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Generalized optimal protocols of Brownian motion in a parabolic potential
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The generalized Langevin equation with an exponential kernel is used to analyze memory effects
on the optimal work done by a Brownian particle in a heat bath and subjected to a harmonic
moving potential. The generalized overdamping scenario is also investigated. Several facts emerge
in these more precise descriptions using the same initial conditions of the Markovian which lead
the particle to do mechanical work against the field. Compared with the results obtained with the
latter, the memory fades the discontinuities observed in the highly underdamped regime, which
suggests that this trait is a consequence of the Markov approximation as well as the dependence of
the different dynamical susceptibilities with the external field. Unlike the overdamped Markovian,
work is done by the external field in the analog generalized counterpart. A detailed calculation
of the rate of entropy production gives negative values. It is mathematically correct because the
dynamics deal with a reduced description of the degrees of freedom of the bath. The theory then
requires improving the treatment of them to restore the second law and thus to get the results with
the required thermodynamics consistency.
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I. INTRODUCTION

The thermodynamic work involving the interaction of
a Brownian particle with a heat bath and an external
moving potential has been examined from different per-
spectives. From experimental setups where the field was
provided by an optical trap displaced at constant speed
[1, 2] up to theoretical descriptions where the external
protocol minimizes the mechanical work produced by the
interaction of the particle with the external field [3–5]
have been the mayor researches in the field. In the latter,
the analysis has been focused on the Markovian Langevin
equation (MLE) in both underdamped and overdamped
regimens. However, the description of non-Markovian
systems through a more exact description, such as the
classical generalized Langevin equation (GLE), has re-
ceived less attention.

Although the GLE has been successful in describing
non-Markovian systems, there are new results that need
to be reconsidered in its formulation. For instance, it
can be highlight the finding by Daldrop et al. [6] in
the molecular dynamics simulation of a harmonic par-
ticle where the friction is not a constant but depends on
the strength of the applied field. It must be mentioned
that Vroylandt et al. [7] have also shown that it depends
on the position if a non-linear mean force is considered.
Then, the general consensus is that the field strength
must be included in its interaction with the degrees of
freedom of the reservoir [8, 9]. In view of these findings,
there are even sufficient reasons to consider that Kubo’s
fluctuation dissipation theorem (FDT) associated with
the GLE is not so accurate [8, 9]. This deficiency has
often been overlooked in the literature, even though it
was pointed out decades ago by Balakrishnam [10] and
by Cicotti et al [11]. In fact, the work by Olivares-Rivas
et al. [12] showed that for a constant field the noise corre-
lation depends on its squared strength. Costa et al. [13]
showed that it is even inconsistent in the linear regime
of superdiffusive processes. Additionally, it was also dis-
cussed that a dynamics driven by nonequilibrium steady
states, the resulting FDT can be written as the equilib-
rium one and an additive correction [14]. It has been
also considered adding correlations between the system
and the environment [15]. Despite these basic observa-
tions and potentially the derivation of others that are
unknown at the moment, there has been some progress
using the original GLE in the analysis of the subject mat-
ter of this research.

To date, the published works involving the moving har-
monic potential incorporate only the memory effect of the
stochastic force due to the reservoir through an exponen-
tial kernel as in Ref. [6]. Thus, Paredes-Altuve et al. [16]
investigated how the individual measurement of the av-

erage position or speed affects the optimal protocol and
therefore the minimum mechanical work. The no mea-
surement analysis was also included. There, it was shown
that the inclusion of memory due to the noise generated
by the thermal bath effectively induces the system to
perform work against the field when the measurement is
done. Furthermore, Di Terlizzi et al. [17] calculated the
non-optimal work and the variance of its distribution for
optical tweezers displaced at constant speed both in the
GLE and in the generalized overdamped version (GOLE).
Under these circumstances, the main objective of this

research is to use the classical GLE to analyze memory
effects on the determination of the optimal protocol and
minimum work independently of any measurement at all.
In particular, to compare the new findings with those
obtained from the Markovian case [5] under the same
initial conditions. To do so, the variational procedure
of Ref. [16] must be replaced by the more general one
implemented in Ref. [5]. It will be of particular interest
to find a procedure that, for a given friction coefficient,
a reasonable value of the memory kernel parameter be
determined that leads the particle to perform mechanical
work against the external field. It will be done for any
value of the friction constant assuming that the particle
starts from equilibrium and also from an arbitrary initial
position.
To achieve this goal, it will be shown in Sec. II the

