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Abstract

We consider the number of the 6-regular partitions of n, b6(n), and
give infinite families of congruences modulo 3 (in arithmetic progression)
for b6(n). We also consider the number of the partitions of n into distinct
parts not congruent to ±2 modulo 6, Q2(n), and investigate connections
between b6(n) and Q2(n) providing new combinatorial interpretations for
these partition functions. In this context, we discover new infinite fam-
ilies of linear inequalities involving Euler’s partition function p(n). Infi-
nite families of linear inequalities involving the 6-regular partition function
b6(n) and the distinct partition function Q2(n) are proposed as open prob-
lems.
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1 Introduction

Recall that a partition of a positive integer n is a sequence of positive integers
whose sum is n. The order of the summands is unimportant when writing
the partitions of n, but for consistency, a partition of n will be written with
the summands in a nonincreasing order [2]. As usual, we denote by p(n) the
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number of integer partitions of n and we have the generating function

∞∑

n=0

p(n) qn =
1

(q; q)∞
.

Here and throughout, we use the following customary q-series notation:

(a; q)n =

{
1, for n = 0,

(1 − a)(1− aq) · · · (1− aqn−1), for n > 0;

(a; q)∞ = lim
n→∞

(a; q)n.

Moreover, we use the short notation

(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞.

Because the infinite product (a; q)∞ diverges when a 6= 0 and |q| > 1, whenever
(a; q)∞ appears in a formula, we shall assume |q| < 1.

For an integer ℓ > 1, a partition is called ℓ-regular if none of its parts is
divisible by ℓ. The number of the ℓ-regular partitions of n is usually denoted by
bℓ(n) and its arithmetic propertys are investigated in many interesting papers
by Z. Ahmed and N. D. Baruah [1], R. Carlson and J. J. Webb, [16], S.-P. Cui
and N. S. S. Gu [17], B. Dandurand and D. Penninston [18], D. Furcy and
D. Penniston [19], M. D. Hirschhorn and J. A. Sellers [22], Q.-H. Hou, L. H. Sun
and L. Zhang [23], J. Lovejoy and D. Penniston [25], D. Penniston [43, 44],
E. X. W. Xia [48], E. X. W. Xia and O. X. M. Yao [49], L. Wang [51, 52],
and J. J. Webb [53]. Elementary techniques in the theory of partitions give the
generating function

∞∑

n=0

bℓ(n) q
n =

(qℓ; qℓ)∞
(q; q)∞

. (1)

In 2010, G. E. Andrews, M. D. Hirschhorn and J. A. Sellers [3] proved
that b4(n) satisfies two infinite families of congruences modulo 3. After a year,
J. J. Webb [53] proved an analogous result for b13(n). In 2012, D. Furcy and
D. Penniston [19] extended these results to other values of ℓ which are congruent
to 1 modulo 3, i.e., ℓ ∈ {7, 19, 25, 34, 37, 43, 49}. All these congruences are of
the form

bℓ(3
βn+ d) ≡ 0 (mod 3).

In addition, D. Furcy and D. Penniston [19] proved that

b10(9n+ 3) ≡ b22(27n+ 16) ≡ b28(27n+ 9) ≡ 0 (mod 3).

More recently, in 2015, Q.-H. Hou, L. H. Sun and L. Zhang [23] found infi-
nite families of congruence relations modulo 3, 5 and 7 for ℓ-regular partitions
with ℓ ∈ {3, 5, 6, 7, 10}. In particular, when ℓ = 6, they proved that for α, n
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nonnegative integers, pi primes congruent to 13, 17, 19, 23 (mod 24) and j 6≡ 0
(mod pα+1),

b6

(
p21 · · · p

2
α+1n+

p21 · · · p
2
αpα+1(24j + 5pα+1)− 5

24

)
≡ 0 (mod 3). (2)

Then, setting α = 0 in (2), it follows that for all n > 0, p ≡ 13, 17, 19, 23
(mod 24) prime, and j 6≡ 0 (mod p),

b6

(
p2n+ pj + 5

p2 − 1

24

)
≡ 0 (mod 3). (3)

It turns out that the result in [23] can be extended to other choices of primes.

Theorem 1.1. Let α be a nonnegative integer and let pi > 5, 1 6 i 6 α+ 1 be
primes. If pα+1 ≡ 3 (mod 4) and j 6≡ 0 (mod pα+1), then for all integers n > 0
we have

b6

(
p21 · · · p

2
α+1n+

p21 · · · p
2
αpα+1(24j + 5pα+1)− 5

24

)
≡ 0 (mod 3). (4)

In particular, if α = 0, Theorem 1.1 states that (3) holds for all primes
p ≡ 3 (mod 4), j 6≡ 0 (mod p) and n > 0. This statement can be reformulated
as follows.

For a prime p > 5, we set

αp := 5
p2 − 1

24
mod p,

where by a mod m we mean the residue of a modulo m. Equivalently,

αp =
⌊
5p2/24

⌋
mod p

and also
αp = −5 · 24−1

p mod p,

where 24−1
p is the inverse of 24 modulo p.

Then, from Theorem 1.1 with α = 0 and (3), we obtain the following result,

Corollary 1.2. If p is a prime congruent to 7, 11, 13, 17, 19, 23 modulo 24 and
0 6 j 6 p− 1, j 6= ⌊5p/24⌋, then for all n > 0 we have

b6
(
p2n+ pj + αp

)
≡ 0 (mod 3).

We also consider the partitions of n into distinct parts not congruent to
±2 modulo 6 in order to provide other properties for the number of 6-regular
partitions of n.

Definition 1. Let n be a nonnegative integer. We define:
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i) b6,e(n) to be the number of 6-regular partitions of n into an even number
of parts;

ii) b6,o(n) to be the number of 6-regular partitions of n into an odd number
of parts.

Clearly b6(n) = b6,e(n) + b6,o(n). For example, the partitions of 7 into parts
that are not multiples of 6 are:

(7), (5, 2), (5, 1, 1), (4, 3), (4, 2, 1), (4, 1, 1, 1), (3, 3, 1), (3, 2, 2), (3, 2, 1, 1),

(3, 1, 1, 1, 1), (2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1).

We see that b6(7) = 14, b6,e(7) = 6 and b6,o(7) = 8.

