
A characteristic mapping method for incompressible hydrodynamics on a
rotating sphere

Seth Taylora,∗, Jean-Christophe Navea

aDepartment of Mathematics and Statistics, McGill University, Montréal, Québec H3A 0B9, Canada

Abstract

We present a semi-Lagrangian characteristic mapping method for the incompressible Euler equations
on a rotating sphere. The numerical method uses a spatio-temporal discretization of the inverse flow map
generated by the Eulerian velocity as a composition of sub-interval flows formed by C1 spherical spline
interpolants. This approximation technique has the capacity of resolving sub-grid scales generated over
time without increasing the spatial resolution of the computational grid. The numerical method is analyzed
and validated using standard test cases yielding third-order accuracy in the supremum norm. Numerical
experiments illustrating the unique resolution properties of the method are performed and demonstrate the
ability to reproduce the forward energy cascade at sub-grid scales by upsampling the numerical solution.
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1. Introduction

Direct numerical simulations of atmospheric fluid dynamics are faced with a challenge of capturing a large
range of temporal and spatial scales of motion. Commonly studied fluid structures such as jets and vortices
can generate multi-scale phenomena rapidly exceeding the minimum wavelength that the discretization can
represent. Many of these difficulties are already manifest in the idealized dynamics governed by the barotropic
vorticity equations, exhibiting key features of turbulent geophysical fluids including the advective non-linearity
and dual energy cascades [1, 2]. Alternative discretization techniques capable of extending the numerical
resolution of the vorticity have been proposed.

On a fixed Eulerian grid-based discretization, the capacity to represent fine scale features is set a priori by
the spatial distribution of grid points. These techniques are thus generally more prone to numerical diffusion
than their Lagrangian counterparts which allow the discretization to deform and concentrate in regions of
high variation. In the context of vortex dynamics on the sphere, examples of Lagrangian methods include
point vortex techniques [3], the contour dynamics and advection techniques [4–6], and particle-panel methods
[7]. The resulting non-uniform distribution of the discretization can however compromise the accuracy
[8] and ease of access to the solution throughout the entire domain. Remeshing techniques have been to
developed to address this problem [9–12], however direct interpolation of the vorticity field back onto a
grid inevitably causes a numerical diffusion of fine features. In [7, 13] an indirect remapping technique was
developed which circumvents this issue by instead interpolating the inverse flow map discretized using a
Lagrangian particle-panel method. The initial vorticity is then sampled at the resulting points, utilizing
the conservation of absolute vorticity to define the remeshed vorticity values. The hybrid semi-Lagrangian
approach of [14] also avoids numerical diffusion by maintaining a contour representation of the vorticity and
grid-based discretization of the associated Eulerian velocity field.

In this work, we present a numerical method capable of representing fine scales globally by building
a spatio-temporal discretization of the inverse flow map. The method is based on the recently developed
characteristic mapping (CM) method techniques for Euler’s equations [15, 16] and transport on the sphere
[17]. We utilize the advection of the vorticity, as in [7], to compute its evolution through composition of the
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initial condition with the inverse map. In this form, the multiple spatial scales present in the vorticity can be
attributed to those generated in the map. This property is leveraged to represent the generation of fine scale
features by approximating the path formed by the inverse map as a composition of short-time sub-interval
flows. The submaps are computed using the semi-Lagrangian gradient-augmented level set (GALS) method
[18], producing a continuously differentiable approximations in a piecewise polynomial spline space through
Hermite interpolation. The resulting spatio-temporal discretization formed by their composition has the
capacity of representing localized oscillatory behaviour of the order dN , where d is the polynomial degree and
N is the number of compositions.

Building upon the CM method techniques developed in [15–17], we present the design and analysis of a
CM method for incompressible hydrodynamics on a rotating sphere. The numerical method and its validation
serve as an essential building block for the application of this approach to other turbulent geophysical flows.
A multi-grid approach is taken to compute the evolution: the inverse map is approximated using the CM
method for linear advection on a spherical triangulation [17], coupled to a spectral method based on spherical
harmonics for the vorticity via sampling. Given the ability to sample the map throughout the domain as a
composition of piecewise polynomial splines, the method possesses a unique lens on the multi-scale structure
of the approximated flow. We discuss and experiment with this property, demonstrating the capacity to
resolve vortex structures with the expected energy cascade scalings by upsampling the solution.

The paper is organized as follows: in section 2 we begin by describing the mathematical formulation of
the CM method and the diffeomorphism approximation technique used for the inverse map first in a general
setting on smooth manifolds. Thereafter, we consider the application of the method to the incompressible
Euler equations on a rotating sphere. We then give a complete description of a proposed numerical method
and its algorithmic implementation in section 3. Error estimates are provided and the conservation properties
are discussed. A numerical verification of the estimates is then given in section 4 where convergence tests
are performed using a number of standard test cases. We conclude with numerical experiments involving a
multiple zonal jet shear instability and a randomly initialized vorticity, both illustrating the unique resolution
properties of the method.

2. Mathematical Framework

The mapping based techniques used by the CM method are geometric in nature. Since the method
discretizes a transformation of the entire domain, the numerical treatment will largely be dependent on the
manifold in question. In an effort to outline the general properties of the method which do not depend on the
domain, we give a description of the mathematical framework on a compact manifold M . We elaborate on
the use of the submap decomposition technique as a semi-discretization in time and the resolution properties
of the method, phrasing some of the arbitrary resolution properties discussed in [19] in terms of a relabelling
symmetry held by the discretization. The section is concluded with the particular equations of motion treated
in this work, describing the coupling between the map and the velocity field for the incompressible Euler
equations on a rotating sphere.

2.1. Evolution of the Inverse Flow Map

We denote by φ[0,t] :M →M as the forward trajectory (Lagrangian) map associated to the Eulerian fluid
velocity field u(t) :M → TM . The Lagrangian velocity ∂tφ[0,t] is related to u(t) via

u = (∂tφ[0,t]) ◦ φ[t,0] , (1)

where the map φ[t,0] is the inverse of the Lagrangian position map, i.e.

φ[t,0] ◦ φ[0,t] = φ[0,t] ◦ φ[t,0] = idM . (2)

The inverse map defines a transformation from the moving frame of reference into the Eulerian frame, yielding
the initial location φ[t,0](x) = α ∈ M of a fluid particle now located at x = φ[0,t](α) ∈ M . Pointwise, the
footpoint α is given by the solution to the ordinary differential equation equation

γ̇(s) = u(γ(s), s) , γ(t) = x , (3)
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for the characteristic curves of u backward in time to s = 0. Differentiating (2) with respect to time we see
that φ[t,0] satisfies an initial value problem of the form

∂tφ[t,0] +Dφ[t,0](u(t)) = 0 , φ[0,0] = idM , (4)

in the Eulerian frame where Dφ[t,0]|x : TxM → TαM is its differential. The transport equation (4) describes
the advection of the fluid particle labels under the velocity (1). The paths formed by the inverse and forward
maps can be decomposed into a composition of sub-interval flows. If we consider partitioning an interval of
time [0, t] into subdivisions [τi, τi+1] ⊂ [0, t], then we have that

φ[τn,0] = φ[τ1,0] ◦ φ[τ2,τ1] · · · ◦ φ[τn,τn−1] , (5)

where each of the maps φ[τi+1,τi] :M →M are defined as the solutions to the initial value problems

∂tφ[t,τi] +Dφ[t,τi](u(t)) = 0 , φ[τi,τi] = idM , (6)

at t = τi+1. Globally, the decomposition of the solution to (4) into the solutions of the manifold-valued
PDEs (6) yields a representation of a complex deformation of M as a composition of simpler and hence more
accurately computed deformation maps.