general equations defining the system dynamics and me-
chanical work. The latter appears to be as a complex
functional of the protocol with local and non-local parts
[5]. The solution for the GLE and GOLE is shown in two
separate subsections where the work functional is explic-
itly broken down into its two contributions. For each
one, the associated Euler-Lagrange equation is derived
and their sum [18] is solved to get the optimal driving.
It will be shown that for the two regimes, each protocol
captures the memory effect of the thermal bath though
a well-defined convoluted integral equation. They to-
gether, Eqs. (18) and (41), are the main results of this
proposal. Next, in Sec. III is presented the procedure
to assign meaningful physical value of the kernel decay
constant and the discussion of the results for the opti-
mal driving and the minimum work. Additionally, the
entropy production associated to the dynamics is deter-
mined and discussed as ruled by the second law. The
article concludes with some general remarks in Sec. IV.

II. GENERAL EQUATIONS

The exact position q(t) of a Brownian particle of mass
M submerged in a bath at temperature T and subjected
to a moving harmonic potential with stiffness κ2 and ex-
ternal driving λ(t), that is, V (q, t) = κ2(q − λ(t))2/2, is
provided by the GLE [19, 20]:

M q̈(t) = −
∫ t

0

dy Γ(t−y) q′(y)−κ2 (q(t)−λ(t))+ξ(t), (1)



3

where the dot and the apostrophe above a function de-
notes its time and normal derivative, respectively.
The kernel Γ(t − y) compiles the memory or retarda-

tion effect on the movement of the particle due to the
collective hydrodynamic response of the bath and ξ(t)
is a zero-mean Gaussian colored noise with correlation
〈ξ(t)ξ(y)〉 = k

B
T Γ(|t − y|) satisfying Kubo’s FDT [21]

where k
B
is the Boltzmann constant.

The analysis presented here will be framed under the
guideline of the original Kubo theorem with exponential
kernel Γ(t) = τ exp[−α t] in order to compare and com-
plement the findings with those of Refs. [16] and [17],
respectively. Constant τ = αγ being 1/α the kernel de-
cay relaxation time and γ the static friction coefficient of
the thermal fluid.
Scaling time and length by the factors κM−1/2 and

κ(k
B
T )−1/2, respectively, the GLE reduces to the dimen-

sionless equation

q̈(t) = −τ

∫ t

0

dy f(t− y) q′(y)− q(t) + λ(t) + ξ(t), (2)

with f(t−y) = exp[−α |t−y|]. Without loss of generality,
this is equivalent to assume {k

B
, κ,M} = 1.

The thermodynamic work W has been defined accord-
ing stochastic energetics in Refs. [22, 23]. It is given as
a functional of the protocol and its derivative, i.e.

W [λ, λ̇] =

∫ t
f

0

dt λ̇(t) [λ(t)− 〈q[λ(t)]〉] , (3)

where 〈q[λ(t)]〉 is the average over the noise distribution
and where it is indicated its explicit functional depen-
dence with the protocol.
The task is to find by means of variational techniques,

the optimal λ(t) which makes W [λ, λ̇] to reach a mini-
mum taking into account that the functional has a local
(“loc”) and non-local (“nl”) contributions. Once they are
identified, the first variation is

δWr[λ, λ̇]=

∫ t
f

0

dt

(
∂Lr[λ, λ̇, t]

∂λ
− d

dt

∂Lr[λ, λ̇, t]

∂λ̇

)
δλ(t),

(4)

where r = {loc, nl} and Lr[λ, λ̇, t] is a definite function to
be determined. The first variation δW is then given as
the sum of the two associated Euler-Lagrange equations
[5, 18] which, after setting it equal to zero will allow to
determine the optimal protocol λ(t).
Once the protocol and the average position are derived

then W can be integrated between {0, t
f
} where t

f
is the

final time of the protocol application. It renders,

W =
1

2
λ2

f
− λ

f
〈q(t

f
)〉+

∫ t
f

0

dy λ(y) 〈q′[λ(y)]〉), (5)

where λ
f
= λ(t

f
) is a pre-fixed values fixed by the exter-

nal agent. We have supposed as in Ref. [5] that λ(0) = 0.

