — p/72):

E(u) = Y Res[E(s)p ", s =—n] (50)
n=0
= g e D = S (A O (Ot (51)
= o et OB — SO+ e C(Tut = SO + S+ (52)
= —i — c1p 4 1.0518% — 2.0090543 + 5.00236.% — 14.00074° + 42.0002° 4 ... (53)
where in the third equality
¢/(=2n) = (1) 5 2n + ) (54)
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FIGURE 4: Black: Bessel sum representation of the zero-point energy E(u) in (50). Blue dashed:
truncation of eq. (53) at order 4,8,12 in p. For large mass, F(u) becomes negligible, as expected.

which follows from (45). Also, in (51), the coefficient of the linear term is ¢; = (27 — 1 + log4u)/4,
and v is the Euler-Mascheroni constant. The E(u) above is plotted in fig. 4. The coefficients in (53)
become closer and closer to integers. The absolute values of those limiting integers are the Catalan
numbers:

(2n)!
(n+1)!n!

At first glance the appearance of near-integer coefficients seems a little surprising, since an infinite
number of odd zeta values are irrational [22]. But there are many approximations for {(2n + 1) in
terms of more elementary expressions, for example by Ramanujan [23], and eq. (53) above displays a
very simple such leading approximation, by rational numbers:

C, = =1,2,5,14,42,132,429,... n=1,2,... (55)

1 8 32 128 512 2048
(Cn+1l)m— =, = = =2 n=1,2,... (56)

For example, the exact value ((11) ~ 1.000494 is approximated by 2048/2047 = 1.000489.... It is
easy to see why this is a decent approximation: by definition ¢(11) = 1+ 1/2 + ..., so if we truncate
to the first nontrivial term, ¢(11) ~ 1+1/2 = 2049/2048. The ratio 2048/2047 in (56) is just a shift
by one in numerator and denominator, that slightly increases the value, and brings it slightly closer
to the exact value.

The generating function for (alternating) Catalan numbers (55) gives an asymptotic, “resummed”
approximation to the higher-order terms in the energy:

1 N . . 1
B~ (=35 ) = S0 = L I (57)

n=1

For large 1, a fractional power of u appears, which was not so obvious from the expansion. The Bessel
representation clarifies this somewhat, since it also behaves as a fractional power at infinity.

Another comment is that since the coefficient Cy = —(7/8)((3) appears as a single term in (52),
specifically from the pole at s = —2. Therefore, the residue calculation (62) can be viewed as an
indirect proof of the integration formula (43) for the Jacobi theta function.

Now that the smoke has cleared, we see that when we power expand the Bessel function, the
sums naively diverge and should be zeta-function regularized. The point in this paper is that away
from criticality, there is no reason to ruin the exponential convergence due to the Bessel function by
series-expanding it in the deviation from the critical point, once we are convinced that we can achieve
manifest modular invariance without such expansion.

14



Finally, we can see the relation to the A\ integral representation in earlier section, and eq. (29),
which I repeat here for convenience:

[e.e]

;(_1)n+1(22n - 2) Fi:?‘/;n;‘)

7 635

31
LCOM+ () oCM+

3577

2n—1)t2" = —

——C(Ot+... (58)

in agreement with eq. (53).

Again, these comparisons are made to connect to existing literature, that typically considers the
1 — 0 limit, whereas for nonzero u, using the Bessel function representation is preferable to series
expansion, since the former converges exponentially. In the next section, this will be extended to the
full (finite-size) torus sum, not just the zero-point energies in the 75 — oo limit.

7 Invariant mass expansion

Here we reproduce the p expansion (14), as the 2D analog of the 1D p expansion above. The partition
function Zyging(r) is written in terms of the free energies of each fermion sector, here the massive
Kronecker-Eisenstein series (35), as

Zranglp) =y e el (50)

i=1,2,3,4

where i = 1,2,3,4 corresponds to? z = a + 87 for (a, 8) = (1/2,1/2),(1/2,0),(0,0),(0,1/2). (See
Appendix A.5 for a comment on the periodic-periodic sector.)

