
Universality in the tripartite information after
global quenches: (generalised) quantum XY
models

Vanja Marić,a Maurizio Fagottia

aUniversité Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France

E-mail: maurizio.fagotti@universite-paris-saclay.fr

ABSTRACT: We consider the Rényi-α tripartite information I (α)3 of three adjacent subsystems in
the stationary state emerging after global quenches in noninteracting spin chains from both
homogeneous and bipartite states. We identify settings in which I (α)3 remains nonzero also in
the limit of infinite lengths and develop an effective quantum field theory description of free
fermionic fields on a ladder. We map the calculation into a Riemann-Hilbert problem with a
piecewise constant matrix for a doubly connected domain. We find an explicit solution for α= 2
and an implicit one for α > 2. In the latter case, we develop a rapidly convergent perturbation
theory that we use to derive analytic formulae approximating I (α)3 with outstanding accuracy.
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1 Introduction

Nonequilibrium time evolution in isolated quantum many-body systems has been intensively
investigated for its capability to turn a ground state into an effective finite-temperature one
[1–3]. Such a remarkable feature, closely related to the eigenstate thermalisation hypothesis,
is expected quite generally if the interactions decay sufficiently fast to zero with the distance
[4–7]. The main exception is found in integrable systems, in which the stationary properties of
observables could differ even significantly from those of thermal states [8–10]. For example,
in one dimensional systems with local interactions the correlation lengths are generally finite
at nonzero temperature (which can be connected with the absence of phase transitions) and
the entropy of subsystems is extensive (which can be traced back to the thermodynamic laws);
on the other hand, at zero temperature the correlation lengths can diverge (in critical systems)
and the entropy is sub-extensive [11]. Thus, at equilibrium in 1D systems the divergence of
a correlation length and the extensivity of the entropy seem to be incompatible features. In
the stationary state emerging after a quench in an integrable system, such two properties can
instead coexist [12], suggesting the potential genesis of exotic states of matter.

In the last three decades the measures of entanglement have acquired an increasingly im-
portant role in quantifying the universal properties of a quantum many-body system, especially
for their mild dependence on the system’s details [11, 13, 14]. We also mention that, while
probing entanglement experimentally is still a difficult problem, progress has been made also
in that respect [15]. The best example of entanglement measure is arguably the von Neu-
mann entropy of subsystems. Restricting to 1D systems, which are the ones we consider in
this paper, universality is usually associated with the zero temperature properties at quantum
phase transitions; in this regard the entanglement entropy turns out to be sensitive to criticality
at the leading order of an asymptotic expansion in the subsystem’s length [16–19]. It could
however also happen that the universal properties of interest are subleading with respect to
non-universal ones. This is the case for the topological contribution to the entanglement en-
tropy in 2D, which is concealed behind a term proportional to the area of the subsystem [20].
It becomes then desirable to undress the quantities of the unwanted non-universal details. In
the aforementioned example, this is done by considering a special combination of entangle-
ment entropies, known as “tripartite information”[21], that in the context of topological order
is usually referred to as “topological entanglement entropy”[20].

The measures of entanglement have been thoroughly studied also after global quenches,
establishing for example that the entropy saturates to an extensive value, that is to say, pro-
portional to the size of the subsystem [22–30]. One could argue that such extensive parts are
mainly due to classical correlations, therefore, it becomes of interest to study combinations of
entropies that simplify such contributions, in complete analogy with the topological entangle-
ment entropy. For this reason, quantities such as the mutual information have attracted special
attention [31–34].

At late times after a global quench, correlations often exhibit an exponential decay in the
distance [23, 35, 36], but this is not a strict rule (see, e.g., [12]) and there are many examples
in which they decay algebraically, i.e., there are divergent correlation lengths. In this paper we
are interested exactly in such exotic states that emerge after global quenches and that display
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both extensive entropy and infinite correlation lengths. Similarly to the topological case men-
tioned above, in those states the leading asymptotic behaviour of the entanglement entropy
is not universal and is not qualitatively different from what one would find in any other sta-
tionary state with finite correlation lengths: the universal properties that we envisage to exist
are subleading. Inspired by the definition of the topological entanglement entropy, we turn
our attention to the tripartite information. This is a special combination of entanglement en-
tropies that simplifies both extensive and boundary contributions (of the subsystem), leaving
a potentially universal quantity. We show that this is indeed the case. Specifically, we derive
and generalise the results announced in Ref. [12]. We study the Rényi-α tripartite information
of three adjacent intervals in the stationary states emerging after global quenches in noninter-
acting spin chains. We identify and discuss a wide class of global quantum quench protocols
which at infinite time reach stationary states with a non-zero tripartite information. We derive
the asymptotic behaviour of the Rényi-α tripartite information by taking a continuum limit and
mapping the calculation to a Riemann-Hilbert problem with a piecewise constant matrix for a
doubly-connected domain. We show that the Rényi-α tripartite information depends on few
system details and discuss a limit, which Ref. [12] dubbed “residual tripatrite information”,
that seems to be even independent of them. Technically speaking, the methods that we employ
build on Refs [37–40], which we enrich to take into account the important differences [41, 42]
between the entanglement of spins and that of fermions.

The paper is organized as follows. In section 2 we introduce the tripartite information and
discuss its behavior in different equilibrium settings. Section 3 introduces the non-interacting
models and quantum quench protocols we study, discusses the differences between the entan-
glement of spins and fermions and introduces the essentials of the free fermionic techniques
that we will use. Section 4 is a summary of the results obtained in this work, and it has been
postponed up to that point only because some quantities are defined in the preceding sections;
a reader familiar with the concepts introduced in Sections 2 and 3 is encouraged to read Sec-
tion 4 before the previous ones. Section 4 shows also examples where the asymptotic formulae,
which will be derived later on, are applied to concrete quench protocols. The derivations of
the results are presented afterwards. Section 5 introduces a continuum description, shows that
stationary states of the studied quench protocols can be described by an effective quantum field
theory of free fermionic fields on a ladder, presents a brief overview of the formalism for com-
puting the entanglement entropies in quantum field theory and applies it to derive expressions
that enable mapping the calculation to a Riemann-Hilbert problem. The mapping is the subject
of section 6. Section 7 deals with the solution of the Riemann-Hilbert problem, which will be
exact for α= 2 and perturbative for α > 2. Conclusions are drawn in section 8.

2 Tripartite information and its residual value

The von Neumann entropy S1(A) of a subsystem A described by a reduced density matrix ρA is
the Shannon entropy of ρA’s eigenvalues:

S1(A) = −tr[ρA logρA] . (2.1)
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A B C

Figure 1: By A, B or C we denote a connected block of spins, i.e. an interval, in an infinite spin
chain. In this work we study the tripartite information of three adjacent blocks.

If the state is pure, S1(A) measures the entanglement between A and the rest. Additional infor-
mation about the entanglement is provided by the Rényi entropies

Sα(A) =
1

1−α
log tr[ραA] , (2.2)

with α = 2,3, 4, . . ., which completely characterise the distribution of eigenvalues of ρA (also
known as entanglement spectrum). If the state is mixed, the von Neumann entropy and the
Rényi entropies, which we will also generically refer to as “entanglement entropies”, are also
affected by classical correlations, that is to say, they are not good measures of entanglement.

In this work we will indicate the subsystems with words of letters, A, B, and C , that refer
to connected blocks of spins, and we will always assume that A, B, and C are adjacent, as
shown in Figure 1. In such a geometry, at finite temperature the entropies become extensive
with the size of the subsystem and carry a leading classical contribution. Such extensive terms
can be cancelled in combinations of entropies, such as in the mutual information. The mutual
information of two subsystems A and C is defined as [21]

I2(A, C) = S1(A) + S1(C)− S1(A∪ C) (2.3)

and its Rényi analogue reads

I (α)2 (A, C) = Sα(A) + Sα(C)− Sα(A∪ C) . (2.4)

The simplification of the extensive contributions is manifest in thermal states when C is the
complement of A (i.e., B = ; and A and C extend over the entire chain in Fig. 1), where it was
shown that the mutual information satisfies an area law [11, 43–47].

The mutual information is a natural quantity to study also in quantum field theory, and
it has received substantial attention both in 1+1 [37, 39, 40, 48–63] and higher dimensions
[64–72]: while the entanglement entropies are ultraviolet divergent, such divergences cancel
out in the mutual information, provided that the subsystems are not adjacent.

A related quantity is the tripartite information. For three subsystems A, B, C the tripartite
information [21] is defined as

I3(A, B, C) = I2(A, B) + I2(A, C)− I2(A, B ∪ C) =

S1(A) + S1(B) + S1(C)− S1(A∪ B)− S1(B ∪ C)− S1(A∪ C) + S1(A∪ B ∪ C) (2.5)

and its Rényi analogue reads

I (α)3 (A, B, C) = I (α)2 (A, B) + I (α)2 (A, C)− I (α)2 (A, B ∪ C) , (2.6)
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thus it can be viewed as a measure of the extensivity of the mutual information. While the
mutual information can be interpreted [73] as a measure of the total amount of correlations,
classical and quantum, between the two subsystems, to the best of our knowledge there is no
such a simple interpretation for the tripartite information. There have been numeorus inves-
tigations into the tripartite information in disparate settings. Besides the remarkable role in
quantifying topological properties [20], which we have already mentioned, it has received a
substantial attention in quantum field theories in 1+1 dimensions [39, 42, 49, 51, 57, 64, 74–
84], mainly conformal, as well as in higher dimensions [64, 68, 85, 86]. There is also a general
result [87] that in holographic theories the tripartite information is never positive, implying that
the mutual information is always extensive or superextensive, and suggesting that quantum en-
tanglement dominates over classical correlations. En passant, we note that the tripartite infor-
mation was recently studied in continuously monitored chains [88], on Hamming graphs [89],
and also as a diagnostic for quantum scrambling [90–93].

The key reason why we focus on the tripartite information is that it remains bounded in the
limit a � |B| � |A|, |C |, allowing us to unveil a contribution that is subleading in the mutual
information and that exhibits universal properties. Here and in the following |A| stands for
the size of A. To be more quantitative, let us consider a connected block A. In many states of
interest in spin chains (e.g., at equilibrium), the entanglement entropies of such a block are
captured by the Ansatz

Sα(A)∼ κα
|A|
a
+ωα log

|A|
a
+ dα , (2.7)

where a is the lattice spacing and∼ denotes the limit in which the subsystem size is much larger
than a. In the rest of the paper we will use ∼ to denote the limit in which all subsystem’s sizes
are much larger than the lattice spacing. In the ground state of a local Hamiltonian κα vanishes,
whileωα is nonzero only if there are divergent correlation lengths [94]. In equilibrium at finite
temperature κα becomes nonzero and ωα is expected to vanish (this was explicitly shown in
conformal field theories [16], and, using the approach of Ref. [95], could be rather easily proved
in the absence of interactions; it can also be argued by the absence of phase transitions at finite
temperature, but we are not aware of a general proof). A non-zero value of both κα andωα was
instead observed in non-equilibrium steady states [33, 96, 97] and in excited states [98, 99],
as well as after global quenches from ground states of critical systems [12].

Assuming translational invariance, from (2.7) it follows that, if A and B are adjacent inter-
vals, the mutual information behaves as

I (α)2 (A, B)∼ωα log
|A||B|

a(|A|+ |B|)
+ dα , (2.8)

which explicitly shows the dependency on the UV cut-off a as well as on the boundary contri-
butions included in dα. Note that the mutual information diverges in the limit of infinite size
of the blocks A and B. For three adjacent intervals A, B, C (see Figure 1), the behaviour of the
tripartite information follows from that of the mutual information (cf. (2.8) and (2.6))

I (α)3 (A, B, C)∼ωα log(1− x) + I (α)2 (A, C), (2.9)

where x = |A||C |/((|A|+|B|)(|B|+|C |)) is the cross ratio. In equilibrium at nonzero temperature,
I2(A, C) vanishes exponentially fast with |B| irrespective of A, C [47, 100] hence, since ωα is
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zero, I (α)3 (A, B, C) approaches zero in the limit of large lengths. This applies also to the ground
state of noncritical systems, which satisfy the area law [94] and exhibit exponential decay of
correlations [101]. On the other hand, in the ground state of a conformal critical system, ωα is
proportional to the central charge and we need more refined arguments to infer the values of
the tripartite information. In a 1+1 dimensional conformal field theory for the configuration
of Figure 1 one has [49]

trραA∪C ∼ c2
α

�

a2(|A|+ |B|)(|B|+ |C |)
|A||B||C |(|A|+ |B|+ |C |)

�
c
6 (α−

1
α )

Fα(x), (2.10)

where c is the central charge, cα is a non-universal normalization factor and Fα(x) is a universal
function of the cross ratio x = |A||C |/((|A|+ |B|)(|A|+ |C |)) which depends on the full operator
content of the theory. Consequently, the tripartite information is a universal function of x ,
directly related to F through

I (α)3, C F T (A, B, C)∼ Gα(x) , Gα(x) =
1

α− 1
log[Fα(x)]. (2.11)

We mention that Gα(x) can be positive, zero, or negative [64], the latter case occurring, in
particular, when the central charge is large enough [81].

Generally, however, Gα(x) exhibits two main properties: Gα(0+) = 0, which manifests
cluster decomposition, and Gα(x) = Gα(1− x), which is a consequence of crossing symmetry
(it follows from the fact that, in a pure state, the entropy of a subsystem matches the entropy
of its complement). These two properties together imply Gα(1−) = 0. That is to say, in all
the situations covered in this brief summary the tripartite information is zero in the limit a�
|B| � |A|, |C |, which corresponds to the limit x → 1−. Note also that the value of the tripartite
information for |B| = 0 is zero by definition1. A nonzero value of I (α)3 (A, B, C) in the limit a�
|B| � |A|, |C |, which was called “residual tripartite information” [12], is therefore an indicator
of properties that are not generally found in systems at equilibrium. Ref. [12] has identified
some nonequilibrium settings which are expected to exhibit a residual tripartite information.
Focusing on those quench protocols, which we introduce in the next section, we will analytically
compute the Rényi-α tripartite information of adjacent subsystems in the limit in which the
subsystem’s lengths approach infinity.

3 The model

We consider a class of Hamiltonians, known as generalised XY model [102, 103], which are
mapped into quadratic forms of fermions by the Jordan-Wigner transformation

a2`−1 =
∏

j<`

σz
jσ

x
` a2` =

∏

j<`

σz
jσ

y
`

. (3.1)

1This follows from the convention that the entanglement entropy of an empty set is zero. Defining it differently
would lead to a violation of some desirable properties, such as the strong subadditivity of the Von Neumann entan-
glement entropy. Moreover, we want to keep the property that in pure states the entropy of a subsystem is equal to
the entropy of its complement. Since the entropy of the whole system is zero, we should also set it to zero for its
complement, the empty set.
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Figure 2: Schematic representation of a global quench from the ground state of a local Hamil-
tonian H0. We study the tripartite information of A, B, and C in the limit of infinite time.

