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Abstract

Existence of periodical solutions, i.e. cycles, in the Impulsive Goodwin’s Oscillator (IGO) with the continuous part of an
arbitrary orderm is considered. The original IGO with a third-order continuous part is a hybrid model that portrays a chemical
or biochemical system composed of three substances represented by their concentrations and arranged in a cascade. The first
substance in the chain is introduced via an impulsive feedback where both the impulse frequency and weights are modulated
by the measured output of the continuous part. It is shown that, under the standard assumptions on the IGO, a positive
periodic solution with one firing of the pulse-modulated feedback in the least period also exists in models with any m ≥ 1.
Furthermore, the uniqueness of this 1-cycle is proved for the IGO with m ≤ 10 whereas, for m > 10, the uniqueness can still
be guaranteed under mild assumptions on the frequency modulation function.

Key words: Discontinuous control, hybrid and switched systems modeling

1 Introduction

Analyzing the dynamics of systems that simultaneously
operate in fast and slow time scale (slow-fast systems) is
a classical problem leading to the theory of singularly-
perturbed dynamical systems [25]. Fast dynamics, i.e.
rapid evolution occurring over shorter times, can be ap-
proximated by the impact of finite or infinite impulse
sequences resulting in (state vector) jumps [20]. The
impulsive action is then modeled either as a feedback
or independent discrete process, i.e. a realization of a
Markov chain. In the former case, one deals with a pulse-
modulated feedback [11] or event-triggered control [15],
whereas the latter leads to hybrid control with Marko-
vian switching.

Theory of impulsive differential equations [21] consti-
tutes the mathematical ground of impulsive systems
analysis and design. Impulsive models organically arise
in biomedical, mechanical, ecological, environmental ap-
plications and are present virtually in all fields of science
where mathematical modeling is utilized. Predator-pray
models with application to, e.g. pest control, make use
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of impulsive signals to represent human action [30].
Impulses (impacts) appear in non-smooth mechanics
due to hard constraints on state variables and control
signals. Numerous examples of practically important
mechanical systems with impacts, including gear boxes,
railway bogie, vibration table, are provided in [24]. Pe-
riodical medical pharmacological treatments is another
significant application area of impulsive dynamical sys-
tems, where modeling is typically aimed at optimizing
the treatment protocol, [3]. Impulses reflect the way
drugs are administered, namely through injections or
orally in tablet formulation. Pulsatile mode of drug ad-
ministration also arises when a physiological behavior is
mimicked by a treatment. A profound example of this
concept is the pulsatile artificial pancreas. The physi-
ological regulation exercised via the pancreas during a
meal results in a series of insulin pulses whose frequency
and amplitude are modulated by the blood glucose level
[1]. Therefore, there is increasing interest in impulsive
control of the artificial pancreas [18].

Impulsive systems possess non-smooth dynamics and,
thus, can exhibit complex nonlinear behaviors. Solutions
converging to an equilibrium or an oscillative attrac-
tor are observed in linear time-invariant (LTI) systems
under pulse-modulated feedback. The latter can corre-
spond to sustained periodic or non-periodic (chaotic,
quasiperiodic) solutions. The impulsive Goodwin’s oscil-
lator (IGO) [22], [5] is a hybrid system that generalizes
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the classical continuous Goodwin’s oscillator [13] by sub-
stituting the original continuous static nonlinear feed-
back with a pulse-modulated one. The IGO lacks equi-
libria and admits solutions of high periodicity as well as
chaotic and quasiperiodic ones [31].

The rationale behind the IGO was originally to incorpo-
rate the experimentally observed principle of pulsatile
endocrine regulation [26] into a widely used mathemat-
ical model of biochemical oscillation. However, the IGO
can be seen as a general construct that illustrates how
sustained oscillation can be obtained in a positive (con-
tinuous) LTI system by means of positive-valued feed-
back, no matter what the nature of the system is. From
that perspective, the dynamics of the continuous part
have to be as nonrestrictive as possible. Yet, in previous
work on the IGO, only first-order [32] and third-order
continuous LTI dynamics have been addressed. In the
latter case, the continuous dynamics augmented with
point-wise [4] or distributed delay [8] were also consid-
ered.