From (59) we can write down the expansion of minus the total free energy, In Zisng (1), as a
weighted sum of derivatives of Eisenstein series evaluated at the critical point p = 0:

) S ZE ) 1 (D2 ) — D) (5, 2l (1))
In Ziging (1) = In Ziging (0) — i Zreing (0) -5 ( Zreing (0)2 =+ Zrina(0)

>+... (60)

where the i sum only has three terms, due to the periodic-periodic sector dropping out by its partition
function vanishing at the critical point. The “building blocks” here are massive Kronecker-Eisenstein
series (35), with the shorthand £(z) = & ,(2, 7) and their derivatives with respect to the invariant ,
all evaluated at the massless point = 0. It follows that (60) is modular invariant if continued to any
order, without further manipulation as was necessary in (14).

Following the same logic as in the previous section, more important than the p expansion in (60)
is the simple statement is that Zigng (1) is itself proven to be modular invariant nonperturbatively in
. Series expansion like (60) is only useful to connect quantities in the noncritical theory to those in
the critical theory.

To make this connection, we would like explicit expressions for £'(z) and £”(z) at pu = 0, that are
generated by series-expanding £ in p. First a demonstration of eq. (39) as promised, except it is easier
to show the forward transformation:

K (2 “ )
el T2|w| 270,
e
jw|

/ dp (7 (2, m) = /0 duus_l%//mz

0 w

_ 2l Z |w\23+2 20 = 1750 (s)0(s + 1) Esq1(2,7) . (61)

Similarly to the 1D case above, inverting the Mellin transformation gives a sum of residues from the

9For comparison with [1], recall from earlier sections that their convention (1/2,0) — (0,1/2) here.
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Mellin contour integration:

E1u(z,7) = ) Res[n *T(s)[(s + 1)Esy1(z,7)p ", s = -1 (62)
n=0
1 1
= Ei(z,7) — mu(Ey(z,7) + log(mu) + 2y — 1) — 5772/12El,1(z, T) — EW3M3EL2(2,T) +...
- 1 - 1 -
= Ei(z,7) — mu(E® (2, 7) + log(mu) — 1) — §7r2,u2E2(z7 T) + §w3u3E3(z,7') +...

using from appendix A the reflection formula (functional relation) eq. (78) and its consequence (81).
The tilde is needed to keep track of where the shift is: in the phase (original version, with a pole at
s = 0), or in the denominator (reflected version with a tilde, with a pole at s = 1, in (79)). In fact,
the reflected (tilded) version eq. (79) in appendix A is where Itzykson and Saleur [1] started from,
since the denominator is the eigenvalue for quasiperiodic fields.

In (62), the vanishing of the Eisenstein E,, for negative integer n was used. This is simpler than
¢(n) in the 1D case above, that only vanishes for even negative integers.

From (62), we can read off the & and £” terms needed for the p expansion of the free energy away
from criticality in (62), the analogues of the p (or t2) and u? (or t*) terms in the 1D case:

£'(z) = —n(BL%(2) +log(nu) — 1), &"(2) = —n*Ea(). (63)

The non-curly E; are ordinary Kronecker-Eisenstein sums, that are Jacobi group covariant and con-
vergent, the sole exception in general being E; (z), that is divergent if evaluated by double sums. With
only zeta-regularization, this divergence would have appeared as a pole at s = 1, that would need to
be subtracted by hand. Here with mass, the Mellin contour by definition avoids the pole at s =1, so
the threat of a divergence from &’ in (63) is removed by construction, and replaced by a log y term.
Note that as far as eq. (62) is concerned, this log 1 comes with a factor p in front, so it does not make
the free energy itself divergent, it provides the expected singularity of the specific heat.

The remaining £;°®(z), while regular, can be inconvenient for numerical computations, as discussed
further around eq. (81) in the appendix. If instead of the partition function we wanted to compute
correlation functions in the noncriticial Ising model, E{eg(z) does not appear. This is because if we
allow Es(z,w) to have quasiperiodicities in both original and reflected (tilded) versions, there is no
pole either at s =0 or s = 1, as discussed in [5].