2.2. Spatio-temporal Discretization

The approximation of the inverse map employed in [15–17] used (5) as a temporal discretization where
each of the sub-interval flows are discretized in an interpolation space Vh ⊂ C1(M,M). Before elaborating
on the semi-Lagrangian evolution strategy used to compute each sub-interval flow and the particular choice
of interpolation space, we first discuss some of the benefits gained from this approximation technique. If we
denote X[t,s] ∈ Vh as the spatial approximation of φ[t,s], then the spatio-temporal discretization of the inverse
map at tn is formed by

X[tn,0] = X[τ1,0] ◦ X[τ2,τ1] ◦ · · · ◦ X[tn,τk] ∈ Vh ◦ Vh · · · ◦ Vh︸ ︷︷ ︸
nc times

. (7)

Rather than storing the map X[tn,0] as an element of Vh, the decomposed maps X[τi+1,τi] ∈ Vh are stored in
memory resulting in an approximation of X[tn,0] in an nc times composed interpolation space (7). The spatial
truncation of scales in the former is statically enforced by Vh, whereas the decomposition (7) dynamically
grows the approximation space as the flow generates finer scale features in the map. The effect of building the
discretization through a composition gives this technique the capability of capturing exponentially increasing
oscillatory behaviour globally without necessitating a spatial refinement of the mesh. Moreover, the degrees
of freedom (d.o.f) in (7) only grow as nc · |Vh| where |Vh| is the d.o.f of the discretization space. This allows
for a global representation of the complex multi-scale deformation generated by a turbulent fluid flow using
only a linear increase in the degrees of freedom and computational resources.

The entire evolution is computed over a sequence of time steps tn, with n = 1, . . . , Nt such that the
{τj} form a sub-sequence. Each submap X[t,τj ] is computed over the ti such that τj ≤ ti < τj+1, where the
remapping time τj+1 can be prescribed a priori or adaptively determined. We then store X[τj+1,τj ] ∈ Vh in
memory, reinitialize X[τj+1,τj+1] = idM , and iterate this computation.If we suppose that M is Euclidean, then
we can observe that the L∞ error for two submaps accumulates as

∥φ[τ2,0] −X[τ2,0]∥∞ ≤ ∥(φ[τ1,0] −X[τ1,0]) ◦ X[τ2,τ1]∥∞ + ∥φ[τ1,0] ◦ φ[τ2,τ1] − φ[τ1,0] ◦ X[τ2,τ1]∥∞
≤ ∥φ[τ1,0] −X[τ1,0]∥∞ + C(τ1)∥φ[τ2,τ1] −X[τ2,τ1]∥∞

(8)

where C(τ1) is the Lipschitz constant of φ[τ1,0]. Since the submaps are all initialized as the identity map,
which can be represented exactly, the error in X[t,τi] is monotonically increasing from zero as t → τi+1.
As a result, the error accrued over the computation of the previous submaps is not carried over into the
computation of the proceeding one. The approximation (7) thus also improves the accuracy of the method at
the expense of increased memory allocation.

3



2.3. Lie Advection

A primary advantage of considering the inverse map as the computational quantity of interest is that
pullback with φ[t,0] provides a solution operator to the homogeneous Lie advection equation

(∂t + Lu)a(t) = 0 , a(0) = a0 , (9)

for a general differential k-form a(t) ∈ Ωk(M) where Lu : Ωk(M)→ Ωk(M) is the Lie derivative along the
velocity field. Equation (9) is a geometric generalization of the transport equation for more general objects
than scalar fields and reduces to the advection equation in the case that a(t) ∈ Ω0(M). The vorticity two-form
in Euler’s equations is a Lie advected quantity, regardless of the dimension. If a(t) satisfies (9), then we have
that

d

dt
φ∗
[0,t]a(t) = φ∗

[0,t](∂ta(t) + Lua(t)) = 0 ⇐⇒ a(t) = φ∗
[t,0]a0 , (10)

where φ∗ : Ωk(M)→ Ωk(M) denotes the pullback with the diffeomorphism φ ∈ Diff(M). Discretizing the
solution operator to (9) rather than the solution, i.e. φ∗

[t,0] rather than a(t), leads to a number of advantageous

properties. Since the action of sampling a(t) through the inverse map can be performed arbitrarily throughout
the domain via interpolation, Lie advected quantities do not necessitate an explicit discretization. Their
spatial discretization can be defined instead through a chosen sampling operation, the discretization X[t,0],
and the definition of a0. Since we do not interpolate the values of the transported quantity directly, this
approach avoids a dissipative-type truncation error common to discretizations on a fixed Eulerian grid yet still
gives ease of access to the solution throughout the entire domain since X[t,0] is a globally-defined interpolant.
The error introduced by the approximation can instead be viewed as an error in location of point evaluation
and is due to the discretization respecting a relabelling symmetry.

2.4. Relabelling Symmetry

If the approximation of the map satisfies Jµ(X[t,0]) > 0, where Jµ(φ) is the Jacobian determinant of
φ :M →M with respect to the volume form µ, then there exists a differentiable inverse to X[t,0] by the inverse
function theorem. As a result, there is a unique map E[t,0] := X[0,t] ◦ φ[t,0] which completely characterizes the
error since

a(t) = E∗[t,0]X
∗
[t,0]a0 , (11)

using the property (φ ◦ η)∗ = η∗φ∗ for diffeomorphisms φ, η : M → M . The numerical approximation is
simply a rearrangement of the initial condition, related to the true solution through the deformation E[t,0]. In
turn, the method possesses a continuous form of conservation. This can be readily observed by considering
the integral form of the Lie advection equation (9), given by the conservation law

d

dt
I(a(t), S(t)) =

d

dt

∫
S(t)

a(t) = 0 (12)

where S(t) = φ[0,t](S) and S ⊆ M is a k-dimensional surface. The conservation property I(a0, S) =
I(X ∗

[t,0]a0,X[0,t](S)) then follows due to relabelling invariance, in the sense that if I(a(t), S(t)) satisfies

(12) then so does I(η∗a(t), η−1(S(t))) for any η ∈ Diff(M) by a change of variables. In the case of the
incompressible hydrodynamics considered here, this property holds for the circulation∮

∂S

u♭
0 =

∮
∂S(t)

u♭(t) =

∫
S(t)

ω(t) (13)

where S ⊂ M is two dimensional and u♭ is the Eulerian velocity one-form. The advective nature of the
error is the result of discretizing the evolution in the space of diffeomorphisms of the domain, respecting the
relabelling symmetry of the conservation law (12).
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Remark 1. Relabelling symmetries of the subgroup of volume-preserving diffeomorphisms Diffµ(M) play an
essential role in the underlying geometry of ideal fluid flow. They are central to the correspondence between
geodesics on Diffµ(M) with respect the L2 metric and solutions of the incompressible Euler equations [20],
Kelvin’s circulation theorem [21], and the Casimir invariants of two-dimensional incompressible hydrodynamics
[22, 23]. Since we discretize in the ambient space Diff(M) as a composition of C1 piecewise polynomial splines
and not directly in Diffµ(M) the numerical method does not preserve the geometric structure of ideal fluid
flow. Contextualizing this discretization in relation to the geometric and structure-preserving techniques such
as [24, 25] is an interesting line of investigation however beyond the scope of this work.

2.5. Equations of motion

The equations of motion which we treat in this work are those of an inviscid, incompressible fluid flow
without forcing on the two-dimensional sphereM = S2. We note that with minor modifications, the techniques
could be applied to other incompressible flows such as the single layer quasi-geostrophic equations. We
consider the sphere as embedded in R3, centred at the origin with radius one, and rotating with constant
angular velocity Ω ∈ R3 with u(t) now being the velocity field in the rotating frame. The incompressibility
constraint div(u) = 0 allows for an expression of the evolution of the velocity field solely in terms of the total
vorticity ω : S2 → R bringing the equations into the form of the barotropic vorticity equations

∂tω + u · ∇ω = 0 , u = −∇⊥∆−1(ω − f) , ω(0) = ω0 , (14)

where ∇⊥ is the counterclockwise rotation by π/2 of the surface gradient ∇ defined by the metric and
f = 2Ω · n is the planetary vorticity. The Lie advection of the vorticity (see Appendix A for the derivation)
provides a coupling between the evolution of the velocity field to the inverse map, allowing us to express the
equations of motion in the form

−∇⊥∆−1(ω0 ◦ φ[t,0] − f) = u(t) , (15a)

∂tφ[t,0] +Dφ[t,0](u(t)) = 0 , (15b)

We compute (15a) using a spectral method based on spherical harmonics [26] and (15b) is computed using
the CM method for linear advection on the sphere devised in [17].

3. Numerical Method

In this section we present the numerical methods used for the solution of the equations of motion (15).
The solution algorithm involves an advect-project-reconstruct strategy coupling (15a) to (15b). The solution
to (15b) is computed using the projection-based characteristic mapping method [17] based on the semi-
Lagrangian Gradient-Augmented Level Set (GALS) method [18]. The reconstruction of the velocity field
from (15a) is performed using spherical harmonics and a projection onto the space of spherical splines. After
a complete description of the solution algorithm, presented in the order of the steps taken in a single iteration,
we provide error estimates serving as theoretical support for the convergence tests given in section 4.