The present paper generalizes the IGO structure to con-
tinuous LTI blocks of higher order than three. From an
application point view, the order of an LTI model is a
degree of freedom exploited by the designer to obtain a
parsimonious description of essential model properties.
Then setting the model order to a fixed constant is im-
practical. Further, when the model variables correspond
to physical or chemical properties, the model order is
defined by the number of variables whose time evolution
has to be captured. Naturally, the number of dynami-
cally interacting quantities in a concrete system can be
arbitrary large.

Sustained rhythmical behaviors are ubiquitous in nature
[12]. It is debatable whether such a behavior is suitably
modeled as a perturbed periodic solution of a dynamical
system or a chaotic such. In the IGO, the main bifurca-
tion mechanism leading till chaos is frequency doubling
[31]. Therefore, the existence of a periodic solution is a
central question in the IGO as it defines its very func-
tion. The focus here is, consequently, on a simplest kind
of periodic solution that is characterized by just one im-
pulse in the pulse-modulation feedback in the least pe-
riod, i.e. a 1-cycle.

In this paper, a generalization of the IGO to models with
arbitrary continuous part orderm, henceforth termed as
IGO(m), is proposed. The existence and uniqueness of
a 1-cycle in IGO(3) were established in [5]. Further, the
same properties were also proved for IGO(1) [32]. Here,
we generalize this result to IGO(m) both regarding cycle
existence and uniqueness, which constitutes the main
contribution of this work.

First, we show that IGO(m) possesses at least one 1-
cycle (Theorem 1). Furthermore, this property applies to

a broad class of impulsive systems with Hurwitz stable
and positive continuous-time part (Remark 8).

Second, we prove that the 1-cycle is unique for dimen-
sionsm ≤ 10 (Theorem 2), thus generalizing Theorem 1
in [5]. As discussed in Section 4, this development is far
from being straightforward. It relies on the theory of di-
vided differences and the Opitz formula allowing to com-
pute an analytic function of a matrix with two-diagonal
structure.

Third, we examine the problem of 1-cycle uniqueness in
IGO(m) withm ≥ 11. Surprisingly, in this situation, the
uniqueness may fail to hold and an example of such a case
is given in Section 6. The uniqueness is, however, ensured
if the derivative of the frequency modulator function
does not attain anomalously large values (Theorem 3).

The rest of the paper is organized as follows. After sum-
marizing the notation, the IGO(m) model is introduced
in Section 2. Section 3 formulates the problem at hand,
namely the existence and the uniqueness of 1-cycles in
IGO(m). Solutions to these problems are presented in
Section 4, with the proofs following separately in Sec-
tion 5. An example of IGO(11) with three distinct 1-
cycles is given in Section 6. Appendices contains neces-
sary information about divided differences and the Opitz
formula (Appendix A) and a proof of a technical lemma
(Appendix B).

Notation

The symbol ∆
= henceforth means “defined as”.

As usual, R and R+ stand, respectively, for the sets of
all and nonnegative real numbers. The real vector space
of dimension m is then Rm. We use N0 to denote the set
of nonnegative integers {0, 1, . . .}.

Given a function f(ξ) of a scalar argument ξ ∈ R, we de-
note its derivative evaluated at ξ = ξ0 by f ′(ξ0); f (k)(ξ)
denotes the kth-order derivative. For a function of time
f(t), the derivative is equivalently denoted by ḟ(t). For
a mapping Q : Rm → Rm, the symbol Q′(x) denotes the
Jacobian matrix evaluated at x ∈ Rm.

2 The impulsive Goodwin’s oscillator

Consider a continuous-time autonomous system

ẋ(t) = Ax(t), y(t) = Cx(t) (1)
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with the state x ∈ Rm, the output y(t) ∈ R, and the
state-space matrices structured as

A =



−a1 0 . . . 0

g1 −a2 0
...

0 g2 −a3

...
. . . . . .

0 . . . gm−1 −am


, C =


0

0
...

1



>

. (2)

Assuming positive ai, i = 1, . . . ,m and gi, i = 1, . . . ,m−
1, the matrix A is both Hurwitz and Metzler.

Introduce an infinite sequence of time instants tn >
0, n ∈ N0 generated by the recursion

tn+1 = tn + Tn, Tn = Φ(y(tn)). (3)

The state vector of system (1) undergoes jumps at the
times tn governed by

x(t+n ) = x(t−n ) + λnB, λn = F (y(tn)),

B> =
[
1 0 . . . 0

]
.