To summarize, the new result in this section is the mass expansion eq. (60) together with eq. (62),
that is manifestly modular invariant, and can be written down to any desired order, where eq. (63) is
sufficient up to and including order p2. A plot of eq. (60) is provided in fig. 5.
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FIGURE 5: Black: the free energy building block &£, in (61). Blue dashed: truncation of eq. (62)
at order 2,3 in pu. The E{ value was fixed to —0.1 to match the exact result (cf. eq. (81)).
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A final comment: if we are only interested in derivatives, we can also use that the massive
Kronecker-Eisenstein series £ satisfies a partial differential equation of the schematic form

2 0°

which can be simple to compute. This direction will not be pursued further here, but it is natural from
the point of view of the mathematics (Jacobi-Maass forms) to be able to reformulate differentiation
with respect to the external parameter p in terms of the intrinsic Laplace operator A.. In particular,
this means that the theory at criticality “knows” about at least some properties away from criticality.

8 Finite-size effects

Ferdinand and Fisher [3] viewed the 75 — oo limit of the torus as the cylinder Onsager model, and
finite 79 as finite-size effects. These finite-size effects should also be accessible with the methods
discussed in this paper.

In [24] (and reviewed in [25], see also [26]), the Ferdinand-Fisher free energy was generalized as

Fr—1,(p,5) = fou(p)A+ folp) + f1(p) A7 + ... (65)

for p the aspect ratio of the torus (assuming that 73 = 0), and A the torus area (which was called S

in [24]), with the expansion coefficients

Y2 (ip) + I3(ip) + I4(ip)
2n(ip)

four(p) = =lnv2 =21 fo(p) = ~1n (66)

Similarly, the specific heat

cr=r.(py A) = cpuic(py A)A + co(p) + c1(p) A~ + ... (67)

with the expansion coefficients (now with the argument ip suppressed),

8 A 25/2 T 2n 2 16 921Indy + ¥31nds + 94 Indy
B e B Y e i R
Coule(p, A) 7T<n P . T T 4) p(292—|-193—|—194> T Yo + V3 + 4
(68)

with + the Euler-Mascheroni constant, and

2n
colp) = =2V2/p— Py (69)
Here we can view the area as set by m, and the aspect ratio p is set by 7, but we want to view
each coefficient as a function of 7, not just 7. We can interpolate between square lattice 7 = i and
triangular lattice, 7 = pe™/3.

As a first comparison, note that the Eisenstein series is the logarithm of the 1 functions in the
partition function, so the last term in cpyi in eq. (68) corresponds to > Z;&'(z;).

Each term in the expansions of F' and ¢ here are modular forms, rather than invariants. So again,
although (65) from [24] has advantages compared to [1], each term still needs to be checked separately,
and the coefficients change if we change the lattice vectors (frame for modular transformations). In
the p expansion above, each building block is Jacobi group covariant, so the terms in the sum merely
permute under S and T, and the coefficient at each order in p is separately invariant.

On the other hand, for numerical purposes, representations in terms of Jacobi theta functions can
be useful for their rapid convergence, compared to the massless Eisenstein double-sum series of eq.
(37) and appendix A. However, the massive Kronecker-Eisenstein series also converge exponentially.
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8.1 Modular transformations and numerics

Here is a toy illustration of the difference between ordinary Jacobi theta series, massless Kronecker-
Eisenstein series, and massive Kronecker-Eisenstein series, for the purpose of numerics. Consider the
Jacobi 93 function, that for a square torus lattice 7 = i1y satisfies the S transformation property

/M5 (imy) = 15 051/ 1) - (70)

(The factors of 7'21 / in (70) are such that the two sides of this equation are separately invariant.) If we
plot this relation as a function of 7o with a logarithmic scale on the horizontal axis, the plot should be
symmetric under reflection around 75 = 1, since log(1/m) = —log . In fig. 6, the two sides of (70)
are truncated to the first nontrival term and plotted. This is just a toy illustration, since a plot of (70)

1.40

1.35 7'21/4(1 +2e7772)

1.30
/ ’7’2_1/4<1+2€7ﬂ-/7—2)

1.25
VRN

1.20
1.15
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T2

1.00

05 1‘ 2
FIGURE 6: Plotting two truncated expressions with logarithmic scale on the horizontal axis. The

untruncated |7'21/4193 (im2)| = |79 Yy, (i/72)] would have been strictly symmetric under S.

with just a few more terms included in the trunction looks more symmetric. In physical applications,
more complicated expressions may take more terms to make the symmetry apparent in the plot.

