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Oscillatory force autocorrelations in equilibrium odd-diffusive systems
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The force autocorrelation function (FACF), a concept of fundamental interest in statistical me-
chanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the
FACF is believed to decay monotonically in time which is a signature of slowing down of the dynam-
ics of the tagged particle due to interactions. Here we analytically show that in odd-diffusive systems,
which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become
negative and even exhibit temporal oscillations. We also demonstrate that, despite the isotropy,
the knowledge of FACF alone is not sufficient to describe the dynamics: the full autocorrelation
tensor is required and contains an antisymmetric part. These unusual properties translate into en-
hanced dynamics of the tagged particle quantified via the self-diffusion coefficient that, remarkably,

increases due to particle interactions.

Introduction. Time integrals of appropriate correla-
tion functions are related to transport coefficients via
the Green-Kubo relations [1, 2]. The self-diffusion co-
efficient, for instance, is determined by the integral of
the force autocorrelation function (FACF), which quan-
tifies the effect of interactions on the diffusive dynamics
of a particle. Previous studies have shown that in over-
damped equilibrium systems, the FACF decays mono-
tonically for all densities independently of the nature of
interaction between particles [3-6]. As a consequence,
the self-diffusion coefficient is always reduced in interact-
ing systems. A nonmonotonic decay is known to exist in
active [7], driven [8], and harmonically trapped systems
[9], as well as in fluid systems with inertia [10], but it
has never been shown in equilibrium systems. In fact,
such a behavior was even shown to be prohibited in over-
damped equilibrium systems [7, 11, 12]. The lack of any
nonmonotonic features is intuitively expected, for there
exists neither inertia nor any internal or external driv-
ing which could introduce additional time scales to the
system.

Here we show for the first time that the FACF can be
nonmonotonic and even oscillatory in overdamped equi-
librium systems. Systems showing this behavior are char-
acterized by probability fluxes, which are perpendicular
to density gradients and are referred to as odd-diffusive
systems [13]. We further demonstrate that the unusual
behavior of the self-diffusion coefficient in these systems,
it increases with increasing density [14], is a natural con-
sequence of the nonmonotonicity of the FACF. The trans-
verse response to the perturbation is the fundamental
property of odd systems which have received much inter-
est lately [15]. In addition to odd-diffusive systems, there
are odd systems characterized by odd viscosity [16-21],
odd elasticity [22, 23] and odd viscoelasticity [24, 25].
With the advent of experimental odd systems such as

spinning biological organisms [26], chiral fluids [27, 28]
and colloidal spinners [29], the interest in odd systems
has increased rapidly.

The odd-diffusion tensor for
isotropic system can be written as

a two-dimensional

D = Dy (1 + ke), (1)

where 1 is the identity matrix, € is the antisymmetric
Levi-Civita symbol in two dimensions (e, = —€y, = 1
and €, = €4y = 0), Dy is the diffusivity and « is the
odd-diffusion parameter. A nonzero k results in probabil-
ity fluxes perpendicular to density gradients. Examples
of odd-diffusive systems are Brownian particles diffusing
under the effect of Lorentz force [30-35], and diffusing
skyrmions [36-41], see also the Supplementary Material
(SM) [42]. Although these are equilibrium odd-diffusive
systems, there exist also driven odd-diffusive systems
such as active chiral particles (also called circle swim-
mers) [43-46] and strongly damped particles subjected
to Magnus [47] or Coriolis force [48]. In contrast to equi-
librium systems which are invariant under time-reversal,
the odd-diffusive behavior in nonequilibrium systems is a
consequence of broken time-reversal and parity symme-
tries [21].

While an exact calculation of the FACF is a formidable
task, near-exact analytical results can be obtained in
the dilute limit in which the dynamics are dominated
by two-body effects. To this end, we generalize the
first-principles approach developed by Hanna, Hess, and
Klein [3, 4] to calculate the FACF in a dilute odd-diffusive
system of hard-core interacting particles. We show ana-
lytically that odd diffusion qualitatively alters the time
correlations: the correlation function becomes negative
for finite x indicating the anticorrelated nature of the
force experienced by an odd-diffusive particle due to col-
lisions with other particles. Moreover, the correlation



function exhibits temporal oscillations for certain values
of k it crosses zero twice. We further show that for suffi-
ciently large k, the integral of the correlation function be-
comes negative which gives rise to the increase in the self-
diffusion coefficient. Using the Green-Kubo relation, we
derive exactly the same expression for the self-diffusion
coefficient as in Ref. [14] which was obtained using an
alternative approach.

Theoretical background. We consider a two-
dimensional system of two interacting, odd-diffusive hard
disks with coordinates X = (x1,x2). The two-particle
conditional probability density function for the parti-
cles to evolve from X' at time ¢ < t to X at time t,
P = P(X,t|X/,t'), satisfies the Fokker-Planck equation

9 v, DV, + BV U] P

ot
+ Vg -D [Vz + BV2U(T‘)] P, (2)

with the odd-diffusion tensor (1) and Vi, Vg as the par-
tial differential operator with respect to the coordinates
of particle one and two, respectively. U(r) is the poten-
tial energy with r = |x; — x3| as the relative distance
between the particles and § = 1/kgT, where kg is the
Boltzmann constant and T is the temperature. We as-
sume hard-core interactions between the two disks of di-
co, r<ao
0, r>0
The analytical solution to the two-particle Fokker-Planck
equation was obtained for normal-diffusing particles, i.e.
D = Dyl [3, 4]. While the hard-core interactions are
modeled via Neumann boundary conditions in normal-
diffusing systems, they are modeled as oblique boundary
conditions in odd-diffusive systems due to the transverse
fluxes [14, 49]. This has profound consequences for the
solution and therefore for the application of our theory.
We solve the two-particle problem (2) for odd-diffusive
hard disks exactly in the SM [42].

Force autocorrelation tensor. The force autocorre-
lation tensor (FACT), which is defined as Cp(r) =
(F(1) ® F(0)), can be written as [50]

ameter o, which can be written as U(r) =

Co(r) = /di/dio F (%) o F (%)
x P (X,7|X0,0) Peq (X0) (3)

for 7 > 0. Here F is the interaction force acting on a
tagged particle due to other particles, (-) denotes an en-
semble average with the equilibrium distribution Peq (Xo)
and the outer product is defined as [A ® Bl,g = A, Bs.
Throughout the paper, time is measured in units of
0 = 02/(2Dy) which is the characteristic timescale of
a particle diffusing over a distance of diameter o, i.e.
7 = t/79. The FACT can be calculated from Eq. (3) to
first order in the density, details of which are shown in
SM [42]. Similar to the diffusion tensor, the FACT can

be split in a diagonal and an antisymmetric off-diagonal
part:

Cr(r) = Cp™ (1)1 + C¥ (7). (4)
for 7 > 0, where C'58(7) and C9T(7) are the diagonal
and antisymmetric off-diagonal elements of the FACT. In

Laplace domain they read

2¢ K; [V/sKo + Ki]

~diag s) =
CE"(s) 3D, VKo +K1]2 - [EK1]27 (5)
CNV%H(S) 2 (b K [KI} (6)

T Do [\5Ko + K]’ + kK12

where K, = K,(1/s) is the modified Bessel function
of the second kind of order n, ¢ = m (N/V) (¢/2)% is
the area fraction for N particles of diameter ¢ in an
area V', and (-) denotes the Laplace transform with s
as the Laplace variable conjugate to 7. Note that the
off-diagonal elements C’l%ff are proportional to the odd-
diffusion parameter x and therefore vanish in the case of
normal diffusion (k = 0). In this case the FACT reduces
to Cp() = Ce*8(1) 1 = L(F(r) - F(0)), which is the
usual FACF in normal systems.

The diagonal and off-diagonal elements of the FACT
are plotted in Fig.1 as a function of time. We first con-
sider the behavior of the diagonal elements of the ten-
sor in Fig.1(a), which correspond to the usual FACF for
odd-diffusive systems. For small values of x, the FACF
is a positive, monotonically decaying function of time,
qualitatively similar to a normal diffusive system. For
larger values of k, however, a new feature appears in the
FACEF: it crosses through zero and hence becomes nega-
tive, indicating an anticorrelation of the force. The time
scale of the force reversal on a tracer particle, i.e., when
the FACF becomes negative, depends strongly on k, as
can be seen in the inset of Fig.1(a). There exists a nu-
merically obtained threshold x:;, =~ 0.88 below which the
FACF is strictly positive. The off-diagonal elements of
the FACT are shown in Fig.1(b). Unlike the diagonal el-
ements, which diverge as t — 0, the off-diagonal elements
remain finite. Specifically they remain positive for all x
and decay monotonically in time.