(4)

Here Φ : R→ R and F : R→ R are known functions. In
impulsive control systems [11], they are usually referred
to as the frequency and amplitude modulation function,
respectively. Interpreting the jumps as events, impul-
sive feedback (3),(4) can be seen as a self-triggered [15]
controller, because the output of the system at time tn
uniquely determines the subsequent jump instant tn+1.

With m = 3, model (1)-(4) is known as the impulsive
Goodwin’s oscillator (IGO) [6]. Below, a generalization
of the IGO to an arbitrary order m of the continuous
part (1), i.e. IGO(m), is treated.

Notice that Φ, F are not generally required to be contin-
uous to guarantee a unique solution to hybrid system (1)-
(4). Nevertheless, their continuity will be assumed to
prove the existence of periodic solutions. Following [5],
we also assume that

0 < Φ1 ≤ Φ(y) ≤ Φ2, 0 < F1 ≤ F (y) ≤ F2 ∀y ≥ 0,
(5)

where Φ1, Φ2, F1, F2 are positive constant numbers. This
entails a number of important properties of the IGO that
are proved similarly to the case ofm = 3 [5,31]. Namely,
IGO(m) is a positive system also for any order m, i.e.,
for positive initial conditions ∀i : xi(0) > 0, the solution
remains positive ∀i : xi(t) > 0. Furthermore, a solution

x(t), t ∈ [0,∞) admits the following ultimate bounds

Vi ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ Hi, (6)

V1 =
F1

ea1Φ2 − 1
, H1 =

F2

1− e−a1Φ1
,

Vi =
gi−1

ai
Vi−1, Hi =

gi−1

ai
Hi−1, ∀i = 2, . . . ,m.

(7)

In this paper, we focus on periodic solutions such that
x(t + T ) = x(t), for some T > 0. For such a solution,
lim inf and lim sup in (6) can be omitted.

Motivated by application to feedback endocrine regula-
tion, additional monotonicity restrictions were imposed
on the frequency and amplitude modulation functions of
IGO in [5]. It was in particular assumed that Φ is non-
decreasing and F is non-increasing. These assumptions
are consistent with the experimentally observed behav-
ior of the pulse-modulated feedback loop in testosterone
(Te) regulation [19,29]. A decrease in the concentration
of Te increases both the frequency and amplitude of the
gonadotropin-releasing hormone pulses, which in turn
stimulate the Te production. In fact, as will be shown in
this paper, the existence of periodic solutions does not
require the monotonicity assumption. Moreover, we will
prove that a certain periodic solution termed as 1-cycle
always exists. At the same time, the monotonicity al-
lows to prove, under certain conditions, the uniqueness
of 1-cycle.

3 Problem formulation: 1-cycle

A fundamental property of IGO(3) established in [5] is
that it always possesses a unique periodic solution fea-
turing only one jump over the (minimal) period T > 0,
i.e. a 1-cycle. Then, (3) becomes

tn+1 = tn + T, Φ(y(tn)) = T, ∀n ∈ N0.

With the notation Xn = x(t−n ), the return map Xn+1 =
Q(Xn), for n = 0, 1, . . ., of IGO(m) is given [5,7] by

Q(x) = eΦ(Cx)A(x+ F (Cx)B), x ∈ Rm+ . (8)

As shown in [5,7], a 1-cycle corresponds to a fixed point
of the map Q. For such a point x∗ = Q(x∗), the corre-
sponding 1-cycle is found as

x(t) = e(t−tn)A(x∗ + F (Cx∗)B), t ∈ (tn, tn+1),

Xn = x∗, x(t+n ) = x∗ + F (Cx∗)B,

tn+1 = nT, T = Φ(Cx∗), n ∈ N0.

(9)

In view of the positivity of the IGO(m), admissible 1-
cycles correspond to fixed points x∗ ∈ Rm+ ; For such a
solution, periodic solution (9) will stay in Rm+ .
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In this paper, we address the problems of existence and
uniqueness of feasible (positive) fixed points:
Problem A. Does IGO(m) always have a feasible 1-
cycle? Equvalently, does the corresponding mapping Q
have a fixed point x∗ = Q(x∗) ∈ Rm+?

Below, in Theorem 1, we give an affirmative answer to
Problem A for an arbitrary m. This existence property is
actually valid for a much more general class of impulsive
systems (Remark 8).