For comparison, consider FEj(z3,72) where z3 = 1/2 + 7/2 and 7 = im, that is S-invariant:
Ei(z3,im0) = E1(Z3,i/72) where Z3 = z3/7 = 1/2 — i/(212). Here invariance holds even at the first
nontrivial truncation. This can be shown directly from the general expression in appendix A, but
perhaps a simple example is of some use.

Truncated to |c|, |d| < 1, the double sums give

1+ Tél T - 1+ 7'51
= - 3 7E1(Z37 2/7-2) - — 3
lel,|d|<1 T2+ T lef,]d]<1 T2+ T

™ .
fEl(Zg, ZTQ)

) , ()

2
so for this first nontrivial truncation, the S-related expressions in (71) are manifestly the same, we do
not need to plot them. However, the double sum converges slowly (in fact conditionally, since s = 1 in
E). So although symmetry is manifest at each order of truncation, the plots themselves may change
significantly when the numbers of terms included is increased.
Now, a property like E1(z3,im2) = F1(Z3,1/72) above extends to the massive Kronecker-Eisenstein
series &, when truncated:
! E1u(z3, 2) - L

m el dl<1 ﬁK1(27r\/lT7'2) + VT K127/ 1) 72) + #Kl(QW\/M) .

\/To + 1/7‘2
(72)

Indeed, &1,,(Z3,1/m2) truncated to |c|,|d| < 1 gives the same expression as in (72): the first two terms
switch place under 75 <> 1/79, and the last term stays the same. Unlike for the p = 0 case, plots of
&1, for pp > 0 will not change much when including more terms in the truncation, since the Bessel K
function decreases exponentially with increasing argument.

Perhaps this order-by-order invariance together with the relatively quick convergence can be of
some use for numerics, beyond this toy example.
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9 Outlook: physical quantities as modular invariants

One very simple point of this paper is that the parameter m in the differential operator 90 + m?
transforms under modular transformations, but we can construct an invariant mass parameter by
simply multiplying by 72, to make the invariant 4 = m?r. In the example of running central charge,
this does not matter much, since by taking the limit 79 — oo, we have already picked a modular frame,
i.e. we can no longer perform an S transformation that inverts 7o, and only the zero modes in the
“horizontal” w; direction contribute, so the problem is effectively one-dimensional. Section 7 gives an
example what can be done in a truly two-dimensional setting, or higher-dimensional for that matter,
if the basic objects are generalized.

The appearance of the Riemann zeta function in the effectively one-dimensional setting (cf. for
example [21], where an integral with Jacobi theta like the one above was found as the cylinder limit
of a torus) can be thought of as a prototype for L-functions associated with modular forms (see

g. [17], section 1.1). It is in general an interesting question whether one can recover a modular form
from a given L-function (a “converse theorem”), similarly to how here, the Jacobi theta function was
recovered from an inverse Mellin transformation.

More physically, this kind of method can be used to go beyond perturbation theory in the mass
parameter . The integral in (44) has exponential suppression from the mass term, but this suppression
is lost when we study specific terms in a series expansion in p.

One could for example compute correlation functions in the deformed theory in terms of massive
Kronecker-Eisenstein series. An interesting setting for this is vector-valued modular forms, which
have been used to efficiently compute physical correlators in the Ising model on the torus [8]. Another
example is that one can consider the large-mass limit, which in [10] is interpreted as a melting process.
Finally, it would be a natural continuation in the spirit of the paper [2], which inspired this work,
to obtain a complete expression for the effective central charge including magnetic field, to see its
evolution toward the Lee-Yang edge singularity in imaginary magnetic field.
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A The ordinary (massless) Kronecker-Eisenstein series

The ordinary (massless) Kronecker-Eisenstein series is
s 27r7,9
. —S
Es(z,7)=m Z |c¢—|—d!2s (73)

where z = x 4 7y and the phase angle 6. 4 = cx — dy for real variables x,y. Explicitly, if we write real
and imaginary parts as z = z1 + iz9 then x = 23 — (71 /72)22 and y = z3/79. The prime on the sum
means to exclude the ¢ = d = 0 term.