The first two terms are just the adiabatic work by chang-
ing the protocol to λ

f
and instantly returning it to the

initial value.
The determination of q(t) for the GLE and for the

generalized overdamped and also their associated optimal
protocol which makes the work minimal, will be shown
in the next two subsections.

A. GLE dynamics

The Laplace transform of Eq. (2) gives

q̂(s) = q
0
χ̂

q
(s) + v

0
χ̂

v
(s) + χ̂

v
(s) λ̂(s) + ϕ̂

q
(s), (6)

χ̂
v
(s) =

1

s
(
s+ τ f̂ (s)

)
+ 1

, (7)

χ̂
q
(s) =

(
s+ τ f̂(s)

)
χ̂

v
(s), (8)

ϕ̂
q
(s) = χ̂

v
(s) ξ̂(s), (9)

where v
0
and q

0
are the initial velocity and position, re-

spectively. Functions χ̂
v
(s) and χ̂

q
(s) are the so-called

susceptibilities.
Inverting Eq. (6) and averaging with the Maxwell ve-

locity distribution gives the solution of the GLE for any
value of τ ,

q(t) = 〈q[λ(t)]〉 + ϕ
q
(t), (10)

〈q[λ(t)]〉) = q
0
χ

q
(t) +

∫ t

0

dy χ
v
(t− y)λ(y), (11)

ϕ
q
(t) =

∫ t

0

dy χ
v
(t− y) ξ(y). (12)

The optimal protocol is obtained by minimizing Eq.
(3) with respect to λ(t). This is accomplished by substi-
tuting it into the work equation, Eq. (10), to obtain a
functional both local, where its value at a given moment
depends only on that point, and non-local through its
integration in the considered time interval. Each contri-
bution has its associated Euler-Lagrange equation (ELE)
that according to Eq. (4) gives the first variation of
W [λ(t)] in terms of its functional derivative. Setting it
to zero allows the optimal protocol to be determined. It
was already addressed in the appendix of the previous
work [5] for an equation similar to Eq. (10) that obeys a
dynamic given by the classical Langevin equation. Thus,
fitting the mentioned procedure to the GLE, the first
functional derivative associated to Eq. (4) given by,

∫ t

0

dy λ(y)A
4
(t, y) = −A

1
(t) +A

2
(t)

−
∫ t

f

0

dy λ(y)A
3
(t, y), (13)

A
1
(t) = q

0
χ̇

q
(t), (14)

A
2
(t) = λ

f
χ

v
(t

f
− t), (15)
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A
3
(t, y) = χ

v

′(y − t), (16)

A
4
(t, y) = [χ̇

v
(t− y)− χ

v

′(y − t)]. (17)

Taking the Laplace transform of the convolution and
inverting gives the desired expression for λ(t), that is,

λ(t) = φ
1
(t)−

∫ t
f

0

dy φ
2
(t, y)λ(y), (18)

φ
1
(t) = L−1

[
Â2(s)− Â1(s)

Â5(s, t)

]
, (19)

φ
2
(t, y) = L−1

[
Â3(s, y)

Â5(s)

]
, (20)

Â5(s) = s (χ̂
v
(s)− L{χ

v
(−t)}) . (21)

Equation 18 incorporates the whole history of the dy-
namics when the field is turned on. Functions φ

i
(t) are

well-defined but unfortunately are long expressions to
show them explicitly. They compile together the effect
of the memory kernel on the protocol. Fortunately, it
appears to be defined as a Fredholm integral equation
of the second kind for which the Newman method [24] is
suitable to solve it using φ

1
(t) as the seed of the iteration

process. The convergence is reached after a convenient
number of steps as it will be shown in Sec. III. This is
the first mayor result.
Once Eqs. (18 is numerically solved and substituted

back into Eq. (11), then the mechanical work can be
obtained from Eq. (5).

B. GOLE dynamics

The generalized overdamped equation is obtained
by setting q̈(t) = 0 in Eq. (2). Its solution
can be found in a similar way as for the GLE
by transforming it to the Laplace space. It gives

q̂(s) = χ̂
ov
(s)(q

0
τ f̂(s) + λ̂(s) + ϕ̂

ov
(s)) with χ̂

ov
(s) =

1/(τ s f̂(s) + 1) being the corresponding susceptibility.