The fermions defined by Eq. (3.1) are self-adjoint (Majorana) and satisfy the algebra

{a j ,a`}= 2δ j` . (3.2)

The most studied example belonging to this class is the quantum XY model

H=
∑

`

�

Jxσ
x
`σ

x
`+1 + Jyσ

y
`
σ

y
`+1 + hσz

`

�

, (3.3)

of which the XX model (Jx = Jy) and the transverse-field Ising model (Jy = 0) are special
cases. The generalisation, which is described in Appendix A, can be dealt with analogously to
the XY model. It allows for interactions of any range, though with a particular structure. For
the sake of simplicity we shall assume that the Hamiltonian is local, i.e., that the interactions
have a finite range2.

By translational invariance, H can be expressed as follows3

H=
1
4

∑

j,`

~a†
j

∫ π

−π

dk
2π

H(k)eik( j−l) ~a`, ~a` ≡
�

a2`−1

a2`

�

, (3.4)

where the 2× 2 matrix H(k) generates the coupling constants through its Fourier coefficients
and, from now on, will be referred to as the symbol of the Hamiltonian [104]. To be explicit,
Hamiltonian (3.3) has the following symbol

H(k) = 2(Jx − Jy) sin(k)σ
x + [2h− 2(Jx + Jy) cos(k)]σ y . (3.5)

The properties of the symbol in view of Hamiltonian’s locality are given in Table 1. In particular,
local Hamiltonians are characterized by a smooth symbol.

We consider two kinds of quenches:

2All the results we are going to present are expected to hold true even with quasilocal Hamiltonians in which
the coupling constants decay exponentially fast with the range.

3More precisely, with periodic boundary conditions the mapping would result in two distinct noninteracting
sectors, which however turn out to be equivalent for our purposes.
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Quench from a critical point: The initial state is the ground state of a critical Hamiltonian H0

with local interactions, such as the XX model. In the symbol of H0 criticality is manifested
in the existence of (at least) a momentum k̄ for which the kernel of H0(k̄) is non-empty.

The state is let to evolve with a different local Hamiltonian H for an arbitrarily long time
(see Fig. 2 for a sketch).

If we relax the constraint of criticality in the initial state, this is the standard example
of global quench and, as such, has been thoroughly investigated (we refer the reader
to Refs [10, 105–107] for some reviews on the topic that are relevant to our work). In
integrable systems, like the generalised XY model, local observables approach station-
ary values described by generalised Gibbs ensembles (GGEs), which retain memory of
infinitely many integrals of motion.

In this paper we will assume that the time is so large that the observables in the subsys-
tems can be described by a GGE.

Bipartitionig protocol: The initial state is separated in two parts with macroscopically dif-
ferent properties, for example, a domain-wall of spins or two thermal states of a local
Hamiltonian H0 at different temperatures.

The state is let to evolve with a different local Hamiltonian H for an arbitrarily long time
(see Fig. 3 for a sketch).

Similar bipartitioning protocols in integrable systems have recently received a lot of atten-
tion, we mention Refs [108–114] as an incomplete list of works focussed on integrable
systems including also investigations into the entanglement properties; the interested
reader is encouraged to consult the Collection [115] for an overview (Ref. [116] in par-
ticular reviews the case considered here in which the quench is global).

In integrable systems, the abrupt change of properties of the initial state experiences
a ballistic spreading in time in which the expectation values of local observables ap-
proach values that depend on the ratio between the distance from the inhomogeneity
and the time. This is the paradigm of quench protocol captured by the theory of gen-
eralised hydrodynamics [117–119]. The limit of infinite time, in particular, is described
by a nonequilibrium stationary state, usually called NESS, which can be represented by
a generalised Gibbs ensemble notwithstanding the entire state not being translationally
invariant.

In this paper we will assume that the time is so large that the observables in the subsys-
tems can be described by a NESS.

3.1 Correlation matrices and filling functions

Since we restrict ourselves to noninteracting quenches, the states are Gaussian at any time, i.e.,
their density matrix is the exponential of a quadratic form of fermions. In such states the ex-
pectation values of operators are completely determined by the fermionic two-point correlation
matrix Γ2`+i,2n+ j = δ`nδi j −〈~a`~a

†
n〉i j . In a one-site shift invariant state the correlation matrix is
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Figure 3: Schematic representation of a bipartitioning protocol in which the quench is global.
We study the limit of infinite time in the tripartite information of A, B, and C in which the
lengths |A|, |B|, |C | will be assumed large but not enough to be affected by the inhomogeneity
of the state.

2-by-2 symbol of M (M2`+i,2n+ j = M2(`−n)+i, j , `, n ∈ Z): Mi j(k) =
∑

n∈Z
eiknM2(`−1)+i,2(`+n−1)+ j

Jordan-Wigner transformation: ~a` ≡
�

a2`−1

a2`

�

=

�
∏

j<`σ
z
jσ

x
`

∏

j<`σ
z
jσ

y
`

�

Hamiltonian and its symbol: H= 1
4

∑

j,` ~a
†
j

∫ π

−π
dk
2πH(k)e

ik( j−l) ~a`
quasilocality: H(k) is smooth
locality: H(k) has a finite number of nonzero

Fourier coefficients
dispersion relation (reflection symmetric H): ε(k) = 1

2

p

tr[H2(k)]
correlation matrix: Γ2(`−1)+i,2(n−1)+ j = δ`nδi j − 〈~a`~a

†
n〉i j

ground state of H (w/o symmetry breaking): Γ (k) = −sgn (H(k))
thermal state of H: Γ (k) = − tanh

�

βH(k)
2

�

GGE after a quench Γ0→ H (refl. sym. H): Γ (k) = {Γ0(k),H(k)}2ε2(k) H(k)

NESS after a quench Γ− ⊗ Γ+→ H (refl. sym. H): Γ (k) =
∑

s=±1

�

Γs(k)
2

−sgn[ε′(k)]s tr[Γs(k)H(k)]+tr[Γs(k)]H(k)
4ε(k)

�

Table 1: Free-fermion dictionary. A list of the main ingredients of the free-fermion techniques
used in this paper. The symbol of a reflection-symmetric Hamiltonian of the generalised XY
model can be any traceless 2-by-2 matrix functionH(k) satisfying the usual property of symbols,
i.e., H†(k) =H(k) = −Ht(−k).

block Toeplitz and can be expressed in terms of a 2-by-2 matrix function Γ (k), its symbol, by
Fourier transform

Γ2`+i,2n+ j =

∫ π

−π

dk
2π

eik(`−n)Γi j(k) . (3.6)
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We remind the reader that the algebra of the Majorana fermions implies the property Γ †(k) =
Γ (k) = −Γ t(−k), where •t denotes transposition.

The correlation matrices for the quenches of interest are shown in Table 1. In all quenches
considered, the late time dynamics can be captured by a generalised Gibbs ensemble; in this
respect, we remind the reader that a GGE is locally equivalent to a family of excited states,
which, in this context, are called “representative states” [106, 120]. Thus, we briefly introduce
also the standard language used to describe excited states in noninteracting models, as well
as in a class of interacting integrable systems. Given an excited state, the filling function ϑ(k)
is a regularised characteristic function of the set of occupied momenta, i.e., it represents the
average occupation of momenta around k4. Filling functions, together with the closely related
root densities5, are the main ingredients of the theory of generalised hydrodynamics. Since they
satisfy simple dynamical equations (see Ref. [121] for a thorough discussion in noninteracting
spin chains), they are convenient to work with especially in the presence of inhomogeneities,
where other formalisms struggle with. Assuming that there is a smooth unitary matrix function
U(k) of k diagonalising the symbol of the correlation matrix of a stationary state, the filling
function can be identified with Γ (k)’s eigenvalues as follows:

U†(k)Γ (k)U(k) = diag [2ϑ(k)− 1,−2ϑ(−k) + 1] . (3.7)

We refer the reader to Section 2 of Ref. [116] for a pedagogical introduction to filling functions
(or root densities) in noninteracting systems; for the purpose of this paper, it is sufficient to
regard (3.7) as a definition of ϑ(k).

3.2 Rényi entropies

The tripartite information of adjacent subsystems is a linear combination of entropies of spin
blocks with the entropy of two disjoint blocks (2.5). In our system the entropy of a spin block
is equal to the entropy of the corresponding block of Jordan-Wigner fermions [95, 122] and
reads

Sα(A) =
1

1−α
1
2 tr
�

log
�

� I+ΓA
2

�α
+
� I−ΓA

2

�α
��

, (3.8)

where ΓA is the correlation matrix in A. In the case of disjoint blocks, instead, the non-locality of
the Jordan-Wigner transformation complicates the correspondence. A procedure for computing

4We warn the reader that the ambiguity in the definition of what is a particle and what is a hole allows for
alternative definitions of filling functions. In particular, one is in principle free to choose any excited state as
a reference state characterised by ϑ(k) = 0. In order to attach some physical meaning to ϑ(k), it is however
convenient to choose a reference state with low entanglement. If the ground state is non-critical, the most natural
choice is to promote the ground state to the reference state (the other possibility being the state with maximal
energy). If the ground state is critical, instead, choosing the ground state of a conservation law with a non-critical
ground state would do the job. For example, the ground state of the XX model in 0 field is critical. Since, however,
the total magnetization in the z direction commutes with the Hamiltonian, we can choose as reference state the
ground state of the model with a large enough magnetic field, which is the state in which all spins are aligned in
the z direction. This is a customary choice in models with a U(1) symmetry. In this paper we will use such standard
conventions.

5In noninteracting systems, in particular, the filling function ϑ(k) and the root density ρ(k) satisfy ϑ(k) =
2πρ(k).
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the Rényi entropies of two disjoint blocks on the lattice that takes into account these non-locality
effects has been proposed in [42] and is briefly reviewed below.

The entropy Sα(A∪ C) is expressed in terms of four correlation matrices: Γ1 ≡ ΓA∪C ,A∪C ,
Γ2 ≡ PΓ1P, Γ3 ≡ Γ1 − ΓA∪C ,BΓ

−1
B,BΓB,A∪C and Γ4 ≡ PΓ3P, where ΓA′,A′′ for some subsystems A′, A′′ is

the correlation matrix with the indices running in A′, A′′ respectively,
�

ΓA′,A′′
�

2(`−1)+i,2(n−1)+ j = δA′(`),A′′(n)δi j − 〈~aA′(`)~a
†
A′′(n)〉i j

,

` ∈ {1, 2, . . . , |A′|}, n ∈ {1, 2, . . . , |A′′|}, i, j ∈ {1, 2},

A′(1)< A′(2)< . . .< A′(|A′|) are the elements of A′ in ascending order (analogously for A′′),
(3.9)

and

P̀ n ≡ δ`n

(

−1 1≤ `≤ 2|A|

1 otherwise
(3.10)

introduces a minus sign for each fermion in block A. Specifically, we have

Sα(A∪ C) =
1

1−α
log







1
2α

∑

j1, j2,... jα=1,2,3,4

(−1)N3+N4=1

(−1)N4 |det ΓB,B|
N3+N4

2 {Γ j1 , Γ j2 , . . . , Γ jα}






. (3.11)

Here N3 (N4) is the total number of j1, j2, . . . jα equal to 3 (4). Only the terms in which the
total number of indices equal to 3 or 4 is even appear. The symbol {. . .} inside the logarithm is
defined as the trace of a product of normalized Gaussians,

{Γ j1 , Γ j2 , . . . , Γ jα} ≡ tr
�

ρ(Γ j1)ρ(Γ j2) . . .ρ(Γ jα)
�

, (3.12)

where ρ(Γ )∝ exp
�

∑

j,`∈A,C ~a
†
j Wj,l~a`/4

�

has correlation matrix Γ (Γ and W are related to each
other through Γ = tanh(W/2)).

The entropy of two disjoint blocks of fermions consists solely of the first term,

S(fermions)
α (A∪ C) =

1
1−α

log{Γ1, Γ1, . . . , Γ1}. (3.13)

The other terms appearing in (3.11) account for the non-locality of the Jordan-Wigner fermions
with respect to the spin degrees of freedom. For instance, the operator σx

j∈Aσ
x
`∈C , when ex-

pressed in terms of fermions, contains an undesired string in between the two blocks. In accor-
dance, terms with N3 + N4 6= 0 in (3.11) are accompanied by a factor equal to a power of the
expectation value of the string of σz

`
operators between the two blocks,

�

�det ΓB,B

�

�

N3+N4
2 = 〈

∏

j∈B

σz
j〉

N3+N4
. (3.14)

After global quenches in systems without semilocal charges, string order doesn’t survive. That
is to say, the expectation value of strings of Pauli matrices decays exponentially with the length
of the string (see Ref. [97] for a more detailed discussion). Thus, it is reasonable to expect
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the string expectation value to kill all the contributions in (3.11) from the terms with non-zero
N3 + N4. And indeed our numerical checks confirm the validity of this statement. In the limit
in which all lengths approach infinity, the entropy of disjoint blocks after a global quench is
therefore captured by the following simplified expression

Sα(A∪ C)∼
1

1−α
log





1
2

2
∑

j1, j2,..., jα=1

{Γ j1 , Γ j2 , . . . , Γ jα}



+ log 2. (3.15)

Each term of the sum can be evaluated using the recursive formula derived in Ref. [42], which
expresses a product of two normalised Gaussians as a Gaussian

ρ(Γ )ρ(Γ ′) = {Γ , Γ ′}ρ
�

Γ × Γ ′
�

, Γ × Γ ′ ≡ I− (I− Γ ′)(I+ Γ Γ ′)−1(I− Γ ) , (3.16)

together with a formula for the trace of a product of normalised Gaussians

{Γ , Γ ′}2 = tr[ρ(Γ )ρ(Γ ′)]2 = det
�

I+ Γ Γ ′

2

�

. (3.17)

Alternatively, (3.16) could be replaced by the formula for the trace of a product of an arbitrary
number of Gaussians reported in Ref. [123]. Note that (3.17) fixes the value of {Γ , Γ ′} only
up to a sign; in general such a sign ambiguity can be lifted by computing the product of the
eigenvalues with halved degeneracy [42].

Finally, similarly to what happens in the ground state of free fermions [38], we antici-
pate that also in our nonequilibrium setting the fermionic tripartite information asymptotically
vanishes. Consequently, the asymptotic behaviour of the spin tripartite information after the
quench is captured by the following formula

I (α)3 (A, B, C)∼
1

α− 1
log





1
2

2
∑

j1, j2,..., jα=1

{Γ j1 , Γ j2 , . . . , Γ jα}
{Γ1, Γ1, . . . , Γ1}



− log2, (3.18)

which we will conveniently use in the analytical calculations but refrain from assuming in the
numerical checks.

4 Results

4.1 Tripartite information and Rényi entropies of disjoint blocks

Universality. We find that, when nonzero, the tripartite information I (α)3 (A, B, C) of adjacent
subsystems at late times after global quenches and in the limit of large subsystems (|A|, |B|, |C | →
∞) depends on the quench through few system details and on the subsystems through
the cross ratio

x =
|A||C |

(|A|+ |B|)(|C |+ |B|)
. (4.1)

As far as we can see, there is no underlying conformal symmetry that could explain the
dependency on just x . We prove it analytically for α = 2 and for some special contribu-
tions to I (α)3 (A, B, C) with α > 2. More generally, we show it to be consistent with our
analytical and numerical analysis.
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Figure 4: Residual tripartite information: I3(A, B, C) with a � |B| � |A|, |C |, where a is the
lattice spacing.