It is interesting to investigate the short- and long-time
behavior of the elements of the FACT. Using the asymp-
totic behavior of the modified Bessel functions Ky and
K, see SM [42] for details, from Eq. (5) and Eq. (6)
we have analytical access to the behavior on time scales
t << 19 and t > 719, i.e. s> 1 and s < 1 in the Laplace
domain, respectively. At short times, the FACF behaves
like C5*8(7) =~ 771/2 as shown in Fig.1(a), and is in-
dependent of k. Here ~ is used to denote asymptotic
proportionality. The long-time behavior of the FACF
can be obtained from the s < 1 expansion and behaves
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Double-logarithmic plot of the diagonal and off-diagonal elements of the force autocorrelation tensor (FACT) of

interacting hard disks as a function of reduced time 7 = t/70, where 7o = 0%/(2Dy). (a) The diagonal elements of the FACT
C%#8 (1), corresponding to the force autocorrelation function (FACF), can turn negative. The FACF diverges in the limit 7 — 0

as C;iag(r) ~ 7712 At long times the FACF scales as C;iag(r) ~ 772, For k = 1 we find an exceptional long-time behavior,

where C'U*8 (1) ~ 773, The inset shows the zero-crossing time 7. of C'5*%(r) as a function of &, which in the main figure is
marked by red circles. The onset of the anticorrelation corresponds to k£ > kin ~ 0.88 (b) The off-diagonal elements of the
FACT C¢f (1) are independent of time in the short-time limit C%T (7) ~ x7° and are directly proportional to . In the long-time
limit, they scale similarly to the diagonal elements as C%T(7) ~ 772 for all . The inset in (b) shows typical configurations
after a collision of particles, where the orientational change of the force (orange arrow) F; = F(7;), i € {0, 1,2, 3} of the tagged

particle (red) is indicated.

asymptotically as

~di 2¢ 1 1— k2 In(s)
diag N o
Cr) ™~ G T 2 <1+1 ¥ K2 <7 2=~ )s
1—6r%4+ £ 5
W s“1n (S) y (7)

for s — 0 and where v = 0.5772 is the Euler-Mascheroni
constant. For x = 0, the asymptotic behavior of C'glag
coincides with the form reported for related 2d Lorentz
gas systems [51]. Furthermore, from Eq. (7) it can be
seen that the long-time behavior of C?,iag(T) strongly de-
pends on k. The FACF decays as 772 for all k except
for k = 1, at which the leading order contribution van-
ishes in Eq. (7) and C'5*8(7) ~ 7731n(r), as shown in
Fig.1(a) [52, 53]. The ordinary algebraic long-time de-
cay ~ 72 (k # 1) is consistent with the general pre-
diction of a decay ~ 7= (#/2+1) ¢ = 1,2, 3, for correla-
tion functions in systems, which do not conserve momen-
tum [54, 55]. This universal behavior was theoretically
and numerically exhaustively demonstrated specifically
for the 2d Lorentz gas model [51, 56-59]. In three di-
mensions, the decay of the correlation functions ~ 7-5/2
[3, 60—63] could recently be demonstrated computation-
ally [6]. In contrast, the short-time behavior ~ 7=1/2 is
independent of dimensionality and attributed to the hard
interactions between the particles [3, 61].

The asymptotic short-time behavior of C9(7) turns

out to be independent of time but depends linearly on
Kk, CM (1) ~ k70, as as can be seen in Fig.1(b). Such a
scaling of the off-diagonal elements with x at short times
has been recently derived by Yasuda et. al in Ref. [64]
for odd Langevin systems. The authors also pointed out
that this could be useful for estimating the odd-diffusion
parameter in experiments. The asymptotic long-time be-
havior of C9(7) shows a monotonic decay in time and
also depends on , CT(7) ~ k772 /(K% + 1)2, as can be
seen in Fig.1(b).

In a low-density system, in which only two-body cor-
relations are important, it is quite surprising that the
FACF can turn negative, as shown in Fig.1. It is even
more surprising that there exists a range of k € (k¢p, 1)
for which the FACF exhibits not one but two zero cross-
ings, as shown in Fig. 2. It appears that for x slightly
larger than sy, ~ 0.88, which is obtained from numerical
inversion of Eq. (5), the FACF first becomes anticorre-
lated (first zero crossing) in time before it crosses the time
axis again (second and last zero crossing). Here, at long
times, the FACF decays to zero from above. We have
numerically inverted the Laplace transform over much
longer times than shown here and did not find more than
two zero crossings. This ”temporal oscillation” in the
FACF ceases to exist for k > 1. For k > 1, the asymp-
totic expansion in Eq. (7), transformed back into time
domain, is strictly negative and therefore the FACF de-
cays to zero from below, i.e. the second zero-crossing
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FIG. 2. Double-logarithmic plot of the absolute value of the
diagonal elements of the force autocorrelation tensor C'm?(7)
of interacting hard disks as a function of reduced time 7 =
t/10, where 79 = 02/(2Dy). Investigating the regime x €
[0.88,1.0], we find oscillatory behavior of C%*8(7). At short

times C’f,iag(T) starts as a positive function, turns negative
and after a second zero-crossing becomes positive again. The
inset shows the zero-crossing times 7. of C'4*%(7) as a function
of k in a linear-logarithmic plot which in the main figure are
marked as red circles. The oscillatory behavior starts at kK >
ktn = 0.88, whereas the second zero-crossing drifts to infinity
as k — 1. For k > 1, C'58(1) only shows one zero-crossing
and remains anti-correlated for the remaining 7 — oo (see
also inset in Fig.1 (a)).

vanishes (see also inset in Fig.2).

Green-Kubo relation for the self-diffusion coefficient.
The self-diffusion coefficient D, can be obtained from
the velocity autocorrelation function (VACF) C,(7) =
(v(7)-v(0))/2, where v(7) = dx/dr and x is the position
of the tagged particle as the time integral

D = /0 dt CU(T)v (8)

a Green-Kubo relation between an equilibrium auto-
correlation function (C,(7)) and a transport coefficient
(Ds) [1].

In normal diffusive systems, the VACF is related to
the FACF. In contrast, in an odd-diffusive system, the
knowledge of the FACF alone is not sufficient to calcu-
late the VACF. This is despite the fact that the system
is isotropic. In fact, one requires the entire FACT to
calculate the velocity correlation function. We show in
SM [42] that in odd-diffusive systems, the VACF can be

written as
Cy(1) = Dy (64(7) = DoB*Cr(7)) 9)

where

_11

- 2D}

Cr(1) (DT : Cp(r), (10)

and where the double contraction is defined as A : B =
Zi p=1AapBga. 04 is the one-sided delta distribution,
see also the SM [42]. We refer to C(7) as the generalized
force autocorrelation function (gFACF) which reads

Cp(r) = (1 - ) OF*(1) — 2xCeE(r).  (11)

For normal diffusive systems (i.e. £ = 0), Cr reduces to
the ordinary FACF. Note that even though the gFACF
is diverging for all kK # 1 in 7 — 0 in the hard-disk sys-
tem, the function remains integrable. This is of physical
significance since the integral of the gFACF captures the
effect of collisions on the self-diffusion as we see from the
Green-Kubo relation Eq. (8) together with Eq. (9).

The self-diffusion coefficient D, can be obtained from
the time integral of Eq. (9) or by using the limit theo-
rem [ f(t) dt = lim,_,o f(s) in Eq. (7) for Cle and
similarly for C'%ﬁ which yields

o 1 -
: diag . off
llH(l) Ce™(s) = p gIH(l) C'(s)

(12)

Together with Eq. (9) and Eq. (11), this gives the self-
diffusion coefficient in an odd-diffusive system,

1 — 3k2
Dy, = Dy (1 —2¢ 1+K2> , (13)
valid up to first order in area concentration ¢ for a system
of hard disks. This result was previously derived by us
in Refs. [14, 65] by a different method.

For x = 0 the expression for D, reproduces the known
result of normal diffusive systems of hard disks in two di-
mensions Dy = Do(1 — 2¢) [4, 61]. The surprising result
of Dy in Eq. (13) is that the prefactor of ¢ can change
sign. This shows that odd diffusivity (x > 0) results in
a cancellation of the ordinary collision-induced reduction
of the self-diffusion. For x = k, = 1/\/5, up to first or-
der in the area fraction, the effect of the collisions on the
self-diffusion vanishes (Ds = Dy), meaning that the on
long time and length scales hard disks appear to diffuse
as non-interacting particles. For x > k., collisions sur-
prisingly increase the self-diffusion coefficient: the system
mixes more efficiently.

It is natural to ask whether our findings can be ex-
tended to three dimensions. However, in three dimen-
sions, odd systems cannot be isotropic because the plane
in which the rotation takes place breaks isotropy [13,
15, 66]. We investigated the self-diffusion in such a sys-
tem via Brownian dynamics simulations and found that
the in-plane odd diffusivity has no effect on the diffu-
sion along the axes of rotation, which turns out to be
exactly the same as that of a normal-diffusive system of
hard spheres. The in-plane diffusivity, however, shows
the same k-dependent behavior as in a two-dimensional
odd-diffusive system.