Definition 2. Let n be a nonnegative integer. We define Q2(n) to be the
number of partitions of n into distinct parts which are not congruent to ±2
modulo 6.

For example, the partitions of 14 into distinct parts not congruent to ±2
modulo 6 are:

(13, 1), (11, 3), (10, 3, 1), (9, 5), (8, 5, 1).

Thus, Q2(14) = 5. The standard methods for producing partition generating
functions (cf. [2, Ch. 1]) reveal directly that

∞∑

n=0

Q2(n) q
n = (−q,−q3,−q5,−q6; q6)∞ (5)

and the expansion starts as

1+q+q3+q4+q5+2q6+2q7+2q8+3q9+3q10+3q11+5q12+5q13+5q14+ · · · .

We remark that the sequences Q2(n) is known and can be seen in the On-Line
Encyclopedia of Integer Sequence [45, A328796].

The following result introduces a new combinatorial interpretation for the
partition function Q2(n).

Theorem 1.3. For n > 0, (−1)nQ2(n) = b6,e(n)− b6,o(n).

As a corollary of this theorem, we deduce the following parity result.

Corollary 1.4. For n > 0, Q2(n) and b6(n) have the same parity.

In order to obtain other combinatorial interpretations for the 6-regular parti-
tions of n and the partitions of n into distinct parts not congruent to ±2 modulo
6, we consider the following restricted partition functions.

Definition 3. Let n be a nonnegative integer. We define
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i) c(n) to be the number of partitions of n into parts which are not congruent
to 0, ±2, ±20, ±22, 24 modulo 48;

ii) d(n) to be the number of partitions of n into parts which are not congruent
to 0, ±4, ±10, ±14, 24 modulo 48.

We have the following result.

Theorem 1.5. Let n be a nonnegative integer. Then

(i) Q2(n) = c(n)− d(n− 2);

(ii) b6(n) = c(n) + d(n− 2).

The following corollary is a consequence of Theorems 1.3 and 1.5. This
result introduces new combinatorial interpretations for the 6-regular partition
functions b6,e(n) and b6,o(n).

Corollary 1.6. For n > 0,

(i) b6,e(n) =

{
c(n), if n is even

d(n− 2), if n is odd;

(ii) b6,o(n) =

{
c(n), if n is odd

d(n− 2), if n is even.

From Corollay 1.6 we can obtain other combinatorial interpretations for the
restricted partition functions c(n) and d(n).

Definition 4. Let n be a nonnegative integer. We define

i) b6,ee(n) to be the number of 6-regular partitions of n with an even number
of even parts;

ii) b6,eo(n) to be the number of 6-regular partitions of n with an odd number
of even parts.

Clearly b6(n) = b6,ee(n) + b6,eo(n). For example, the 6-regular partitions of
7 with an even number of even parts are:

(7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2),

(3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1),

while the 6-regular partitions of 7 with an odd number of even parts are:

(5, 2), (4, 3), (4, 1, 1, 1), (3, 2, 1, 1), (2, 2, 2, 1), (2, 1, 1, 1, 1, 1).

We see that b6,ee(7) = 8 and b6,eo(7) = 6.
Since the parity of the number of odd parts in a partition of n is determined

by the parity of n, we have b6,ee(n) equals b6,e(n) (respectively b6,o(n)) if n is
even (respectively odd); and similarly for b6,eo(n). Thus, we have the following
equivalent form of Corollary 1.6.
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Corollary 1.7. For n > 0

(i) c(n) = b6,ee(n);

(ii) d(n) = b6,eo(n+ 2).

In [4], while investigating the truncated form of Euler’s pentagonal number
theorem,

(q; q)∞ =

∞∑

n=−∞

(−1)n qn(3n−1)/2, (6)

G. E. Andrews and M. Merca introduced the partition function Mk(n), which
counts the number of partitions of n where k is the least positive integer that is
not a part and there are more parts > k than there are parts < k. For instance,
we have M3(18) = 3 because the three partitions in question are

(5, 5, 5, 2, 1), (6, 5, 4, 2, 1), (7, 4, 4, 2, 1).

Recently, Xia and Zhao [50] defined P̃k(n) to be the number of partitions of n
in which every part 6 k appears at least once and the first part larger that k
appears at least k + 1 times. For example, P̃2(17) = 9, and the partitions in
question are

(5, 3, 3, 3, 2, 1), (4, 4, 4, 2, 2, 1), (4, 4, 4, 2, 1, 1, 1),

(4, 3, 3, 3, 2, 1, 1), (3, 3, 3, 3, 2, 2, 1), (3, 3, 3, 3, 2, 1, 1, 1),

(3, 3, 3, 2, 2, 2, 1, 1), (3, 3, 3, 2, 2, 1, 1, 1, 1), (3, 3, 3, 2, 1, 1, 1, 1, 1, 1).

Considering (1), we easily deduce that the 6-regular partition function b6(n)
is closely related to Euler’s partition function p(n), i.e.,

b6(n) =

∞∑

j=−∞

(−1)j p
(
n− 3j(3j − 1)

)
. (7)

There are two more general results for which identity (7) is the limiting cases
k → ∞.

Theorem 1.8. For n > 0, k > 0,

(−1)k



b6(n)−
k∑

j=−(k−1)

(−1)j p
(
n− 3j(3j − 1)

)


 =

⌊n/6⌋∑

j=0

b6(n− 6j)Mk(j).

Theorem 1.9. For n > 0, k > 0,

(−1)k−1



b6(n)−
k∑

j=−k

(−1)j p
(
n− 3j(3j − 1)

)


 =

⌊n/6⌋∑

j=0

b6(n− 6j) P̃k(j).
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On the other hand, by (1) and (6), we can easily derive a linear recurrence
relation similar to the Euler recurrence relation for p(n), i.e.,

∞∑

j=−∞

(−1)j b6
(
n− j(3j − 1)/2

)
=

{
(−1)k, if n = 3k(3k − 1), k ∈ Z,

0, otherwise.
(8)

Remark 1. If we denote by p<6(n) the number of partitions of n in which
parts occur at most five times, Glaischer’s bijection shows combinatorially that
b6(n) = p<6(n), for all n > 0. Then, the first proof of Theorem 1.1 in [14] with
4 replaced by 6 gives a combinatorial proof of (8).