The most universal behaviour that we observe is in the limit x → 1− (i.e., |A|, |C | �
|B| � a, where a is the lattice spacing) in which the tripartite information (see Fig 4 for
a sketch) is either equal to 0 (in the trivial cases) or equal to − log2, independently of α.
Since the result is independent of the Rényi index, it also applies to the (von Neumann)
tripartite information I3(A, B, C) (α → 1+). Following the terminology of Ref. [12], in
all the interesting cases we have then found a universal “residual tripartite information”
equal to − log2. This should be contrasted with the zero value found in the ground states
of conformal systems and in thermal states.

Asymptotic predictions. Besides asymptotically depending on the cross ratio, the tripartite
information depends only on the discontinuities of the filling function characterising the
stationary state after the quench. Denoting the filling function by ϑ(k), as in (3.7), we
parametrize the discontinuties about momentum k = kF as follows

γ± = lim
k→k±F

[2ϑ(k)− 1] . (4.2)

Incidentally, we will also call kF Fermi momentum, for the role it plays in the ground
state of critical systems. We obtain the analytic predictions

I (2)3 (A, B, C) = − log2+ log
�

1+ (1− x)
∑

kF
[arctan(γ+)−arctan(γ−)]2

π2

�

(4.3)

for α= 2 and

I (α)3 (A, B, C) = − log2+
1

α− 1
log

�

1
2

∑

Σ

(1− x)
∑

kF
tr[(R0Σ)2−R2

0]Q(x; R0,Σ)

�

(4.4)

for higher integer α. Here the sum is over all α×α diagonal matrices Σwith the elements
on the diagonal equal either to 1 or −1 (in total 2α terms), R0 is the α × α circulant
matrix defined in (7.4) and Q(x;R0,Σ) is a “non-abelian correction”, always very close

to 1. Specifically, each ratio
{Γ j1 ,Γ j2 ,...,Γ jα}
{Γ1,Γ1,...,Γ1}

appearing in (3.18) is described by the term

in (4.4) with Σ`n = −δ`neiπ j` . Formula (4.3) was first conjectured in Ref. [12] and
we prove here its validity. Formula (4.4) without Q(x; R0,Σ) can be obtained as the
lowest order of a rapidly convergent perturbation theory based on an implicit solution
to a Riemann-Hilbert problem (Section 7.3). We call it "Abelian approximation" since it
neglects all the effects of non-commutativity of R0 and ΣR0Σ. Although a priori crude,
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Figure 5: The function k3,1(x) characterizing the dependency of the leading non-Abelian cor-
rection (4.5) on the subsystem (through the cross ratio x).

this approximation gives surprisingly accurate results. We lack an explicit expression for
the correction to the formula, parametrised here by Q(x;R0,Σ), but we have computed
it at the leading order in the perturbation theory. The result reads

Q(x; R0,Σ)≈ k3,1(x)
−
∑

kF
1
4 tr[(i[ΣR0Σ,R0])2] , (4.5)

where k3,1(x) is worked out in Section 7 and is shown in Fig. 5. More generally, each
term of the expansion of logQ(x; R0,Σ) is factorised in a term that depends only on α and
γ± (e.g., the exponent of (4.5)) and a term that depends only on the cross ratio x (e.g.,
log k3,1(x)). In practice, going beyond the third order (4.5) seems to be a mathematical
problem rather than a physical one, as it is almost impossible to see a disagreement from
the third-order approximation.

Predictions apart, it should be noticed that our results imply a non-zero value of the
tripartite information after quenches, similarly to the ground states of conformal systems
and unlike any thermal (Gibbs) state. A property that makes the behavior of the tripartite
information after quenches under consideration different from the former is the absence
of the crossing symmetry x → 1− x , which is manifest in the possibility to have a nonzero
"residual tripartite information" in a state with clustering properties.

Determinant representation. As a side product of this work, we produce simple formulas that
can be used as an alternative to those worked out in Ref. [42] (discussed in section 3.2)
for computing the terms with j1, j2, . . . , jα ∈ {1, 2} in (3.11), i.e., all terms appearing in
(3.18). Specifically, we argue (see Appendix B.1) that any such term can be evaluated
with the formula

{Γ j1 , . . . , Γ jα}=

√

√

√

det

�

�

�

�

2
1−α
α Iα ⊗ I2(`A+`C ) − i2

1−α
α

�

M+ΣMΣ
2

⊗ Γ1 −
M−ΣMΣ

2
⊗ (PΓ1)

�

�

�

�

�

,

(4.6)
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where M is the α× α Hermitian circulant matrix defined in (5.42). This representation
is more useful than the one proposed in Ref. [42]: on the one hand, the matrix in the
determinant is linear in Γ1 and, on the other hand, it allows one to evaluate the Rényi
entropy even for arbitrarily large values of α without the need of working out the recur-
sive procedure of Ref. [42]. We expect similar representations for any term appearing
in formula (3.11) for the Rényi entropy of disjoint blocks, but we have not developed
further in that direction.

4.2 Examples

We report explicit examples in which we have numerically evaluated the tripartite information.
The numerical data are obtained using (3.8) and (3.11) with the correlation matrices computed
using the formulas collected in Table 1.

4.2.1 Equilibrium

According to our previous discussion, the tripartite information is expected to vanish in equi-
librium at nonzero temperature as the lengths approach infinity. In the noninteracting systems
we are considering, this can be argued by the fact that the symbol of the correlation matrix is
smooth. We show it explicitly in Fig. 6a, where we consider a thermal state of the XX model.
In contrast, Fig. 6b displays the Rényi-2 tripartite information at zero temperature, which is
nonzero only because we chose a model with a conformal critical ground state.

4.2.2 Global quenches with translational invariance

We consider here three global quenches from the ground state of local Hamiltonians. In the
first case, shown in Fig. 6c, the pre-quench Hamiltonian is gapped, so the correlations lengths
are finite. Since the post-quench Hamiltonian is local, this property is preserved even at infinite
time after the quench. We do not expect a nonzero tripartite information in this case and indeed
the numerical data show quite clearly that I (2)3 (A, B, C) approaches zero. In the second case,
shown in Fig. 6d, the pre-quench Hamiltonian is gapless and there are correlations that decay
algebraically even at infinite time after the quench. Nevertheless, the tripartite information
approaches zero as the lengths are increased. As pointed out in Ref. [12], this happens because
correlations do not decay to zero slowly enough.

In the third example we replaced the initial state with the ground state of a critical Hamil-
tonian with central charge equal to 1. According to our work, the Rényi-α tripartite information
should be nonzero. In Fig. 6e we show the Rényi-2 tripartite information, while in Figs. 7 and
8 we discuss higher values of α. Predictions (4.3) and (4.4) are in excellent agreement with
the numerical data. One can clearly see that the finite size effects related to the lengths of the
subsystems disappear as their size is increased.

4.2.3 Bipartitioning protocols

As an example of bipartitioning protocol we consider time evolution under the XY Hamiltonian
(3.3) of the junction of two thermal states, ρ− ∝ exp (−β−H0,−) and ρ+ ∝ exp (−β+H0,+)
described by the simplified Hamiltonian H0,− =

∑

`<0σ
z
`

and H0,+ = −
∑

`≥0σ
z
`
. In similar
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(a) Thermal state ρ ∝ exp(−βH) with β = 1 in
the XX model with (Jx , Jy , h) = (1, 1,0.7).
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(b) (Critical) Ground state of the XX model with
(Jx , Jy , h) = (1,1, 0.7).
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(c) Quench from the ground state of a gapped
Ising Hamiltonian with (Jx , Jy , h) = (1, 0,5).

10

20

50

100

0. 0.25 0.5 0.75 1.

0.06

0.04

0.02

0.

-0.02

(d) Quench from the ground state of the critical
Ising model (Jx , Jy , h) = (1, 0,1).
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(e) Quench from the ground state of a critical XX
model with (Jx , Jy , h) = (1,1, 0.3).
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(f) Bipartitioning protocol from ρ∝ e−β−
∑

`<0σ
z
`⊗

eβ+
∑

`≥0σ
z
` with β− = 2 and β+ = 1.

Figure 6: Rényi-2 tripartite information vs the cross ratio x = |A||C |/((|A| + |B|)(|B| + |C |))
for |A| = |C | ∈ {10,20, 50,100} and variable |B| in different situations. Time evolution in all
nonequilibrium settings is under the XY Hamiltonian (3.3) with (Jx , Jy , h) = (1, 0.5,0.7). The
solid curves are exact analytical predictions for the limit of large subsystems A, B, C . In partic-
ular, (a) shows the standard vanishing of the tripartite information in equilibrium at nonzero
temperature and (b) is the CFT prediction [49, 51, 81] I3(A, B, C) = − log2+ log(1+

p
1− x +

p
x). The remaining predictions have been conjectured in Ref. [12] and are proved in this

paper.
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Figure 7: Rényi-α tripartite information at infinite time after the quench from the ground state
of the XX model with (Jx , Jy , h) = (1,1, 0.3) under the XY Hamiltonian (3.3) with (Jx , Jy , h) =
(1, 0.5,0.7) for |A|= |C | ∈ {25, 50,100, 200} and variable |B|. The solid curves are the Abelian
approximation, i.e., (4.4) with Q(x;R0,Σ) = 1. See Fig. 8 for a comparison with more accurate
approximations.

x≈0.826 x≈0.866 x≈0.907
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Figure 8: Rényi-α tripartite information at infinite time after the same quench as in Figure 7
vs |B|. The value of the cross ratio x is fixed, while the subsystem sizes are varied as follows:
(|A|, |B|, |C |) = n(10, 1,10), n(10,1, 20), n(20, 1,20) with integer n. The blue dashed lines are
the Abelian approximation, while the black solid lines include the leading non-Abelian correc-
tion.

settings correlations are expected to decay algebraically in the NESS as a manifestation of the
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Figure 9: Rényi-α tripartite information at infinite time after the quench from ρ ∝
e−β−

∑

`<0σ
z
` ⊗ eβ+

∑

`≥0σ
z
` , with β− = 2 and β+ = 1, under the XY Hamiltonian (3.3) with

(Jx , Jy , h) = (1, 0.5,0.7) for |A|= |C | ∈ {25, 50,100, 200} and variable |B|. The solid curves are
the Abelian approximation, i.e., (4.4) with Q(x;R0,Σ) = 1. See Fig. 10 for a comparison with
more accurate approximations.
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Figure 10: The same as in Figure 8 for the quench of Figure 9.

abrupt change of properties in the initial state (independently of how correlations decay there).
Figures 6f, 9 and 10 show an excellent agreement the between predictions (4.3) and (4.4) and
the numerical data.
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5 Field theory description

5.1 Fermionic correlations at late times

The low-energy properties of a critical spin-chain Hamiltonian can be described by an effective
quantum field theory. That can be obtained by reintroducing the lattice spacing a in such a
way that only the low-energy part of the spectrum survives the continuum limit a → 0. In
particular, in noninteracting spin chains it is sufficient to expand around the momenta with the
lowest excitation energies; the fermionic operators are then written in terms of fast oscillating
factors and slow fields, which have a well defined continuum limit (see, e.g., [124]). The fast
oscillating factors cancel out in the effective description of the Hamiltonian, which can indeed
be expressed in terms of slow fields only.

After a global quench, an extensive number of particles is excited, and the excitations with
the lowest energy are not sufficient to describe the state. In the next section we sketch a trick to
describe anyway the problem within a low-energy field theory. Here however we adopt another
approach, which allows us to identify the relevant properties of the chain system more quickly
in view of our immediate access to the late-time correlation matrix. Specifically, we group
spin sites into blocks and define lattice fermions whose correlations are slow and for which a
continuum limit exists. In this respect, the procedure we present has some similarities to the
renormalization group [125, 126].

For the sake of simplicity, we start assuming that the limit of infinite time can be described
by a stationary state of the XX model, whose correlation matrix has the symbol

Γ (k) = [ϑ(k)− ϑ(−k)]I+ [ϑ(k) + ϑ(−k)− 1]σ y . (5.1)

The generalisation to other correlation matrices is easy and will be discussed at the end of the
section. First, we note that ϑ(k) can be identified with the filling function. Second, from (5.1)
it follows that the Jordan-Wigner fermions c` = (a2`−1 + ia2`)/2 exhibit the correlations

〈c jc
†
`
〉=

∫ π

−π

dk
2π
ϑ(k)eik(`− j), 〈c jc`〉= 0. (5.2)

If the filling function is smooth, correlations decay exponentially. A more interesting case arises
when the filling function ϑ(k) is discontinuous. Let us assume that such discontinuities kr ,
r = 1,2, . . . ,Υ are rational multiples of π; hence, there is a positive integer N and integers mr ,
for r = 1, 2, . . . ,Υ , such that kr = 2πmr/N . Note that, even if the condition of rationality is
not satisfied, any Fermi momentum kr could be approximated to arbitrary precision by taking
sufficiently large N . From now on, in analogy with the ground-state physics, we will call Fermi
momenta the momenta at the discontinuities. The next step is to divide the chain in blocks of
length N and define N species of fermions dν` as the discrete Fourier transform of the original
c` in the blocks

dν` =
1
p

N

N−1
∑

m=0

cN`+mei 2πνm
N , ν= 0,1, . . . , N − 1. (5.3)
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We then define N fieldsψν(x) as the continuum limit of dν` at position x = Na`, by letting the
lattice spacing a to zero and promoting x to a continuum variable,

ψν(x)∼
1
p

Ma
dνx

Ma
, a→ 0. (5.4)

The reader will forgive us for the abuse of notations, in that from now on x will indicate a
position rather than the cross ratio as in the introduction. Note thatψν(x) satisfy the standard
fermionic anticommutation relations

{ψµ(x),ψ
†
ν(y)}= δµ,νδ(x − y), {ψµ(x),ψν(y)}= 0. (5.5)

The 2-point correlation functions of the fields can be readily obtained by taking the continuum
limit of the fermionic correlations. Specifically we have

〈ψµ(x)ψ
†
ν(y)〉 ∼

1
Na
〈dµx

Na
dν†

y
Na
〉=

1
N2a

N−1
∑

m,n=0

ei 2πµm
N e−i 2πνn

N

Υ
∑

r=1

∫ kr+1

kr

dk
2π
ϑ(k)eik( y−x

a +n−m)

= δµ,ν
ϑ(2πµ

N
+
)− ϑ(2πµ

N
−
)

2

χK(
2πµ

N )

iπ(x − y)
+O(a) (5.6)

where χK is the indicator function of the set K ≡ {k1, k2, . . . kR} of Fermi points, i.e., the correla-
tion is nonzero only if 2πµ/N is equal (up to 2π) to some of the Fermi momenta kr . The short-
distance behaviour of the correlation (corresponding to distances approaching 0 as a → 0)
can be obtained with a symmetric integration over one position about the other (so that the
contribution above vanishes)

p.v.