Discussion. We analytically demonstrated that equi-
librium correlation functions can be non-monotonic and
even oscillatory in overdamped systems. This finding is
at odds with the statement that in an equilibrium sys-
tem the correlation function and all its derivatives decay
monotonically [7, 12]. While the latter holds in systems
where the time-evolution is described by a Hermitian
Fokker-Planck operator, for odd systems this is not ap-
plicable due to their intrinsic antisymmetric off-diagonal
elements in the diffusion tensor (1).

Our work shows that rich physics is to be explored in
equilibrium, odd-diffusive systems. In normal-diffusive
systems, for instance, there exists a crossover between
two diffusive regimes: short-time diffusion with diffusiv-
ity Do and long-time diffusion with Dy < Dg [50]. That
the long-time self-diffusion coefficient is smaller than the
short-time is indicative of the slowing down of the dy-
namics of the tracer particle in the crossover. In odd-
diffusive systems, in contrast, the dynamics can be en-
hanced, which is reflected in the anticorrelated force au-
tocorrelations. The anticorrelation can be physically in-
terpreted in terms of reversal of the force experienced by
a tagged particle such that rather than impeding, colli-
sions with other odd-diffusive particles enhance the mo-
tion of the tagged particle, see also the inset in Fig. 1(b).
Even though qualitatively this mutual rolling of parti-
cles explains the enhancement of self-diffusion with col-
lisions in an odd-diffusive system through the reversal of
force [14], a detailed mechanism is still elusive. To this
end, we believe it will be interesting to investigate the
structural rearrangements that occur in an odd-diffusive
system and contrast them with those in a normal diffu-
sive system. We further expect that the unusual behavior
could also have implications for the rheological properties
of odd fluids, such as viscosity.

With increasing experimental interest in systems such
as spinning biological organisms [26], chiral fluids [27,
28], and colloidal spinners [29], our work will contribute
to the broadening interest of the physics community in
these systems, especially in the novel and interesting way
how interactions modify the particle dynamics here. Fur-
thermore, we believe that our work will stimulate funda-
mental research on extending statistical physics to the
novel case of odd-diffusive systems. Lastly, since exact
analytical results are rather rare in interacting systems,
our work may serve as a reference to validate approximate
theories for dense systems or computer simulations.

Acknowledgements. We would like to thank one of the
anonymous Reviewers for several suggestions and fruitful
comments regarding the analytical results of the auto-
correlation functions discussed in this work. We fur-
ther thank Felix Biittner for illuminating discussions on
skyrmionic systems. E. K., R. M., and A. S. acknowledge
support by the Deutsche Forschungsgemeinschaft (grants
No. ME 1535/16-1 and SH 1275/3-1). J.-U.S. thanks the
cluster of excellence “Physics of Life” at TU Dresden for

support.

[1] M. S. Green, Markoff random processes and the sta-
tistical mechanics of time-dependent phenomena. ii. ir-
reversible processes in fluids, J. Chem. Phys. 22, 398
(1954).

[2] R. Kubo, M. Toda, and N. Hashitsume, Statistical physics
II: nonequilibrium statistical mechanics, Vol. 31 (Springer
Science & Business Media, 2012).

[3] S. Hanna, W. Hess, and R. Klein, The velocity autocorre-
lation function of an overdamped brownian system with
hard-core interaction, J. Phys. A 14, 1493 (1981).

[4] S. Hanna, W. Hess, and R. Klein, Self-diffusion of spher-
ical brownian particles with hard-core interaction, Phys-
ica A 111, 181 (1982).

[5] A. Sharma and J. M. Brader, Communication: Green-

kubo approach to the average swim speed in active brow-

nian systems, J. Chem. Phys. 145, 161101 (2016).

S. Mandal, L. Schrack, H. Lowen, M. Sperl, and T. Fra-

nosch, Persistent anti-correlations in brownian dynam-

ics simulations of dense colloidal suspensions revealed by

noise suppression, Phys. Rev. Lett. 123, 168001 (2019).

[7] M. Caraglio and T. Franosch, Analytic solution of an
active brownian particle in a harmonic well, Phys. Rev.
Lett. 129, 158001 (2022).

[8] S. Leitmann, S. Mandal, M. Fuchs, A. M. Puertas, and
T. Franosch, Time-dependent active microrheology in di-
lute colloidal suspensions, Phys. Rev. Fluids 3, 103301

(2018).

[9] T. Franosch, M. Grimm, M. Belushkin, F. M. Mor,
G. Foffi, L. Forrd, and S. Jeney, Resonances arising from
hydrodynamic memory in brownian motion, Nature 478,
85 (2011).

[10] S. Jeney, B. Lukié¢, J. A. Kraus, T. Franosch, and
L. Forr4, Anisotropic memory effects in confined colloidal
diffusion, Phys. Rev. Lett. 100, 240604 (2008).

[11] W. Feller, An introduction to probability theory and its
applications (John Wiley & Sons, New York, 1970).

[12] S. Leitmann and T. Franosch, Time-dependent fluctu-
ations and superdiffusivity in the driven lattice lorentz
gas, Phys. Rev. Lett. 118, 018001 (2017).

[13] C. Hargus, J. M. Epstein, and K. K. Mandadapu, Odd
diffusivity of chiral random motion, Phys. Rev. Lett. 127,
178001 (2021).

[14] E. Kalz, H. D. Vuijk, 1. Abdoli, J.-U. Sommer, H. Léwen,
and A. Sharma, Collisions enhance self-diffusion in odd-
diffusive systems, Phys. Rev. Lett. 129, 090601 (2022).

[15] M. Fruchart, C. Scheibner, and V. Vitelli, Odd viscosity
and odd elasticity, Annu. Rev. Condens. Matter Phys.

14, 471 (2023).

[16] D. Banerjee, A. Souslov, A. G. Abanov, and V. Vitelli,
Odd viscosity in chiral active fluids, Nat. Commun. 8, 1
(2017).

[17] M. Han, M. Fruchart, C. Scheibner, S. Vaikuntanathan,
J. J. De Pablo, and V. Vitelli, Fluctuating hydrodynam-
ics of chiral active fluids, Nat. Phys. 17, 1260 (2021).

[18] T. Markovich and T. C. Lubensky, Odd viscosity in active
matter: microscopic origin and 3d effects, Phys. Rev.
Lett. 127, 048001 (2021).

[19] Z. Zhao, M. Yang, S. Komura, and R. Seto, Odd viscosity

6



in chiral passive suspensions, Front. Phys. , 815 (2022).

[20] R. Lier, C. Duclut, S. Bo, J. Armas, F. Jiilicher, and
P. Suréwka, Lift force in odd compressible fluids, arXiv
preprint arXiv:2205.12704 (2022).

[21] C. Hargus, K. Klymko, J. M. Epstein, and K. K. Man-
dadapu, Time reversal symmetry breaking and odd vis-
cosity in active fluids: Green—kubo and nemd results, J.
Chem. Phys. 152, 201102 (2020).

[22] C. Scheibner, A. Souslov, D. Banerjee, P. Suréwka,
W. T. M. Irvine, and V. Vitelli, Odd elasticity, Nat. Phys.
16, 475 (2020).

[23] L. Braverman, C. Scheibner, B. VanSaders, and
V. Vitelli, Topological defects in solids with odd elas-
ticity, Phys. Rev. Lett. 127, 268001 (2021).

[24] D. Banerjee, V. Vitelli, F. Jiilicher, and P. Suréwka, Ac-
tive viscoelasticity of odd materials, Phys. Rev. Lett.
126, 138001 (2021).

[25] R. Lier, J. Armas, S. Bo, C. Duclut, F. Jiilicher, and
P. Suréwka, Passive odd viscoelasticity, Phys. Rev. E
105, 054607 (2022).

[26] T. H. Tan, A. Mietke, J. Li, Y. Chen, H. Higinbotham,
P. J. Foster, S. Gokhale, J. Dunkel, and N. Fakhri,
0Odd dynamics of living chiral crystals, Nature 607, 287
(2022).

[27] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna,
D. Bartolo, M. J. Shelley, and W. T. M. Irvine, The odd
free surface flows of a colloidal chiral fluid, Nat. Phys.
15, 1188 (2019).

[28] F. Vega Reyes, M. A. Lépez-Castaiio, and A. Rodriguez-
Rivas, Diffusive regimes in a two-dimensional chiral fluid,
Commun. Phys. 5, 1 (2022).