A natural question of how many distinct 1-cycles an
IGO(m) might have then arises:
Problem B. Is the feasible 1-cycle of IGO(m) (equiva-
lently, the fixed point x∗ ∈ Rm+ of Q) unique?

The uniqueness of 1-cycle for IGO(3) established in [5,
Theorem 1] is generalized tom ≤ 10 in Theorem 2 of the
present paper. Form = 11, however, it is possible to find
parameter values ai, gi > 0 and functions F,Φ such that
the corresponding IGO has three distinct 1-cycles. Mul-
tiple 1-cycles are although highly uncommon. As Theo-
rem 2 and Theorem 3 show, the uniqueness can always
be secured by limiting Φ′ or by letting the impulses to
be sufficiently sparse, i.e. bounding Φ1 from below.

4 Main Results

In this section, we state the main result of the paper pro-
viding complete solutions to Problem A and Problem B
and formulated in Theorem 1–Theorem 3. Their proofs
are summarized separately in Section 5.

Problem A: Existence of 1-cycles in IGO(m)

The so-called “equation of periods” [5] characterizes the
feasible fixed points of Q introduced in (8)

y = R(y)
∆
= F (y)C(e−Φ(y)A − I)−1B, y ∈ R+. (10)

Since Φ(y) > 0 for y ≥ 0 thanks to (5) and A is Hurwitz,
the inverse matrix in (10) is well-defined.

Note that for x ∈ Rm+ , the equation Q(x) = x can be
equivalently written as

x = F (Cx)(e−Φ(Cx)A − I)−1B, (11)

and, therefore, y = Cx obeys (10). Conversely, if y is a
root of equation (10), then x = F (y)(e−Φ(y)A − I)−1B
obeys (11), entailing Q(x) = x. However, it is not obvi-
ous that such a vector x is positive and the latter fact is
ensured by one of the statements in Theorem 1 below.

Theorem 1 For all values of the parameters a1, . . . , am >
0, g1, . . . , gm−1 > 0 and continuous functions Φ, F
obeying (5), the following statements are valid:

(1) The function R(·) defined in (10) is uniformly
strictly positive and bounded on [0,∞);

(2) Equation (10) has at least one solution; all its solu-
tions are strictly positive for y > 0;

(3) For every solution of (10), the vector x =
F (y)(e−Φ(y)A − I)−1B is a positive fixed point of
return map (8);

Hence, IGO(m) always has at least one positive 1-cycle.

Noticeably, Theorem 1 does not impose any monotonic-
ity restrictions on F andΦ. As will be shown (Remark 8),
this theorem generalizes to a broad class of impulsive sys-
tems with positive and stable continuous-time part (1),
whose matrices A,B,C may differ in structure from (2).

Problem B: Uniqueness of 1-cycles in IGO(m)

An elegant result established in [5, Theorem 1] states
that, in the case m = 3, the solution to (10) is unique,
because the function R is non-increasing on [0,∞). This
monotonicity property, proved in [5] for m = 3 by evok-
ing the Jenssen inequality, remains valid for 1 ≤ m ≤ 10,
as shown below.

Theorem 2 For all 1 ≤ m ≤ 10, positive parameter val-
ues ai, gi > 0, and continuous non-increasing functions
F and non-decreasing functions Φ satisfying (5), the
function R defined in (10) is non-increasing on [0,∞).
In particular, (10) has a unique positive solution, and the
corresponding IGO(m) has a unique 1-cycle.

These statements retain their validity if one replaces the
condition m ≤ 10 by the inequality

m− 1

mini ai
≤ Φ1. (12)

In Section 5, we will show that the uniqueness of 1-cycle
cannot be generally established for m = 11 and it is
possible to find an IGO(11) with at least three different
1-cycles. The numerical example of this in Section 6 re-
quires the function Φ to possess very large derivative at
some points (violating also (12)). By forbidding exces-
sive values of Φ′, one can guarantee uniqueness for the
order m ≥ 11 as stated by the next theorem.

Recall the Riemann ζ-function

ζ(s)
∆
=
∑∞

k=1
k−s, s > 1. (13)

Theorem 3 Consider an IGO(m),m ≥ 11, whose mod-
ulation functions Φ, F are, respectively, non-increasing
and non-decreasing. Assume also that Φ, F are absolutely
continuous and, furthermore, for each y > 0, one has

Φ′(y) ≤ Cm
g1 . . . gm−1F (0)

, Cm
∆
=

(2π)m

2(m− 1)ζ(m)
. (14)
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Then, the function y−R(y) is strictly increasing on R+,
equation (10) has only one solution, and thus the IGO(m)
has a unique 1-cycle.