Apart from this recurrence relation, there is another linear recurrence rela-
tion for b6(n). For any integer k, let

ρk :=

{
−2, if k ≡ 1 (mod 3),

1, otherwise.

Theorem 1.10. For n > 0,

∞∑

j=0

ρj b6
(
n− j(j + 1)/2

)
=

{
(−1)k, if n = k(3k − 2), k ∈ Z,

0, otherwise.

As a consequence of Theorem 1.10, we remark the following parity result
which involves the generalized octagonal numbers, n(3n± 2).

Corollary 1.11. For n > 0,

∞∑

j=−∞

b6
(
n− 3j(3j − 1)/2

)
≡ 1 (mod 2)

if and only if n is a generalized octagonal number.

In analogy with (7), we have the following result which shows that the par-
tition function Q2(n) can be express in terms of Euler’s partition function p(n)
in two different ways.

Theorem 1.12. For n > 0,

(i) Q2(n) =

∞∑

j=0

ρj p
(
n− j(j + 1)

)
;

(ii) Q2(n) =

∞∑

j=−∞

p

(
n− j(3j − 2)

3

)
,

where p(x) = 0 when x is not a nonnegative integer.
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Remark 2. Using the notation of Andrews and Newman [7], mex2,2(λ) denotes
the smallest even positive integer that is not a part of λ. We denote by pm2j(n)
(respectively pm>2j(n)) the number of partitions λ of n with mex2,2(λ) = 2j
(respectively mex2,2(λ) > 2j). If λ is a partition of n−j(j+1) then λ∪(2j, 2(j−
1), . . . , 4, 2) is a partition of n with mex2,2(λ) > 2j. Hence

p
(
n− j(j + 1)

)
− p
(
n− (j + 1)(j + 2)

)
= pm2j(n).

Then, Theorem 1.12 (i) is equivalent to the statement that Q2(n) equals the
number of partitions λ of n with mex2,2(λ) ≡ 2 (mod 6) minus the number of
partitions λ of n with mex2,2(λ) ≡ 4 (mod 6).

Theorem 1.12 (i) allows us to derive the following congruence identities.

Corollary 1.13. For n > 0,

(i)

∞∑

j=−∞

p
(
n− 3j(3j − 1)

)
≡ Q2(n) (mod 2);

(ii)

∞∑

j=0

p
(
n− j(j + 1)

)
≡ Q2(n) (mod 3).

Theorem 1.12 (ii) can be considered an identity of Watson type. More details
about identities of Watson type can be found in [8].

In analogy with Theorem 1.10, we have the following linear recurrence rela-
tions for the partition function Q2(n).

Theorem 1.14. For n > 0,

(i)

∞∑

j=−∞

(−1)j Q2

(
n− j(3j − 1)/2

)
=

{
ρk, if n = k(k + 1), k ∈ N0

0, otherwise;

(ii)

∞∑

j=−∞

(−1)j Q2

(
n− 3j(3j − 1)/2

)
=

{
1, if n = k(3k − 2), k ∈ Z

0, otherwise.

Theorem 1.14 (ii) provides a simple and reasonably efficient way to compute
the value of Q2(n). The number of terms in this linear recurrence relation is
about

√
8n/9. In fact, computing the value of Q2(n) with this linear recurrence

relation requires all the values of Q2(k) with k < n.
The rest of this paper is organized as follows. Theorem 1.1 will be proved in

Section 2. In Sections 3-7, we will provide proofs of Theorems 1.3, 1.5, 1.8, 1.10,
1.12 and 1.14. Our proof of these theorems rely on generating functions. For
Theorems 1.3, 1.12 (ii), and 1.14 (ii) we also give combinatorial proofs. (It would
be very interesting to find combinatorial proofs for the remaining theorems.) In
the last section of this paper, we propose as conjectures new infinite families of
linear inequalities for the partition functions p(n), b6(n), and Q2(n).
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2 Proof of Theorem 1.1

Let

f(−q) =
∞∑

n=−∞

(−1)nq
n(3n+1)

2 = (q; q)∞

and

ψ(q) =
∞∑

n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

be Ramanujan’s theta functions. As mentioned in [23] and also easily seen
directly,

∞∑

n=0

b6(n)q
n =

∞∏

n=1

(q6; q6)∞
(q; q)∞

≡
(q2; q2)2∞
(q; q2)∞

(mod 3)

= f(−q2)ψ(q) (mod 3).

We rewrite the above expression as

f(−q2)ψ(q) = (q2; q2)∞
(q2; q4)∞(q4; q4)∞

(q; q2)∞
= (q2; q2)∞(q4; q4)∞(−q; q2)∞

Replacing q by −q, we obtain

f(−q2)ψ(−q) =
(q2; q2)2∞
(−q; q2)∞

= (q2; q2)∞(q4; q4)∞(q; q2)∞ = (q; q)∞(q4; q4)∞.

Hence,
∞∑

n=0

b6(n)(−q)
n ≡ (q; q)∞(q4; q4)∞ (mod 3).

Let α be a nonnegative integer. Suppose pi > 5, 1 6 i 6 α + 1 are primes,
pα+1 ≡ 3 (mod 4) and j 6≡ 0 (mod pα+1). Given n > 0, we set

mn := p21 · · · p
2
α+1n+

p21 · · · p
2
αpα+1(24j + 5pα+1)− 5

24
.

We show that for all nonnegative integers n the coefficient of qmn in f(−q2)ψ(−q)
is zero. We use Euler’s pentagonal number theorem (6) twice to see that

f(−q2)ψ(−q) = (q; q)∞(q4; q4)∞ =
∞∑

i,j=−∞

(−1)i+jq
i(3i+1)

2 +4· j(3j+1)
2 .

We consider the equation i(3i+1)
2 + 4 · j(3j+1)

2 = mn which is equivalent to

a2 + (2b)2 = 24mn + 5 (9)
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with a = 6i+ 1, b = 6j + 1.
Since j 6≡ 0 (mod pα+1), it follows that pα+1 | 24mn + 5 and pα+1 appears

in the factorization of 24mn + 5 with odd exponent. Then, equation (9) has no
solution and the coefficient of qmn in f(−q2)ψ(−q) is zero. Hence b6(mn) ≡ 0
(mod 3). This concludes the proof of Theorem 1.1.