[29] E. S. Bililign, F. Balboa Usabiaga, Y. A. Ganan, A. Pon-
cet, V. Soni, S. Magkiriadou, M. J. Shelley, D. Bartolo,
and W. T. M. Irvine, Motile dislocations knead odd crys-
tals into whorls, Nat. Phys. 18, 212 (2022).

[30] R. Czopnik and P. Garbaczewski, Brownian motion in a
magnetic field, Phys. Rev. E 63, 021105 (2001).

[31] H.-M. Chun, X. Durang, and J. D. Noh, Emergence
of nonwhite noise in langevin dynamics with magnetic
lorentz force, Phys. Rev. E 97, 032117 (2018).

[32] H. D. Vuijk, J. M. Brader, and A. Sharma, Anomalous
fluxes in overdamped brownian dynamics with lorentz
force, J. Stat. Mech. Theory Exp. 2019, 063203 (2019).

[33] I. Abdoli, H. D. Vuijk, J.-U. Sommer, J. M. Brader, and
A. Sharma, Nondiffusive fluxes in a brownian system with
lorentz force, Phys. Rev. E 101, 012120 (2020).

[34] 1. Abdoli, E. Kalz, H. D. Vuijk, R. Wittmann, J.-U. Som-
mer, J. M. Brader, and A. Sharma, Correlations in mul-
tithermostat brownian systems with lorentz force, New
J. Phys. 22, 093057 (2020).

[35] R. Shinde, J.-U. Sommer, H. Lowen, and A. Sharma,
Strongly enhanced dynamics of a charged rouse dimer
by an external magnetic field, PNAS Nexus 1, pgac119
(2022).

[36] C. Schiitte, J. Iwasaki, A. Rosch, and N. Nagaosa, Iner-
tia, diffusion, and dynamics of a driven skyrmion, Phys.
Rev. B 90, 174434 (2014).

[37] R. E. Troncoso and A. S. Nifiez, Brownian motion of
massive skyrmions in magnetic thin films, Ann. Phys.
351, 850 (2014).

[38] R. Wiesendanger, Nanoscale magnetic skyrmions in
metallic films and multilayers: a new twist for spintron-
ics, Nat. Rev. Mater. 1, 1 (2016).

[39] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions:
advances in physics and potential applications, Nat. Rev.
Mat. 2, 1 (2017).

[40] F. Biittner, I. Lemesh, and G. S. D. Beach, Theory of iso-
lated magnetic skyrmions: From fundamentals to room
temperature applications, Sci. Rep. 8, 4464 (2018).

[41] M. WeiBenhofer, L. Rézsa, and U. Nowak, Skyrmion dy-
namics at finite temperatures: Beyond thiele’s equation,
Phys. Rev. Lett. 127, 047203 (2021).

[42] See Supplemental Material at * * xlink * = in which we
provide detailed calculations. The two-particle Smolu-
chowski equation for interacting off-diffusive hard disks
in two dimensions is solved, we establish the connection
from the velocity to the force autocorrelation function
and explicitly solve for the elements of the force autocor-
relation tensor in the Laplace domain.

[43] F. Kimmel, B. Ten Hagen, R. Wittkowski, I. Buttinoni,
R. Eichhorn, G. Volpe, H. Loéwen, and C. Bechinger,
Circular motion of asymmetric self-propelling particles,
Phys. Rev. Lett. 110, 198302 (2013).

[44] S. Van Teeffelen and H. Léwen, Dynamics of a brownian
circle swimmer, Phys. Rev. E 78, 020101 (2008).

[45] H. D. Vuijk, S. Klempahn, H. Merlitz, J.-U. Sommer, and
A. Sharma, Active colloidal molecules in activity gradi-
ents, Phys. Rev. E 106, 014617 (2022).

[46] P. L. Muzzeddu, H. D. Vuijk, H. Lowen, J.-U. Sommer,
and A. Sharma, Active chiral molecules in activity gra-
dients, J. Chem. Phys. 157, 134902 (2022).

[47] C. J. O. Reichhardt and C. Reichhardt, Active rheol-
ogy in odd-viscosity systems, Europhys. Lett. 137, 66004
(2022).

[48] H. Kahlert, J. Carstensen, M. Bonitz, H. Lowen,
F. Greiner, and A. Piel, Magnetizing a complex plasma
without a magnetic field, Phys. Rev. Lett. 109, 155003
(2012).

[49] I. Abdoli, H. D. Vuijk, R. Wittmann, J.-U. Sommer,
J. M. Brader, and A. Sharma, Stationary state in brown-
ian systems with lorentz force, Phys. Rev. Res. 2, 023381
(2020).

[50] J. K. G. Dhont, An Introduction to Dynamics of Colloids
(Elsevier, 1996).

[61] T. Franosch, F. Hofling, T. Bauer, and E. Frey, Persis-
tent memory for a brownian walker in a random array of
obstacles, Chem. Phys. 375, 540 (2010).

[62] T. Hull and C. Froese, Asymptotic behaviour of the in-
verse of a laplace transform, Can. J. Math. 7, 116 (1955).

[53] M. Abramowitz and I. A. Stegun, Handbook of mathe-
matical functions with formulas, graphs, and mathemati-
cal tables, Vol. 55 (US Government printing office, 1968).

[64] M. Ernst and A. Weyland, Long time behaviour of the
velocity auto-correlation function in a lorentz gas, Phys.
Lett. A 34, 39 (1971).

[65] H. van Beijeren, Transport properties of stochastic
lorentz models, Rev. Mod. Phys. 54, 195 (1982).

[56] B. Alder and W. Alley, Long-time correlation effects on
displacement distributions, J. Stat. Phys. 19, 341 (1978).

[67] J. C. Lewis and J. Tjon, Evidence for slowly-decaying
tails in the velocity autocorrelation function of a two-
dimensional lorentz gas, Phys. Lett. A 66, 349 (1978).

[58] D. Frenkel, Velocity auto-correlation functions in a 2d
lattice lorentz gas: Comparison of theory and computer
simulation, Phys. Lett. A 121, 385 (1987).

[59] F. Hofling and T. Franosch, Crossover in the slow decay
of dynamic correlations in the lorentz model, Phys. Rev.



Lett. 98, 140601 (2007).

[60] G. Jacobs and S. Harris, Macromolecular self-diffusion
and momentum autocorrelation functions in dilute solu-
tions, J. Chem. Phys. 67, 5655 (1977).

[61] B. J. Ackerson and L. Fleishman, Correlations for dilute
hard core suspensions, J. Chem. Phys. 76, 2675 (1982).

[62] B. Felderhof and R. Jones, Cluster expansion of the dif-
fusion kernel of a suspension of interacting brownian par-
ticles, Phys. A: Stat. Mech. 121, 329 (1983).

[63] B. U. Felderhof and R. B. Jones, Diffusion in hard sphere

suspensions, Phys. A: Stat. Mech. 122, 89 (1983).

[64] K. Yasuda, K. Ishimoto, A. Kobayashi, L.-S. Lin, I. Sou,
Y. Hosaka, and S. Komura, Time-correlation functions
for odd langevin systems, J. Chem. Phys. 157, 095101
(2022).

[65] E. Kalz, Diffusion under the Effect of Lorentz Force
(Springer Spektrum Wiesbaden, 2022).

[66] J. E. Avron, Odd viscosity, J. Stat. Phys. 92, 543 (1998).



arXiv:2302.01263v2 [cond-mat.stat-mech] 19 Jul 2023

Supplementary Material: Oscillatory force autocorrelations in equilibrium
odd-diffusive systems

Erik Kalz,! Hidde Derk Vuijk,? Jens-Uwe Sommer,> %5 Ralf Metzler,!*® and Abhinav Sharma? 3

Y University of Potsdam, Institute of Physics and Astronomy, D-14476 Potsdam, Germany
2 University of Augsburg, Institute of Physics, D-86159 Augsburg, Germany
3 Leibniz-Institute for Polymer Research, Institute Theory of Polymers, D-01069 Dresden, Germany
4 Technical University of Dresden, Institute for Theoretical Physics, D-01069 Dresden, Germany
5 Technical University of Dresden, Cluster of Excellence Physics of Life, D-01069 Dresden, Germany
S Asia Pacific Centre for Theoretical Physics, KR-37673 Pohang, Republic of Korea

In this Supplementary Material, we provide the ana-
lytical background to derive the main expressions of the
elements of the force autocorrelation tensor and their re-
lation to the self-diffusion in odd-diffusive systems. The
Supplementary Material is organized as follows: in Sec-
tions I and II we shortly review the archetypal equilib-
rium odd-diffusive systems of Brownian particles under
Lorentz force and diffusing skyrmions. In Section III we
solve the two-particle Fokker-Planck equation for inter-
acting off-diffusive hard disks in two dimensions. In Sec-
tion IV we establish the connection from the velocity to
the force autocorrelation function from first principles in
odd-diffusive systems. The characteristic here is that we
need full information from the full force autocorrelation
tensor to restore the dynamics correctly. In Section V we
explicitly solve for the elements of the force autocorrela-
tion tensor in the Laplace domain and give an asymptotic
expansion for short and long time. In Section VI we give
the necessary integral expressions, used in the calcula-
tions.