3.1. Spatial Discretization of the Submaps

The application of classical interpolation techniques which rely upon an underlying vector space structure
are complicated by the non-linear nature of the space Ck(M,M). For many manifolds of interest, embedding-
based techniques [27–29] provide a convenient treatment of this manifold-valued data approximation problem.
These techniques discretize φ ∈ Ck(M,M) as an embedding M ↪→ Rm with m > n and constrain the map to
the manifold using a projection onto M . This allows for a straightforward application of well-established
methods for higher-order interpolation of vector-valued functions.We consider a discretization of the submaps
in a C1 piecewise polynomial spline space as it yields a local and efficient evaluation of the composition (7)
while still remaining globally differentiable. These are both desirable properties utilized by the GALS method
[18].

The spatial discretization of the inverse map in a spherical geometry devised in [17] employed a macro-
element spherical spline interpolation technique [30–32]. These techniques provide a powerful computational
tool to perform local Hermite interpolation on the sphere without the need to solve a linear system or
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construct an explicit basis. Let T = {Ti}NT
i=1 be a conforming spherical triangulation of the set of vertices

V = {vi}Nv
i=1 where vi ∈ S2 for all i = 1, . . . , Nv. We denote by Hd as the space of homogeneous trivariate

polynomials and let Bd = Hd|S2 with Bd(Ω) = Bd|Ω such that Ω ⊂ S2. The space of Cr(S2) spherical splines
of degree d on the triangulation are defined by

Sr
d(T ) =

{
s ∈ Cr(S2) : s|τ ∈ Bd(τ) ∀ τ ∈ T

}
. (16)

As interpolation operator for the components of the map, we consider the spherical spline Hermite operator
Ih : C1(S2)→ S1

2(T ) on the Powell-Sabin split of T as detailed in [17, 30, 31]. This interpolation operator is
defined with respect to only function value and gradient information at the vertices of the triangulation [32],
i.e. Ih[f ] = s where s ∈ S1

2(T ) satisfies

s(vi) = f(vi) , De1
i
s(vi) = De1

i
f(vi), De2

i
s(vi) = De2

i
f(vi) , ∀vi ∈ V . (17)

The interpolant is constructed as a quadratic Bernstein-Bézier polynomial in the elements of the split triangles
with coefficients defined by the data (17). The interpolation operator for the embedding-based spatial
discretization of the inverse map on the sphere is given by

Jh : C1(S2,S2)→ P(S1
2(T )3) ⊂ C1(S2,S2) , φ 7→ I(3)h [φ]/∥I(3)h [φ]∥ . (18)

Using an embedding-based approximation, the pointwise error is bound by that of I(3)h by a factor of 2 [29].
The differential of (18) also satisfies a similar error estimate, but is no longer independent of the geometry of
the manifold [33], affecting the pre-asymptotic behaviour of the approximation. Nevertheless, we have that
the asymptotic order of approximation inherits that of the approximation in the ambient Euclidean space. In
the particular case of the quadratic spherical spline interpolation we consider here, we have that

∥φ− Jh[φ]∥C(S2,S2) = O(h3) ,
∥Dφ−DJh[φ]∥2,∞ = O(h2) ,

(19)

where the norms are defined by

∥φ− Jh[φ]∥C(S2,S2) := sup
x∈S2

dS2(φ(x),Jh[φ](x)), ∥Dφ∥2,∞ := sup
x∈S2
∥Dφx∥2 (20)

with ∥ · ∥2 being the matrix 2-norm. Higher-order accuracy in space could be obtained using other macro-
elements techniques [30, 31]. The use of the Powell-Sabin interpolant however only requires data at the
vertices of the triangulation while still ensuring a good degree of accuracy and global differentiability.

3.2. Solution Algorithm

In this section we give a description of the steps taken during one iteration of the method, beginning with
the computation of the sub-interval flow map X[t,τk]. Suppose first that we know u(ti) for 0 ≤ i ≤ n, we
begin by extrapolating the velocity field in time as

ũ(x, t) =

p∑
i=0

ℓi(t)u
n−i(x) (21)

where ℓi(t) are Lagrange basis functions. The number p is chosen such that this extrapolation is of the same
order of approximation in time as the trajectory computations. Using this approximation of the velocity
field, we then perform one step of the backward semi-Lagrangian Gradient-Augmented Level Set (GALS) [18]
method to compute the evolution of the submap. Each iteration updates the submap as

X[tn+1,tn](x) = Φ∆t(ũ,x) , (22a)

X[tn+1,τk](x) = Jh[X[tn,τk] ◦ X[tn+1,tn]](x) , (22b)

where Φ∆t : X(S2×R)×S2 → S2 is a numerical integration scheme used to perform the trajectory computations
and X[τk,τk] is initialized as the identity map.
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3.2.1. Trajectory Computations

The trajectory computations (22a) providing the approximated values of the submap are performed in
Cartesian coordinates using the classical RK4 numerical integration scheme applied to the ordinary differential
equation

γ̇(t) = ũ(γ(t), t) , γ(tn+1) = x , (23)

backwards in time to tn. The intermediate stages of the integration scheme are projected back on the sphere to
evaluate the velocity field. Since the radial distance of the trajectory from the sphere is on the same order as
the local error of the integration scheme, the accuracy of the trajectory computation will not be compromised
through this added projection step [34]. At each iteration the foot points of a four point ϵ-difference stencil
about each vertex are computed, providing approximate interpolation data to the interpolation operator (17)
for the components of the map. These are introduced by pre-computing the positions of four stencil points
εi±,± ∈ R3 at each vertex vi as ε

i
±,± = π−1

vi (vi ± ϵγ1
vi ± ϵγ

2
vi ,vi ± ϵγ

2
vi ± ϵγ

1
vi) where π

−1
vi is the inverse of the

tangent plane projection at vi and {γ1
vi ,γ

2
vi} form a local orthonormal basis for the tangent plane at the

vertex. Applying the numerical integration scheme from these initial positions, we obtain the points

X[tn+1,tn](ε
i
±,±) := x

n+1,i
±,± = Φ∆t(ũ, ε

i
±,±) ∈ R3 , ∀vi ∈ V. (24)

3.2.2. Approximated Hermite Data

The interpolation step (22b) is facilitated by forming an approximation of the interpolation information
(17) in each component of the map. After integrating for the footpoints (24) we evaluate the map from the
previous location at these points and approximate the Hermite data using the following ϵ-finite-difference
stencils

X[tn+1,τk](vi) ≈
1

4

(
X[tn,τk](x

n+1,i
−,− ) + X[tn,τk](x

n+1,i
+,− ) + X[tn,τk](x

n+1,i
−,+ ) + X[tn,τk](x

n+1,i
+,+ )

)
,

γ1
vi · ∇X[tn+1,τk](vi) ≈

1

4ϵ

(
X[tn,τk](x

n+1,i
+,− )−X[tn,τk](x

n+1,i
−,− ) + X[tn,τk](x

n+1,i
+,+ )−X[tn,τk](x

n+1,i
−,+ )

)
,

γ2
vi · ∇X[tn+1,τk](vi) ≈

1

4ϵ

(
X[tn,τk](x

n+1,i
−,+ )−X[tn,τk](x

n+1,i
−,− ) + X[tn,τk](x

n+1,i
+,+ )−X[tn,τk](x

n+1,i
+,− )

)
.

(25)

Choosing ε sufficiently small, these approximations will not compromise the local truncation error of the
interpolant [17]. We refer to [18, 19] for further details on the GALS method and [17] for its implementation
for spherical splines. Finally, a new interpolant is formed as in (22b) by projecting back onto the space
P(S1

2(TPS)
3) using Jh, defining the next submap.

3.2.3. Velocity Field Reconstruction

The remaining part of the solution strategy involves a reconstruction of the velocity field at tn+1 through
a sampling of ω0 ◦ X[tn+1,0]. The spherical triangulation T used for the discretization of the inverse flow map
does not constrain the discretization of the velocity field. The solution strategy therefore involves a two-grid
approach separating the dynamics driving the evolution of the map and the deformation of the domain which
it induces. This consequently gives the reconstruction step flexibility for the way in which the Poisson solve
is performed. In this work we consider a reconstruction based on a spherical harmonic expansion of the
vorticity.