From the latter τ f̂(s)χ̂
ov
(s) = (1− χ̂

ov
(s)) /s which af-

ter substituting it into q̂(s) and inverting finally renders

q
ov
(t) = 〈q

ov
[λ(t)]〉 + ϕ(t), (22)

〈q
ov
[λ(t)]〉 = q

0
(1− χ(t))

+

∫ t

0

dy χ
ov
(t− y)λ(y), (23)

ϕ(t) =

∫ t

0

dy χ
ov
(t− y) ξ(y), (24)

χ
ov
(t) = L−1

[
1

τ s f̂(s) + 1

]
, (25)

χ(t) =

∫ t

0

dy χ
ov
(y). (26)

This solution, however, has an associated stationary PDF
inconsistent with the Boltzmann-Gibbs distribution as

was proved by Nascimiento and Morgado [25]. The rea-
son lies on the physical consequences of the the memory
kernel on the dynamics. Physically, it gives an account
of the particle movement through the flow lines of the
bath fluid. However, for overdamped systems the iner-
tia is irrelevant since the particle velocity relaxation is
very fast reaching the same of the reservoir. The inter-
action of particle with the bath is almost instantaneous
which is not considered in the GLE by merely setting
the inertial term equals to zero. In order to correct
this physical deficiency, these authors proposed to add
an extra white noise η(t) with intensity γ

0
and correla-

tion 〈η(t)η(y)〉 = 2γ
0
Tδ(t− y) to the non-inertial GLE.

In this circumstance, GOLE’s correct noise must be

ϕ
ov
(y) =

∫ t

0

dy χ
ov
(t− y) (ξ(t) + η(t)) , (27)

so that according to the FDT and that Eq. (22) reaches
the Boltzmann-Gibbs distribution at equilibrium, the ex-
tra term γ

0
δ(t) must be added to f(t) [25]. These ar-

guments supported by a detailed mathematical analysis
were subscribed by Di Terlizzi et al.[17] in their GOLE as-
suming the optical trap is moved at constant rate. They
used 2 γ

0
δ(t) instead to give account of the experiment

by Berner et al. in viscoelastic fluids [26].
Then, assuming the particle is rigid, replacing Eq. (23)

into Eq. (3) and recalling that χ
ov
(t) is determined from

a kernel given by the sum of γ
0
δ(t) plus the exponential,

the corresponding generalized overdamped functions ap-
pearing in Eq. (4) are given by:

Lloc(λ, λ̇, t) = λ̇(t)λ(t) − q
0
(1− χ(t)) λ̇(t), (28)

Lnl(λ, λ̇, t) = −λ̇(t)

∫ t

0

dy χ
ov
(t− y)λ(y). (29)

Thus, the local part of δW is simply

δWloc =

∫ t
f

0

dt λ̇(t) δλ(t)

+

∫ t
f

0

dt (λ(t)− q
0
(1− χ(t))) δλ̇(t), (30)

where the functional dependence was omitted for short-
ness.
Similarly, the non-local contribution is obtained using

the general guidelines of the procedure applied to the
underdamped. It reads

δWnl = −
∫ t

f

0

dt δλ(t)

∫ t
f

t

dy χ
ov
(y − t)λ′(y)

−
∫ t

f

0

dt δλ̇(t)

∫ t

0

dy χ
ov
(t− y)λ(y). (31)

Setting to zero the sum of the associated Euler-
Lagrange equations of these two contributions and split-
ting the integral involving the limits {t, t

f
} gives the final

result
∫ t

0

dy A
1
(t, y)−

∫ t
f

0

dy A
2
(t, y)λ′(y)+A

3
(t) = 0, (32)
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A
1
(t, y) = λ′(y)χ

ov
(y−t)+λ(y) χ̇

ov
(t−y), (33)

A
2
(t, y) = χ

ov
(y − t), (34)

A
3
(t) = q

0
χ̇(t) + χ

ov
(0)λ(t). (35)

To proceed further, the Laplace transform of Eq. (32)
renders

λ̂(s) = Ψ̂
1
(s) +

∫ t
f

0

dy Ψ̂
2
(s, y)λ′(y), (36)

Ψ̂
1
(s) =

λ
0
χ̂ ⋆

ov
(s)− q

0
(s χ(s)− χ(0))

Â
4
(s)

, (37)

Ψ̂
2
(s, y) =

Â2(s, y)

Â4(s)
, (38)

Â
4
(s) = s

(
χ̂ ⋆

ov
(s) + χ̂

ov
(s)
)
, (39)

χ̂ ⋆
ov
(s) = L{χ

ov
(−t)}. (40)