Remark 3. In the poof of Theorem 1.1 we reduced the congruence problem
to a question of representing an integer as a sum of two squares. The proof of
[23, Theorem 2.3] relies on a different Diophantine equation. We note that [23,
Theorem 2.2] is a congruence result for b3(n), the number of 3-regular partitions
of n. It is easy to see that the proof of [23] reduces to representing an integer as
the sum of two squares. Thus the same argument as in the proof of Theorem 1.1
can be used to show that the congruence modulo 3 in [23, Theorem 2.2] holds
in greater generality, i.e., only the prime pα+1 must be congruent to 3 modulo
4. For the convenience of the reader, we give the general statement below.

Theorem 2.1. Let α be a nonnegative integer and let pi > 5, 1 6 i 6 α+ 1 be
primes. If pα+1 ≡ 3 (mod 4) and j 6≡ 0 (mod pα+1), then for all integers n > 0

b3

(
p21 · · · p

2
αp

2
α+1n+

p21 · · · p
2
αpα+1(12j + pα+1)− 1

12

)
≡ 0 (mod 3).

3 Proof of Theorem 1.3

3.1 Analytic proof

Define

F (z, q) =

∞∏

k=0

1

(1− zq6k+1)(1 − zq6k+2)(1 − zq6k+3)(1 − zq6k+4)(1− zq6k+5)
.

On the other hand, we have

F (z, q) =

∞∑

m=0

∞∑

n=0

b6(n,m) zm qn,

where b6(n,m) is the number of partitions of n with m parts all of which are
not congruent to 0 modulo 6.

Thus, considering the generating functions of b6(n,m) and Q2(n), we can
write

F (−1, q) =

∞∑

n=0

(
b6,e(n)− b6,o(n)

)
qn

and

F (−1, q) =
1

(−q,−q2,−q3,−q4,−q5; q6)∞

10



=
(−q6; q6)∞
(−q; q)∞

= (q; q2)∞ (−q6; q6)∞

=

∞∑

n=0

(−1)nQ2(n) q
n,

where we have invoked the Euler identity [2, (1.2.5)]

1

(q; q2)∞
= (−q; q)∞.

3.2 Combinatorial proof

We remark first that the set (S1, S2) with S1 = {n ∈ N : n 6≡ 0 (mod 6)} and
S − 2 = {n ∈ N : n 6≡ ±2 (mod 6)} is not an Euler pair and the statement of
Theorem 1.3 is not a special case of Theorem 3.1 of [13]. However, the ideas
used in the proof of [13, Theorem 3.1] can be used here. Given a partition λ,
denote by ℓ(λ) the number of parts in λ. Note that in a 6-regular partition,
even parts are congruent to ±2 modulo 6.

Let B′
6(n) be the set of 6-regular partitions λ of n such that λ has at least

one even part or at least one repeated part which is not congruent to 3 modulo
6. Moreover, denote by B′

6,e(n), respectively B′
6,o(n), the subset of partitions

in B′
6(n) with ℓ(λ) even, respectively odd. We define an involution ϕ on B′

6(n)
that reverses the parity of ℓ(λ).

Start with λ ∈ B′
6(n). We denote by r the largest repeated part of λ that is

not congruent to 3 modulo 6 and by e the largest even part of λ. If r or e do
not exist, we set them equal to 0.

1. If 2r > e, we define ϕ(λ) to be the partition obtained from λ by replacing
two parts equal to r by a single part equal to 2r. Note that, since r 6≡ 3
(mod 6), we have 2r 6≡ 0 (mod 6). Thus, ϕ(λ) ∈ B′

6(n).

2. If 2r 6 e, we define ϕ(λ) to be the partition obtained from λ by replacing
one part equal to e by two parts equal to e/2. Note that since e ≡ ±2
(mod 6), we have e/2 6≡ 0, 3 (mod 6). Thus, ϕ(λ) ∈ B′

6(n).

Since ϕ : B′
6(n) → B′

6(n) is an involution that reverses the parity of ℓ(λ), we
have that |B′

6,e(n)| = |B′
6,o(n)|.

Let Q′
2(n) be the set of partitions λ ∈ B6(n) with odd parts and only parts

congruent to 3 modulo 6 may be repeated. Since all parts of λ are odd, ℓ(λ) ≡ n
(mod 2). Thus,

b6,e(n)− b6,o(n) = (−1)n|Q′
2(n)|.

Finally, we create a bijection ψ : Q′
2(n) → Q2(n), where Q2(n) is the set

of partitions of n with distinct parts not congruent to ±2 modulo 6. Here and
throughout, if k is a positive integer and η is a partition with all parts divisible
by k, we write η/k for the partition whose parts are the parts of η divided by k.

11



For any partition η, we denote by kη the partition whose parts are the parts of
η multiplied by k.

Let λ ∈ Q′
2(n). Here and throughout, by the union of two partition we

mean the union of their multisets of parts arranged in nondecreasing order.
Write λ = (α, β) where α∪β = λ, α is a partition into distinct parts, and β is a
partition whose parts have even multiplicity. Thus, all parts of β are congruent
to 3 modulo 6 and β/3 is a partition into odd parts each with even multiplicity.
We denote by ϕGl Glaisher’s bijection which maps a partition of n with odd
parts to a partition of n into distinct parts. Then, ϕGl(β/3) is a partition with
even distinct parts. The partition 3ϕGl(β/3) has distinct parts all congruent to
0 modulo 6. Set ψ(λ) := α ∪ 3ϕGl(β/3). Then, ψ is a bijection from Q′

2(n) to
Q2(n), which completes the proof of the theorem.

Remark 4. We note that, in fact, the involution ϕ in the combinatorial proof
above reverses the parity of the number of even parts of a partition. Hence, the
combinatorial proof above is also a proof for the following corrolary of Theorem
1.3.

Corollary 3.1. For n > 0, Q2(n) = b6,ee(n)− b6,eo(n).