The spatial discretization of the velocity field is formed by a spherical harmonic expansion of the stream
function. An exact band-limited spherical harmonic transform was devised by McEwen and Wiaux [35] based
on a sampling at the grid points

(λq, θp) =

(
2πq

2L− 1
,
πp

L− 1

)
(26)

where q = 0, 1, . . . , 2L − 2 and p = 0, 1, . . . , L − 1 and L is the band-limit of the spherical harmonic
representation. These points define the dynamics grid UL. Using the current submap X[t,τk] and the submaps
X[τk,τk−1] . . .X[τ1,0] stored in memory, we reconstruct the velocity field by first transporting the absolute
vorticity scalar field on these points as

ζn+1(x) = (ζ0 + f) ◦ X[tn+1,0](x)− f(x) , (27)

7



where X[tn+1,0] is formed as in (7). Based on these samples, we expand the vorticity in a spherical harmonic
basis using the transform devised in [35]. Since the spherical harmonics are eigenfunctions of the spherical
Laplacian with eigenvalues −ℓ(ℓ+ 1) we obtain the stream function as

ψn+1 =

L−1∑
ℓ=1

ℓ∑
m=−ℓ

ζ̂n+1
ℓ,m

ℓ(ℓ+ 1)
Y m
ℓ , (28)

where the coefficients ζ̂n+1
ℓ,m are the spherical harmonic coefficients of the relative vorticity (27). We then

differentiate the basis functions directly to recover the velocity field using

u = −∇⊥ψ = ∇ψ × x = −i(Lx +Ly +Lz)ψ , (29)

where the angular momentum operators act on the spherical harmonic basis functions as defined in Appendix B.
This representation of the velocity field does not suffer from any coordinate singularities induced by the
spherical coordinate representation of the stream function, since the operators (B.5) are well-defined on
spherical harmonics. The construction can be shown to be equivalent to an expansion of the velocity field in
terms of the divergence-free vector spherical harmonic [26].

The stream function (28) is then supplied to (29), yielding a vectorial spherical harmonic representation
of the velocity field. We then project the components of the velocity field onto S1

2(T u
PS)

3 where T u is a
spherical triangulation of the grid points (26). Altogether, the reconstruction of the velocity field at time tn
can be written as

un+1 = I(3)h

[
−iLψn+1

]
, (30)

where ψn+1 is given by (28). The derivative values for the components of the velocity field needed to perform
the projection (30) onto S1

2(T u
PS)

3 are computed from the spherical harmonic coefficients using a rotation of
the angular momentum operator.

Remark 2. Note that the divergence-free constraint on the velocity is not enforced away from the vertices.
This condition could be enforced directly by first interpolating the stream function and then taking the
rotated gradient, although this would yield a C0 approximation of the velocity field. We have chosen to only
approximate the divergence-free condition in order to retain the C1 regularity.

3.2.4. Summary of Implementation

The implementation of the solution algorithm incorporating the submap decomposition can be written in
the following pseudo-code format 3.2.4. We refer to CM-Submap as the application of a semi-Lagrangian
transport step as used in [17] and the choice of when to perform a submap decomposition step is written
generically as some Boolean criterion C : A→ {0, 1} over a parameter space A. In [15, 16] this criterion was
provided by an error tolerance on the Jacobian determinant of the submap, penalizing the deviation of the
approximation from the volume-preserving diffeomorphism group. Here, we opt for a statically enforced
remapping criterion, specifying the number of steps before remapping a priori. The possibilities for adaptivity
with the technique of submap decomposition will be investigated in our future work.

3.3. Error Estimates

In this section we provide error estimates for the method including an analysis on the effect of the
decomposition (7) for a fixed remapping strategy. These serve as theoretical justification for the accuracy
observed in the forthcoming convergence tests. To this end, we first consider the approximation of the inverse
map resulting from a modified equation for the velocity field ũ defined by (21). This defines an evolution
equation for the map φ̃[t,0] computed as the solution to the following initial value problem

∂tφ̃[t,0] +Dφ̃[t,0](ũ(t)) = 0 ,

φ̃[0,0] = idS2 .
(31)

Let tn = n∆t be time steps forming an uniform partition of [0, T ] and suppose we use a fixed remapping
strategy, where a submap is computed and stored at each τk = k∆τ where ∆τ = m∆t for some whole number

8



Algorithm 1 Evolution Algorithm

Input: Initial vorticity ω0, final time T , time step ∆t, remapping criterion C.
Output: List [X[τ1,0],X[τ2,τ1], . . .X[T,τn]]
Initialization: submaps = [ ], (U = [u0,u

∆t,u2∆t],X[2∆t,0]), t← 2∆t.

1: while t < T do
2: ũ← [ut−2∆t,ut−∆t,ut] ▷ using (21)
3: X[t+∆t,ti] ← CM-Submap(ũ, X[t,ti]) ▷ transport inverse map
4: ut+∆t = I3h[L∆−1(ω0 ◦ X[t+∆t,0] − f)] ▷ using (7) and (30)
5: U = [ut−∆t,ut,ut+∆t] ▷ update velocity field list
6: t← t+∆t
7: if C(A) = 1 then
8: submaps ← submaps ∪ X[t,ti], ti ← t, X[ti,ti] ← idM
9: end if

10: end while

m > 1. We suppress the dependence on ũ and let Φ∆t : S2×R→ S2 be the map approximating the departure
points from the modified velocity field over one time step, which lets us write X[t1,0] = Jh[Φ∆t(t1)]. We can
decompose the error over one subinterval [τk, tn] as

∥φ̃[tn,τk] −X[tn,τk]∥∞ = ∥φ̃[tn,τk] − Jh[(X[tn−1,τk] − φ̃[tn−1,τk]) ◦ Φ∆t(tn)]− Jh[φ̃[tn−1,τk] ◦ Φ∆t(tn)]∥∞
≤ ∥φ̃[tn,τk] − Jh[φ̃[tn−1,τk] ◦ Φ∆t(tn)]∥∞ + ∥Jh∥∥X[tn−1,τk] − φ[tn−1,τk]∥∞

(32)

The first term can then be decomposed further as

∥φ̃[tn,τk] − Jh[φ̃[tn−1,τk] ◦ Φ∆t(tn)]∥∞ ≤ ∥φ̃[tn−1,τk] ◦ Φ∆t(tn)− Jh[φ̃[tn−1,τk] ◦ Φ∆t(tn)]∥∞
+ Cn−1,k∥φ̃[tn,tn−1] − Φ∆t(tn)∥∞ .

(33)

where Cn−1,k is the Lipschitz constant of φ̃[tn−1,τk]. Using a s-stage RK integration scheme for the departure
point computations the second term in (33) is O(∆ts+1) and using quadratic spherical spline interpolation the
first term is O(C(tn)(h3 +∆th2)) [17] with the constant C(tn) ∼ ∥φ̃[tn,τk]∥3,∞ where ∥·∥3,∞ is the Sobolev
W 3,∞ norm [30]. The global error can be decomposed as

∥φ̃[tn,0] −X[tn,0]∥∞ = ∥φ̃[tn,0] −X[τ1,0] ◦ X[τ2,τ1] · · · · ◦ X[tn,τk]∥∞
≤ ∥(φ̃[tk,0] −X[τk,0]) ◦ X[tn,τk]∥∞ + Ck∥φ̃[tn,τk] −X[tn,τk]∥∞
≤ ∥φ̃[τk,0] −X[τk,0]∥∞ + Ck∥φ̃[tn,τk] −X[tn,τk]∥∞ .

(34)

Letting tn = τk+1 and considering the errors accrued over each sub-interval [τk, τk+1] we get the following
bound

∥φ̃[tn,0] −X[tn,0]∥∞ ≤
k∑

i=1

Ci∥φ̃[τi+1,τi] −X[τi+1,τi]∥∞

≲ tn

(
max

i=1,...,k
∥φ̃[τi,τi−1]∥3,∞ · (h

2 + h3/∆t) + ∆ts
)
,

(35)

Since the φ̃[τk+1,τk] start from the identity map at τk we can say that ∥φ̃[τk+1,τk]∥3,∞ = O(∆τ) which gives
an extra parameter to h and ∆t to control the error of the approximation.