∫

dy 〈ψµ(x)ψ
†
ν(y)〉 ∼ lim

ε→0+

∞
∑

d=−∞
〈dµx

Na
dν†

x
Na+d
〉 e−ε|d| =

1
N2

N−1
∑

m,n=0

ei 2πµm
N e−i 2πνn

N

Υ
∑

r=1

∫ kr+1

kr

dkϑ(k)
∞
∑

q=−∞
δ(k− 2πq

N )e
2πiq(n−m)

N = δµ,ν
ϑ( 2πµ

N
+
)+ϑ( 2πµ

N
−
)

2 (5.7)

where ϑ(2πµ
N
+
) 6= ϑ(2πµ

N
−
) only if 2πµ

N ∈ K . Putting all together we get

〈ψµ(x)ψ
†
ν(y)〉= δµ,ν

�ϑ(2πµ
N
+
) + ϑ(2πµ

N
−
)

2
δ(x − y) +

ϑ(2πµ
N
+
)− ϑ(2πµ

N
−
)

2

χK(
2πµ

N )

iπ(x − y)

�

. (5.8)

From this expression we see that each discontinuity is associated with a field with non-trivial
correlations but still decoupled from the rest; all the remaining fields with 2πµ

N /∈ K have
trivial correlations, proportional to the identity. Such a factorisation allows us to focus on
the contribution from a particular Fermi point with kF ∈ K , taking care only eventually of
the presence of more fields. For the sake of compactness, we introduce the parametrization
γ± = limk→k±F

[2ϑ(k)− 1], in terms of which the 2-point function of the field ψ corresponding
to a particular discontinuity kF (omitting the index of the field) reads

〈ψ(x)ψ†(y)〉=
2+ γ+ + γ−

4
δ(x − y) +

γ+ − γ−
2

1
2πi(x − y)

. (5.9)
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The final step is to explain why these expressions hold true even when the symbol of the
correlation matrix does not take the simple form (5.1). In general Γ (k) can not be diagonalised
by a momentum-independent change of basis; it takes instead the form

Γ (k) = eiW (k)
¦

[ϑ(k)− ϑ(−k)]I+ [ϑ(k) + ϑ(−k)− 1]σ y
©

e−iW (k) , (5.10)

where W (k) =W †(k) and W t(−k) = −W (k). This is a general way to parametrise the famous
Bogoliubov transformation required to diagonalise systems such as the transverse-field Ising
model. In fact, W (k) is nothing but the symbol of the quadratic operator that generates the
transformation mapping the post-quench Hamiltonian H to an operator commuting with the
Hamiltonian of the XX model. Such a transformation exists because all quadratic systems have
an eigenbasis of Slater determinants. In addition, if H has a conservation law with a non-critical
ground state, the generator W can be chosen in such a way that eiW (k) is smooth. Since such a
quasilocal transformation does not affect the notion of space in the continuum limit, it can be
simply incorporated in the definition of the fields; specifically, we can redefine the c-fermions
as follows

c` =
∞
∑

n=−∞

1
2

�

1 i
�

∫ π

−π

dk
2π

eik(`−n)eiW (k)

�

a2n−1

a2n

�

(5.11)

and leave the relation between the d-fermions and the c ones unchanged. Mapping (5.11) man-
ifests the quasilocality of the transformation: while c` is a superposition of fermions at different
sites, we are still labelling it using a single index `, generating in turn a spatial indetermination

∆x ∼
a

− limr→∞
1
r log

�

�

∫ π

−π
dk
2π eikr eiW (k)

�

�

(5.12)

which however approaches zero in the continuum limit. As a final remark we point out that
even with a non-smooth W (k) one would generally obtain an expression similar to (5.8),
though with a different parametrisation. Since W (k) is smooth in all the quenches that we con-
sider, we do not develop further for that special situation; we just mention that a non-smooth
W (k) can be obtained by quenching to the critical Ising (or XY) model.

5.2 Tripartite information

Plugging the asymptotic behaviour of the late-time correlation functions into the formulas re-
viewed in Section 3.2 would be sufficient to obtain the asymptotic behaviour of the entangle-
ment entropies of the subsystems entering in the tripartite information. The nonlinear way in
which the correlation matrix appears in the determinants describing the various terms of the
expansion of the entropy of disjoint blocks is however not ideal. By deriving again the formulas
within a quantum field theory, we have found a more convenient representation, cf. (4.6); we
sketch in this section the method employed.

5.2.1 Entanglement entropies in a QFT at equilibrium: a brief overview

In a quantum field theory at equilibrium there is a standard formalism to express the Rényi
entropies in terms of partition functions [17, 38, 127], which starts with interpreting the density
matrix of a thermal state at inverse temperature β as a path integral on the imaginary time
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interval (0,β). Here we briefly review the formalism, focusing on fermionic fields (for bosons
see e.g. [17, 38]) in the ground state |0〉 (β =∞), which is the relevant case for this work.

For the sake of simplicity we assume that the system is described by a single fermionic field
ψ(x), satisfying the standard anticommutation relations {ψ(x),ψ†(y)}= δ(x− y). We employ
the fermionic coherent state path integral formalism based on Grassmann variables [128]. In
this formalism the brakets 〈ψ|0〉 and 〈0|ψ′〉 can be represented as path integrals in the lower
and upper half plane respectively. If L = ∪n

i (ui , vi) is a subsystem (which we have assumed to
be a union of several intervals (ui , vi)) the reduced density matrix of ρ = |0〉 〈0| is obtained by
tracing out the degrees of freedom in the complement of L, that we denote by L,

ρL(ψL ,ψ′L) =

∫

Dψ†
L
DψL 〈−ψL ,ψL|ρ |ψL ,ψ′L〉 , (5.13)

where a minus sign appears, that is a well-known peculiarity of the representation of trace with
Grassmann variables. After an integral transformation ψ → −ψ in the lower half plane, the
reduced density matrix reads

ρL(ψL;ψ′L) =
1

Z1(L)

∫ ψ(x ,0+)=−ψ′L(x), x∈L

ψ(x ,0−)=ψL(x), x∈L
Dψ†Dψ e−SE[ψ†,ψ] , (5.14)

where SE[ψ†,ψ] is the Euclidean action andψ(x),ψ†(x) are Grassmann fields. It corresponds
to gluing the upper and lower half plane on L, leaving a cut on L. The partition function Z1(L),
which ensures the normalization tr[ρL] = 1, reads

Z1(L) =

∫

Dψ†
LDψL ρL(ψL;−ψL). (5.15)

The Rényi entropies with integral index can be obtained by cyclically gluing together a
given number of copies of the cylinder, so that one obtains

tr[ραL ] =
Zα(L)
Zα1 (L)

(5.16)

with Zα(L) the partition function on an α-sheeted Riemann surface with branch points at u j and
v j . A convenient alternative representation introduces α copies of the field, ψ(i)†(x), ψ(i)(x),
for i = 1,2, . . . ,α, described by decoupled equivalent actions (so that the total action is the
sum of the actions of the copies), moving the original complication of having to deal with a
nontrivial Riemann surface to the boundary conditions satisfied by the copies. Specifically, in
the simple case that we are describing, subsequent copies are identified at the branch cuts, that
is to say,

ψ(i)(x , 0−) =ψ(i+1)(x , 0+), i = 1,2, . . . ,α− 1

ψ(α)(x , 0−) = (−1)α+1ψ(1)(x , 0+)
(5.17)

for x ∈ L, and ψ(i)(x , 0−) = ψ(i)(x , 0+) for x /∈ L, for any i. Here, we have changed the inte-
gration variables (redefining them with appropriate minus signs) so as to glue the copies with
no additional signs except possibly for the last one. The factor (−1)α+1 comes from collecting
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one minus sign for each product in ραL and one from the final trace. For future convenience,
we define the (anti)circulant matrix

T`,n = δ`+1,n + (−1)α+1δ`,αδn,1 , `, n= 1,2, . . . ,α , (5.18)

in terms of which the boundary conditions read

ψ(i)(x , 0−) =
α
∑

j=1

Ti jψ
( j)(x , 0+). (5.19)

The advantage of this formulation stands in the fact that tr[ραL ] can be interpreted as a
2n-points correlation function of special fields, called “twist fields”, where n is the number
of disjoint intervals. Importantly, boundary conditions (5.17) ensure the locality of the twist
fields [127]. In the presence of conformal symmetry such a locality condition allows one to use
the power of conformal field theory to predict the asymptotic behaviour of tr[ραL ].

As presented so far, this approach is effective to compute the Rényi entropies of fermionic
subsystems. In order to compute the entropies of spin blocks in spin chains, however, this
picture should be slightly generalised to take into account the nonlocality of the Jordan-Wigner
transformation. In particular, also the trace of products of different density matrices appears
in the Rényi entropies of disjoint blocks — cf. (3.12). A case that is relevant to our specific
problem is when the reduced density matrices to multiply are equivalent to one another through
a local unitary that, in each block of the subsystem, acts as the transformation associated with
some global symmetry. One can then attach the corresponding unitary transformation to the
boundary conditions and still describe the system as consisting of α copies of the original one.
For example, instead of (5.19) one could have

ψ(i)(x , 0−) = Ui(x)
α
∑

j=1

Ti jψ
( j)(x , 0+), x ∈ L, (5.20)

where the factors Ui(x) depend on the sequence of reduced density matrices in the product.
The reader is referred to Ref. [129] for the application of this approach to the calculation

of the Rényi-α tripartite information in the conformal critical ground state of a non-interacting
spin chain. For the analogous calculation after a global quench we face the additional problem
that the formulation in terms of twist fields is not local (the energy density within L does not
commute with the twist fields), so we are not going to use the interpretation of the Rényi
entropies as correlation functions.

5.2.2 Popping down to a field theory on a ladder

In view of the results reviewed in the previous section, we start by reinterpreting the late-
time correlations calculated in Section 5.1 as the correlations in the ground state of a field
theory. This could sound impossible at first sight: the stationary state has extensive entropies,
so it should not be possible to reinterpret it as a ground state of a local theory. This obstacle
can be however overcome by immersing the system in a bigger one with unphysical degrees
of freedom. Specifically, we propose to envelop the chain in a 3-legs ladder connected with
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one another through local interactions. For this task we introduce three decoupled free fields,
ψ j(x), with j = 1, 2,3, characterised by the correlation functions

〈ψ j(x)ψ
†
j (y)〉=

1
2
δ(x − y)−

(−1) j

2πi(x − y)
, j = 1, 2 (5.21)

〈ψ3(x)ψ
†
3(y)〉=

1+σ
2
δ(x − y), (5.22)

where σ = sgn[γ+ + γ−]. These correlations are found in the ground state of the Hamiltonian

H=

∫

d x
�

−iψ†
1(x)∂xψ1(x) + iψ†

2(x)∂xψ2(x) +σψ
†
3(x)ψ3(x)

�

. (5.23)

Let us then introduce a 3× 3 unitary matrix V with the following elements of the first column

(V11, V21, V31) =







�Ç

1+γ+
2 ,

Ç

1+γ−
2 ,

q

−γ++γ−2

�

, σ < 0
�Ç

1−γ−
2 ,

Ç

1−γ+
2 ,

q

γ++γ−
2

�

, σ ≥ 0
(5.24)

and define the fields




ψ(x)
ψ′(x)
ψ′′(x)



= V †





ψ1(x)
ψ2(x)
ψ3(x)



 . (5.25)

The first field ψ(x), given by

ψ(x) = V11ψ1(x) + V21ψ2(x) + V31ψ3(x) , (5.26)

has the desired correlation functions (5.9). The remaining two components,ψ′(x) andψ′′(x),
define two unphysical fields. Inverting the relation (5.25) enables us to interpret (5.23) as a
Hamiltonian on a three-leg ladder in which the physical field lives on the first leg and interacts
locally with two unphysical fields living on the remaining two legs. In this interpretation, we
are studying the entanglement of a subsystem immersed in one, infinite, leg of the ladder
with the remaining part of the ladder. Note that this is a different problem from studying the
entanglement between one whole leg of the ladder with the remaining legs, i.e. of one field
with the other fields, that has been addressed in Refs. [130–133].

For future convenience, let us also introduce the following compact notation for the de-
coupled fields

~ψ≡





ψ1

ψ2

ψ3



 . (5.27)

Thus we have

〈ψ(x)ψ†(y)〉= ~u† 〈 ~ψ(x) ~ψ
†
(y)〉 ~u, ~u≡ V





1
0
0



=





V11

V21

V31



 . (5.28)

In order to study the tripartite information at late time after a global quench we need to
compute the entropy of a block of spins and also the one of two disjoint blocks — cf. (2.5).
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The latter case requires the evaluation of (3.12) with j1, . . . , jα ∈ {1, 2}. To that aim, we build
on the procedure used in [37–40] for computing the fermionic entropies. As reviewed in the
previous section, the reduced density matrix can be expressed as a path integral, with boundary
conditions corresponding to gluing the space on the complement of the subsystem of interest.
The trace of a power of the reduced density matrix is computed by introducing the appropriate
number of copies of the fields, related by a suitable boundary conditions on the subsystem. Our
case is peculiar in that the boundary conditions are imposed only on the physical field, i.e., on
one leg of the ladder, and should also account for the operator (3.10), which appears for every
index j` = 2 in (3.12).

Since the fields associated with different Fermi momenta are decoupled, their contribution
in (3.12) is factorized. In addition, the remaining fields that are not associated with Fermi mo-
menta give contributions independent of j`, which therefore cancel out in the ratios appearing
in (3.18). Without loss of generality we can then focus on a single field ~ψ, corresponding to
a particular Fermi point, with correlation functions (5.9). We introduce α copies of the field
~ψ, which we denote by ~ψ

(1)
, . . . , ~ψ

(α)
, and the corresponding Grassmann fields ~ψ(1), . . . , ~ψ(α).

According to the representation reviewed in the previous section, the trace of a product of
reduced density matrices is given by the path integral over those fields

{Γ j1 , Γ j2 , . . . , Γ jα}= tr
�

ρ(Γ j1)ρ(Γ j2) . . .ρ(Γ jα)
�

∼
∫

Dψ†Dψexp
�

−S(α)E (kF ;Σ)
�

, (5.29)

where the Euclidean action follows from (5.23) and reads

S(α)E (kF ;Σ) =

∫

dτ

∫

dx
α
∑

n=1

�

~ψ(n)†(x ,τ;Σ)





∂τ − i∂x 0 0
0 ∂τ + i∂x 0
0 0 ∂τ +σ



 ~ψ(n)(x ,τ;Σ) .