A.1 Torus translations

Under the translation z — z 4 1 around one of the cycles of the torus, we have x — 2 = x + 1 and
y — § = y (invariant), so €™ — ¢27i%.b and

Es(z+1,7) = Eg(z,7) . (74)
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Under the translation z — z + 7 around the other cycle of the torus, we have x — 2 = + 71 —
(71/79)T2 = z (invariant) and y — § = y + 1, so again e?™0ab = ¢2™i0ap.

Es(z+7,7) = Es(2,7) . (75)

A.2 Modular transformations

Under the S transformation 7 — —1/7, we have 75 — 79/|7|%. Take z — 2/7, then we have

Es(z/Tv _1/7—) =m" 2 (7_2/’7_‘2)8627ri0~67d = ES(Z, 7') 5 (76)
2 e~ 1) + P

by relabelling ¢ — d, d — —c and identifying & = y, § = —x, for which the marked point is Z = Z + 7y
in the dual (reciprocal) lattice.
Similarly, under the T transformation 7 — 7 + 1, we have

s 27rz0c d

Ey(z,7+1) _F*SZ’ Y +d|28:Es(2,7’)7 (77)

by relabelling d — d — ¢ and identifying & = x — y, § = y, for which Z = Z 4+ 7.

Now, view Es(z,7) for z = 1/2, 2z = 7/2, 2 = 1/2 + 7/2 as the three even spin structures:
topological sectors of quasiperiodicities for the fermions. (For a geometric argument why that is so,
see A.4.) Since S acts on z, we recover the standard statement that the partition function for each
topological sector is not separately modular invariant, i.e. invariant under both S and T. But if we
add the three pieces, and use torus translations z — z + 1 and z — z + 7, we see that the sum of
all three sectors is modular invariant. We are then free to manipulate the pieces separately, with the
understanding that at the end we sum over topological sectors.

A.3 Weyl reflection: s -1 —35

The Kronecker-Eisenstein series has a functional relation much like the reflection formula for the
Riemann zeta function. Under reflection s — 1 — s, the Kronecker-Eisenstein series transforms as

I'1l-s)~

Es(z,7) = I(s)

By s(z T) (78)

where in the reflected E,(z,7), the phase in (73) is moved to a shift z in the denominator:
Ey( Z ™ (79)
@) |z +cr +d|*

In the notation of Siegel’s Tata lectures [33] (reproduced in Appendix E of [6]) the Kronecker-Eisenstein
series is written as a more general function Es(w, z,7) of three variables, whereas here one of them is
always zero: Fg(z,7) = FE4(0,2,7) and Es(z,7) = Es(z,0,7).

For s — 0~ the 1/I'(s) factor in (78) has a zero, which tells us that only a pole at s = 0 of
E1_4(z,7) can contribute. So Ey and E{, (derivative with respect to s) are determined from (78), as

1 ~
E0+5E6+...=(s+2ys2+...)<8+E{eg+...) (80)

where the dots mean higher order in s. This fixes

Ey(z)= -1, Ey(z) = Ey®(z) - 2 (81)
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where the regularized E{eg(z) is

- - 1
E®(z) = li E — : 82
15z = lim (Bulz) - — (52)
It is not easy to extract reliable numerical values for E{eg(z) from a limiting procedure like (82),
since the double sums converge slower and slower for s — 17. This is not a problem for correlation
functions, where also the third argument is nonzero, in which case there is no pole as s — 1.

To put this in context, the reflection s — 1 — s is a special case of a Weyl reflection on a Lie algebra
root lattice, see e.g. [31], section 10.3.

A.4 Kronecker-Eisenstein series as Jacobi theta functions

Kronecker’s second limit formula from 1863 [20] states that for z # 0,

Oi(z,7)|*  2mad
Fi(z)=—In 83
12 o (53)
where zo = Im z and ¥ is a Jacobi theta function. Exponentiating (83), evidently
2
e—El(z) _ e—27rz§/7—2 191(277—) (84)
n(7)

where the factor in absolute value can be recognized as a partition function. The (Z3) Jacobi theta
functions 91, Y2, ¥3, ¥4 can be distinguished by where they have a zero. It then follows from the
geometry in fig. 7 that ¥ and ¥4 are switched by the S modular transformation.