Incorporating the approximation of the velocity field, we introduce a smoothing error due to an undersam-
pling in (27) for the implementation of the Biot-Savart law [15]. Let QL : L2(S2)→ L2(S2) be the projection
operator onto the first ℓ ≤ L spherical harmonics. Before the projection onto the space of spherical splines
we have that ũ = QL[ũ] for L larger than the band-limit defining the sampling grid (26). This allows us to
split the error introduced during the reconstruction step as follows

∥u− ũ∥∞ ≤ ∥QL[u]− ũ∥∞ + C∥(I −QL)[u]∥Hs , (36)

9



due to the Sobolev embedding Hs ↪→ C0 for s > 1 since we are working in two-dimensions. We can control the
first term in (36) with the approximation of the map, whereas we must assume that L is taken large enough
such that the contribution of the second term is negligible in comparison. This assumes that the analytic
velocity field has sufficient decay in its energy spectrum and is justifiable for two-dimensional turbulence [36].
Assuming that we have taken L large enough such that this is the case, the global accuracy of the numerical
method is described by the following theorem.

Theorem 1. Let ũ be defined by (21) using a pth order Lagrange interpolant in time. Using an s-stage RK
integration scheme for the departure point computations with time steps of size ∆t and using remapping steps
of size ∆τ , the global error for the inverse map to final integration time T is given by

∥X[T,0] − φ[T,0]∥C0,α = O(T∆ts + T∆τ min(h3∆t−1, h2) + T∆tp) . (37)

The proof is included in Appendix C for the sake of completeness and follows from standard estimates for
semi-Lagrangian schemes and elliptic regularity. The accuracy of the method is assessed using the supremum
norm which is expected to have the same order of accuracy as (37) taking α arbitrarily small. Note then that
the error in the map (37) bounds the vorticity error in the supremum norm with a multiplicative factor given
by the Lipschitz constant of the vorticity initial condition.

In our numerical results we also assess the convergence of the method with respect to the energy and
enstrophy. We note however that, due to the unique geometric structure of two-dimensional incompressible
fluid flow, there exists an infinite number of other conserved quantities [37]. In particular, by a change of
variables with the volume-preserving map φ[t,0], for any measurable function h : R→ R the integrals

Ih[ω(t)] =

∫
S2
h(ω(t))µ , (38)

are constant in time. If h is Lipschitz continuous, then it can be shown that the conservation error for the
invariants (38) satisfies the following bound

|Ih[ω̃]− Ih[ω0]| ≤ Cmin{∥Jµ(X[t,0])− 1∥∞, ∥X[t,0] − φ[t,0]∥∞} , (39)

and is thus controlled by the error in the map. This holds similarly for the conservation of energy, which we
do not expect to be conserved numerically since time-reversibility is not enforced. However, the energy is still
controlled by the error for the inverse flow map since

|∥ũ(t)∥2L2 − ∥u(0)∥2L2 | = |(ω̃(t),∆−1ω̃(t))− (ω(t),∆−1ω(t))|
≤ ∥∆−1ω̃(t)∥L2∥ω̃(t)− ω(t)∥L2 + ∥ω(t)∥L2∥∆−1(ω(t)− ω̃(t))∥L2

≤ C∥X[t,0] − φ[t,0]∥C0 .

(40)

4. Numerical Verification

In this section we provide a verification of our implementation using convergence tests of the method.
The error estimates given in section 3.3 are affirmed using test cases defined by initial vorticities consisting of
a Rossby-Haurwitz wave, a Gaussian vortex, and a steady zonal jet.

4.1. Implementation Details

The numerical tests were implemented in Python and run on a Linux workstation with an Intel core
i5-8250U (8 logical processors) with 16 GB of RAM. The spherical triangulations were constructed using
the Python package Stripy [38] which provides a wrapper to the package STRIPACK [39]. The point in
triangle querying was performed using the Python binding to the lib-igl package [40]. The spherical harmonic
transformations were performed using the Python binding to the SSHT package [35]. The inverse map
is discretized using an icosahedral discretization of the sphere (see table 1). We note however that the
formulation and implementation are essentially agnostic to the particular spherical triangulation of the
backward characteristic map.
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k 0 1 2 3 4 5 6 7 8

Nv 12 42 162 642 2562 10242 40062 163842 655362
N∆ 20 80 320 1280 5120 20480 81920 327680 1310720
h 1.10715 0.62832 0.32637 0.16483 0.08263 0.04134 0.02067 0.01034 0.00517

Table 1: Number of vertices (Nv), simplices (N∆), and maximum edge length h for the kth refinement of the icosahedral
discretization of the sphere.

The computational cost of the algorithm can be broken down into three primary components: 1) the
transport of the map, 2) the evolution of the vorticity, and 3) the computation of the velocity field. Since
we use an explicit time-stepping, the transport of the submap is efficient with the dominant contribution
to the computational time at each iteration attributed to the evaluation of X[tn,τk] at the footpoints of the
ϵ-difference stencils. As this requires the point in triangle querying it results in a O(Nv) operation without
any additional data structures on the triangulation. The evolution of the vorticity field at N points therefore
requires an O(Nc ·N) operation. In turn, the computation of the velocity field requires an O(Nc ·L2) operation
in the sampling of the vorticity along with a O(L3) operation for the spherical harmonic transform using the
SSHT package [35] and is the dominant contribution to the computational time. Overall, the computational
cost associated to the algorithm is of the order O(Nt(NcL

2 + L3 +Nv)).
Our implementation was written in a high-level language and the tests were performed on a laptop

computer for the purpose of verifying convergence of the method. A performance optimization of the
algorithm is beyond the scope of this work, however run times are modest for our purposes. Wall-clock
times for the last two data points in (1) were respectively measured to be approximately 17 and 145 minutes
without remapping and 24 and 308 minutes with remapping. Computational time associated to each of the
operations involved in the implementation could be reduced by incorporating tree data structures on the
triangulation, parallelization evaluating the map and for the foot point calculations, along with a lower-level
implementation. A performance optimization was devised by utilizing the uniformity of the velocity field grid
for a faster containing triangle querying strategy during the foot point calculations. The spherical triangulation
resulting from the vertices (26) is separated into cells Ci,j := {(λi, θj), (λi+1, θj), (λi, θj+1), (λi+1, θj+1)} where
λi = λi+1 if j = 0, L. The Ci,j are then split from (λi, θj) to (λi+1, θj+1) along a great circle arc, yielding
two triangles within each cell. We omit the cells with a vertex at either pole and an array G of size [L, 2L, 2]
is then defined such that G[j, i, 0 (1)] yields the list of the vertices of the bottom (top) triangle within Ci,j .
Let (λq, θq) be a query point on this triangulated mesh for the velocity field. The row index of the containing
triangle is given simply by iq = ⌊λq/∆x⌋ and a preliminary column index is given by jq = ⌊θq/∆x⌋ where
∆x = 2π/L. The column index does not in general give the exact containing triangle since the great circle arcs
connecting adjacent vertices of different longitude do not transform into straight lines in the (λ, θ) parametric
space. The containing triangle can however be determined using the position within the cell Ciq,jq and the
sign of the distance from the plane containing the nearest great circle arc along the diagonal or along the two
top edges of the cell.

4.2. Error Norms

Based on the error estimates provided in section 3.3, we assess the accuracy of the method using an
approximation of the following error norms:

Vorticity error :=
∥ω0 ◦ X[T,0] − ω(·, T )∥L∞(S2)

∥ω(·, T )∥L∞(S2)
,

Enstrophy conservation error :=
∥ω0 ◦ X[T,0]∥2L2(S2) − ∥ω0∥2L2(S2)

∥ω0∥2L2(S2)
,

Energy conservation error :=
∥un∥2L2(S2) − ∥u0∥2L2(S2)

∥u0∥2L2(S2)
.

(41)

The sup-norm errors are approximated using a sampling of the grid points (26) for a band-limit of L = 1000.
The L2(S2) norm is approximated using the spherical harmonic coefficients of the vorticity. The kinetic
energy at time t = tn is approximated as
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∥un∥2L2(S2) = (∇⊥ψn,∇⊥ψn)S2 = (ωn, ψn)S2 =

L∑
ℓ=1

ℓ∑
m=−ℓ

|ω̂n
ℓ,m|2

ℓ(ℓ+ 1)
. (42)

We note that it is common to assess the accuracy of the method in the ℓ∞ and ℓ2 norms. Here we have chosen
a finer approximation of the continuous error measures in an effort to emphasize the functional definition of
the inverse map and the vorticity.