The sequence ζ(m),m = 1, 2, . . . is decreasing and
ζ(m) ≥ 1. Hence, for all m ≥ 11, ζ(m) ≤ ζ(11) ≈ 1.005
and, consequently, Cm grows exponentially as m → ∞.
Numerical evaluation in Matlab yields C11 ≈ 3.01 · 107,
C12 ≈ 1.72 · 108, C13 ≈ 9.91 · 108. Condition (14) is thus
not very restrictive for large m but, yet, cannot be fully
abolished (see the example in Section 6).

Discussion

Remarkably, none of Theorem 1–Theorem 3 requires the
nonlinearities F,Φ to be differentiable everywhere. In
the case of Theorem 3, we only need absolute continuity,
which ensures existence of Φ′(y), F ′(y) at almost every
point y ∈ R+). If F and Φ are continuously differen-
tiable in a vicinity of the fixed point y∗ = R(y∗) in (10),
then the (local exponential) orbital stability of the corre-
sponding 1-cycle can be examined (see [7], where the un-
derlying stability definitions can be found). Namely, the
1-cycle defined by a fixed point of the mapQ (as stated in
Theorem 1) is orbitally stable if and only if the Jacobian
matrix Q′(x∗) is Schur stable [7, Theorem 3]. Obviously,
Q′(x∗) is fully determined by the parameters of continu-
ous part (2) and the values F (y∗),Φ(y∗), F

′(y∗),Φ
′(y∗).

It should be noticed that the method of proving Theo-
rem 1 in [5], although it yields the results of Theorem 1
and Theorem 2 for m = 3, is not applicable to a general
IGO(m) for several reasons. First, both existence and
uniqueness are derived in [5] from the monotonicity of
the function R, which, as proved above, does not hold
for m > 10 without additional assumptions, whereas
Theorem 1 (existence of 1-cycle) retains its validity. Sec-
ond, the method of proving this monotonicity property
is based on an analytic representation of R(y) and its
derivative R′(y) in m = 3 case, which was obtained in
the proof of [5, Theorem 1] by a straightforward com-
putation 1 . In the general case considered in the present
paper, these two functions are computed by using the
Opitz formula and the method of divided differences
(AppendixA), which tools are not exploited in [5]. Third,
the closed-form representation of the derivativeR′(y) al-
lows to derive its positivity from the Jenssen inequality,
which trick, to the best of our knowledge, cannot be ap-
plied for m > 3. Hence, while following the same line of
reasoning as [5], this paper substantially generalizes the
results of the latter by applying a different set of math-
ematical tools.

1 In fact, [5] adopts a modeling assumption that a1, a2, a3

are pairwise distinct, which is abolished here.

5 Proofs and Auxiliary Results

This section summarizes the proofs of the Theorems for-
mulated in Section 4 and also establishes necessary auxil-
iary technical statements that might be of use elsewhere.

5.1 Lemmas and proof of Theorem 1

Recall that the matrix is called nonnegative (respec-
tively, Metzler) if all its entries (respectively, all its off-
diagonal entries) are nonnegative. Hence, ifM is a Met-
zler matrix, thenM +nI is nonnegative for some n ∈ R
being large enough.

Following [17], we introduce the graph Γ(B) of a non-
negative square matrix B = (bij)i,j∈I . In this graph,
the nodes are in one-to-one correspondence with the el-
ements of the index set I and a directed arc (i, j) is
present if and only if bij > 0. Positive diagonal entries
stand for self-arcs. For each k = 1, 2, . . ., the matrix Bk
has a positive entry (Bk)ij > 0 if and only if Γ(B) con-
tains a directed walk of length k connecting i to j (this
walk may contain self-loops and visit some vertices mul-
tiple times). We may formally generalize the definition
of the graph to Metzler square matrices: given such a
matrix A = (aij)i,j∈I , we connect two nodes i, j ∈ I if
and only if aij > 0.

The proof of Theorem 1 is based on the following posi-
tivity result.