4 T = wo/wy 7::@2/@1:—1/7'
LA ; A I N
z v~ 2 “‘.
id ) K Q ° . '
l switch place
1 o1
z
w1 T

FIGURE 7: The modular transformation that switches the lattice basis vectors (cf. fig. 1) switches
the half-periods z = 1/2 and z = 7/2 (where 95, ¥4 have zeros) but keeps z =0 and z = 1/2+7/2
(where 11, ¥3 have zeros) at the corresponding place in the (dual) torus lattice labelled by 7 .

Now consider the four Zs fermion quasiperiodicities around the two cycles of the torus: even or odd.
Switching the axes, (odd, even) and (even, odd) are exchanged. To represent the partition function
with the complex number z = a7 + 8 for a, 8 = 0,1/2, i.e. one of the four marked points in fig. 7,
means to relate the zeros of Jacobi theta functions to fermion quasiperiodicities 7@, 2™ = 41
(even/odd).

This simple argument is supposed to illustrate that here, the marked point and the quasiperi-
odicities represent the same thing, but in general, it is not obvious a priori: theta functions in the
partition function arise by solving a local differential equation to compute a functional determinant,
whereas global quasiperiodicity is a topological property. An index theorem relates these local and
global properties. For more on this, see e.g. [31] section 13.4.
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A.5 Inversion in p and reflection in s

In [32] it was pointed out that a mass deformation modifies the infrared spectrum (low n in ¢").
Although this is true, there is also a certain duality relation p <+ 1/u. For w # 0, z # 0 (which is
not the main case we consider here, but for the purposes in this section, it is convenient to have fewer
poles), we have the reflection

27
Ey(w,z,7) = e "B (z,w,7) (85)
(actually here the tilde is not needed, but it will be useful below) and the massive Kronecker-Eisenstein
series is given by an inverse Mellin transformation similarly to the w = 0 case that is the main focus
in this paper:
c+i00
Eupwizr)i= [ () () B,z 7)ds (36)
C—100
For brevity, in the following equation z and w are suppressed, but they are still nonzero to avoid

additional poles. The massive Kronecker-Eisenstein series for the inverse mass p~! is:

c+100 c+ioo s —35) ~
e, = [ TR =€ [ TSR s

—100 c—100 F(S + 1)
L 1—c+ioco _ 3
~ [ (r1)~* = D(3) Ez 1 (7)d3 (87)
—1—c—ic0 s+1
where § = —1 —sand £ = ¢ %) Gince we already had & ,(7) in a form like this in (86), the

rewriting (87) gives a duality relation & ,,~1(7) <> &1 ,(7). (Note “relation”: it is in general not an
identity, just a mapping.) We will not explore this further here.

In [34], the high- and low-temperature expansions were compared, and it was argued that the sign
of Dyp in (6) should be negative for T' > T.. The Dy piece does not affect most of the discussion
in this paper, but the methods of [34] may be useful for developing arguments as in this section for

high- vs. low-temperature expansions, viewed as maps of p similar to u — p~' considered here.!®

B Basics of Bessel sums

It is somewhat instructive to compute Bessel sum like that in (33) by elementary means. The Bessel- K
cosine series can be computed using the integral representation DLMF 10.32.6 [18]

cos cos(zy)  [™ ysin(zy)

\/y 1 Jo Vv

where for later purposes, the second version increased the power in the denominator by integration
by parts.
Setting z = 2wnm, we can change variables my = x:

o 3 oo 3
y sin(2rnmy) / x sin(27nz)
Ko(2mrnm) = d =
of ) /0 y27mm(y2 +1)3/2 o 2mn(x? +m?2)3/2

(88)

dx . (89)

Multiplying by cos(2mna) and summing over n we have

(2
Z Ky(2mnm) cos(2mna) Z / 27rz S;I; +7T7Z:2E))3/2 cos(2mna) (90)

n=—0o0 n=—oo

Now combine sin(2mnz) cos(2mna) = 3 (sin(2mn(z — a)) + sin(2rn(z + @)):

T sin(2mn(z — « sin(2mn(z + «
Z / d x2+m2)3/22( ( 27§n ))+ ( 271'(71 )) ' (91)

n=—oo

10T thank Gérard Watts for alerting me to this.
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Each term is no longer a Fourier cosine series, but a sawtooth wave:

> sin(2rny) 11
= - _Zf 92
; 27_‘_n 4 2 raC(y) Y ( )
0 (91) can be written with the sum already performed:
o x 1 1 1 1

where the integrand is plotted in fig. 8. If we split the integral into each sawtooth in fig. 8, each piece
" S lfrac(x — )
@+ QP12

- I\
N

05 1.0 15 —~edwd 25 30

-0.2

FIGURE 8: The integrand of (93), times 2, for m = 1/2, e = 0.2 (black), and the corresponding
Fourier representation (92) truncated to 30 terms (blue). Note that since there is suppression in
x, the sawtooths do not integrate to zero.

is elementary to perform. For example, for a = 0, we find for the interval 0 < x < 1 that

1
x 1 1 1 1
— = (z-2)dr= ——— + — — Zarccoth\/1 + m? 94
/02(x2+m2)3/2 (2 x) T 1 1—|—m2+4m 5 AICCO +m?, (94)

so adding all the sawtooths can be viewed as the origin of the square root sums like in (33) in the main
text, recalling that the standard integral representation in eq. (88) was for the K Bessel function.

For general K,,, also with some power of m in front, we replace the standard integral representation
(88) with for example

my 7520y + 3) /Ood x sin(2rmnx)
X
0

Kl,(27mm) = nV+2 W . (95)

2mn

Leaving integral representations, a more direct way to obtain the square root sums in eq. (33) is
to use Poisson summation, as by Watson in [29], and reproduced and generalized in [30]:

o

M) +2) (4n2)"K,(2) = T()T (v + 4)2% < 2041 T Z
n=1

— (22 + 4nn 2)+)'

This formula is only valid for Re v > 0, but Watson explains how to go to ¥ — —1 by analytic
continuation. We see that for v — —1, indeed the corresponding sum for the K; Bessel function will
involve a sum over terms like V22 + 4n?72, as in eq. (33) from which we began.

The elementary manipulations above fit into a greater context as follows. If we know how an
automorphic form transforms, this produces a summation identity for the Fourier sum. For example,

(96)
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if we Fourier expand the identity Es(m) = Es(1/72) we find an identity that according to [28] was
given by Ramanujan:

O'S 2mn
4[2 K, )o(2mnr) \FZ ns/z K)o (x) (97)
+§(—S)($ (1+s)/2 IE(1+S)/2) - 5(8)(37(178)/2 o m(sfl)/2)

where o is the divisor function and £(s) = m~%/2I'(s/2)((s). For s = 1, when half-integer Bessel
functions reduce to exponential functions, implies the modular transformation of the Dedekind function
[n(7)|, that occurs in the partition function in A.4.

C Conformal perturbation theory

The strategy in conformal perturbation theory is to integrate over correlation functions. Here I exhibit
the two-point case, but it is important to pick a strategy that can be pursued to higher order. We

need to integrate:
1

— 98
PRp— (98)

over disks with |z;| < p. Following [1], we can write 1 = r1e, 2o = 122, and § = 61 — 0y:

1 1 1

. . = . = 99
roeif2 — peiu|dh 201 — (py fro)e®|4h  ¢2P(1 —2(ry/72) cos O + (1r1/r9)2)2h (99)

An elementary way to perform the angle integral is to expand in Gegenbauer (ultraspherical) polyno-
mials CM (z), for example DLMF [18] (18.12.4) or (8.930) in [19] gives the generating function:

(1- 2952 + 22)A Z e (100)

where we have x = cosf and A = 2h. An explicit representation as a finite sum is for example
DLMF [18] (18.5.11):

N _ . O\)@(/\)n—e _9 101
CWY(cos h) ;:% A D) cos((n — 20)0) (101)
where the Pochhammer symbol is
(A +n)
(= =55 - (102)

Integrating eq. (101) over 6 gives zero for odd n, but for even n, it gives nonzero for the “middle”
term ¢ = n/2, which is in fact constant (i.e. independent of 6). Setting n = 2m, we have

27 m 2
/ d0 Z st cos((n — 20)6) (W) (103)

with A = 2h. This is what we need to show eq. (26).
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