4.3. Convergence Tests

We demonstrate the accuracy of the method, described by (37), by refining T/Nt = ∆t proportionally to
h and L. In particular, we consider Nt = 2k+2 and L = 2k+3 where k is the number of refinements of the
icosahedral discretization ranging from 1-6. A value of ε = 10−5 is chosen for the ε-difference stencils in
each test which effectively limits the machine precision to approximately 10−12. We perform the convergence
tests both with and without submap decomposition. The time steps used for remapping were taken to be
∆τ = 10∆t. The results are in agreement with (37) where we observe global second-order accuracy for the
test without submap decomposition and third-order accuracy with submap decomposition.

The first convergence test we perform consists of a Rossby-Haurwitz (RH) wave. These waves form
exact time-dependent solutions to the Euler equations and play an important role in global atmospheric
circulation [1, 41]. The RH wave is comprised of a stream function and vorticity each proportional to a
spherical harmonic Y m

ℓ rotating with constant phase speed ν = −2Ω/ℓ(ℓ+1) [41, 42]. The particular relative
vorticity we use is given by

ζ(λ, θ, t) = 30 cos(θ) sin4(θ) cos(4(λ− νt)). (43)

In addition to the vorticity (43) we consider a non-rotating form of the RH wave in a rotated coordinate
system where (λ, θ) are measured from an axes formed by applying a rotation by π/3 about the y-axis to the
standard coordinate axes. This serves to demonstrate that the method suffers no constraints due to a choice
of coordinate system since all computations are performed in Cartesian coordinates.

The third convergence test consists of an initial relative vorticity distribution given by a Gaussian vortex
of the form

ζ0(x) = 4π exp(−16∥x− xc∥2) , (44)

restricted to the sphere, where the position of the centre of the vortex is taken to be xc = (1, 0, 0). We
include only the conservation errors for this test since an analytic solution is not known.

We lastly consider an initial vorticity distribution given by a single zonal jet, forming an unstable steady
solution to Euler’s equations [43, 44]. We ran the test using a similar initial vorticity distribution as described
in [13], given by

u(λ, θ) =
π

2
exp

(
−2β2(1− sin(θ + θc))

)
,

ζ
(zj)
0 (λ, θ) = sin(θ)(2β2(cos(θc) cos(θ)− sin(θc) sin(θ)) + cos(θ))u(λ, θ) ,

(45)

where θc is the centerline of the jet. The parameters are chosen to be β = 12 and θc = π/4 with a final
integration time of T = 0.5.

The results of the convergence tests are given in figure 1. We observe that in each test case without
submap decomposition the convergence is globally second order accurate, and with submap decomposition
we observe third order accuracy, affirming the theoretical predictions given in (3.3).

5. Numerical Experiments

In this section we present numerical experiments designed to illustrate the resolution properties of the
method. We perform simulations for initial vorticities which quickly transition into a turbulent flow with a
multi-scale structure and measure their turbulent energy spectra at sub-grid scales. It is beyond the scope of
this article to present an investigation through DNS with the proposed method for the late-time behaviour
of the energy spectrum for incompressible, inviscid turbulence on the sphere. However, this problem has a
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Figure 1: Convergence tests defined by the initial conditions (43), for the non-rotating (43) in a rotated coordinate system
(middle-left), Gaussian vortex (44), and the zonal jet test case (45) from left to right. The top row consists of the tests performed
without any submap decomposition and the tests in the bottom row used submap decomposition every 10 time steps.

noteworthy history and there remain a number of unresolved problems related to the organization of the
non-linear evolution [45, 46]. In 1953, Fjørtoft recognized that the conservation of energy and enstrophy
for two-dimensional incompressible turbulence on the sphere indicated a simultaneous cascade of enstrophy
to small scales and energy to large scales [2]. This theory was later brought into a quantitative form by
Kraichnan, Leith, and Batchelor (KLB) [47–49]. The KLB theory of the dual cascade in the energy spectrum
predicts a direct cascade proportional to k−3 at small scales before the dissipative effects of viscosity and a
k−5/3 inverse cascade forming at the large scales [36]. This prediction was made for the viscous case with
an injection of energy, required to maintain a balance with dissipation. In the unforced and inviscid case, a
mathematical description for the late-time behaviour of the energy spectrum is an open problem [45]. An
interesting recent work of Modin and Viviani [50] provides insight into the mechanisms of a canonical scale
separation for two-dimensional turbulence using the finite-mode approximation of Euler’s equations on the
sphere.

The particular numerical experiments considered in this section consist of a randomly initialized vorticity
distribution and a multiple perturbed zonal jet initial condition. We provide evidence of the ability to resolve
scales in the vorticity that are beyond the computational grids defined by L and observe the expected direct
energy cascade at scales up to ℓ = 4096. A heuristic explanation for the sub-grid resolution observed in these
experiments is given in the Appendix D.

5.1. Multiple Perturbed Zonal Jets

The modeling and simulation of the instability of zonal flows plays an important role in the understanding
of stratospheric dynamics and the mechanisms behind sudden stratospheric warming events [51]. Numerical
studies of these events necessitate the resolution of a large range of scales due to the production of large scale
planetary waves along with the formation of vortex filaments, from which secondary vortices can form [13, 51].
In an effort to demonstrate the capabilities of the method to simulate the complex vortex dynamics of a
perturbed zonal jet, albeit in the idealized form of the rotating barotropic vorticity equations, we consider an
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Figure 2: Initial Conditions for numerical experiments. Left: Perturbed multiple zonal jet initial condition. Right: Randomly
initialized vorticity initial condition.

initial condition formed by the sum of two zonal jets (45). The perturbed centrelines of the jets are taken
to be θc1 = π/4 + 0.01 cos(12λ) and θc2 = 3π/8 + 0.01 cos(12λ). As parameters of the simulation we used
T = 10, ∆t = 1/1000, the vorticity was evolved using a sampling defined by L = 256, and the k = 5 level of
refinement for the icosahedral discretization of the submaps. The simulation was performed with a submap
decomposition every 10 time steps.

Figure 3: Left: Evolution of the energy spectrum of the multiple zonal jet vorticity distribution with time increasing with the
darkness of the lines. Middle-left: Mean and standard deviation of energy spectrum for t = 5 to t = 10. Middle-right: Change in
energy in the first ℓ = 1000 modes over time. Right: Energy spectrum of absolute vorticity at t = 10 sampled up to band-limit
L = 4096. Dashed black lines are proportional to ℓ−3.

The formation of distinct large scale vortices and connecting filaments is clearly observed after t = T/2.
There is a subsequent strong mixing of all of these structures for the remainder of the simulation. Larger
vortex structures begin to emerge and vortex filaments persist throughout the evolution resulting in a complex
final vorticity distribution with a large range of spatial scales. We demonstrate the ability to retain vortex
structures much finer than the computational grid in figure 4 with a zoom of the vorticity at the focal point
(λ, θ) = (3.22055, 1.1963) up to a window width of 2−12. The capacity of the method to capture sub-grid
scale oscillations is observed at the final window width and could be refined further beyond what is depicted.

The energy spectrum and conservation properties of the simulation are shown in figure 3. In the middle-
right panel we have plotted the normalized error in the energy in the first ℓ ≤ 1000 frequencies over time
and observe the energy to decrease indicating a downscale transfer of energy. The cascade of energy towards
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Figure 4: Evolution of the rotating multiple zonal jet absolute vorticity from t = T/10 to t = 9T/10 in increments of T/10.

Figure 5: Zoom into vortex structures up to a width of 2−12 of 4 at t = 10.
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small scales can be seen over the course of the evolution and a distinct ℓ−3 scaling forms in the energy
spectrum over the last half of the simulation. This scaling is shown to carry down towards wave numbers of
ℓ = 4096. The inverse cascade scaling of ℓ−5/3 is however not observed and instead the ℓ−3 scaling becomes
more prominent at lower wavelengths.