(5.30)
The boundary conditions read

ψ(`)(x , 0−) =

(

∑α
n=1 T`nψ

(n)(x , 0+), x ∈ A∪ C

ψ(`)(x , 0+), x /∈ A∪ C
(5.31)

for the copies of the physical field, with T defined in (5.18), and

ψ′(`)(x , 0−) =ψ′(`)(x , 0+)

ψ′′(`)(x , 0−) =ψ′′(`)(x , 0+) ,
(5.32)

for the copies of the unphysical ones. We remind the reader that these boundary conditions
and the factor (−1)α+1 come from the representation of the trace in the Grassmann formalism.
Note that T is an (anti-)circulant matrix that can also be represented as follows

T`n =
1
α

∑

z|zα=−1

(−z)`−n+1 . (5.33)

We now come to the main complication of working with spins, i.e., jn not being generally
equal to 1. For each index j1, . . . , jα equal to 2 there is an additional minus sign in the boundary
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conditions of the copies of the physical field on x ∈ A; this comes from matrix P — (3.10) —
which in the continuum limit reads

P(x , y) = [−χA(x) +χC(x)]δ(x − y) . (5.34)

We can then write the boundary conditions for the copies of the physical field as follows

ψ(`)(x , 0−;Σ) =











∑α
n=1(ΣTΣ)`nψ(n)(x , 0+;Σ), x ∈ A

∑α
n=1 T`nψ

(n)(x , 0+;Σ), x ∈ C

ψ(`)(x , 0+;Σ), x /∈ A∪ C

, (5.35)

where
Σ`n ≡ δ`nσn = −δ`neiπ j` . (5.36)

Using (5.25) the boundary conditions for the decoupled fields follow immediately

~ψ(`)(x , 0+;Σ) =

V
∑

n





χA(x)[ΣTΣ]`n +χC(x)T`n +χA∪C(x)δ`n 0 0
0 δ`n 0
0 0 δ`n



V † ~ψ(n)(x , 0−;Σ) .
(5.37)

The partition function for this system can be worked out using the method of Ref. [38] and is
detailed in Appendix B. The result of the calculation can be expressed as follows

{Γ j1 , Γ j2 , . . . , Γ jα} ∼
∏

kF

D(kF )
j1, j2,..., jα

, (5.38)

where we have written ∼ instead of the equality sign because the members of the equation are
equal up to a multiplicative constant, which is independent of j1, j2, . . . , jα and hence does not
contribute to the tripartite information. The factor D(kF )

j1,..., jα
reads

D(kF )
j1,..., jα

= detL(kF )
σ , (5.39)

where the operator L(kF )
σ is given by

L(kF )
σ = 2

1−α
α I⊗ 1− i2

1−α
α

�

M⊗
1− P

2
+ΣMΣ⊗

1+ P
2

�

I⊗
�

2C(kF ) − 1
�

. (5.40)

Here we have denoted by C(kF ) the operator with the elements equal to the correlator (5.9) on
A∪ C , i.e.

C(kF )(x , y) = 〈ψ(x)ψ†(y)〉 , x , y ∈ A∪ C . (5.41)

Matrix M is given by

[M]`n = −i[eiπ (n−` mod α)
α −δ`n] =

1
α

α
∑

j=1

cot(π( j+
1
2 )

α )e2πi j `−n
α `, n ∈ {1, . . . ,α} (5.42)
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As discussed in Appendix B.1, this formula can be expressed in terms of the correlation
matrix Γ so as to become exact also on the lattice. This provides an indirect confirmation of
the correctness of our procedure.

Equations (5.38), (5.39), and (5.40) are the main results of this section and the very
reason why we worked out a quantum field theory description. On the one hand, a numerical
implementation of Eq. (5.39) gives an efficient way to compute the tripartite information. On
the other hand, the correlator appears linearly in Eq. (5.40), and this will allow us to map the
calculation into a Riemann-Hilbert problem, which is the subject of the next section.

6 Mapping to a Riemann-Hilbert problem

In this section we connect (5.39) to a Riemann-Hilbert problem with piece-wise constant matrix
for a doubly connected domain. The starting point is to represent the determinant in terms of
the resolvent (λ1− L(kF )

σ )−1 as follows:

detL(kF )
σ = exp tr[logL(kF )

σ ] = exp tr
�

∫ 0

−∞
dλ
� 1

1−λ
+

1

λ1− L(kF )
σ

��

, (6.1)

where we have implicitly assumed that the eigenvalues of Lσ do not fall on the negative real
axis; we will comment later on the validity of this assumption. This representation traces the
problem back to inverting a singular integral equation of the form F(x) =

∫

dyK(x , y)φ(y),
with (cf. (5.40) and (5.9))

K(x , y) = A(x)δ(x − y) + B(x)
1

πi(y − x)
, (6.2)

where the coordinates x , y belong to A∪ C and, in our specific case, A(x) and B(x) are the
α×α matrices

A(x) =(λ− 2
1−α
α )I+ i2

1−α
α
γ+ + γ−

2
[MχA(x) +ΣMΣχC(x)]

B(x) =i2
1−α
α
γ− − γ+

2
[MχA(x) +ΣMΣχC(x)] ,

(6.3)

where χA(x) and χC(x) are the indicator functions of A and C , respectively. Note that A(x) and
B(x) are constant in the blocks, i.e. they are independent of x in each block, and A(x)± B(x)
are invertible for λ≤ 0. In what follows the region associated with A∪C will be denoted by L.

The inverse K−1 can be recognised by solving the singular equation

A(x)φ(x) +
B(x)
πi

∫

L

φ(y)
y − x

d y = F(x), x ∈ L, (6.4)

for an arbitrary matrix function F. We indeed have

φ(x) =

∫

L
K−1(x , y)F(y)d y . (6.5)
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The integrals here and in the following are understood as Cauchy principal values. In the
remainder of the section we show, following [134], how the singular equation is mapped to a
Riemann-Hilbert problem and the inverse K−1 expressed in terms of its solution.

We define the sectionally holomorphic (holomorphic outside L, in which the limit to L
from up/down exists) matrix function

Φ(z) =
1

2πi

∫

L

φ(y)
y − z

d y z ∈ C (6.6)

and its limits to L from up and down Φ±(x) = limε→0+ Φ(x± iε). From now on, if not explicitly
written otherwise, we will use z for complex variables and x for real ones. By virtue of the
Plemelj formulae

Φ±(x) = ±
1
2
φ(x) +

1
2πi

∫

L

φ(y)
y − x

d y, (6.7)

we can recast the singular equation (6.4) into the Riemann-Hilbert problem of finding the sec-
tionally holomorphic matrix function Φ(z) that approaches the identity at infinity and satisfies
on L the equation

Φ+(x) = G(x)Φ−(x) + [A(x) + B(x)]−1F(x) x ∈ L , (6.8)

where
G(x) = [A(x) + B(x)]−1[A(x)− B(x)] . (6.9)

Let X(z) be the solution to the homogeneous Riemann-Hilbert problem, i.e., the sectionally
holomorphic matrix function that on L satisfies

X+(x) = G(x)X−(x) x ∈ L (6.10)

and approaches the identity in the limit |z| → +∞. The Plemelj formula allows us to express
the solution to the non-homogeneous problem (6.8) as follows

Φ(z) =
X(z)
2πi

∫

L
dx
[X+(x)]−1[A(x) + B(x)]−1

x − z
F(x) . (6.11)

Plugging this solution into (6.7) and applying again the Plemelj formulae gives

φ(x) =
�

[A(x)+B(x)]−1

2 + [A(x)−B(x)]−1

2

�

F(x) + X+(x)
2πi

∫

L
dy [X

+(y)]−1[A(y)+B(y)]−1

y−x F(y)

− [A(x)−B(x)]−1[A(x)+B(x)]X+(x)
2πi

∫

L
dy [X

+(y)]−1[A(y)+B(y)]−1

y−x F(y) (6.12)

By comparison with (6.5) we identify the inverse of K

K−1(x , y) =
�

[A(x)+B(x)]−1

2 + [A(x)−B(x)]−1

2

�

δ(x − y)

+
�

[A(x)+B(x)]−1

2 − [A(x)−B(x)]−1

2

�

[A(x)+B(x)]X+(x)[X+(y)]−1[A(y)+B(y)]−1

πi(y−x) . (6.13)
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In our specific problem, K= λ1−L(kF )
σ and we only need the trace of K−1 — cf. (6.1). Therefore,

we can expand K(x , y) for y close to x (a similar trick was used in Ref. [40]); we obtain

K−1(x , y)∼
�

[A(x)+B(x)]−1

2 + [A(x)−B(x)]−1

2

�

δ(x − y) +
�

[A(x)+B(x)]−1

2 − [A(x)−B(x)]−1

2

� 1
πi(y − x)

+
�

[A(x)−B(x)]−1

2 − [A(x)+B(x)]−1

2

�

[A(x)+B(x)]∂x X+(x)[X+(x)]−1[A(x)+B(x)]−1

πi , (6.14)

where we used that our specific operator is such that A(x) and B(x) are constant in A and C
and therefore their derivative is zero within L. Plugging this into (6.1) gives

detL(kF )
σ = exp

�

∫

L

dx
a

1
2

tr[log(Ã2(x)− B2(x))]
�

× exp

�

∫ 0

−∞

dλ
2πi

∫

L
dxtr

�

[∂λ log G(x)][∂xX+(x)][X+(x)]−1
�

�

, (6.15)

where we made it explicit the dependency on λ by defining the λ-independent matrix function
Ã(x) = A(x) − λ — cf. (6.3) — and used that, in our specific case, [Ã(x), B(x)] = 0. We
also regularised tr[1] by introducing a cut-off a−1 ∼ δ(0), which can be interpreted as the
inverse lattice spacing. The first exponential represents the leading extensive contribution to
the entropy, which is not universal and therefore is not supposed to exactly match the lattice
result. We note however that, as it should be, it is independent of σ. The second exponential
captures the entire universal part of the entropy of disjoint blocks and it is expressed in terms of
the solution to the homogeneous Riemann-Hilbert problem (6.10) with logG(x) the piecewise
constant circulant matrix explicitly given by

logG(x) = χA(x)2πR+χC(x)2πΣRΣ (6.16)

where (cf. (6.3) and (5.42))

R`n =[R−]`n

[Rs]`n =
1

2πα

α
∑

j=1

log
�21− 1

α λ−1−isγ−s cot
�

π( j+ 1
2 )

α

�

21− 1
α λ−1−isγs cot

�

π( j+ 1
2 )

α

�

�

e2πi j `−n
α .

(6.17)

We note [∂λR, R] = 0 and R†
s = −R−s.

The α-Rényi entropies of the disjoint blocks A∪ C are finally given by

Sα[A∪ C] = 1
1−α

�∫

L

dx
a

∑

kF

1
2

tr[log(Ã2(x)− B2(x))]
�

+ 1
1−α log

�

1
2α

∑

Σ

exp
�∑

kF

0∫

−∞

dλ
2πi

∫

L
dxtr

�

[∂λ logG(x)][∂xX+(x)][X+(x)]−1
���

. (6.18)

The tripartite information is obtained by evaluating the corresponding linear combination of
entropies or using the shortcut (3.18) based on the fact that replacing Σ by I corresponds to
computing the fermionic entropies, resulting in turn in a vanishing tripartite information.

The next sections will be devoted to solve the homogeneous problem (6.10) and finally
compute the tripartite information.
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7 Solution to the Riemann-Hilbert problem

7.1 Simple cases and Abelian approximation

We start with the simple case in which

[R,ΣRΣ] = 0 . (7.1)

This happens, in particular, when Σ = I or the diagonal elements of Σ have alternating sign.
The solution to this Abelian homogeneous Riemann-Hilbert problem readily follows from the
Plemelj formulae [134, 135]

X+(x) = exp
�

i
1∫

0
dt R

t− v1−x−iε
v1−u1

− ΣRΣ
t− x+iε−u2

v2−u2

�

= exp
�

iR log
�

x−u1+iε
x−v1+iε

�

− iΣRΣ log
�

v2−x−iε
u2−x−iε

��

. (7.2)

The universal contributions to the entropy can then be expressed as follows

exp
�

0∫

−∞

dλ
2πi

∫

L
dxtr

�

[∂λ log G(x)][∂xX+(x)][X+(x)]−1
��

=

exp
�

tr[R2
0] log

�

(v1−u1)(v2−u2)
ε2

�

+ tr[(R0Σ)
2] log

�

(v2−u1)(u2−v1)
(v2−v1)(u2−u1)

��

(7.3)

where R0 is R at λ= 0, that is to say,

[R0]`n =
1

2πα

α
∑

j=1

log
�1−iγ+ cot

�

π( j+ 1
2 )

α

�

1−iγ− cot
�

π( j+ 1
2 )

α

�

�

e2πi j `−n
α . (7.4)

Eq.(7.3) describes the contribution to the entropy from terms satisfying (7.1). Since such a
condition is always satisfied for α = 2, we are in a position to compute the Rényi-2 tripartite
information

I (2)3 (A, B, C) = G2(x4) = − log2+ log
�

1+ (1− x4)
∑

kF
[arctan(γ+)−arctan(γ−)]2

π2

�

, (7.5)

where, to avoid confusion with the position variable x , we have renamed the cross ratio x4,
i.e.,

x4 =
(v1 − u1)(v2 − u2)
(u2 − u1)(v2 − v1)

. (7.6)

This was first conjectured in Ref. [12] and we have therefore proved its validity.
If we enforce (7.3) also for the terms that do not satisfy (7.1), we get what we call “Abelian

approximation”, which implicitly neglects any potential contribution coming from the commu-
tator [R,ΣRΣ]. The Abelian approximation of the tripartite information is then given by

GAbelian
α (x4) = − log2+ 1

α−1 log
�

1
2

∑

Σ

(1− x4)
∑

kF
tr[(R0Σ)2−R2

0]
�

. (7.7)

At first glance this might appear as a very crude simplification. Remarkably, instead, it turns
out to be an excellent approximation whatever α and γ±. We will come back to this point in
Section 7.2, where we will also work out the non-Abelian contributions. In the following we
focus instead on the limit γ+ = −γ−→±1, in which we can compare the Abelian approximation
with exact analytic results.
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Figure 11: Abelian approximation of the Rényi-α tripartite information against the exact CFT
prediction in a state with 2 Fermi points (a standard Fermi sea) as a function of the cross ratio.
The agreement is far beyond expectations.

Pseudo-conformal limit. With “pseudo-conformal limit” we mean the limit in which the
Gaussian contributions (3.12) to the tripartite information after a global quench match a sub-
set of the terms characterising the tripartite information in the ground state of a conformal
field theory. Strictly speaking, indeed, the state at late times after the quench does not exhibit
conformal symmetry, but when γ+ = −γ− → ±1 the effect of such a symmetry breaking is
completely captured by our preliminary selection of the Gaussian terms which are supposed to
contribute at infinite time after the quench — compare (3.15) with (3.11).

Specifically, from the exact analytic results of Refs [129] and as pointed out in Ref. [12],
assuming γ+ = −γ−→±1 we have (for each Fermi point)

detL(kF )
σ

detL(kF )
1

=
Θ(~δ|τ̂(α)x4

)

Θ(~0|τ̂(α)x4
)

, [~δ] j =
1−σ jσ j+1

4
, (7.8)

where Θ(~z, M) =
∑

~m∈Zα−1 eiπ ~mt M ~m+2πi ~m·~δ is the Siegel theta function and τ̂x is the (α− 1)×
(α− 1) period matrix of the Riemann surface Rα with elements

[τ̂(α)x ]`n =
2i
α

α−1
∑

k=1

sin(πk
α ) cos(2πk(`−n)

α )
P(k/α)−1(2x−1)
P(k/α)−1(1−2x) , (7.9)

and Pµ(z) are the Legendre polynomials. Fig. 11 shows a comparison between the exact CFT
predictions and the corresponding Abelian approximations, which are explicitly worked out for
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a few values of α in Appendix C. The agreement is excellent for small values of α and remains
very good also increasing α. It is nevertheless clear that the Abelian approximation is not exact.