I. BROWNIAN PARTICLES UNDER THE
EFFECT OF LORENTZ FORCE

Brownian particles under the effect of Lorentz force can
be described by the underdamped Langevin equation [1-
3]

x(t) = v(t), (1a)
mv(t) = —yv(t) + qv(t) x B—f(x) +£(t),  (

where x(t) is the position of the particle and v(t) its
velocity. £(t) constitutes a Gaussian white noise, that
is uncorrelated among the coordinates, i.e. (£(t)) = 0
and (E()ET () = 2yksT 16(t — t'). (...) denotes an
equilibrium average and (-)' a matrix transpose. m, 7y, q
are the particle mass, friction, and charge, and kgT is the
temperature of the solvent in units of the Boltzmann con-
stant. B is the (constant) external magnetic field, which
is taken to point along the z-direction. The effect of the
Lorentz-force then is only present in the two-dimensional
zy-plane. It is therefore sufficient to restrict the anal-
ysis to two dimensions. f(x) is an additional external
force. Taking the (non-trivial) overdamped limit of the
upper Langevin equation [2], the resulting time-evolution

equation for the position reads
x(t) = —AD - £(x) + n(t). (2)

Here f = 1/kgT. n(t) constitutes a Gaussian, but non-
white noise accounting for the broken time-reversal sym-
metry due to the Lorentz force, i.e. (n(t)) = 0 and
(mt)n#)) = DI (t — ') + DT5_(t — ¢/). Here Chun
et al. [2] used variants of the Dirac delta distribution
d+(u) to account for the broken time-reversal symme-
try due to the Lorentz force. They are equal to zero for

u # 0, while [ du 6, (u) = f_ooo du §_(u) = 1 and
Jo© du 6 (u) = ffoo du 04 (u) = 0. The diffusion tensor
appearing in Eq. (2) and in the time-correlation of the

overdamped noise, D = kﬁi@ (1 + ke), is the charac-
teristic odd-diffusion tensor as we introduce it in Eq.(1)
of our main manuscript, with € as the two-dimensional
Levi-Civita symbol. In this specific system, the odd-
diffusion parameter is given by k = ¢B/~v and we define
Dy = leTH/J as the bare diffusion coefficient.

By explicit methods, such as for example the
Brinkman’s hierarchy [4], one can derive the Fokker-
Planck equation for the probability density func-
tion (PDF) p(x,t), corresponding to the overdamped

Langevin equation in Eq. (2) as

5:P(x:t) =V -D[V - f(x)] p(x, ). (3)

II. DIFFUSING SKYRMIONS

Skyrmions are topological magnetic configurations,
which form whirling, typically circular, textures in a
homogeneous magnetic phase. They can be observed
in complex crystals and ultrathin metallic films. [5-7].
Assuming an effective two-dimensional rigid body like
skyrmion, its movement under the influence of an exter-
nal force f(x) is described by the Thiele equation [8],

Gxv(t)+vy-v(t) —f(x)=0, (4)

where v(t) = x(t) = (2(t),y(t))T is the two-dimensional
velocity in Cartesian coordinates, assumed to be con-
stant in the Thiele model. G = (0,0,G)T is the gy-
rovector, an effective magnetic field pointing perpendic-
ular to the skyrmion-plane, assumed to be the Cartesian



zy-plane here, and - is the friction tensor. The expres-
sions in the Thiele equation can be made explicit by con-
necting them to first-principles equations for the time
evolution of the spin variables. Considering fluctuations
in the local magnetic fields, the governing equations are
known as the stochastic Landau-Lifschitz-Gilbert equa-
tions [9-11]. In terms of the direction of magnetiza-
tion s(x,t), the gyromagnetic vector can be derived as
G =hsy [dxs-(0s/0z) x (9s/dy), also given in terms
of the topological charge @Q as G = 4rmhsgQ, indepen-
dent on the microscopic details. Here sq is the local spin
density and & the Planck constant divided by 27. The
friction tensor is given by v = oD, where « is the Gilbert
damping and D the so-called dissipation tensor. Due to
the assumed rotational symmetry of the skyrmion, it is
usually taken to be proportional to the identity and given
as D = hsol [dx [(9s/0z)? + (9s/dy)?]/2 [12].

At finite temperatures, a skyrmion is coupling to equi-
librium electronic and phononic baths. This is expressed
via local fluctuations of the magnetic field in the Landau-
Lifschitz-Gilbert equation, and as a result, the Thiele
equation (4) is augmented with a random force contribu-
tion [12, 13]. Tt was further recently suggested that at
high temperatures, a skyrmion also couples to an equi-
librium bath of magnons [14], and as a result, the friction
has to be replaced by effective friction vog = oD + 0T,
with the (phenomenological) coupling constant 1. The
stochastic Thiele equation finally is form-equivalent to
the Langevin equation of motion for Brownian parti-
cles under the effect of the Lorentz force (2), which ren-
ders diffusing skyrmions obey odd dynamics in the over-
damped limit. They are shown to follow diffusive motion
with a bare diffusion coefficient Dy = kgT/ (Yot (1 + £2))
[12-14], where the odd-diffusion parameter is given by
k = G/7ee. The diffusion of skyrmions has recently also
been realized experimentally [15].

III. SOLUTION OF THE TWO PARTICLE
FOKKER-PLANCK EQUATION

This section closely follows Ref. [16] in its arguments
and adapts them to odd-diffusive systems.

A. The two particle problem

The Fokker-Planck equation for the joint transition
PDF of two interacting Brownian particles at positions
(x1,X2) at time ¢ > 0, given that they were at positions
(x9,x9) at time t = 0, P(t) = P(x1, X2, t|x7, %9, 0), reads

Qp(t) =V1-D[V1+BV1U(x1,%2)] P(t)

ot
+ V2 D[V + BVoU(x1,%x2)] P(t),  (5)

where we recall the odd-diffusion tensor D = Dy (1 + ke)
with Dy as the diffusivity and x the odd-diffusion param-
eter. V; are the partial derivatives taken with respect

to the ith particles position coordinate and U(x1,X2)
is the interaction potential between the particles, spec-
ifying the additional interaction force of Eq. (3), i.e.
fi(x1,%x2) = —V,;U(x1,%2). The initial condition on
Eq. (5) is

P(x1,%2,t = 0x),%x3,0) = 6(x; — x7) 6(x2 —x3). (6)
For hard disks the interaction potential is

oo, <o

Ubax) =00 ={ o TS0 @

where r = |x; — x2| is the inter-particle distance and o
is the particle diameter.

The Fokker-Planck equation Eq. (5) can be written in
terms of the inner coordinates x = x; — X and center-
of-mass coordinates X = %(xl + X2), with Vx and Vx
as the corresponding partial derivatives:

D,
Qm) = TOVX -VxP(t)

ot
+2Vx - [DoVx + 8 DVXU(r)] P(t).  (8)

The center-of-mass and inner coordinates are decoupled,
which means that the joint PDF can be written as P(t) =
P(X,t|Xo,0) p(x, t|xg,0), where the coordinates at t = 0
are now denoted by a subscribt 0. Clearly, the diffusion
of the center-of-mass coordinate contributes Dy to the
self-diffusion constant of the tagged particle. In contrast,
the time evolution of the PDF of the inner coordinate is
governed by

Sl o) = @ px, theo), )
where
Q = 2vx ! [DOVX + ﬂ D(va(T))] ) (10)

is the inner Fokker-Planck operator and the initial con-
dition is given by

po = p(x,0]|x0) = d(x — x¢) O(rg — 0). (11)

Here O(x) is the Heaviside function, defined as ©(z) =1
for £ > 0 and zero otherwise, which only allows for valid
initial conditions, that is, particles that are separated at
t =0 by a distance |xg| =79 > 0.

B. The problem in relative coordinates

Equation Eq. (9) can be solved in polar coordinates
x = (r,¢). In polar coordinates the inner Fokker-Planck
operator of Eq. (10) reads

. 2D[ & & 8 _oUu(r) o
Q—ﬂ[rwaﬁ”m’“ﬁ o T
ou(r) 9
—K/T'ﬁ ar &0:| (12)



Note that for k = 0, the Fokker-Planck operator in
Eq. (12) reduces to that of a normal diffusive, hard-sphere
system [16]. The delta distribution in polar coordinates
is

§(x —xo) = %5(7"—7“0) 5(¢ — o) (13)
_ %w —70) > falp) fonlipo),  (14)

n=—oo

where the angular delta distribution can be expressed
in a complete set of orthonormal modes {f,(z)} =

{1/V/27 exp(inz);n € Z}.