5.2. Randomly Initialized Vorticity

We performed a simulation for a vorticity distribution initialized as a sum of the first ℓ = 20 with all m
modes filled such that the vorticity was real and with amplitudes sampled from a uniform distribution over
the interval [−5, 5]. As parameters of the simulation we used T = 4, ∆t = 1/1000, a band-limit L = 256 for
the velocity field and the k = 6 level of refinement for the icosahedral discretization of the submaps. The
simulation is performed with a fixed remapping strategy over every 20 time steps. We observe the ability to
retain scales beyond the coarser computational grid of the velocity field by computing the energy spectrum
up to a band-limit of L = 1000 in figure 7. The expected energy cascade of E(ℓ, t) ∼ ℓ−3 is observed as t→ T
and the inverse cascade scaling of ℓ−5/3 emerges in intermediate times. As time progresses the range where
this inverse cascade formed shrinks and is replaced by a scaling closer to ℓ−3. The energy behaves in a more
oscillatory manner over time than for the multiple zonal jet simulation, indicating both a downscale and
upscale transfer of energy in the first 1000 modes.

Figure 6: Upsampling of the solution at t = T for the randomly initialized vorticity distribution test case. A sampling on the grid
points (26) was performed for increasing band-limit L and a distinct sharpening of the solution is observed with the anticipated
energy cascade as indicated of the rightmost panel of figure 7.
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Figure 7: Left: Evolution of the energy spectrum of the randomly initialized vorticity with time increasing with the darkness of
the lines. Middle-left: Mean and standard deviation of energy spectrum for t = 400∆t to t = T . Middle-right: Change in energy
in the first ℓ = 1000 modes over time. Right: Energy spectrum of absolute vorticity at t = 4 sampled up to band-limit L = 4096.
Dashed black lines are proportional to ℓ−3 and the dashed red line is proportional to ℓ−5/3.

6. Conclusion and Outlook

A semi-Lagrangian characteristic mapping method for incompressible hydrodynamics on a rotating sphere
was presented. The method utilizes a spatio-temporal discretization of the inverse map generated by the
Eulerian velocity field as a composition of sub-interval flows and the vorticity is evolved through pullback
of the initial condition with this map. Each submap is discretized using an embedding-based approach for
manifold-valued data approximation with piecewise spherical spline interpolation, extending the techniques
developed in [17] to a non-linear advective setting. The method was described in detail and error estimates
were provided and validated using a number of standard test cases in section 4, indicating global third-order
accuracy in the supremum norm. Numerical experiments illustrating the unique resolution properties gained
through the spatio-temporal discretization of the inverse map were performed in section 5. The ability
to reproduce the expected turbulent energy cascades and resolve vortex structures at sub-grid scales was
demonstrated.

We have differed a number of lines of investigation which can build on the techniques outlined here to
future work. We are seeking to better understand and provide more rigorous mathematical justification for
the resolution properties of the method. An analysis of the separation of the scales driving the evolution,
filtered by the sampling with the vorticity, and the scales represented through the composition could elucidate
an optimal range for the parameters of the method such as the spatial discretization of the map, the filter
parameter L, and the number of compositions. Furthermore, the presented discretization of the inverse map
can be applied to a broader class of equations on the diffeomorphism group and extended to other manifolds
using modifications of the embedding-based approach. Additionally, since we have formulated the method
on arbitrary triangulations it is directly amenable to the techniques of h- and r-adaptivity. Investigating
the approximation capabilities of the submap decomposition using adaptive mesh refinement techniques is
warranted.

Beyond these numerical investigations, developing the CM method techniques to incorporate the effects
of compressiblity for the shallow-water equations, along with other physical effects of advected parameters
by the fluid are the subject of our current research. Since the method relies upon the transport structure
of Euler’s equations, it is not directly applicable to flows with diffusive processes such as the Navier-Stokes
equations. Incorporating the effects of viscosity along with sub-grid scale thermodynamic processes will be
important extensions of the method. Given the capability of representing a large range of spatial scales
through the use of the spatio-temporal discretization (7), we believe that computational and theoretical
advancements of the method presented here will yield useful tools for the simulation and study of geophysical
fluid dynamics.
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Lyon and S.T. would like to thank Tim Whittaker of UQAM for helpful discussions.

Appendix A. Lie advection of vorticity

The Lie advection of the vorticity can be observed using the language of differential forms. Denote
(·)♭ : X(S2)→ Ω1(S2) as the flat operator, mapping vector fields into differential one-forms via the metric and
let ⋆ : Ωk(S2)→ Ω2−k(S2) be the Hodge star operator. The planetary vorticity can be defined with respect

to a potential R(x) ∈ R3 as the two-form dR♭ = 2 ⋆Ω♭ ∈ Ω2(R3) restricted to the sphere. The covariant
form of the incompressible Euler equations on a rotating sphere are

∂tu
♭ + Luu

♭ + iu(dR
♭) = −d(p− |u|2/2) , div(u)µ = Luµ = 0, (A.1)

where p : S2 → R is the pressure and iu is the interior product with u, and µ is the Riemannian volume form.
The absolute vorticity is given by ω = ζ + dR♭ where ζ = du♭ is the relative vorticity. Note then that since
M = S2 for every σ ∈ Ω2(S2) there is an associated σ ∈ Ω0(S2) such that ⋆σ = σ. Expressing ω = ⋆ω = ωµ,
taking the exterior derivative of (A.1), using the incompressibility constraint, along with Cartan’s formula,
we see that

(∂t + Lu)ω = (∂tω + Luω)µ = 0 =⇒ ω(t) = ω0 ◦ φ[t,0] . (A.2)

The velocity field is then recovered from the stream function ψ ∈ Ω2(S2) via u♭ = δψ where δ = − ⋆ d⋆ is the
codifferential operator on Ω2(S2). In vector form we have that u = (δψ)♯ = −(⋆d ⋆ ⋆ψ)♯ = (⋆dψ)♯ = −∇⊥ψ.
The relative scalar field vorticity ζ and scalar stream function ψ are then related by the Poisson equation

ζ = ⋆−1 ⋆ ζ = − ⋆ ζ = − ⋆ (dδψ) = ⋆d(⋆d ⋆ ⋆ψ) = ∆ψ , (A.3)

where ∆ = − ⋆ d(⋆d) is the Hodge Laplacian on scalar functions. Note that the Hodge Laplacian defining
the Poisson equation (A.3) differs from the surface Laplacian by a factor of −1: defining ∆g = div(∇g) with
respect to the metric and using div(u) = −δu♭, we see that ∆gf = div(df)♯ = −δdf = ⋆d ⋆ df for a scalar
function f . The solution of (A.3) is determined up to a constant and uniqueness is recovered by imposing a
zero mean condition on the stream function.

Appendix B. Spherical harmonics and the angular momentum operator

The space of spherical harmonics of degree ℓ, denoted Yℓ, is formed by the restriction of the space of
harmonic homogeneous trivariate polynomials, that is

Yℓ = {p|S2 : p ∈ Hℓ , ∆p = 0} , (B.1)

where ∆ is the Laplacian in Euclidean space. In spherical coordinates (λ, θ) ∈ [0, 2π)× [0, π], we can write
the basis functions for Yℓ, normalized in L2(S2), as

Y m
ℓ (λ, θ) = (−1)m

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos(θ))eimλ , (B.2)

where |m| ≤ ℓ and Pm
ℓ (x) are the associated Legendre functions. The orbital angular momentum operator

is used to compute the rotated spherical gradient relating the stream function to the velocity field. This
operator acts on the spherical harmonic basis as

Ln̂Yℓ,m(x) = −in̂×∇Yℓ,m(x) . (B.3)
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The operation (B.3) can be written as block diagonal matrix on the coefficients. We express L as a linear
combination of the infinitesimal rotations about the standard Cartesian basis vectors. The components of
(B.3) in the x and y directions are given by

Lx =
1

2
(L+ −L−) , Ly =

i

2
(L− −L+) . (B.4)

where L± are the raising and lowering operators. These operators and the z-component of the angular
momentum act on the spherical harmonic basis functions as

L±Y
m
ℓ =

√
ℓ(ℓ+ 1)−m(m± 1)Y m±1

ℓ , LzY
m
ℓ = mY m

ℓ . (B.5)

Appendix C. Convergence of the method

Proof. (of Theorem 1) We include the remapping estimate (34) with an analogous proof as given in [15].
Introducing the map φ̃[T,0] resulting from the modified equation and splitting the error, it suffices to estimate
the error between φ[T,0] and φ̃[T,0]. Considering the error to tn, using the Lipschitz continuity of φ̃ we have
that

∥φ[tn,0] − φ̃[tn,0]∥C0,α ≤ ∥(φ[tn−1,0] − φ̃[tn−1,0]) ◦ φ[tn,tn−1]∥C0,α

+ ∥φ̃[tn−1,0] ◦ φ[tn,tn−1] − φ̃[tn−1,0] ◦ φ̃[tn,tn−1]∥C0,α

≤ ∥φ[tn−1,0] − φ̃[tn−1,0]∥C0,α + Cn−1∥φ[tn,tn−1] − φ̃[tn,tn−1]∥C0,α .