Inverting Eq (36) finally gives

λ(t) = Ψ
1
(t) +

∫ t
f

0

dyΨ
2
(t, y)λ′(y), (41)

with the two functions Ψ
1
(t) and Ψ

2
(t, y) given by [27]:

Ψ
1
(t) =

1

2

[
λ

0
− q

0
+ (q

0
+ λ

0
)

(
α

ω
1

t+

(
1 + ω2

1

)

ω2
1

√
αγ

0

sinh

(√
α

γ
0

ω
1
t

))]
, (42)

Ψ
2
(t, y) =

exp

[
− (1+ω2

1
)

2 γ
0

y

]

2
√
α γ

0
ω2

1
ω

2

{
cosh

(
ω

2

2 γ
0

y

)[
ω

1
ω

2

√
α γ

0

(
ω2

1
+ α t

)
+
(
1 + ω2

1

)2
sinh

(√
α

γ
0

ω
1
t

)]

+ sinh

(
ω

2

2 γ
0

y

)[
√
αγ

0
ω

1

(
1 + ω2

1
+ α2 γ

0
(γ

0
+ t)

)
− 2

√
αγ

0
ω

1

(
1 + ω2

1

)
cosh

(√
α

γ
0

ω
1
t

)

−
(
1 + ω2

1

)2
sinh

(√
α

γ
0

ω
1
t2
)]}

, (43)

where ω
1
=

√
1 + αγ

0
and ω

2
=
√
4 + α2 γ2

0
. The inte-

gral equation (36) converges after a moderate number of
iterations if Ψ′

1
(y) is used as the initial guess for λ′(y).

Functions 〈q
ov
[λ(t)]〉, 〈q̇

ov
[λ(t)]〉 and W are long expres-

sions to display so they are numerically determined.
In the next section, it will be presented an auto-

consistent procedure to calculate the optimal protocol
and minimum work for GLE and GOLE. They will be
compared with those obtained for the same system using
the MLE [5] as a standard or point of reference. Likewise,
it will discuss the results in a thermodynamic basis.

III. DISCUSSION OF RESULTS

The chosen initial conditions are the same as in Ref.
[5] where the Markovian equations lead to a negative me-
chanical work. Namely, {q

0
, λ

f
} = {1, 0}. The final time

of the protocol application t
f
is 12 and the friction coef-

ficient for the GLE ranges from the very underdamped
γ = 1 up to the overdamped described by GOLE. The
decay constant α in the GLE is assumed to decrease with
the friction to incorporate intuitively the retardation in
the particle translation as γ gets higher. It was chosen to
get W of the same order of magnitude for the considered

initial set and all γ values. It should be mentioned that
the GLE algorithm is unstable for high τ due to high os-
cillations in the functions φ1(t) and φ2(t) and because of
it, it is replaced for that of the GOLE. Additionally, the
selected α for a given γ is critical otherwise the oscilla-
tions mentioned before show unbound values.
The plots were calculated for increasing values of τ

and segmented in terms of γ and α. The α for a given
γ was arbitrarily chosen in such a way that it generate
mechanical work done by the particle in the first three
cases, γ = {1, 3, 6} and done by the field in GOLE. Be-
sides the increasing τ condition, an extra restriction was
used to tune up the selected α. It is related to the total
work involved over the entire time range such that for
the assigned decay constant, this quantity stays around
a fixed meaningful value. It was fixed to be around −0.94
for γ = {1, 3, 6} while for GOLE was around 15. In this
way, the color tags used in the plots are for γ of 1 (black),
3 (red), 6 (blue) and GOLE (green) with their respective
associated α values {0.16, 0.13, 0.09} for the first three
cases. For GOLE a high γ and a low α is required, thus
we set α = 0.001, γ = 1/α and γ

0
= 5. Using the above

procedure to select α, the numerical determination of
λ(t) and the desired W is very efficient in the GLE.
It is important to mention that GOLE’s calculations
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are very sensitive to the value of γ
0
. Convergence is

reached for a given value in such a way that the memory
effect avoids taking over the non-inertial dynamics. For
other values besides this critical value, the solution is out
of the prescribed bounds with no physical sense at all.
Since no physical arguments have been used to assign

the correct value of the decay constant, computer sim-
ulation seems to be the only way to get the proper in-
formation about its magnitude. Various methods could
be used to accomplish this purpose. The first could be
the technique developed by Ceriotti et al. [28] to use the
GLE to perform an isothermal molecular dynamics sim-
ulation and the second, that from Stella et al. [29] where
the colored exponential noise is consistently generated.
Based on this reasoning, the optimal driving are de-

picted in Fig. 1.