4 Proof of Theorem 1.5

The Watson quintuple product identity [15, 47] states that

∞∑

n=−∞

qn(3n+1)/2 (z−3n − z3n+1) = (z, q/z, q; q)∞ (qz2, q/z2; q2)∞. (10)

Elementary techniques in the theory of partitions give the following generating
functions

∞∑

n=0

c(n) qn =
(q2, q20, q22, q24, q26, q28, q46, q48; q48)∞

(q; q)∞

=
(q2, q22, q24; q24)∞ (q20, q28; q48)∞

(q; q)∞

=
1

(q; q)∞

∞∑

n=−∞

q12n(3n+1) (q−6n − q6n+2)

(By (10), with q replaced by q24 and z replaced by q2)

=
1

(q; q)∞

∞∑

n=−∞

(q6n(6n+1) − q(6n+1)(6n+2))

and

∞∑

n=0

d(n) qn =
(q4, q10, q14, q24, q34, q38, q44, q48; q48)∞

(q; q)∞

12



=
(q10, q14, q24; q24)∞ (q4, q44; q48)∞

(q; q)∞

=
1

(q; q)∞

∞∑

n=−∞

q12n(3n+1) (q−30n − q30n+10)

(By (10), with q replaced by q24 and z replaced by q10)

=
1

(q; q)∞

∞∑

n=−∞

(q6n(6n−3) − q(6n+2)(6n+5)).

We can write
∞∑

n=0

(
c(n)− d(n− 2)

)
qn

=

∞∑

n=0

c(n) qn −
∞∑

n=0

d(n) qn+2

=
1

(q; q)∞

∞∑

n=−∞

(q6n(6n+1) − q(6n+1)(6n+2) − q6n(6n−3)+2 + q(6n+2)(6n+5)+2)

=
1

(q; q)∞

∞∑

n=−∞

(q6n(6n+1) − q(6n+1)(6n+2) − q(6n−1)(6n−2) + q(6n+3)(6n+4))

=
1

(q; q)∞

∞∑

n=−∞

(q3n(3n−1) − q(3n+1)(3n+2))

=
1

(q; q)∞

∞∑

n=−∞

q3n(3n+1)(q−6n − q6n+2)

=
(q2, q4, q6; q6)∞ (q2, q10; q12)∞

(q; q)∞
(By (10), with q replaced by q6 and z replaced by q2)

=
(q2; q2)∞ (q2, q10; q12)∞

(q; q2)∞ (q2; q2)∞

= (−q; q)∞ (q2, q10; q12)∞

= (−q; q2)∞ (−q2; q2)∞ (q2, q10; q12)∞

= (−q; q2)∞ (−q6; q6)∞ (−q2,−q4; q6)∞ (q2, q10; q12)∞

= (−q; q2)∞ (−q6; q6)∞
(q2, q4, q8, q10; q12)∞

(q2, q4; q6)∞

=

∞∑

n=0

Q2(n) q
n.

and
∞∑

n=0

(
c(n) + d(n− 2)

)
qn

13



=
1

(q; q)∞

∞∑

n=−∞

(q6n(6n+1) − q(6n+1)(6n+2) + q(6n−1)(6n−2) − q(6n+3)(6n+4))

=
1

(q; q)∞

∞∑

n=−∞

(q6n(6n+1) − q(6n+3)(6n+4))

=
1

(q; q)∞

∞∑

n=−∞

(−1)nq3n(3n−1)

=
(q6; q6)∞
(q; q)∞

(By (6) with q replaced by q6)

=

∞∑

n=0

b6(n) q
n.

This concludes the proof.

5 Proof of Theorems 1.8 and 1.9

G. E. Andrews and M. Merca [4] proved the following truncated form of (6):
For any k > 1,

1

(q; q)∞

k∑

n=−(k−1)

(−1)n qn(3n−1)/2 = 1+(−1)k−1
∞∑

n=k

q(
k

2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
, (11)

where
[
n
k

]
=






(q; q)n
(q; q)k(q; q)n−k

, if 0 6 k 6 n,

0, otherwise.

We note that the series on the right hand side of (11) is the generating function
for Mk(n), i.e.,

∞∑

n=0

Mk(n) q
n =

∞∑

n=k

q(
k

2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
.

By (11), with q replaced by q6, we get

1

(q6; q6)∞

k∑

n=−(k−1)

(−1)n q3n(3n−1) = 1 + (−1)k−1
∞∑

n=0

Mk(n) q
6n.

Multiplying both sides of this identity by

(q6; q6)∞
(q; q)∞

,

14



we obtain

1

(q; q)∞

k∑

n=−(k−1)

(−1)n q3n(3n−1) −
(q6; q6)∞
(q; q)∞

= (−1)k−1 (q
6; q6)∞
(q; q)∞

∞∑

n=0

Mk(n) q
6n

or

(
∞∑

n=0

p(n) qn

)


k∑

n=−(k−1)

(−1)n q3n(3n−1)



−
∞∑

n=0

b6(n) q
n

= (−)k−1

(
∞∑

n=0

b6(n) q
n

)(
∞∑

n=0

Mk(n) q
6n

)
.

The assertion of Theorem 1.8 follows by comparing coefficients of qn on both
sides of this equation.

The proof of Theorem 1.9 is quite similar to the proof of Theorem 1.8. In
[50], E. X. W. Xia and X. Zhao considered Euler’s pentagonal number theorem
(6) and they proved the following truncated form: For any k > 1,

1

(q; q)∞

k∑

n=−k

(−1)n qn(3n−1)/2 = 1 + (−1)k
qk(k+1)/2

(q; q)k

∞∑

n=0

q(n+k+1)(k+1)

(qn+k+1; q)∞
. (12)

We remark that the series on the right hand side of (12) is the generating

function for P̃k(n), i.e.,

∞∑

n=0

P̃k(n) q
n =

qk(k+1)/2

(q; q)k

∞∑

n=0

q(n+k+1)(k+1)

(qn+k+1; q)∞
.

By (12), with q replaced by q6, we get

1

(q6; q6)∞

k∑

n=−k

(−1)n q3n(3n−1) = 1 + (−1)k
q3k(k+1)

(q6; q6)k

∞∑

n=0

q6(n+k+1)(k+1)

(q6(n+k+1); q6)∞
.

Multiplying both sides of this identity by the generating function of b6(n), we
obtain

(−1)k

(( ∞∑

n=1

p(n) qn
)( k∑

n=−k

(−1)n qn(3n−1)/2
)
−

∞∑

n=1

b6(n) q
n

)

=

(
∞∑

n=1

b6(n) q
n

)(
∞∑

n=0

P̃k(n) q
6n

)
.