7.2 Beyond the Abelian approximation

The goodness of the Abelian approximation is striking, so one could wonder why is that the
case. In addition, the Abelian approximation of the tripartite information is a function of solely
the cross ratio, which is not a property of the tripartite information that we can accept without
skepticism: in our state there are also finite correlation lengths so, strictly speaking, there is no
global conformal symmetry. In order to shed light on these questions, we work out the solution
to the Riemann-Hilbert problem even when [R,ΣRΣ] 6= 0 (we refer the reader to Ref. [135]
for a general review on similar Riemann-Hilbert problems).

In such a non-Abelian case, (7.2) does not solve (6.10) because the matrices do not appear
in the correct order. Order of the operators apart, however, the structure of the solution should
remain the same. Let us then start with the following Ansatz

X (z) = T̂−1 exp
�

i
1∫

0
dt R−(t)

t− v1−z
v1−u1

+ ΣR†
+(t)Σ

t− z−u2
v2−u2

�

z ∈ C \ L , (7.10)

where T̂ (T̂−1) denotes the (anti) time ordering operator. The matrix function X+(x) is defined
as the limit ε→ 0+ for z = x + iε and x ∈ A∪ C , that is to say,

X+(x) = lim
ε→0+

T̂−1 exp
�

i
1∫

0
dt R−(t)

t− v1−x−iε
v1−u1

+ ΣR†
+(t)Σ

t− x+iε−u2
v2−u2

�

x ∈ L . (7.11)

Plugging this into (6.10) results in the consistency conditions

Rs(τ) = lim
ε→0+

[Ls(τ− i ε`s
,τ)]−1RsLs(τ− i ε`s

,τ) (7.12)

where we introduced the shorthand

`− = v1 − u1 d = u2 − v1 `+ = v2 − u2 (7.13)

and

Ls(z,τ′) = T̂−1 exp
�

i
τ′∫

0
dt Rs(t)

t−z +
ΣR†
−s(t)Σ

t+ `s
`−s

z+ d
`−s

�

(7.14)

This implicitly gives X+(x) as a function of Rs (note, in particular, that Rs(τ) could be con-
structed starting from Rs(0) = Rs). En passant, we can already argue that our preliminary
assumption about the eigenvalues of L(kF )

σ not falling on the negative real axis is satisfied: the

inverse (6.13) of λ1 − L(kF )
σ depends on λ only through [A(x) ± B(x)]−1 and R±, which are

smooth matrix functions of λ on the real line, justifying in turn representation (6.1).
We report two identities that are particularly useful for the upcoming calculation:

Σ[Ls(−
d
`s
− `−s

`s
z,τ′)]†Σ= [L−s(z

∗,τ′)]−1 (7.15)

and

[∂zLs(z,τ′)][Ls(z,τ′)]−1 = i
τ′∫

0
dτ
�

Rs(z,τ)
(τ−z)2 −

`s
`−s

Σ[R−s(−
d
`−s
− `s
`−s

z∗,τ)]†Σ

(τ+ `s
`−s

z+ d
`−s
)2

�

. (7.16)
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Here we introduced what will become the main ingredient of our analytical analysis, i.e., the
auxiliary matrix function

Rs(z,τ′) =Ls(z,τ′)Rs(τ
′)[Ls(z,τ′)]−1 , (7.17)

which satisfies the following integro-differential equation

∂τ1
Rs(τ1 − i ε`s

,τ2) =

i

�τ2∫

0
dτ′2

�Rs(τ1−i
ε
`s

,τ′2)

(τ′2−τ1+i
ε
`s
)2
− `s
`−s

Σ[R−s(−
d
`−s
− `s
`−s
τ1−i ε

`−s
,τ′2)]

†Σ

(τ′2+
`s
`−s
τ1−i

ε
`−s
+ d
`−s
)2

�

, Rs(τ1 − i ε`s
,τ2)

�

lim
ε→0+

Rs(τ− i ε`s
,τ) = lim

ε→0+
Rs(τ− i ε`s

, 0) = Rs .

(7.18)

We stress that, even if not manifest in our notations, Rs(τ1,τ2) depends on `± and d indepen-
dently of its arguments. Since X+(x) =L−(

v1−x−iε
`−

, 1), we have

[∂x X+(x)][X+(x)]−1 = i
1∫

0
dτ′

�

1
`+

Σ[R+(
x−u2−iε
`+

,τ′)]†Σ

(τ′− x+iε−u2
`+

)2
− 1
`−

R−(
v1−x−iε
`−

,τ′)

(τ′− v1−x−iε
`−

)2

�

, (7.19)

which finally gives
∫

L

dx
2πi tr[∂λ log G(x)∂x X+(x)][X+(x)]−1] =

∫∫ 1

0

d2τtr

�

(∂λR−)
�

`−
`+

Σ[R+(−
`−
`+
τ1−

d
`+
−i ε`+ ,τ2)]†Σ

(τ2+
`−
`+
τ1+

d
`+
−i ε`+ )

2
−

R−(τ1−i ε`− ,τ2)

(τ2−τ1+i ε`− )
2

�

�

+

∫∫ 1

0

d2τ

�

tr

�

(∂λR+)
�

`+
`−

Σ[R−(−
`+
`−
τ1−

d
`−
−i ε`− ,τ2)]†Σ

(τ2+
`+
`−
τ1+

d
`−
−i ε`− )

2
−

R+(τ1−i ε`+ ,τ2)

(τ2−τ1+i ε`+ )
2

�

��∗

(7.20)

Plugging this into (6.18) gives the entropy of the disjoint blocks, from which we can finally
obtain the tripartite information of adjacent blocks A, B, C

e(α−1)I (α)3 (A,B,C) =

1
2α

∑

Σ

exp
�

∫∫ 1

0

d2τ

∫

C[0,R0]

tr
�

dR−
�

`−
`+

Σ(R+(−
`−
`+
τ1−

d
`+
−i ε`+ ,τ2))†Σ+R−

(τ2+
`−
`+
τ1+

d
`+
−i ε`+ )

2
−

R−(τ1−i ε`− ,τ2)−R−
(τ1−τ2−i ε`− )

2

���

exp
�

∫∫ 1

0

d2τ
�

∫

C
[0,−R†

0]

tr
�

dR+
�

`+
`−

Σ(R−(−
`+
`−
τ1−

d
`−
−i ε`− ,τ2))†Σ+R+

(τ2+
`+
`−
τ1+

d
`−
−i ε`− )

2
−

R+(τ1−i ε`+ ,τ2)−R+
(τ1−τ2−i ε`+ )

2

���∗�
. (7.21)

Logarithmic (divergent) contributions. Since R±(z,τ2) is bounded (it is equivalent to R±),
for generic values of `± and d, the divergent contribution in (7.20) comes from the neigh-
bourhoods of τ1 = τ2. By expanding about that line we identify the following asymptotic
logarithmic divergency
∫ 0

−∞
dλ

∫

L

dx
2πi

tr[∂λ log G(x)∂x X+(x)][X+(x)]−1]∼

−
∫ 0

−∞
dλ

�

∫∫ 1

0

d2τ
tr[(∂λR−)R−]
(τ2−τ1+i ε`− )

2 +

∫∫ 1

0

d2τ

�

tr(∂λR+)R+]
(τ2−τ1+i ε`+ )

2

�∗
�

= tr[R2
0] log `+`−

ε2 . (7.22)
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This is completely captured by the Abelian approximation and, as expected, is independent of
the particular value of Σ. In the chain it results in the asymptotic behaviour

SA∪C ∼ O(`+ + `−) +
1

1−α
tr[R2

0] log(`+`−) +O(1) (7.23)

where the leading non-universal extensive behaviour O(`+ + `−) is partially captured by the
first line of (6.18).

Residual tripartite information. Ref. [12] introduced the concept of “residual tripartite
information”, which quantifies the non-commutativity of limits when (a�)d � `±. Since we
have already taken the continuum limit a→ 0, we can simply set d = 0 in (7.21), obtaining

1
2α

∑

Σ

exp
�

∫∫ 1

0

d2τ

∫

C[0,R0]

tr
�

dR−
�

`−
`+

Σ(R+(−
`−
`+
τ1−i ε`+ ,τ2))†Σ+R−

(τ2+
`−
`+
τ1−i ε`+ )

2
−

R−(τ1−i ε`− ,τ2)−R−
(τ1−τ2−i ε`− )

2

���

exp
�

∫∫ 1

0

d2τ
�

∫

C
[0,−R†

0]

tr
�

dR+
�

`+
`−

Σ(R−(−
`+
`−
τ1−i ε`− ,τ2))†Σ+R+

(τ2+
`+
`−
τ1−i ε`− )

2
−

R+(τ1−i ε`+ ,τ2)−R+
(τ1−τ2−i ε`+ )

2

���∗�
(7.24)

with

Rs(τ1 − i ε`s
,τ2) = Rs+

i

∫ τ1

τ2

dτ′1

�∫ τ2

0

dτ′2
�Rs(τ′1−i ε`s ,τ′2)

(τ′2−τ
′
1+i ε`s )

2 −
`s
`−s

Σ[R−s(−
`s
`−s
τ′1−i ε

`−s
,τ′2)]

†Σ

(τ′2+
`s
`−s
τ′1−i ε

`−s
)2

�

, Rs(τ
′
1 − i ε`s

,τ2)

�

(7.25)

This produces a new singularity in the integrals at τ2 ∼ τ1 ∼ 0 for any Σ 6= I, which appears
already in the Abelian approximation. Contrary to the logarithmic divergency of the entropy
of disjoint blocks, however, this singularity has also non-Abelian contributions. This can be
seen by comparing the asymptotics (in the limit d → 0) of the Abelian approximations in the
pseudo-conformal limit, as worked out in the previous section, with the exact CFT predictions.
Despite the Abelian approximation not capturing the singular behaviour exactly, we find that
non-Abelian contributions are not strong enough to remove the divergency, with the remarkable
consequence that the Rényi-α tripartite information approaches the finite value − log 2 in the
limit d → 0, for any α and any γ± 6= 0.

7.3 Perturbation theory for the tripartite information

Representation (7.21) for the tripartite information is implicit, indeed the matrix functions
Rs(z,τ) are defined as the solutions to (7.18). We develop in this section a perturbation theory
to overcome this problem. Specifically, we carry out a formal expansion of Rs(τ1,τ2) in Rs.

First, we rewrite (7.18) in integral form

Rs(τ1 − i ε`s
,τ2) = Rs+

i
τ1∫

τ2

dτ′1
�

τ2∫

0
dτ′2

�Rs(τ′1−i ε`s ,τ′2)

(τ′2−τ
′
1+i ε`s )

2 −
`s
`−s

Σ
�

R−s(−
d
`−s
− `s
`−s
τ′1−i ε

`−s
,τ′2)
�†
Σ

(τ′2+
`s
`−s
τ′1−i ε

`−s
+ d
`−s
)2

�

, Rs(τ
′
1 − i ε`s

,τ2)
�

. (7.26)
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It is clear that such a formal expansion is a triangularization of the integral equation, indeed
the terms with a given number of Rs matrices are quadratic functionals of the terms with a
strictly lower number of Rs matrices. In particular, the linear term of the expansion is trivially
equal to R. The quadratic terms can only come from the commutators of the linear term, and
so on and so forth. From now on we assume τ2 ∈ R+, τ1 ∈ R, and expand Rs(τ1 − i ε`s

,τ2) as
follows:

Rs(τ1 − i ε`s
,τ2) =

∞
∑

n=1

R(n)s (τ1 − i ε`s
,τ2) , (7.27)

where R(n)s (τ1 − i ε`s
,τ2) is written in terms of products of matrices in which matrix Rs appears

n times. Thus we have

R(n)s (τ1 − i ε`s
,τ2) = δn1Rs − i

n−1
∑

j=1

∫ τ1

τ2

dτ′1
�

∫ τ2

0

dτ′2
�

R(n− j)
s (τ′1 − i ε`s

,τ2),

R( j)s (τ′1−i
ε
`s

,τ′2)

(τ′2−τ
′
1+i

ε
`s
)2
− `s
`−s

Σ
�

R( j)−s(−
d
`−s
−
`s
`−s
τ′1−i

ε
`−s

,τ′2)
�†
Σ

(τ′2+
d
`−s
+ `s
`−s
τ′1−i

ε
`−s
)2

�

. (7.28)

which also implies

−Σ(R(n)−s (−
d
`−s
− `s
`−s
τ1 − i ε`−s

,τ2))
†Σ= δn1ΣRsΣ+

i
n−1
∑

j=1

∫ − d
`s
−
`−s
`s
τ2

τ1

dτ′1
�

∫ τ2

0

dτ′2
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ε
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,τ′2)

(τ′2−τ
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`−s
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(τ′2+
d
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+
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ε
`−s
)2

�

,

Σ(R(n− j)
−s (− d

`−s
− `s
`−s
τ′1 − i ε`−s

,τ2)
†Σ
�

. (7.29)

This expansion can be used to set up a perturbation theory for the tripartite information

e(α−1)I (α)3 =
1
2α

∑

Σ

∞
∏

n=1

K(n,Σ)
α , with

K(n,Σ)
α = exp

�

∫∫ 1

0
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∫

C[0,R0]
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dR−
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−i ε`+ ,τ2))†Σ+R−

`+
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`−
`+
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d
`+
−i ε`+ )

2
−

R(n)− (τ1−i ε`− ,τ2)−R−
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exp
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�Σ(R(n)− (−

`+
`−
τ1−

d
`−
−i ε`− ,τ2))†Σ+R+
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2
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���∗�
.

(7.30)

Since the dependency on λ is just through R±, the variables τ1 and τ2 turn out to be completely
decoupled from λ, and we can work out the respective integrals separately. The integral in λ
encodes all the system details, whereas the integrals in τ1 and τ2 depend only on the config-
uration of the subsystems, i.e., on `± and d. For this reason, we call the former the “physical
part” and the latter the “configurational part”. A priori one could expect this expansion to be
effective only in the limit of small γ, indeed Rs→ 0 as γ→ 0 — cf. (6.17). It turns out, instead,
that such a perturbation theory is quickly convergent for any value of γ, including the limit
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γ → 1. In the latter case, as discussed in the previous section, the tripartite information is a
function of the cross ratio x4, therefore we have

e(α−1)Gγ→1
α (x4) =

1
2α

∑

Σ

∞
∏

n=1

K(n,Σ)
α ( `−d , `+d ;γ→ 1) (7.31)

and we can decompose K(n,Σ)
α ( `−d , `+d ;γ→ 1) as the product of a finite numbers of terms, let us

say Mn (at the first orders of the expansion, Mn = 1), corresponding to independent configu-
rational parts, as follows

K(n,Σ)
α ( `−d , `+d ;γ→ 1) =

Mn
∏

j=1

[kn, j(
`−
d , `+d )]

β
(α)
n, j (Σ) . (7.32)

Here β (α)n, j are exponents characterising the physical part and kn, j(`−, d,`+) the corresponding
functions associated with the configurational part. Since the exponents can be changed by
changing α and Σ, it is reasonable to expect that the dependency on x is not peculiar to the
limit γ→ 1, whereas we have

CONJECTURE: kn, j(
`−
d , `+d )≡ kn, j(x4) . (7.33)

The configurational part is however independent of the physical details, i.e., it does not change
when γ± are finite. Consequently, the tripartite information is expected to be a function of the
cross ratio alone in all the quench protocols investigated. In the next section we will check the
validity of this conjecture at the first orders of the perturbative expansion.