As an ansatz for p(x, t|xg), we use

where exp(—SU(r)) = O(r—o) was used, which allows to
differentiate the singular interaction potential §(r — o) =
—BO(r — o) %U(r).

In the domain r > o, Eq. (16) is
2Dy { o 0

2 — - HQ] R, (r,t|ro). (17)

0
—R,(r,tlrg) = ra r@r

ot
Equation Eq. (16) also gives the no-flux boundary con-
dition for an odd-diffusive system, the so-called oblique
boundary condition (see for example [17]) to be satisfied
atr=o

r—R,(r = 0,t|rg) = —ink R,(r = o,t|rg). (18)

or
This can be viewed as the extension of the ordinary Neu-
mann no-flux boundary condition to an odd-diffusive sys-
tem, to which Eq. (18) reduces for k = 0. Note that
the appearance of the imaginary unit i in this boundary
condition can be traced back to the coupling of angular
derivative to the radial derivative of the potential in the
Fokker-Planck operator in Eq. (12). The second bound-
ary condition is given from lim|y|_, p(X,t[x) = 0, and
reads

Thﬁnolo R, (r,t|rg) = 0. (19)
The initial condition on p in Eq. (11) translates to
S(r —
Ralr.t = Ofrg) = 210, (20)
0

C. Solution of the relative problem

In order to solve for the radial functions R,, they are
decomposed into homogeneous solutions X,,, with initial

o0

p(x,tlx0) = O(r =) > Ru(r,tlro) ful) f-n(0),
n=—oo

(15)
where again the Heaviside function accounts for the hard-
core exclusion. Except for the radial functions R, all
contributions in Eq. (15) are time independent. Hence
the time differentiation in the Fokker-Planck equation
Eq. (9) only affects the radial functions R,. Using the
polar representation of the operator in Eq. (12) and the
orthogonality of { f,,} results in an equation for the radial
functions R,,, which reads

1o} ink

or

2} Ry (7 t|ro) 4+ 6(r — o) 2Dq [ + r} Ry (r,t[ro), (16)

(

condition zero, i.e. X, (r,t = 0|rg) = 0, and particular
solutions Z,,, which satisfy the initial condition on R,
ie. Zp(r,t = Olrg) = d(r — r9)/ro, such that R, =
X, +Z,. For the particular solutions we make the ansatz

Zn(r tlrg) = / du zy, (r,ulrg) e~ 2Dotu” (21)
0

Inserting this into Eq. (17), shows that the functions z,
satisfy the Bessel equation with solutions J,(ur) and
Y, (ur) as the Bessel functions of first kind and second
kind, respectively. The general solutions for z,, therefore
read

zn(ryulre) = Ap(ulre) Jn(ur) + By (ulr) Yo (ur), (22)

with amplitues A,, and B,, determined by the initial con-
ditions Eq. (20). Expanding the delta distribution in
Bessel functions of the first kind [18]

5 _ oo

3(r = o) = / du w J,(ur) Jp(urg), (23)
To 0

which is valid for n > —1 and r,7g > 0, shows that

A, = u J,(urg) and B,, = 0. The particular solutions

Z,, therefore read

Zn (1, t|10) :/ du w Jp(ur) J,(urg) e 2Dotu® (24)
0

The homogeneous solutions X, (r, t|rg) satisfy
Eq. (17). Laplace transforming this equation shows that
Xn(r,sh"o), with s as the Laplace variable, satisfy the
modified Bessel equation with solutions I,,(r+/s/(2Dy))
and K, (rv/s/(2Dg)) as the modified Bessel functions
of first kind and second kind, respectively. Since I,
diverges for r — oo, they cannot satisfy the boundary



condition lim,_, s X'n = 0, and therefore they must be
omitted. _

Adding the particular solutions Z,, from Eq. (24) and
the homogeneous solutions X:m gives the Laplace trans-
form of the radial functions R, (r, s|ro):

- e In(ur) Jp (urg)
(7, = d —_— 7 - 7
R, (r, s|ro) /0 LU Do

+ Cy(s|ro) Ky, <7“\/;> , (25)

where the amplitudes C), are determined by the oblique
J

o0

ﬁ(xa S|XO) =

n=—oo

in(p—¢o) o0
6(7' - J) Z GT A du u

boundary condition Eq. (18) at r = o, which gives

’U/I"())
|TO / du u s+ 2D() U2
" uo J) (uo) +ink Jp, (uo) (26)

o 2D0 K/( /21530>+in/¢Kn(0 2g0>

where the primed functions are defined as f'(c) =

of(x)
ox _

Eq. (15), the Laplace transform of the conditional PDF
D(x, s|xo) reads

for a function f. According to the ansatz in

Jn(uro)
S+ 2D0 u2

uo J) (uo) +ink Jp(uo)

X | I (ur) — K, (@) -

IV. FROM VELOCITY TO FORCE
AUTOCORRELATION

This section closely follows Refs. [19, 20] in their ar-
guments and adapts them to odd-diffusive systems. Here
we derive the connection of the velocity to the force auto-
correlation for a general system of N interacting particles
and later specify it to the low-density limit.

The contribution of the tagged particle to the total
concentration fluctuation c(k,t) of the wavevector k is
given as

clk, t) = e~ kx®) (28)
where x(t) is the position of the tagged particle at time
t. A Taylor expansion and taking the time-derivative of
this equation, gives

k-v(t):igc

5 (k,t) + O(k?), (29)

which becomes exact in the limit of k = |k| — 0. Here
v(t) = x(t). The previous equation can be used to cal-
culate the velocity autocorrelation function C,(t,t’) of a
Brownian particle, which in two dimensions is defined as

Loty vy, (30)

Cy(t,t) = 5

where () denotes an equilibrium average. The velocity
autocorrelation in an isotropic system does not depend
on the direction of the wavevector k. Therefore we aver-
age over the direction of k in Eq. (29) to use this equa-
tion for the evaluation of C,. For an arbitrary function

s o)+ o oy )

(

f(k) this orientational average is given by the integral
1/(27) [dk f(k), where k denotes the unit vector in
direction of k. Averaging the product of velocity and
wavevector at two different times ¢ and ¢’ yields

% dk [k-v(t)k-v(t’)]:%v(t)-v(t’). (31)

Together with 1/(27) [dk C,(t, ') = Cy(t,t'), we can
relate the velocity autocorrelation to the density fluctu-
ations in the limit of low wavelengths via Eq. (29)

1 0 0
Cy(t,t') = —111_“) 2 Bt By < /dk c(k,t) (k,t’)>.
(32)
There is no explicit time dependence in the model,
therefore the velocity autocorrelation function is a func-
tion of (t—t') only. Using this and that up to lowest order
in the wave vector de(k, t) = —0ie(—k, t) from Eq. (29),
Eq. (32) can be written as

1 02
Cv(t - t/) - —]11_>0 k2 o2 < /dk C(k t) ( kvt/)>-
(33)
We proceed with evaluating C,, by writing the equilib-
rium average as an integral over the configuration space
of the particles X for ¢ € {1,..., N} weighted with the
PDF P(X,t):

(f(x,t)) = /di f(x,t) P(X,t). (34)

For the case of the velocity autocorrelation function in



Eq. (33), this average reads

X %/df( c(k, t)e(—k,t') P(X,t,%,t)).  (35)
7

Using the definition of the density fluctuation in
Eq. (28) together with rewriting the joint PDF in

<! t/) —

terms of the conditional distribution P(X,t,X
P(X,t|x',t') P(X',t'), we can rewrite Eq. (35) as
1 92 1 .
n
C'U(t—t)——hml€2 8t2/dx/d /dk
x e kX p(R R ) €K Py (R (36)
where we have assumed that at time ¢’ < ¢ the system was
in equilibrium, i.e. P(X',t') = Poq(X') = Z] e AUNR),
where Uy is the N-particle interaction potential and Zq
is the partition function. Note that in Eq. (36) we as-
signed particle one to be the tagged particle.
To proceed we need the Laplace transformation of
Eq. (36). Let s denote the Laplace variable, then the
Laplace transformation £(-), which we also denote with

a tilde, of the second time derivative of the conditional
PDF results in
92
L <at2p(i,t|i’,t’)) =—sP(X,t=tx,t)
+ $2P(%, s|¥',0) — P(X,t =t'|%',t'), (37)

where P(c) = ap(t) |t=c. The last term is identically zero

due to the Symmetry in ¢t and ¢’ in the system [19]. With

Eq. (37) we find
i/dl; e kX
T

x [s?P(X, s|%',0) — sP(X,t'|%, )]
x %1 p, (%)), (38)