The proof of Theorem 1.9 follows easily considering Cauchy’s multiplication of
two power series.
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6 Proof of Theorem 1.10

The Jacobi triple product identity (cf. [20, Eq. (1.6.1)]) states that

∞∑

n=−∞

(−z)n qn(n−1)/2 = (z, q/z, q; q)∞. (13)

Considering (13) with q replaced by q6 and z replaced by q, we can write

∞∑

n=−∞

(−1)n qn(3n−2) = (q, q5, q6; q6)∞

=
(q6; q6)∞
(q; q)∞

· (q, q5; q6)∞ (q, q2, q3; q3)∞

=
(q6; q6)∞
(q; q)∞

∞∑

n=−∞

q3n(3n+1)/2 (q−3n − q3n+1)

(By (10), with q replaced by q3 and z replaced by q)

=
(q6; q6)∞
(q; q)∞

(
∞∑

n=−∞

q3n(3n−1)/2 −
∞∑

n=−∞

q(3n+1)(3n+2)/2

)

=
(q6; q6)∞
(q; q)∞




∞∑

n=0
n6≡1 (mod 3)

qn(n+1)/2 −
∞∑

n=0
n≡1 (mod 3)

2 qn(n+1)/2




=

(
∞∑

n=0

b6(n) q
n

)(
∞∑

n=0

ρn q
n(n+1)/2

)

=

∞∑

n=0




n∑

j=0

ρj b6
(
n− j(j + 1)/2

)


 qn.

This concludes the proof.

7 Proof of Theorems 1.12 and 1.14

7.1 Analytic proof

We have

∞∑

n=0

Q2(n) q
n = (−q; q2)∞ (−q6; q6)∞

=
(q2; q4)∞
(q; q2)∞

1

(q6; q12)∞

=
1

(q; q)∞
· (q2, q10; q12)∞ (q2, q4, q6; q6)∞
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=
1

(q; q)∞

∞∑

n=−∞

q3n(3n+1) (q−6n − q6n+2)

(By (10), with q replaced by q6 and z replaced by q2)

=
1

(q; q)∞

(
∞∑

n=−∞

q3n(3n−1) −
∞∑

n=−∞

q(3n+1)(3n+2)

)

=
1

(q; q)∞




∞∑

n=0
n6≡1 (mod 3)

qn(n+1) −
∞∑

n=0
n≡1 (mod 3)

2 qn(n+1)




=

(
∞∑

n=0

p(n) qn

)(
∞∑

n=0

ρn q
n(n+1)

)

=

∞∑

n=0




n∑

j=0

ρj p
(
n− j(j + 1)

)


 qn (14)

and

∞∑

n=0

Q2(n) q
n = (−q3; q3)∞ (−q,−q5; q6)∞

=
(−q3; q3)∞
(q6; q6)∞

· (−q,−q5, q6; q6)∞

=
1

(q3; q3)∞

∞∑

n=−∞

qn(3n−2)

(By (13), with q replaced by q6 and z replaced by −q)

=

(
∞∑

n=0

p(n) q3n

)(
∞∑

n=−∞

qn(3n−2)

)

=

∞∑

n=0




∞∑

j=−∞

p

(
n− j(3j − 2)

3

)
 qn,

where p(x) = 0 if x is not a nonnegative integer. Theorem 1.12 is proved.
On the other hand, by these relations, we deduce that

(q; q)∞

∞∑

n=0

Q2(n) q
n =

∞∑

n=0

ρn q
n(n+1)

and

(q3; q3)∞

∞∑

n=0

Q2(n) q
n =

∞∑

n=−∞

qn(3n−2).
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Considering (6), these equations can be rewritten as

(
∞∑

n=−∞

(−1)n qn(3n−1)/2

)(
∞∑

n=0

Q2(n) q
n

)
=

∞∑

n=0

ρn q
n(n+1)

and
(

∞∑

n=−∞

(−1)n q3n(3n−1)/2

)(
∞∑

n=0

Q2(n) q
n

)
=

∞∑

n=−∞

qn(3n−2).

The assertions of Theorem 1.14 follows easily by comparing coefficients of qn on
both sides of these equations.

7.2 Combinatorial proof of Theorem 1.12 (ii)

We will use a particular case of [11, Lemma 2.1]. We first introduce some
notation. Let Q6,1(n) be the set of partitions of n into distinct parts congruent
to ±1 (mod 6)). Let W6,1(n) be the set of pairs (µ, k(3k − 2)), where µ is a
partition into parts divisible by 6, k ∈ Z, and |µ| + k(3k − 2) = n. Then, [11,
Lemma 2.1] with m = 6 and r = 1 gives a bijection ξ6,1 : Q6,1(n) → W6,1(n).

Let n be a nonnegative integer. We create a bijection

ψ : Q2(n) →
⋃

k∈Z

P

(
n− j(3j − 2)

3

)
.

Start with λ ∈ Q2(n). Write λ = α∪β, where α is a partition into distinct parts
congruent to 1 or 5 modulo 6, and β is a partition into distinct parts divisible
by 3. Thus, β/3 is a partition with distinct parts and ϕ−1

Gl (β/3) is a partition

with odd parts. Moreover, 3ϕ−1
Gl (β/3) is a partition whose parts are congruent

to 3 modulo 6 and |3ϕ−1
Gl (β/3)| = |β|. Let ξ6,1(α) = (µ, k(3k − 2)) for some

k ∈ Z. Since the parts of µ are divisible by 6, all parts of µ ∪ 3ϕ−1
Gl (β/3) are

divisible by 3. Define ψ(λ) = (µ∪ 3ϕ−1
Gl (β/3))/3. Since |µ| = |α|− k(3k− 2) and

|α|+ |β| = n, it follows that ψ(λ) is a partition of n−k(3k−2)
3 .

For the inverse, let k ∈ Z. Start with a partition η of n−k(3k−2)
3 . Then 3η is

a partition of n−k(3k−2). Write 3η = µ∪π, where µ (respectively π) has parts
congruent to 0 (respectively 3) modulo 6. We have that ξ−1

6,1(µ, k(3k − 2)) is a
partition of |µ|+k(3k−2) into parts congruent to 1 or 5 modulo 6. The partition
π/3 has odd parts and 3ϕGl(π/3) is a partition into distinct parts divisible by 3

and |3ϕGl(π/3)| = |π|. Then ψ−1(η) = ξ−1
6,1(µ, k(3k − 2)) ∪ 3ϕGl(π/3) ∈ Q2(n).