First order (Abelian approximation). At the first order we can neglect the commutator on
the right hand side of (7.26). Thus we have

R(1)s (τ1 − i ε`s
,τ2) =Rs

−Σ(R(1)−s (−
d
`−s
− `s
`−s
τ1 − i ε`−s

,τ2))
†Σ=ΣRsΣ .

(7.34)

The physical part of K(1,Σ)
α is then captured by the following (identical) integrals (M1 = 1)

β
(α)
1,1 (Σ) =

∫ R0

0

tr[dR−(R− −ΣR−Σ)] =
�

∫ −R†
0

0

tr[dR+(R+ −ΣR+Σ)]
�∗
= 1

2 tr[R2
0 − (ΣR0)

2] ,

(7.35)
where we didn’t specify the paths C[0,R0] and C[0,−R†

0]
as in (7.30) because the integrals are

independent of the particular path.
Given that the two integrals of the physical part match each other, the configurational part

requires just the evaluation of the following integral

log k1,1 =

∫∫ 1

0

d2τ
`−
`+

1
(τ2+

`−
`+
τ1+

d
`+
−i ε`+ )

2
+ `+
`−

1
(τ2+

`+
`−
τ1+

d
`−
+i ε`− )

2
= −2 log(1− x4) . (7.36)
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Putting all together we recover the “Abelian approximation” that we worked out in the previous
section:

e(α−1)Gα(x) ≈
1
2α

∑

Σ

(1− x4)
tr[(ΣR0)2−R2

0] . (7.37)

Identifying the Abelian approximation as the leading order of a perturbation theory helps un-
derstand why such a simple approximation turns out to be so good when compared with exact
results, for example, in the CFT limit.

Second and third order. At the second order in R we have

R(2)s (τ1 − i ε`s
,τ2) =χ

(s)
1 (τ1,τ2)i[ΣRsΣ, Rs]

−Σ(R(2)−s (−
d
`−s
− `s
`−s
τ1 − i ε`−s

,τ2))
†Σ=χ(−s)∗

1 (− d
`−s
− `s
`−s
τ1,τ2)i[ΣRsΣ, Rs]]

(7.38)

where

χ
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`s

`−s

∫ τ1
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log(d+`sτ1− iε)+ log(d+(`s+`−s)τ2− iε)− log(d+`sτ2− iε)− log(d+`sτ1+`−sτ2− iε) .
(7.39)

Since tr[dR[R, Y]] = 0 for any Y, however, the physical part of K(2,Σ)
α vanishes (M2 = 0),

therefore the leading correction to (7.37) is higher order. Let us then consider the third order.
We have

R(3)s (τ1 − i ε` ,τ2) = −χ
(s)
21 (τ1,τ2)[ΣRsΣ, [ΣRsΣ, Rs]]−χ

(s)
22 (τ1,τ2)[Rs, [Rs,ΣRsΣ]] (7.40)
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where
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(7.42)

Concerning the physical part of K(3,Σ)
α (x4), this is captured again by two identical integrals

(M3 = 1):

β
(α)
3,1 (Σ) = −

∫ R0

0

tr[dR−[ΣR−Σ, [ΣR−Σ, R−]]] = −
�

∫ −R†
0
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�∗

−
1
2

tr[(ΣR2
0)

2 − (ΣR0)
4]≡

1
4

tr[([ΣR0Σ, R0])
2] , (7.43)
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where, as before, we omitted the paths because the integrals do not depend on it. As manifest
in the rightmost expression, this terms capture a purely non-Abelian contribution. As before,
given that the two integrals of the physical part match each other, the configurational part is
characterised by a single integral

log k3,1 = −
∫∫ 1

0

d2τ
`−
`+

χ
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�∗
.

(7.44)
Despite this could be calculated analytically, the result is cumbersome and we have not been
able to simplify it so as to exhibit it here. We have not even found a satisfactory way to make it
manifest that it depends only on the cross ratio. We have however made some simplifications
that allow for an efficient numerical evaluation. Specifically, the integrals above can be reduced
to the following:

∫∫ 1

0

d2τ
�

χ
(s)
21 (τ1,τ2)

(τ1−τ2−i ε`s )
2 +
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(7.45)

The numerical evaluation of the integrals above is consistent with log k3,1 being a function of
just the cross ratio x4, i.e., k3,1 = k3,1(x4). Figure 5 shows a plot of k3,1(x4). Importantly
and contrary to k1,1(x4), k3,1(x4) is smaller than 1 and approaches zero as x4 → 1. Since

also β (α)3,1 (Σ) is negative, the third order correction tends to increase the tripartite information.
Nevertheless, such a correction is not strong enough to affect the residual tripartite information,
which remains − log2 also at this perturbative level.

Inclusion of the leading non-Abelian correction. The leading non-Abelian correction is
characterised by the function k3,1(x4) defined in (7.44) and the corresponding exponent (7.43).
We remedy not having provided an explicit expression for k3,1(x4) by replacing k3,1(x4) with
a function k̃3,1(x4) that is equivalent to it up to higher order corrections. We can indeed use
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the freedom in the choice of k̃3,1(x4) to exhibit an explicit expression. To that aim, we exploit
the knowledge of the exact result in the limit |γ±| → 1 with the observation that truncating the
perturbative series at the third order provides an excellent approximation. The function that
replaces k3,1(x4) so as to make the pseudo-conformal limit |γ±| → 1 exact is indeed a capti-
vating candidate for k̃3,1(x4). We stress that, in this, we give up the independence of k3,1(x4)
from Σ and α. For α= 3, this results in the following replacement

k3,1(x4)→ k̃3,1(x4) = (1− x4)
54
� Θ(0,0|τ̂(3)x4

)

Θ(0, 1
2 |τ̂

(3)
x4 )

�
729

4
, (7.46)

The corresponding estimation of the Rényi-3 tripartite information reads
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(7.47)
where the exponents are explicitly given by — cf. Eqs (7.35) and (7.44)
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(7.48)

Note that, having used the result for γ±→ 1, this approximation is rougher for small γ±, where
it is expected to overestimate the correction to the Abelian approximation.

We can now check that the residual tripartite information does not depend on γ±. To that
aim, we should expand the prediction above around x4 = 1. Since we have [76]

Θ(0,0|τ̂(3)x4
)

Θ(0, 1
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2
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− 1
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we find

G̃3(x4) + log2∼ 3
2(

27
16)
− 729
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1 (γ
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where we used that, for any γ± 6= 0, the exponent of (1 − x4) is strictly positive (−128
135 <

β1(γ±) < 0). We point out that such an estimate is perturbative and, in principle, is subject to
corrections coming from higher order contributions.

8 Conclusion

In this work we have investigated the tripartite information in the stationary state emerging
after global quenches from two types of initial states: ground states of critical systems and inho-
mogeneous states obtained by joining two macroscopically different parts, e.g., a domain wall.
We have identified the quantum field theories capturing the limit of large subsystem’s lengths
and derived analytic expressions for the Rényi-α tripartite information. Specifically, using a
mapping to a Riemann-Hilbert problem with a piecewise constant matrix for a doubly con-
nected domain, we have proved the conjecture of Ref. [12] for the asymptotic behaviour of the
Rényi-2 tripartite information. We have also worked out an implicit expression for the Rényi-α
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tripartite information, eq. (7.21), which we have then unravelled within a rapidly convergent
perturbation theory. By keeping just the first three orders (where, in fact, the second order
vanishes) of the expansion, we have obtained predictions that, in all quench settings investi-
gated, approximate the Rényi-α tripartite information with an accuracy that easily surpasses
the limitations of our numerical simulations.

Our findings have confirmed the conjectures of Ref [12]: first, the Rényi-α tripartite infor-
mation approaches a function of the cross ratio, and, second, the limit in which the length of
the second block B becomes negligible with respect to that of A and C (but still much larger
than the lattice spacing) is − log 2 for any Rényi index α, confirming the emergence of a neg-
ative residual tripartite information. The vanishing of the residual tripartite information that
is expected in thermal states (cf. sec. 2) suggests that a nonzero value is always associated
with non-thermal stationary properties. In translationally invariant global quenches, this is
generally expected only in systems with infinitely many conservation laws, which are usually
integrable. Indeed, in one dimension, only with infinitely many local integrals of motion the
system can retain memory of algebraically decaying correlations. In bipartitioning protocols,
we do not have a comparably strong argument to exclude the emergence of a nonzero residual
entropy in generic systems.

This work leaves several open questions that range from improving our results to gener-
alising them. If we overlook the powerful perturbation theory that we extracted from it, the
exact implicit expression that we derived by formally solving the Riemann-Hilbert problem (for
α > 2) is unsatisfactory: it does not make it manifest neither the dependency on the cross ratio
nor the limit of the residual tripartite information. An explicit solution could then be desirable,
both for confirming that our conjectures are exact and not just excellent approximations and
for establishing an exact connection with the known CFT results.

Second, we have assessed the universality of the residual tripartite information only in
noninteracting models, and it is not even clear to us whether or not the residual tripartite
information could take only discrete values (in our systems, 0 or − log 2). In this respect, gen-
eralising our findings to interacting integrable spin chains is not straightforward, but perhaps
not impossible. For example, bosonisation could help in mapping the problem to a noninteract-
ing one, in which the entropies are expressed in terms of just a correlation operator; carefully
taking into account the nonlocality of the Jordan-Wigner transformation might then allow one
to carry out the analogous calculation.

In addition, we have investigated only models that do not allow for string order at infinite
times after the quench. There are however spin-chain systems in which symmetry protected
topological order can emerge even after a global quench [97, 136]. Considering that, in 2D,
the tripartite information is sensitive to topological order, the question of whether the tripartite
information could display some peculiar features in such systems is of central importance and
still open.

Another point that we overlooked is the actual relaxation dynamics: by assuming a descrip-
tion through a stationary state we have ignored that finite-time effects could be significant. With
Ref. [137] in mind, we wonder whether some of those corrections could be included by taking
into account how correlations change when the lengths of the subsystems are large enough not
to allow us to ignore the inhomogeneity of the state.
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Finally, two natural generalisations of our work are the analysis of the tripartite information
of detached subsystems, as well as of entanglement measures such as the negativity, which
could also help clarify whether the residual tripartite information is a merely classical quantity
or if instead it witnesses some exceptional entanglement structure.

A Generalized XY model

A generalisation of the quantum XY model [103] was proposed in Ref. [102] and is described
by the Hamiltonian

H=
∑

`

 

∑

γ1,γ2∈{x ,y}

∞
∑

n=1

J (n)γ1,γ2
σ
γ1
`

�
∏n−1

j=1
σz
`+ j

�

σ
γ2
`+n + hσz

`

!

. (A.1)

The common denominator of those models is that a Jordan-Wigner transformation maps the
Hamiltonian into a quadratic form of fermions. The XY model considered in (3.3) corresponds
to the special case J (k)γ1,γ2

= δk,1δγ1,γ2

�

δγ1,x Jx +δγ1,y Jy

�

. In this work we consider only local

Hamiltonians, so we assume J (n)γ1,γ2
= 0 for any n larger than some given integer. The symbol of

(A.1), as defined in (3.4), reads

H(k) = f0(k)I + f1(k)σ
x + f2(k)σ

y + f3(k)σ
z , (A.2)

f0(k) = 2
∞
∑

n=1

�

J (n)x ,y − J (n)y,x

�

sin(nk), (A.3)

f1(k) = 2
∞
∑

n=1

�

J (n)x ,x − J (n)y,y

�

sin(nk), (A.4)

f2(k) = 2h− 2
∞
∑

n=1

�

J (n)x ,x + J (n)y,y

�

cos(nk), (A.5)

f3(k) = −2
∞
∑

n=1

�

J (n)x ,y + J (n)y,x

�

sin(nk). (A.6)

The excitation energies ε(k) can be identified with the eigenvalues of H(k), i.e., ε(k) = f0(k)+
r

∑3
j=1 f 2

j (k). We note that reflection symmetric Hamiltonians satisfy f0(k) = 0.

B Determinant representation

Integrating the fields out

The partition function corresponding to the action (5.30) with the boundary conditions (5.37)
can be rewritten as a partition function in which the fields are continuous at the boundaries
provided that the following term is added to the action

δS(α)E (kF ;Σ) =

∫

A
dx

α
∑

`,n

(δ`n − [ΣTΣ]`n) ~ψ
(`)†(x , 0+)~u ~u† ~ψ(n)(x , 0−)+

∫

C
dx

α
∑

`,n

(δ`n − T`n) ~ψ
(`)†(x , 0+)~u ~u† ~ψ(n)(x , 0−) . (B.1)
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Here ~u is the normalised vector defined in (5.28). Indeed, this new action leads to the same
classical solutions and boundary conditions as the original problem. Being now the dependency
on Σ explicit, we have eased the notations and replaced ~ψ(n)(x ,τ;Σ) by ~ψ(n)(x ,τ).

We now linearise δS(α)E (kF ;Σ). As shown below, this can be done by introducing an ap-
propriate number of auxiliary Grassmann fields. Before doing it, however, we should take care
of a subtlety. Since the eigenvalues −z of T satisfy zα = −1 (cf. (5.33)), the kernel of I − T is
nonempty when α is odd. For α even we could linearise δS(α)E (kF ;Σ) by introducing 2α aux-
iliary fields, half of them defined in A and the rest in C (see below); for α odd, however, we
would need only 2α−2 auxiliary fields. We choose here to overcome this discrepancy between
even and odd α by introducing a small regulator ε and replacing I − T by (1+ ε)I − T . In this
way the kernel is non-empty even when α is odd and we can treat the even and odd case on the
same footing. The regulator ε will be sent to zero at the end of the calculation. For the reader’s
information, we mention that the calculation could be effectively carried out also without in-
troducing ε, with the advantage of slightly reducing the size of the matrices appearing in the
final result for α odd, at the cost however of having to make a distinction between even and
odd α. That said, it is convenient to rewrite δS(α)E (kF ;Σ) in a basis diagonalising T :

∫

A
dx

∑

z|zα=−1

� 1
p
α

α
∑
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�
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(B.2)

where we used

�

(1+ ε)I − T[{0, . . . , 0}]
�
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Let us then introduce the fields A(x; z) and C(x; z) with action

δS(α)E [A,C] = − fα
∑

z|zα=−1

�∫

A
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1
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(B.4)
where the constant

fα ≡
� ∏
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(1+ ε+ z)
�1/α

(B.5)

has been chosen in such a way that the total partition function is not affected by the addition
of the new fields, indeed

∫

· · ·
∫

DA†DADC†DCe−δS(α)E [A,C] = 1 . (B.6)

The term δS(α)E (kF ;Σ) incorporating the boundary conditions can now be linearised by shifting
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the auxiliary fields A and C. This results in the comprehensive action
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(B.7)

The third step is to integrate over ~ψ(n)† and ~ψ(n). This produces the normalization fac-
tor associated with the path integral representation of tr[ρA∪C]α multiplied by the partition
function of the theory with Euclidean action

SE = − fα
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(B.8)

The correlation functions 〈 ~ψ(n)(x) ~ψ(n)†(y)〉 are independent of n and from (5.28) it follows

~u† 〈 ~ψ(n)(x) ~ψ(n)†(y)〉 ~u= 〈ψ(x)ψ†(y)〉 , (B.9)

where the right hand side is given by (5.9).
Finally, the partition function (3.12) is the determinant of the operator Lσ coupling the

fields in SE , i.e.