The N-particle conditional PDF satisfies the Fokker-
Planck equation

0

aP(i,ﬂi/,t’) =QOn

P(x,t|X',t'), (39)

where the N-particle Fokker-Planck operator Qn for an
odd-diffusive system is defined as

N
Z D[V, + AVUn(X)] . (40)

We recall that D = Dg (1 + ke) is the odd-diffusion ten-
sor with Dy as the diffusivity and k the odd-diffusion

parameter. With the initial condition

PR t=tR 1 Ha (x; — x}), (41)

the formal solution to Eq. (39) can be written as

N
PR %, t) = ™0 TTox —x)).  (42)
i=1

We perform a Laplace transform of the above solution
and insert that in Eq. (38) which reads as

Eq. (43) can be rewritten as

Cy(s) :—l}g%ﬁ/dx—/dk
X {e_ik'xl QN ellex P.y(X)

kX O u(s — Qn) 1y el peq(;z)} (45)

To evaluate Eq. (45) further, we take advantage of the
adjoint of the Fokker-Planck operaor

N
=Y Vi - BV, UNR)]-D"Vi,  (46)

where (-)T denotes a matrix transpose, which results in

Cols) = k-Dk—ﬁz/di %/df{ [f(-DVlUN(i)
% (s — Qn) 7t [Q-DTleN(i)} Pay(%). (47)

Note the different uses of the “-symbol here: once to indi-
cate the unit vector k and once to indicate the operator
Qn.

Rearranging the terms in Eq. (47) and making use of
the identity, valid in two dimensions,

1 1

o dk k@ k] = 3L (48)

for an outer product k ® k of two unit vectors in k-
direction, we arrive at the expression



~ 2
Cols) =Dy~ &

Dy — (D2) /dfi {((s f QN)*l)T leN(i)} ® [V1Un(R)] Pag(R), (49)

where the double dot denotes the contraction of two tensors and is defined as A : B = A,3B3,.
Reintroducing the average on the initial coordinate, we can recognize the Laplace transformed conditional PDF

P(%, s|%),0) of Eq. (42) to appear

Cy(s) = Do——D2 / /dx [ViUN(X)] © {(s—QN)—lﬂa(xi

where we set ¢’ = 0 and accordingly ¥ = XY. The force
on the tagged particle is F(X) = —V1Ux (X), similar for
the initial condition. With this, C,(s) becomes

2

T
=D (1)
where the Laplace transform of the FACT is defined as

/dxz/dx F (X ®F("O)

xP(xZ,s|x 0) Peq (X7) - (52)

The inverse Laplace transform of Eq. (51) shows that
the velocity and force autocorrelation in an odd-diffusive
system thus are related by the generalized relation

C’U(s) : ép(s), (51)

1
Cy(t) = Do (5+(t) ~ Do 553 (D?)": CF(t)) (53)
0

= Dy (64+(t) — DoB? Cr (1)), (54)

if we define

1 T

Cr(t) = 552 (D?)" : Cr(t) (55)
= (1—&%) CU*8(t) — 25 O (1)  (56)
as the generalized force autocorrelation function

(gFACF). 04 (t) denotes the one-sided delta distribution,
for a definition see Section I. Here C'5 2 (t) and C9f (t) are
the diagonal and antisymmetric off-diagonal elements of
the FACT, i.e. Cp(t) = C9®8(t)1 + C9T(t)e. For normal
systems (k = 0) Cp(t) = CH*(t) reduces to the ordinary
FACF.

An analytic calculation of the FACT is only possible
in the dilute limit. Therefore we restrict the following
calculation to first order in the area fraction. Further-
more, the potential energy is assumed to be the sum of
pair potentials

N
Z (rig), (57)

l\D\»—t

= x7) ViUN (%) | Pea(X)), (50)
i=1
=P(%,5]%0,0)
[
where r;; = |x;;| = |x; —x;]| is the distance between par-

ticle ¢ and particle j. In the dilute limit only two-body
correlations are important, which means that the corre-
lations between the untagged particles can be ignored.
Therefore, the equilibrium and the conditional PDF are
approximated as

H
==
o
{:3
|
N
B

Py (XV,0) = —
q(x ) = V

ﬁ(iv S|i?’ ) (Xlu 5|Xlz) (59)

1 ::HZ i

v

where p(x14, s|xY;) = p(x14, 5x%;,0) is the Laplace trans-
form of the conditional two-particle PDF for particle one
and particle ¢ and ©(x) is the Heaviside function, de-
fined as ©(x) = 1 for x > 0 and zero otherwise. The
two-particle PDF is the solution to Eq. (39) with N = 2.
This two-particle problem is solved in Appendix III. Note
the factor of 1/V in Eq. (58) and Eq. (59), which comes
from the translational invariance of particle one.

Considering all approximations, all but one coordinate
can be integrated out in Eq. (52), which results in

V/dX/dXQ

X p(x, s|x0) O(rg — o). (60)

x) ® F(x0)

Note that we renamed x12 = X, x{5 = X¢ and ry = x|
for the initial position, and denoted the interaction forces

by F(x) = =Vx,,U(r12) and F(xg) = —Vyo U(r},). Af-
ter an inverse Laplace transformation Eq. (60) becomes
the FACT in the time domain
/dx/dxo x) ® F(xo)
X p(x,t[xo) O(ro — o). (61)

For an evaluation of Cp(s) in the dilute limit, see Ap-
pendix V.

For an explicit evaluation of the gFACF (Eq. (56)) we
also have to use the low-density results of Appendix V.



We show the gFACF for different values of x in Fig. 1.
For 0 < k < 1 it diverges to positive infinity as t — 0, as
expected for the FACF of hard disks [19]. For nonzero
the gFACF is negative for a range of time lags.

For k = 1 the contribution to the gFACF from the
diagonal elements of the FACT vanishes, and therefore
the gFACF remains finite as t — 0. For k > 1 the gFACF
diverges to negative infinity as ¢ — 0. Note that even
though the gFACF is diverging for all kK # 1 in 7 —
0, the function remains integrable. This is of physical
significance since the integral of the gFACF captures the
effect of collisions on self-diffusion.

V. EXPLICIT EVALUATION OF THE FORCE
AUTOCORRELATION TENSOR

The FACT in the Laplace domain Eq. (60) can be writ-
ten as

Cr(s) = g/dx/dxo VxU(r) @ V,U(ro)
X p(x, 8|x0) O(rg — o), (62)

where —VyU(r) = F(x) denotes the inter-particle inter-
action forces and r = |x|, similar for the initial condition.
The conditional PDF p(x, s|x) is the Laplace transform
of Eq. (15):

Blx,81%0) = O(r =) > Rulr,slro) fule) f-n(0)

n=—oo

(63)
!

Using the identity —SU(r) = lnexp(—pU(r)), the sin-
gular term V4U(r) together with the Heaviside function
O(r — o) in p(x, s|xg) can be rewritten as

—B0O(r—0)VxU(r)=0(r —0) VxInBO(r — o) (64)
=4(r—o) %, (65)
where X represents the unit vector. The other singular

term Vi, U(rg) together with ©(rg — o) in Eq. (62) can
be rewritten in the same way. This results in

Cp(s) = 5—2% /dx/dxo 5(r—o) 6(ro — o)
X P(x, 8|x0) X ® Xo. (66)

The outer product of the unit vectors X®%g in Eq. (66)
in polar coordinates is

. . ( cos(p)cos(pg) cos(p)sin(pop)
X®Xg = ( sin(yp) cos(gog) sin(p) sin(gog) ) ) (67)

which can be expressed in terms of the angular functions

{fal2)} = {1/V2m exp(inz);n € Z} as

cos(z) = @ (fi(z) + foa(2)), (68)

27

9 (f-1(2) = fi(2)). (69)
Using dx = dr dy r, dxg = drg dygg 19 and the orthog-
onality [dz fn(x) fm(x) = 6p,—m, where 8, ,, = 1 for
n = m and zero otherwise is the Kronecker delta, Eq. (66)
becomes

ﬁ

sin(z) =1

CF(S) = 5_27r%02 /dr/dro 8(r—o) d(rg — o) [(Rl(nsh“o) + ]:2,1(7‘, s|r0)) 1—14 (Rl(r,s|ro) — R,l(r,s\ro)) (—:}

(70)

— 48724 [(Rl(o, slo) + R (o, s|a)) 1—i (Rl(a, slo) — R (o, s|a)) e} : (71)

where ¢ = m (N/V) (0/2)? is the area fraction in two
dimensions.

The functions R, are given in Eq. (25). For n = +1
they are

. 1 o0 z Jii(x
Ryq(o,s|o) = TDO/O dz Mj;m()%ﬂ |:]i1($)
x Jq(x) £ik Jyi(x)
V) R R (V) £ in Kﬂwm*s)]

(72)

where 79 = 02/(2Dy) is the characteristic timescale of a
particle diffusing over a distance of diameter o.