7.3 Combinatorial proof of Theorem 1.14 (ii)

We denote by Q(n) the set of partitions of n into distinct parts and we set
Q := ∪n≥0Q(n), Q2 := ∪n≥0Q2(n). and Q6,1 := ∪n≥0Q6,1(n). Let ϕF be the
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involution defined by Franklin to give a combinatorial proof of Euler’s pentag-
onal number theorem (see, for example, [2, Theorem 1.6]). Let

A(n) := {(λ, µ) : λ ∈ Q2, µ = 3η with η ∈ Q, |λ|+ |µ| = n}

and
EA(n) := {(λ, µ) ∈ A(n) : µ/3 pentagonal partition}.

Here a pentagonal partition is either ∅ or a partition of the form (2i, 2i−1, . . . , i+
1) or (2i− 1, 2i− 2, . . . , i) for some integer i > 0.

The involution (λ, µ) 7→ (λ, 3ϕF (µ/3)) on A(n) \ EA(n) proves combinatori-
ally that

∞∑

j=−∞

(−1)j Q2

(
n− 3j(3j − 1)/2

)

is the generating function for

|{(λ, µ) ∈ A(n) : ℓ(µ) even}| − |{(λ, µ) ∈ A(n) : ℓ(µ) odd}|. (15)

We define another involution on a subset of A(n) that reverses the parity of
the length of the second partition in the pair. Given (λ, µ) ∈ A(n), we write
λ = λ3| ∪ λ3∤, where the parts of λ3| are all parts of λ which are divisible by
3. If ℓ(λ3|) 6≡ ℓ(µ) (mod 2), we map (λ3|, λ3∤, µ) to (µ, λ3∤, λ3|). If ℓ(λ3|) 6≡ ℓ(µ)

(mod 2) and λ3| 6= µ, let i be the smallest integer such that λ
3|
i 6= µi. If λ

3|
i > µi,

we remove part λ
3|
i from λ3| and insert a part equal to λ

3|
i into µ. If λ

3|
i < µi,

we remove part µi from µ and insert a part equal to µi into λ
3|. We obtain an

involution on the set {(λ, µ) ∈ A(n) : λ3| 6= µ} that reverses the parity of ℓ(µ).
Thus, (15) equals

|{(λ, λ3|) ∈ A(n) : ℓ(λ3|) even}| − |{(λ, λ3|) ∈ A(n) : ℓ(λ3|) odd}|.

Mapping (λ, λ3|) = (λ3|, λ3∤, λ3|) to (λ3∤, 2λ3|) and setting

B(n) := {(α, β) : α ∈ Q6,1, β = 6γ with γ ∈ Q, |α|+ |β| = n} ,

we see that (15) equals

|{(α, β) ∈ B(n) : ℓ(β) even}| − |{(α, β) ∈ B(n) : ℓ(β) odd}|.

Let C(n) be the set of triples (γ, k(3k − 2), β) such that k ∈ Z, γ and β are
partitions with parts divisible by 6, β ∈ Q, and |γ|+ k(3k − 2) + |β| = n.

We define a bijection from B(n) to the set C(n) by

(α, β) 7→ (ξ6,1(α), β) = (γ, k(3k − 2), β)

where, ξ6,1 : Q6,1(n) → W6,1(n) is the bijection of [11, Lemma 2.1]. Then, (15)
equals

|{(γ, k(3k − 2), β) ∈ C(n) : ℓ(β) even}| − |{(γ, k(3k − 2), β) ∈ C(n) : ℓ(β) odd}|.
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Finally, we define an involution ζ on

{(γ, k(3k − 2), β) ∈ C(n) : (γ, β) 6= (∅, ∅)}.

Start with (γ, k(3k − 2), β) ∈ C(n) with (γ, β) 6= (∅, ∅). If γ1 > β1, remove part
γ1 from γ and insert a part equal to γ1 into β. If γ1 ≤ β1, remove part β1 from
β and insert a part equal to β1 into γ. The involution ζ reverses the parity of
ℓ(β).

This completes the combinatorial proof of Theorem 1.14(ii).

8 Inequalities and open problems

Linear inequalities involving partition functions, especially Euler’s partition
function p(n), have been the subject of recent studies by G. E. Andrews and M.
Merca [4, 5, 6], C. Ballantine and M. Merca [8, 9, 10], C. Ballantine, M. Merca,
D. Passary and A. J. Yee [12], V. J. W. Guo and J. Zeng [21], J. Katriel [24],
M. Merca [26, 27, 28, 29, 30, 31, 38, 32, 33, 34, 35, 36, 37, 39], M. Merca and
J. Katriel [40], M. Merca, C. Wang and A. J. Yee [41], M. Merca and A. J. Yee
[42]. For example, G. E. Andrews and M. Merca [4] proved that: for n > 0,
k > 0,

(−1)k−1
k∑

j=−(k−1)

(−1)j p
(
n− j(3j − 1)/2

)
> 0.

Recently [5, Corollary 11], the same authors found a new infinite family of linear
homogeneous inequalities for p(n) which involves the triangular numbers: if at
least one of n and k is odd,

(−1)k−1
2k−1∑

j=0

(−1)j(j−1)/2 p
(
n− j(j + 1)/2

)
> 0.

As a consequence of Theorem 1.8, we remark a new infinite family of linear
inequalities for p(n).

Corollary 8.1. For n > 0, k > 0,

(−1)k


b6(n)−

k∑

j=−(k−1)

(−1)j p
(
n− 3j(3j − 1)

)

 > 0,

with strict inequality if n > 3k(3k + 1).

For example, the cases k = 1 and k = 2 of this corollary provides the
following double inequality

p(n)− p(n− 6)− p(n− 12) + p(n− 30) 6 b6(n) 6 p(n)− p(n− 6). (16)
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In terms of mex2,2, inequality (16) becomes

pm2(n) + pm4(n)− pm8(n)− pm10(n) 6 b6(n) 6 pm2(n) + pm4(n).

In this section, inspired by the identity (8) and Theorems 1.10, 1.12 and
1.14, we propose as conjectures new infinite families of linear inequalities for
the partition functions p(n), b6(n) and Q2(n).