{Γ j1 , . . . , Γ jα}= detLσ. (B.10)

Defining the operator C by

C(x , y) = 〈ψ(x)ψ†(y)〉 , x , y ∈ A∪ C , (B.11)

where the right-hand side is given by (5.9), gives
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(B.12)
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Here we used the symbol ∼ rather than = because Lσ(z, x; w, y) can be replaced by any other
operator with the same determinant. More compactly, we have

Lσ ∼ fα

�

D⊗ 1− I⊗C+
I−Mσ

2
⊗ (C− PCP)

�

(B.13)

where
Dt zw =
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δzw

[Mσ]zw =
1
α

α
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σn(
w
z )

n

(B.14)

and P is defined in (5.34).

Standard form

To relate the calculation of the Rényi entropies to the solution of a Riemann-Hilbert problem
with a piecewise constant matrix it is convenient to represent Lσ by an operator with a more
standard form, specifically, an operator in which P acts only on the left of C. As shown before
long, bringing P to the left of C can be readily achieved by increasing the size of the repre-
sentation of Lσ. Since, however, we would also like to eventually reduce the space back to
(almost) its original size, it is firstly convenient to diagonalise Mσ. This is straightforward,
indeed, the matrix is circulant and the eigenvalues are equal to σ j . We call Uσ a unitary matrix
that diagonalises Mσ. Specifically, we choose the unitary transformation Uσ that brings Mσ

into Σ:
Mσ = UσΣU†

σ (B.15)

where jn ∈ {1, . . . ,α}. The change of basis results in

Lσ ∼ fα

�

U†
σDUσ ⊗ 1− I⊗C+

I−Σ
2
⊗ (C− PCP)

�

. (B.16)

We now use the identity

det

�

A11 A12

A21 A22

�

= det A11 det(A22 − A21A−1
11 A12) (B.17)

with
A11 =I⊗ 1

A12 = fαI⊗ P

A21 =
I−Σ

2
⊗ P

�

C− 1
2

�

A22 = fαU†
σ(D−

I
2)Uσ ⊗ 1− fα

I+Σ
2
⊗
�

C− 1
2

�

(B.18)

Thus we have

detLσ = det

�

�

�

�

�

�

I⊗ 1 fαI⊗ P
0 fαU†

σ(D−
I
2)Uσ ⊗ 1

�

+

�

0 0
I−Σ

2 ⊗ P(C− 1
2

�

− fα
I+Σ

2 ⊗
�

C− 1
2

�

�

�

�

�

�

�

, (B.19)
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in which, as desired, P does not appear to the right of C− 1
2 . We now simplify the diagonal part

in this representation of Lσ. This can done by multiplying from the left by the operator

κα

�

I⊗ 1 fαI⊗ P
0 fαU†

σ(D−
I
2)Uσ ⊗ 1

�−1

= κα

�

I⊗ 1 −U†
σ(D−

I
2)
−1Uσ ⊗ P

0 f −1
α U†

σ(D−
I
2)
−1Uσ ⊗ 1

�

(B.20)

where κα ensures the transformation to have unitary determinant and is given by

κα =
1
p

2

�

∏

z|zα=−1

(1− ε− z)
�

1
2α

−−→
ε→0

2
1−α
2α (B.21)

Thus we have

Lσ ∼ κα

�

I⊗ 1 0
0 I⊗ 1

�

+

κα

�

−U†
σ(D−

I
2)
−1Uσ

I−Σ
2 ⊗ 1 fαU†

σ(D−
I
2)
−1Uσ

I+Σ
2 ⊗ P

f −1
α U†

σ(D−
I
2)
−1Uσ

I−Σ
2 ⊗ P −U†

σ(D−
I
2)
−1Uσ

I+Σ
2 ⊗ 1

�

I⊗
�

C− 1
2

�

. (B.22)

We can get rid of fα by applying

�

f −1
α I 0
0 I

�

⊗ 1 and

�

fαI 0
0 I

�

⊗ 1 (B.23)

to the left and to the right, respectively. Making the dependency on the spatial coordinates
explicit, we then find

Lσ(x; y)∼ καδ(x − y)

�

I 0
0 I

�

−κα
�

C(x , y)− 1
2δ(x − y)

�

×

�

χA(x)

�

U†
σ(D−

I
2)
−1Uσ

I−Σ
2 U†

σ(D−
I
2)
−1Uσ

I+Σ
2

U†
σ(D−

I
2)
−1Uσ

I−Σ
2 U†

σ(D−
I
2)
−1Uσ

I+Σ
2

�

+χC(x)

�

U†
σ(D−

I
2)
−1Uσ

I−Σ
2 −U†

σ(D−
I
2)
−1Uσ

I+Σ
2

−U†
σ(D−

I
2)
−1Uσ

I−Σ
2 U†

σ(D−
I
2)
−1Uσ

I+Σ
2

��

(B.24)

The matrices appearing in the last two lines have α columns of zeroes, indeed, for anyσ j , either
1−σ j

2 = 0 or
1+σ j

2 = 0. Moving these columns to the left through a unitary transformation allows
us to reduce the size of the matrix by means of the determinant identity

det

�

�

�

�

�

λI[d0×d0] ⊗ 1 λB[d0×d] ⊗B
0[d×d0] ⊗ 0 λA[d×d] ⊗D

��

�

�

�

= det[λ1+ d0
d A[d×d] ⊗D] , (B.25)

where we have specified the size of the matrices as superscripts. The following idempotent
transformation does the job

Vσ =

� I+Σ
2

I−Σ
2

I−Σ
2

I+Σ
2

�

⊗ I . (B.26)
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Finally, the operator is reduced to the following

Lσ(x; y)∼ 2
1−α
α δ(x − y)I− i2

1−α
α

�

2C(x , y)−δ(x − y)
�

[χA(x)M+χC(x)ΣMΣ] . (B.27)

where M is the Hermitian circulant matrix

[M]`n = −i[eiπ (n−` mod α)
α −δ`n] =

1
α

α
∑

j=1

cot(π( j+
1
2 )

α )e2πi j `−n
α `, n ∈ {1, . . . ,α} (B.28)

Thus, we have shown that the operator Lσ is equivalent to the following

Lσ ∼ 2
1−α
α I⊗ 1− i2

1−α
α

�

M⊗
1− P

2
+ΣMΣ⊗

1+ P
2

�

I⊗
�

2C− 1
�

, (B.29)

Example: α= 2. Besides the “fermionic” configurationσ = (1, 1), there is only one nontrivial
configuration, σ = (−1,1), whose corresponding operator reads

L(−1,1) ∼
1
p

2

�

1 0
0 1

�

+
i
p

2

�

0 P
P 0

�

(2C− 1) (B.30)

This is a very special case where we can reduce the problem even further (as it is always the case
for the fermionic configuration). The matrices indeed commute and we can block-diagonalise
the operator, which results in

detL(−1,1) = det

�

�

�

�

1
p

2
1+

i
p

2
P(2C− 1)

�

�

�

�

det

�

�

�

�

1
p

2
1−

i
p

2
P(2C− 1)

�

�

�

�

. (B.31)

Example: α= 3. Besides the fermionic configuration, there is only one additional nonequiva-
lent configuration, σ = (−1, 1,1), whose corresponding operator can be represented as follows

L(−1,1,1) ∼ 2−
2
3











1 0 0
0 1 0
0 0 1



+







0 ei π3 P ei 2π
3 P

ei 2π
3 P 0 −ei π3 1

ei π3 P −ei 2π
3 1 0






(2C− 1)






(B.32)

Example: α = 4 and σ = (−1,−1, 1,1). We can exploit the simple structure of Σ to halve
the size of the auxiliary space. We find

detL(−1,−1,1,1) =
∏

s=±1

det

�

�

�

�

2−
3
4

�

1 0
0 1

�

− i2−
3
4

�

sP e−i π4 1+ sei π4 P
ei π4 1+ se−i π4 P sP

�

�

2C− 1
�

�

�

�

�

(B.33)

B.1 Back to the chain

We have derived (5.40) starting from a specific class of correlation operators. We claim here
that the final result is formally correct also relaxing those assumptions, and even reintroducing
the chain. Following Ref. [42] (see also Sec. 3.1.2 of [138]), such a generalisation can be done
by the formal replacement of 2C−1 by the correlation matrix Γ , and of the determinant by its
square root (in our specific case it is reasonable to expect that the sign is always positive, but
in general the sign ambiguity can be lifted by computing the product of the eigenvalues with
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halved degeneracy). This prescription results in the formula (4.6). This representation is more
useful than the one proposed in Ref. [42]: on the one hand, the matrix in the determinant
is linear in ΓA∪C and, on the other hand, it allows one to evaluate the Rényi entropy even
for arbitrarily large values of α without the need of working out the recursive procedure of
Ref. [42].

We show the correctness of this representation for α = 2 and α = 3, which are the com-
monest cases investigated.

Case α= 2 is actually trivial: by applying the prescription to (B.31) we immediately find

{Γ1, Γ2}2 = det

�

�

�

�

1
p

2
IA∪C +

i
p

2
PΓA∪C

�

�

�

�

det

�

�

�

�

1
p

2
IA∪C −

i
p

2
PΓA∪C

�

�

�

�

= det

�

�

�

�

IA∪C + PΓA∪C PΓA∪C

2

�

�

�

�

,

(B.34)
which is the definition of {Γ1, Γ2} in Ref. [42].

Case α= 3 is more interesting. We start applying the prescription to (B.32)

{Γ2, Γ1, Γ1}2 = det

�

�

�

�

�

�

�

2−
2
3







IA∪C ei π3 PΓA∪C ei 2π
3 PΓA∪C

ei 2π
3 PΓA∪C IA∪C −ei π3 ΓA∪C

ei π3 PΓA∪C −ei 2π
3 ΓA∪C IA∪C







�

�

�

�

�

�

�

, (B.35)

express the determinant of the block matrix in terms of the blocks

{Γ2, Γ1, Γ1}2 = det
�

�

�2−
2
3 IA∪C

�

�

�det

�

�

�

�

�

2−
2
3

�

ΓA∪C + PΓA∪C PΓA∪C −ei π3 (IA∪C + PΓA∪C PΓA∪C)
−ei 2π

3 (IA∪C − PΓA∪C PΓA∪C) ΓA∪C + PΓA∪C PΓA∪C

�

�

�

�

�

�

,

(B.36)
recognize Γ2 = PΓA∪C P, express the second determinant in terms of blocks, and compare the
obtained expression with

{Γ2, Γ1, Γ1}2 = {Γ2 × Γ1, Γ1}2{Γ2, Γ1}2, (B.37)

where the latter is evaluated using formulas (3.16) and (3.17).

C Abelian approximation in the pseudo-conformal limit

In this Appendix we work out the Abelian approximation when γ+ = −γ−→±1 at each Fermi
point.

Rényi-3 tripartite information. There is a single nontrivial contribution associated with σ =
(1,1,−1). By enforcing (7.3) we find

detL
(kF )
(1,1,−1)

detL
(kF )
(1,1,1)

�

�

�

�

Abelian

= (1− x4)
8
27 , (C.1)

which results in the following Abelian approximation

GAbelian
3 (x4) = − log2+

1
2

log
�

1+ 3(1− x4)
8ν
27

�

. (C.2)

where ν is the number of Fermi points.
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Rényi-4 tripartite information. There are three nontrivial contributions. By enforcing (7.3)
we find

detL
(kF )
(1,1,1,−1)

detL
(kF )
(1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
5
16

detL
(kF )
(1,1,−1,−1)

detL
(kF )
(1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
3
8

detL
(kF )
(1,−1,1,−1)

detL
(kF )
(1,1,1,1)

=
detL

(kF )
(1,−1,1,−1)

detL
(kF )
(1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
1
2

(C.3)

This results in the following Abelian approximation

GAbelian
4 (x4) = − log2+

1
3

log
�

1+ 4(1− x4)
5ν
16 + 2(1− x4)

3ν
8 + (1− x4)

ν
2

�

. (C.4)

Rényi-5 tripartite information. There are three nontrivial contributions. By enforcing (7.3)
we find

detL
(kF )
(1,1,1,1,−1)

detL
(kF )
(1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
8

25
detL

(kF )
(1,1,1,−1,−1)

detL
(kF )
(1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
4

125 (15−
p

5)

detL
(kF )
(1,1,−1,1,−1)

detL
(kF )
(1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
4

125 (15+
p

5) .

(C.5)

This results in the following Abelian approximation

GAbelian
5 (x4) = − log 2+

1
4

log
�

1+ 5(1− x4)
8ν
25 + 5(1− x4)

4ν(15−
p

5)
125 + 5(1− x4)

4ν(15+
p

5)
125

�

. (C.6)

Rényi-6 tripartite information. There are seven nontrivial contributions. By enforcing (7.3)
we find

detL
(kF )
(1,1,1,1,1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
35

108
detL

(kF )
(1,1,1,1,−1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
23
54

detL
(kF )
(1,1,1,−1,1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
31
54

detL
(kF )
(1,1,−1,1,1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
16
27

detL
(kF )
(1,1,1,−1,−1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
49

108
detL

(kF )
(1,1,−1,1,−1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
67

108

detL
(kF )
(1,−1,1,−1,1,−1)

detL
(kF )
(1,1,1,1,1,1)

=
detL

(kF )
(1,−1,1,−1,1,−1)

detL
(kF )
(1,1,1,1,1,1)

�

�

�

�

Abelian

= (1− x4)
3
4

(C.7)

This results in the following Abelian approximation

GAbelian
6 (x4) = − log 2+

1
5

log
�

1+ 6(1− x4)
35ν
108 + 6(1− x4)

23ν
54 + 6(1− x4)

31ν
54 + 6(1− x4)

16ν
27

+ 3(1− x4)
49ν
108 + 3(1− x4)

67ν
108 + (1− x4)

3ν
4

�

. (C.8)
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