(C.1)

where Cn−1 is the Lipschitz constant of φ̃[tn−1,0]. The second term can be estimated as

∥φ[tn,tn−1] − φ̃[tn,tn−1]∥C0,α ≤
∫ tn

tn−1

∥u(φ[s,tn−1], s)− ũ(φ̃[s,tn−1], s)∥C0,αds

≤
∫ tn

tn−1

∥(u− ũ)(φ[s,tn−1], s)∥C0,α +K(s)∥φ[s,tn−1] − φ̃[s,tn−1]∥C0,αds .

(C.2)

where K(s) is the Lipschitz constant of ũ(s). Then by applying Grönwall’s lemma we can say that

∥φ[tn,tn−1] − φ̃[tn,tn−1]∥C0,α = O(∆t sup
t∈[tn−1,tn]

∥u(t)− ũ(t)∥C0,α) . (C.3)

Over the interval [tn−1, tn] the velocity field is extrapolated using the p previous iterations, allowing us to
write

sup
t∈[tn−1,tn]

∥u(t)− ũ(t)∥C0,α = O(∆tp + ∥u(tn−1)− ũ(tn−1)∥C0,α) . (C.4)

We can bound the error in the velocity field by the error in the map using a Schauder estimate for the
Laplacian [52] of the form

∥u(tn−1)− ũ(tn−1)∥C0,α ≲ ∥ψ(tn−1)− ψ̃(tn−1)∥C2,α

≲ ∥ω(tn−1)− ω̃(tn−1)∥C0,α ≲ ∥φ[tn−1,0] −X[tn−1,0]∥C0,α .
(C.5)

Combining these estimates and splitting the error in (C.5) again with φ̃[tn−1,0] we get that

∥φ[tn,0] − φ̃[tn,0]∥C0,α ≲ ∥φ[tn−1,0] − φ̃[tn−1,0]∥C0,α +O(∆t(∆τ min(h3∆t−1, h2) + ∆ts) + ∆tp+1) (C.6)

Setting tn = T and iterating this argument for the previous maps implies the desired result (37). □
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Appendix D. The resolution of the submap decomposition

The finest scale contained in the approximation of the vorticity is dictated by the spatial discretization of
the submaps and the number of composition forming the decomposition (7). Since this approximation can
support a global representation of fine scales, we can associate a notion of resolution to an effective band-limit
of the discretization in terms of spherical harmonics. In this appendix we indicate how the discretization is
able to represent exponentially fine scales through simple rules for compositions of global polynomials.

If we consider initial vorticities which are band-limited then the increase in support in frequency space
over time is dictated by the scales generated in the inverse map since

ω0 ◦ X[t,0] =

L0∑
ℓ=0

∑
|m|≤ℓ

ω̂0
ℓ,mY

m
ℓ ◦ X[t,0] =

Le(t)∑
ℓ′=0

∑
|m′|≤ℓ′

L0∑
ℓ=0

∑
|m|≤ℓ

ω̂0
ℓ,mb

ℓ,m
ℓ′,m′(t)Y

m′

ℓ′ +R(X[t,0]) , (D.1)

where the coefficients are given by bℓ,mℓ′,m′(t) = ⟨Y m
ℓ ◦ X[t,0], Y

m′

ℓ′ ⟩ and R(X[t,0]) is a remainder term depending
on the spatial discretization of the submaps. We call Le(t) the effective band-limit since we do not necessarily
have access to all of these scales globally, nor is the vorticity ever expanded up to this wavenumber. Rather,
the spatial representation of the vorticity admits an effective representation in terms of spherical harmonics
which we can use to quantify the frequency content present in this approximation. Since the method gives
a spatial, rather than spectral, approximation of the vorticity, we believe a more apt description would be
given using a multi-resolution analysis incorporating both space and scale.

In order to simplify the discussion, we consider a discretization of the map using spherical harmonics which
eliminates the remainder term. The notion of effective band-limit then becomes clear with an elementary
analysis of composition with projected spherical polynomials. Let the space of projected spherical vector
polynomials be

P(B3d) =
{
P(p) : p ∈ B3d , p(v) ∈ R3 \ {0} ∀v ∈ S2

}
. (D.2)

The homogeneous polynomial maps F ∈ P(B3d) admit degree d extensions F̄ ∈ H3
d such that

F̄ (x) = ∥x∥dF (x/∥x∥) , (D.3)

for all x ∈ R3 \ {0}. Using the homogeneous extensions of two maps F1, F2 ∈ P(B3d) we see that

P(F2) ◦ P(F1)(x) =
F̄2(F̄1(x)/∥F̄1(x)∥)
∥F̄2(F̄1(x)/∥F̄1(x)∥)∥

=
∥F̄1(x)∥−dF̄2(F̄1(x))

∥F̄1(x)∥−d∥F̄2(F1(x))∥
= P(F̄2 ◦ F̄1)(x) . (D.4)

Noting that Hℓ ◦ (H3
d) ⊂ Hd·ℓ ⇒ Hl ◦ (B3d) ⊂ Bd·ℓ we see

P(B3d) ◦ P(B3d) ⊂ P((Hd ◦ B3d)3) ⊂ P(B3d2) . (D.5)

Using this inclusion we can deduce properties of the composition of projected vector spherical polynomials
from the properties of B3d.

Proposition 2.
Yℓ ◦ P(B3d) ⊂ Bd·ℓ . (D.6)

Proof. Let Ȳ m
ℓ ∈ Hℓ be the homogeneous extension of degree ℓ of the spherical harmonic Y m

ℓ and X̄ the
homogeneous extension of degree d of X ∈ P(B3d). We have that for all x ∈ R3 \ {0} and λ > 0

Ȳ m
ℓ ◦ X̄ (λx) = Ȳ m

ℓ

(
λd∥x∥dX (x/∥x∥)

)
= λℓ·d∥x∥ℓ·dY m

ℓ ◦ X (x/∥x∥) ,

and therefore Ȳ m
ℓ ◦ X̄ ∈ Hℓ·d from which the claim follows by restriction to the sphere. □

In [32] it was observed that Bℓ admits the following decomposition in terms of the spherical harmonic spaces

Bℓ =

{
Y0 ⊕ Y2 ⊕ · · · ⊕ Y2d , if 2d = ℓ

Y1 ⊕ Y3 ⊕ · · · ⊕ Y2d−1 , if 2d− 1 = ℓ .
(D.7)

20



As a consequence, the composition of a degree ℓ spherical harmonic with a projected spherical polynomial of
degree d will admit an expansion in spherical harmonics of only even or odd degree based on the parity of
d · ℓ. General spherical band-limited functions of degree ℓ are in the direct sum Bℓ ⊕ Bℓ−1.

Now suppose that we are given approximate data X[t,0](vi) at the grid points (26) for a band-limit L. If
we discretize the components of the map using spherical harmonics, then we obtain a projected spherical
trigonometric interpolant of the form

X[t,0] ∈ P(B3L ⊕ B3
L−1) . (D.8)

In contrast, given X[th,0](vi) and X[t,th](vi) at the same grid points, we can perform trigonometric interpolations
of both of the maps separately such that the resulting composition gives

X[th,0] ◦ X[t,th] ∈ P(B
3
L2 ⊕ B3L2−1) . (D.9)

In turn, the approximation of the vorticity for (D.8) has an effective band-limit Le(t) = L·L0 whereas for (D.9)
it becomes Le(t) = L2 · L0, based on the analysis given above. Considering the composition of Nc submaps,
this obtains a sparse multi-scale representation of the vorticity with effective band-limit Le = L0 · LNc using
only Nc · L · 2L degrees of freedom. In comparison, an exact band-limited spherical harmonic expansion of
the vorticity up to this degree would require LNc · 2LNc points. The spatio-temporal discretization (7) of the
inverse map gives an exponential increase in resolution with only a linear increase in the degrees of freedom.
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