(

The case of n = 1. We have to find expressions for
xJi(x) and bK{(b), where b = /7ys. The formula for the
kth derivative of a Bessel function of order n (see [21],
9.1.30) is given as

LN o ) =k de). (1)
~ 1) @ (@) =2 n—1k ().
Therefore xJ] (z) = xJo(x)—J1(x). Similarly, the general

formula the kth derivative of a modified Bessel function
of order n (see [21], 9.6.28) is given as

1 d\" ; n—k _(n—k)i
— — ] (z" " Ky(x)) =2 "I K, _i(2).

r dzx
(74)



102 101 100 107

FIG. 1. The generalized force autocorrelation function
(gFACF) Cr(7) (Eq. (56)) for interacting hard disks as a
function of reduced time 7 = t/79, where 79 = 2/(2Dy). For
k > 0 there exists a range of 7 for which Cr(7) is negative.
In the case k = 1 the gFACF remains negative and finite for
all times. For k > 1 the gFACF is negative for all times and
diverges for t — 0.

Therefore bK{(b) = —bKo(b) — Ki(b).
Eq. (72) we find R; to be
xJ1(x)

~ 1 oo
Rl(O’,S|O’) = ﬁ/o dx W |:]1($)

xJo(z) — Ji(x) (1 —ik)
VT05Ko(\/T05) + K1(y/T05)(1 — i) |
(75)

According to

+ K1(v/705)

The case of n = —1. Here we have to find expres-
sions for x J' | (x) and b K’ | (b), where b = |/7ps. Using
the same rules for differentiation, Eq. (73) for the Bessel
functions and Eq. (74) for the modified Bessel functions,
together with J_, (x) = (=1)" J,(z) (see [21], 9.1.5) and
K_,(z) = K,(z) (see [21], 9.6.6), we find that zJ" | (z) =
—zJo(z) + Ji(z) and that bK’ ,(b) = —bKo(b) — K1(b).
Therefore, R_; is given as

1 ° z Ji(x)
i), ¥ [““’”)
xJo(x) — Ji(z) (1 +ik)
VT05Ko(y/T05) + K1(\/T08)(1 + ik)

R—l(av S|U) =

+ K1(\/705)

(76)

The integrals in Eq. (75) and Eq. (76) are evaluated in
Appendix VI. The resulting force autocorrelation tensor
is given as

Cr(s) = C™(s)1 + C3 (s)e, (77)

where

~ 3 2
Ciine () — 6—‘5 Ky (y/705)

VT05Ko(1/T0s) + K1(/To5)

" (sKo(ymos) + Ka(yms)” + (m(x/m*s)): ’)
78
Cfi(s) = ;; K1 (y/705)
% Kl( 7'08)
(VAosKo(y/70s) + Ki(y79))” + (m<m>>(2 |
79

are the diagonal and antisymmetric off-diagonal parts
of the FACT, respectively. Note that the off-diagonal el-
ements C%H(s) are proportional to the odd-diffusion pa-
rameter k and therefore vanish in case of normal diffusion
(k = 0). The diagonal and off-diagonal elements of the
FACT are plotted in Fig. 2 as a function of reduced time
T =1t/7p.

It is interesting to investigate the short- and long-time
asymptotics of the elements of the FACT. Therefore we
define the modified Laplace variable z = s1y to simplify
the notation. The short-time behavior of the FACF, i.e.
the behavior on time-scales ¢ < 7y, can analytically be
obtained from Eq. (78) in the limit 279 > 1, and behaves
asymptotically as [18]

===+ 0T, (80)

as z — 00. The leading order behavior at short times of
C3*8 (1) therefore is 771/2 [23].

The long-time behavior, i.e. t > 19, can analytically
be obtained from Eq. (78) in the limit z7p < 1, and
behaves asymptotically as [18]

2% 1
Doﬁ2 14 K2
+ Bdiag(,‘i) 22 ln2(z) + C’diag(n) 22 In(z)

+ Ddies (i) 4 O(ZQ)] (81a)

C™(2)

[1 + A28 (k) 21n(2)

for z — 0. The subsequent terms are proportional to
2" In"™(z) with integer n > 3,m > 0 and therefore of
infinitesimal higher order than z2. The coefficients read

Adiog (o) — 2(11+’f2) (81b)
Bing (1) — M’ (81c)
Cine(y < 1= K+ 2(74—(1125223)(21 —0n% 4 1) (81d)
piins ) = (L= ni)gj/; In(2)) (81¢)
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FIG. 2. Diagonal and off-diagonal elements of the force autocorrelation tensor (FACT) of interacting hard disks as a function
of reduced time T = t/79, where 70 = 02 /(2Do). (a) The diagonal elements of the FACT C'5*8(7) (Eq. (78)) are negative for a
range of 7 (see also inset for a finer resolution) indicating an anti-correlation of the force. For 7 — 0 C%‘ag diverges to positive

infinity, as expected for hard disks [19]. (b) The off-diagonal elements of the FACT C%¥(7) (Eq. (79)) are nonnegative and
remain finite as t — 0. Specifically C% () scales linearly with  as t — 0, which could be useful for estimating the odd-diffusion

parameter in experiments [22].

Here v = 0.5772 is the Euler-Mascheroni constant. From
Eq. (81a) it can be seen that the long-time behavior of
C%iag(T) strongly depends on x. The leading order term
is O(z1n(z)) and results in a decay of Cn*8 as 772 [24]
for all k, except for Kk = 1. There, the prefactor vanishes,
Adi2g(1) = 0, and the subsequent term of O(z%1In*(z))
gives rise to a decay of CH*8 as 7=31n(7) [21, 24].

The short-time behavior of C%I(7) can analytically be
obtained from Eq. (79) in the limit 275 > 1 and behaves
asymptotically as [18]

26 11

N —7/4
DOﬂQR p, 23/24—(9(2' )

Ci(2)

(82)

as z — oo. Therefore the leading order short-time be-
havior of C9f is independent of time [23] but depends
linearly on k. Such a scaling of the off-diagonal elements
with k at short times has been recently derived by Yasuda
et. al in Ref. [22] for odd Langevin systems. The authors
also pointed out that this could be useful for estimating
the odd-diffusion parameter in experiments.

The long-time behavior of C9(7) can be analytically
obtained from Eq. (79) in the limit 279 < 1 and behaves
asymptotically as [18]

20 K
.Doﬂ2 1+ K2
+ DOH(,%) z+ 0(22)],

C(2) 1+ A% (k) zIn(2)

(83a)

as z — 0, where the coefficients are given by

1

A (k) = T (83b)
D (k) = 72(71;129)). (83¢)

The leading order term is O(zIn(z)) and results in a
decay of O9F as 772 [24], for all k. Note that Coff

has no leading order contributions of O(z2In*(z)) or
O(2%1n(z)), i.e. by analogy to (81), B°ff = C°ff = 0.

VI. INTEGRAL EXPRESSIONS IN THE FORCE
AUTOCORRELATION

To evaluate the integrals in Ry and R_; in Eq. (75)
and Eq. (76) one can use Gradshteyn and Ryzhiks Table
of Integrals, Series and Products [25] and Abramowitz
and Steguns Handbook of Mathematical Functions [21].

All integrals in Ry and R_; can be reduced to

e a B

(i) _/o da 2 (84)
Y b 22 Ji(za)Jo(za)
(ii) 7/0 dz 22 p2 (85)

where J,, are the Bessel functions of order n and a and b
are constants. Integral (i) is (see [25], 6.535)

/°° d x JE(x)
0

m = Il(b) Kl(b)7

(86)



where I,,(b) and K, (b) are the modified Bessel functions
of the first and second kind, respectively.

Integral (ii) is not listed in [25] but can be calculated
straightforwardly from the formula for the kth derivative
of a Bessel function of order n (see [21], 9.1.30),

k

and the relation J_,(x) = (=1)" J,(z) (see [21], 9.1.5),
one obtains

2
@ + const. (88)

/dx Jo(z) Ji(z) = —

This together with a relation for the Wronskian
WIK, (x), In(z)] (see [21], 9.6.15)

WIK(2), In(2)] = In(2) Kni1(2) + Iny1(z) Kn(2) =

10

can be used to evaluate integral (ii) by partial integration.
This gives

22 Jy(az)Jo(az)

1
FONN =b Iy(ab) Ki(ab) — %" (90)

o0
/dm
0

Using the integrals (i) and (ii) in the expressions for R;
and R_; in Eq. (75) and Eq. (76), together with another
use of the Wronskian expression Eq. (89), one arrives at
the form of the diagonal and off-diagonal parts of the
FACT, C'%*8(s) and C9%(s), in Eq. (78) and Eq. (79),
respectively.
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