Lemma 4 For every Metlzer and Hurwitz matrix A ∈
Rn×n, the matrix-valued function Θ(ξ) = (e−ξA − I)−1

exists and is non-negative for all ξ > 0 with strictly pos-
itive diagonal entries Θii(ξ) > 0 i = 1, . . . , n. Each off-
diagonal entry Θij(ξ), i 6= j is positive ∀ξ > 0 if and only
if the graph Γ[A] contains a path from i to j; otherwise,
Θij(ξ) ≡ 0.

PROOF. Notice first that the matrix exponential

eB =

∞∑
k=0

1

k!
Bk

of a nonnegative matrix B is also a nonnegative matrix.
Furthermore, (eB)ij > 0 if and only if either i = j or a
directed walk from i to j exists in Γ(B).

For an arbitrary ξ ∈ R, the graphs of A and A + ξI
may differ only by the presence of self-arcs, which do
not influence connectivity. Hence, two nodes i and j 6= i
are connected by a directed walk in Γ(A) if and only if
they are connected by such in Γ(A+ξI). Choosing ξ > 0
large enough, the matrix A+ ξI is nonnegative. Hence,
(eA)ij = e−ξ(eA+ξI)ij is nonnegative for all i, j, being
positive if and only if i = j or a walk leads from i to j

5



in Γ(A). The same statements hold true for eξA if ξ > 0,
because matrix ξA is Hurwitz and Metzler for any ξ > 0,
having same graph as A.

By noticing that eξA has the eigenvalues eξλj(A),
where λj(A) are the eigenvalues of A, one concludes
that the exponential eξA has the spectral radius
ρ(eξA) = maxj |eλj(A)| = emaxj Reλj(A) < 1. Hence

Θ(ξ) = eξA(I − eξA)−1 = eξA
∞∑
k=0

(eξA)k =

∞∑
k=1

(eξA)k

is well-defined and nonnegative for all ξ > 0. Further-
more, Θij(ξ) > 0 if and only if i = j or i is connected
to j by a walk in Γ(A) (otherwise, the (i, j)-entry of all
summands vanishes), which completes the proof 2

Corollary 5 Let A = (aij)i,j∈I be a Hurwitz and Met-
zler matrix and b, c be two nonnegative column vectors of
same dimension as A. Then c>Θ(ξ)b > 0 for all ξ > 0
if and only if there exist indices i, j ∈ I such that the el-
ements ci > 0, bj > 0 and either i = j or Γ(A) contains
a directed walk from i to j. If the latter condition is vio-
lated, then c>Θ(ξ)b ≡ 0.

PROOF. Notice that c>Θ(ξ)b =
∑
i,j ciΘij(ξ)bj . For

ξ > 0, all summands in the latter sum are nonnegative,
and thus c>Θ(ξ)b ≥ 0. The latter inequality is strict if
and only if at least one summand is positive ciΘij(ξ)bj >
0, which is possible if and only if ci, bj > 0 and Θij(ξ) >
0. The statement now follows from Lemma 4 2

Corollary 6 For the matrix A in (2) and the column B
in (4), the column (e−ξA − I)−1B is positive for ξ > 0.

PROOF. The graph Γ(A) contains a unidirectional
chain n → (n − 1) → . . . → 1 thanks to inequalities
gi > 0 ∀i. Hence, each node i = 2, . . . , n is connected to
1 by a directed walk. Applying Corollary 5 to A, b = B
and the coordinate vectors c = e1, e2, . . . , en, one con-
cludes that all elements of (e−ξA − I)−1B are positive
for ξ > 0 2

Proof of Theorem 1

Now all the auxiliary results are in place to prove the
claim of Theorem 1.

Corollary 6 ensures that function r(ξ) = C(e−ξA −
I)−1B is positive for ξ > 0. Also, r(ξ) is continuous at
every point ξ ∈ (0,∞). Notice that R(y) = F (y)r(Φ(y))
due to (10). In view of (5), for every y ≥ 0, one has

0 < F1 min
ξ∈[Φ1,Φ2]

r(ξ) ≤ R(y) ≤ F2 max
ξ∈[Φ1,Φ2]

r(ξ) <∞,

where the minimum and the maximum exist due to the
Weierstrass extreme value theorem. This proves State-
ment (1) of the Theorem.

Recalling that F,Φ are assumed to be continuous, y −
R(y) is a continuous function on R+ attaining a nega-
tive value at y = 0 and positive values where y is large
enough. Statement (2) is now straightforward from the
intermediate value theorem. Statement (3) follows from
Corollary 6, recalling that F (y) ≥ F1 > 0 2

Remark 7 The proof of Theorem 1 implies that all the
roots of (10) belong, in fact, to the closed interval

F1 min
ξ∈[Φ1,Φ2]

r(ξ) ≤ y = R(y) ≤ F2 max
ξ∈[Φ1,Φ2]

r(ξ).