0 2 4 6 8 10 12

0

1

2

3

4

5

t

Λ
"t
#

FIG. 1. Time- dependent optimal protocol in terms of their
defining parameters {γ, α} of {1, 0.16} (black), {3, 0.13} (red)
and {6, 0.09} (blue). The green curve is for GOLE with α =
0.001 and γ = 1/α to fulfill the non-inertial character of the
description. The set {q0 , λf

} = {1, 0}. See text for details.

For the underdamped, they are non-linear functions of
time unlike the straight lines predicted in the Markovian
case [5]. GOLE shows an opposite behavior in compari-
son with the overdamped MLE where λ(t) decreases with
time. Together, they have a non-vanishing value at t = 0
not shown because of the scale.
The minimum work is shown in Fig. 2 for the optimal

protocols of Fig. 1.
The differences between the results shown in this graph

compared to those obtained with the MLE counterpart
become now more than evident. Particularly, there is
no observation of discontinuities in the very high under-
damped as seen in Fig. 1 of Ref. [5] with the γ = 1
curve (black). The similarity in behavior of the GLE
underdamped curves is due to the requirement that W
has a fixed value around −0.94 throughout the time in-
terval. Furthermore, excluding the overdamped, GLE
does not predict a smooth and negative W as in MLE,
but has an almost periodic-like behavior with positive
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!0.4

!0.2

0.0

0.2

0.4

0 2 4 6 8 10 12

0

1

2

3

4

tf
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FIG. 2. Minimum work for the protocols of Fig. 1.

values in some ranges of the protocol application time.
Extractable work of these characteristics were also found
by Bylicka et al. [30] in open quantum systems with
memory effects. Furthermore, GOLE predicts a behav-
ior contrary to the Markovian.
One way to analyze it is through the Fokker-Planck

formalism. It requires knowing the reduced conditional
probability distribution function (PDF), p(q, t|q

0
). The

method to obtain it is fully described in Secs. 2 y 3.1 of
Ref. [12]. Making it suitable to the problems at hand, it
is a Gaussian given by

p(q, t|q
0
) =

1√
2 π σ2(t)

exp

[
− (q −H(t))

2

2 σ2(t)

]
, (44)

where the standard deviation σ2
q(t) and function H(t) are

defined respectively as:

GLE

σ2(t) = 2

∫ t

0

dy

∫ y

0

dz 〈ϕ
v
(y)ϕ

v
(z)〉+ Tχ2

v
(t), (45)

H(t) = 〈q[λ(t)]〉), (46)

〈ϕ
v
(t)ϕ

v
(s)〉 = 2 γ αT

∫ t

0

dy χ̇
v
(t− y)

×
∫ s

0

dz χ̇
v
(s− z) f(|y − z|),

GOLE (47)

σ2(t) = 2

∫ t

0

dy

∫ y

0

dz 〈ϕ
ov
(y)ϕ

ov
(z)〉 , (48)

H(t) = 〈q
ov
[λ(t)]〉 (49)

The correlation 〈ϕ
ov
(t)ϕ

ov
(s)〉 can be determined assum-

ing the noises are uncorrelated with 〈η(t)η(s)〉 = γ
0
δ(t−

s) and 〈ξ(t)ξ(s)〉 = f(|t− s)).
The Fokker-Planck equation whose solution is the

above Gaussian is determined by applying the procedure
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originally designed by Adelman and Garrison [31] and
detailed shown in Ref. [32]. It renders,

∂p(q, t)

∂t
= −∂J(t, q)

∂q
, (50)

J(q, t) = Ω(t) q p(q, t)− 1

2
D(t)

∂p(q, t)

∂q
, (51)

Ω(t) =
Ḣ(t)

H(t)
, (52)

D(t) = σ̇2(t)− 2 σ2(t)Ω(t), (53)

where D(t) is the effective diffusion constant. It is shown
in Fig. 3 for T = 10 along with the average position and
standard deviation.
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FIG. 3. Function H(t) = 〈q(t)〉, effective diffusion constant
D(t) and standard deviation σ2(t) for GLE and GOLE. Color
scheme as of Fig. 1.