8.1 Euler’s partition function

Inspired by Theorem 1.12, for k > 0 we investigated the following series:

(−q; q2)∞ (−q6; q6)∞ −
1

(q; q)∞

k∑

j=0

ρj q
j(j+1).

There is a substantial amount of numerical evidence to conjecture that this series
has nonnegative coefficients if k is not congruent to 0 modulo 3 and nonpositive
coefficients if k is congruent to 0 modulo 3. In addition, we conjecture that the
coefficient of qn in this series is nonzero if and only if n > (k + 1)(k + 2). We
have the following combinatorial interpretation of this conjecture.

Conjecture 1. For n, k > 0,

(i)

3k∑

j=0

ρj p
(
n− j(j + 1)

)
> Q2(n),

with strict inequality if n > (3k + 1)(3k + 2);

(ii)
3k+1∑

j=0

ρj p
(
n− j(j + 1)

)
6 Q2(n);

with strict inequality if n > (3k + 2)(3k + 3).

Assuming this conjecture, we remark the following double inequality:

p(n)− 2p(n− 2) + p(n− 6) 6 Q2(n)

6 p(n)− 2p(n− 2) + p(n− 6) + p(n− 12). (17)

In terms of mex2,2, inequality (17) becomes

pm2(n)− pm4(n) 6 Q2(n) 6 pm2(n)− pm4(n) + pm>6(n).

8.2 6-regular partitions

Inspired by the identity (8) and the truncated pentagonal number theorem (11),
for k > 0 we considered the following series:

(q6; q6)∞ −
(q6; q6)∞
(q; q)∞

k∑

n=−(k−1)

(−1)n qn(3n−1)/2.
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There is a substantial amount of numerical evidence to conjecture that this
series has nonnegative coefficients if k is even and nonpositive coefficients if k
is odd. In addition, we conjecture that the coefficient of qn in this series is
nonzero if and only if n > k(3k + 1)/2. We have the following combinatorial
interpretation of this conjecture. For any integer n, let

αn :=

{
(−1)m, if n = 3m(3m− 1), m ∈ Z,

0, otherwise.

Conjecture 2. For n > 0, k > 0,

(−1)k


αn −

k∑

j=−(k−1)

(−1)j b6
(
n− j(3j − 1)/2

)

 > 0,

with strict inequality if n > k(3k + 1)/2

We remark that this inequality can be rewritten in terms ofMk(n) as follows:
for n > 0, k > 0,

∞∑

j=−∞

(−1)jMk

(
n− 3j(3j − 1)

)
> 0, (18)

with strict inequality if n > k(3k + 1)/2.
In analogy with Conjecture 2, we also make the following conjecture.

Conjecture 3. For n > 0, k > 0,

(−1)k−1


αn −

k∑

j=−k

(−1)j b6
(
n− j(3j − 1)/2

)

 > 0,

with strict inequality if n > k(3k + 1)/2.

It is easy to see that Conjecture 3 is a weaker version of Conjecture 2. The
inequality given by Conjecture 3 can be rewritten in terms of P̃k(n) as follows:
for n > 0, k > 0,

∞∑

j=−∞

(−1)j P̃k

(
n− 3j(3j − 1)

)
> 0, (19)

with strict inequality if n > k(3k+1)/2. Clearly the inequality (18) implies the
inequality (19).

Inspired by Theorem 1.10, for k > 0 we investigated the following series:

(q, q5, q6; q6)∞ −
(q6; q6)∞
(q; q)∞

k∑

j=0

ρj q
j(j+1)/2.
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There is a substantial amount of numerical evidence to conjecture that this series
has nonnegative coefficients if k is not congruent to 0 modulo 3 and nonpositive
coefficients if k is congruent to 0 modulo 3. In addition, the coefficient of qn in
this series is nonzero if and only if n > (k + 1)(k+ 2)/2. We have the following
combinatorial interpretation of this conjecture. For any integer n, let

βn :=

{
(−1)m, if n = m(3m− 2), m ∈ Z,

0, otherwise.

Conjecture 4. For n, k > 0,

(i)
3k∑

j=0

ρj b6
(
n− j(j + 1)/2

)
> βn,

with strict inequality if n > (3k + 1)(3k + 2)/2;

(ii)

3k+2∑

j=0

ρj b6
(
n− j(j + 1)/2

)
6 βn;

with strict inequality if n > (3k + 2)(3k + 3)/2.

Assuming this conjecture, we remark the following double inequality:

b6(n)− 2b6(n− 1) + b6(n− 3) 6 βn 6 b6(n)− 2b6(n− 1) + b6(n− 3) + b6(n− 6).

8.3 Partitions into distinct parts 6≡ ±2 (mod 6)

Inspired by Theorem 1.14.(i), for k > 0 we considered the following series:

(q2, q10; q12)∞ (q2; q2)∞ − (−q; q2)∞ (−q6; q6)∞

k∑

j=−(k−1)

(−1)jqj(3j−1)/2.

There is a substantial amount of numerical evidence to conjecture that this
series has nonnegative coefficients if k is even and nonpositive coefficients if k is
odd. We have the following combinatorial interpretation of this conjecture. For
any nonnegative integer n, let

γn :=

{
ρm, if n = m(m+ 1), m ∈ N0,

0, otherwise.

Conjecture 5. For n > 0, k > 0,

(−1)k



γn −
k∑

j=−(k−1)

(−1)j Q2

(
n− j(3j − 1)/2

)


 > 0.
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We remark that this inequality can be rewritten in terms ofMk(n) as follows:
for n > 0, k > 0,

∞∑

j=0

ρj Mk

(
n− j(j + 1)

)
> 0. (20)

We also make the following conjecture which is weaker than Conjecture 5.

Conjecture 6. For n > 0, k > 0,

(−1)k−1


γn −

k∑

j=−k

(−1)j Q2

(
n− j(3j − 1)/2

)

 > 0.

This inequality can be rewritten in terms of P̃k(n) as follows: for n > 0,
k > 0,

∞∑

j=0

ρj P̃k

(
n− j(j + 1)

)
> 0. (21)

It is clear that the inequality (20) implies the inequality (21).
Regarding inequalities (18) - (21), it would be very appealing to have com-

binatorial interpretations for their sums.
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