Regarding the average position H(t), we see that all
curves tend to diverge from the potential center being
more evident in GOLE due to the instantaneous hits re-
ceived from the particles of the thermal bath. This is
also manifested in the protocols shown in Fig. 1 through
the final jumps.
The diffusion constant appears to be a smooth function

for all the considered friction constants unlike the strong
Markovian underdamped which shows discontinuities in
D(t) because of the ratio Ω(t). This was extensively dis-
cussed in a previous paper [33] for the Markovian har-
monic oscillator. The effect of average velocity and po-
sition on the above relationship makes the GLE’s D(t)
a continuous function of time. Then we can conclude
that the MLE applied to the highly underdamped case
cannot cope with the cusps in D(t) because the averages
describe a physical situation without the translational
memory. This means that the mechanical work has no
clear physical meaning because it also has unexpected
cusps [5].
The standard deviation σ2

q(t) results of the combined
effects of the noise correlation function, the effective dif-
fusion constant and the ratio Ω(t). Its non-monotonicity
is primarily due to the effects of the oscillations shown by
the susceptibilities and the functions ϕ1(t) and ϕ2(t, y).
They are canceled out in the overdamped giving a linear
function because of the preeminence of the intensity of
white noise over the memory kernel f(t). What is im-
portant to notice is that GOLE being a more accurate
theory, it gives a totally different σ2(t) compared with
the saturated curve of the MLE description [33].

A. Entropy production rate

To give an account of the thermodynamic cost in-
vested in doing work by or against the field, entropy
S = −

∫
dq p(q, t|q

0
) ln[p(q, t|q

0
)] is the proper property

to be called upon. This property was detailed analyzed
by Seifert along the trajectory of the Brownian particle
[34] and subsequently by van den Broeck and Esposito
in terms of the processes responsible for the breaking of
the detailed balance once the protocol is initiated [35].
The standard deviation is crucial on the behavior of

the total entropy S(t) and its derivative, the entropy rate
Σ(t). They can be easily determined from Eq. (44) and
plotted in Fig. 4.
It is observed a negativity temporarily character of

Σ(t). We must emphasize, however, they are legitimate
outcomes own of the non-Markovian dynamics despite of
the provisions of the Second Law. In fact, because the
bath degrees of freedom (BDF) in the theory are not ex-
plicitly considered but have been described by the static
friction coefficient, their real contribution to the entropy
balance are excluded so their explicit incorporation to
the total will provide the required positivity. This kind
of “thermodynamical inconsistent” behavior is inherent
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FIG. 4. Total Entropy S(t) and entropy production rate Σ(t)
for GLE and GOLE probability distributions. Color scheme
as of Fig. 1.

to non-Markovian systems. It was proved by Marcantoni
et al. [36] for open quantum systems described by non-
Markovian maps and by Strasberg and Esposito [37] for
a dynamics based on an effective master equation where
the non-Markovian character is incorporated through an
transition matrix depending on the initial state having
negative entries and fulfilling the Chapmann-Kolmogorov
equation. Moreover, Bonança et al. [38] have shown for
the electrical conduction in metals that temporal nega-
tive entropy production also spring out as a direct con-
sequence of Ohm’s law. In the language of the GLE,
the Ohmic driving of the dynamics is the non-Markovian
dissipation term [39].

Therefore, it is plausible to assume that the control of
the thermodynamic outcome by the standard deviation
shown in Fig. 3 along with the time-dependent diffusion
term, are responsible for the system showing a negative
rate of entropy production. This property will be further
analyzed next.

In a system in equilibrium, the correlation of the fluc-
tuations for small external disturbances is given in terms
of the response function. This is not the case in sta-
tionary systems out of equilibrium because the detailed
balance relation is broken and therefore there is a con-
tinuous degradation of energy to the thermal reservoir.
This behavior occurs along the trajectory which in turn

reduces to the conventional FDT if the velocity fluctua-
tions are given in terms of the local mean velocity [40].
In the detailed balance restoration, van den Broeck

and Sposito [35] claim that entropy production involves
the interplay of two different mechanisms. One is the
adiabatic (ad) recovering of the temporal symmetry due
to any given constraint and the second one, the persis-
tent non-adiabatic (na) influence of the field thought the
driving.
The two mentioned contributions to the entropy rate

are given by Eqs. (27) and (28) of Ref. [35], which ap-
plied to Eq. (51) gives,

Σna(t) =
2

D(t)

∫
∞

−∞

dq p(q, t|q
0
)

(
J(q, t)

p(q, t|q
0
)

)2
, (54)

=
D(t)

2 σ2(t)
+2Ω(t)

(
1+Ω(t)

H2(t)+σ2(t)

D(t)

)
,(55)

Σad(t) = 0. (56)

There is not an adiabatic contribution since the term
J st(q, t)/pst(q, t) vanishes because of the stationary (st)
PDF

pst(q, t) =

√
− Ω(t)

πD(t)
exp

[
Ω(t)

D(t)
q2
]
. (57)

The negativity of Ω(t)/D(t) is guaranteed so the system
reaches the steady state. It is important to recall that
Σna(t) agrees with that by Seifert [34] in which the rate
is calculated along the trajectory.
Hence, the protocol is the only source of entropy pro-

duction to restore the symmetry breaking since there are
no constrictions of any kind on the dynamics.
The entropy rate Σna(t) is a complicated function of

time showing sudden changes at given times for all val-

ues of the friction constant. Furthermore,
∫ t

f

0 dtΣna(t)
is positive. These two facts are due to the non-rigorous
entropy balance from the effective management of the
BDFs. For the matter of presentation, it is only shown
in Fig. 5 the results for γ = 3 and GOLE.
It can be seen, that indeed, the temporally negative

entropy production rates in discrete non-Markovian sys-
tems also appear in the non-Markovian Langevin equa-
tion in both the inertial and underdamped descriptions.
In order to test this result then it is important to deter-

mine the entropy production, Σex(t), due to the heat dis-
sipated to the bath. Using any of the approaches [34, 35]
it is found that

Σex(t) = −2
Ω(t)

D(t)

∫
∞

−∞

dq q J(q, t), (58)

= −Ω(t)

D(t)

(
D(t)+2Ω(t)

(
H2(t)+σ(t)

))
, (59)

which added to Σna(t) gives Σ(t) as it should be.
These results do not give any clues about the effects

that the actual production of entropy has on the ability
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FIG. 5. Non-adiabatic entropy production rate Σna(t) for
γ = 3 and GOLE.

of the system to do work against the external field. The
negative entropy rate is a consequence of the ineffective
management of the bath degrees of freedom requiring a
reformulation of the FDT as was mentioned in the in-
troduction. In particular, the observation by Kutvonen
et al. [15] that Markov limit of non-Markovian systems
leads to additional entropy components. The absence of
it in the MLE can provide a secondary route to thermo-
dynamically understand the cusp appearing in the me-
chanical work mentioned above. Recently, Hsiang and
Hu [41] derived the FDT for systems subjected to non-
equilibrium dynamics driven by an external protocol.
Despite these arguments, the results provided by

GLE and GOLE are mathematically correct. It cor-
roborates the work of Van den Broeck and Esposito,
where a dissipative-driven dynamics of coarse-grained
non-Markov systems, the rate of entropy production is

naturally negative [37].
However, since the classical GLE is only an approxima-

tion of a real system based on an FDT framed in linear
response theory, then it is plausible to assume that a
”more consistent” formulation of it will provide results
to be in accordance with the prescriptions of the second
law.

IV. CONCLUDING REMARKS

Summarizing, the auto-consistent inclusion of memory
effects definitely changes the expected value of the work
done by the particle in comparison with the Markovian
counterpart [5]. The initial position other than the equi-
librium values is responsible for the particle to do work
against the external field except in the generalized over-
damped. The calculations for other initial conditions will
show as in [5] that work is done by the field. The gen-

eralized overdamped protocol is, as in the Markovian, a
general result no matter the friction coefficient values.
Unlike the results for the Markovian where the optimal

protocol is given by a differential equation, the inclusion
of memory leads to an integral equation for the driving
in either description.
It has been provided explicit calculations for the en-

tropy rate of non-Markovian dynamics extending those
of Ref. [35] and reinforcing the findings of Ref. [37].
It was found the protocol is the only source the system

to show a negative entropy rate which clearly violates the
second law. It is due to consider in the formulation of
the theory that the effects of the degrees of freedom of
the bath are described as a unique function of the tem-
perature and as a consequence putting aside important
contributions to the total entropy balance.
A reformulation of the FDT is called upon to make the

GLE approach thermodynamically consistent.
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