The minimum and maximum can, in turn, be estimated
by using the explicit representation of r provided by
(17) and Lemma 10 in Section 5.2. This facilitates the
numerical solution of (10) by e.g. the bisection method.
We omit the technical details here for brevity.

Remark 8 Theorem 1 can be generalized to guarantee
the existence of a 1-cycle in a broader class of impulsive
systems (1), (3), (4) than those with the matrix struc-
tures specified in (2). Corollary 6 remains valid for any
Hurwitz and Metzler matrix A and a column B such
that each node i of the graph Γ(A) either corresponds
to Bi > 0 or is connected by a path to some node j such
that Bj > 0. In such a case, statements (1)-(3) remain
valid.

Remark 9 Notice also that, assuming that F,Φ are
continuous and (5) holds, the map Q admits a non-
negative fixed point (whose components, however, may
be zero) whenever A is Hurwitz and Metzler and B,C
are nonnegative. Indeed, Corollary 5 states that either
r(ξ) > 0∀ξ > 0 or r(ξ) ≡ 0 (in this degenerate case,
the output y(t) is decoupled from the input u(t)). In the
former case, Statement (1) and Statement (2) of Theo-
rem 1 are valid; in the latter case, the equation of pe-
riods y = R(y) has the unique solution y = 0. In both
cases, vector x = F (y)(e−Φ(y)A − I)−1B is a nonnega-
tive (Lemma 4) fixed point of the map Q.

5.2 Lemmas and proofs of Theorem 2–Theorem 3

In this subsection, we intensively use divided differences
(DD) and the Opitz formula (see Appendix A where the
necessary background is summarized).

Given a function f : I → R on the interval I ⊆ R and k+
1 points x0, . . . , xk, k ∈ N0, f [x0, . . . , xk] stands for the
k-th order DD (briefly, k-DD) evaluated at x0, . . . , xk.

A useful property of k-DD in the present context is the
following extension of the mean-value theorem.
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Lemma 10 [9, Section 8] Suppose that f : I → R is k
times differentiable on I and let x0, . . . , xk ∈ I. Then a
point x̄ ∈ [mini xi,maxi xi] exists such that

f [x0, . . . , xk] =
1

k!
f (k)(x̄). (15)

By substituting x0 = . . . = xk = ξ, one thus has

f [ξ, . . . , ξ︸ ︷︷ ︸
k+1

] =
1

k!
f (k)(ξ) ∀ξ ∈ I. (16)

Consider the function

r(ξ)
∆
= C(e−ξA − I)−1B.

Lemma 11 provides representations of r(ξ) and its
derivative in terms of DD. These results are instrumen-
tal in proving Theorem 2 and Theorem 3.

Introduce two auxiliary functions

ϕ(x) = 1/(ex − 1), ψ(x) = −xϕ′(x) = xex/(ex − 1)2.

The Opitz formula (Appendix A, Equation A.6) leads to
the following result.

Lemma 11 Consider state-space matrices (2), and let
ḡ = g1 . . . gm−1 > 0. Then, for all ξ > 0, the function
r(ξ) and its derivative are found as

r(ξ) = (−ξ)m−1ḡϕ[ξa1, . . . , ξam], (17)
r′(ξ) = (−ξ)m−2ḡψ[ξa1, . . . , ξam]. (18)

PROOF.

Step 1: Let ḡi
∆
= g1 . . . gi−1 for i = 2, . . . ,m, (hence,

ḡm = ḡ), and ḡ1
∆
= 1. Notice first that

A = SΛS−1, S = diag(ḡ1, ḡ2, ḡ3, . . . , ḡm).

The matrix Λ is two-diagonal with the eigenvalues
−ai, i = 1, . . . ,m on the main diagonal and ones on
the diagonal below. One can check that

CS = ḡmC = ḡC, S−1B = ḡ1B = B.

Step 2: For a function f analytic in a vicinity of the
eigenvalues −a1, . . . ,−am, one thus has f(A) =
Sf(Λ)S−1, furthermore, Cf(A)B = ḡf(Λ)m,1 (the
subscript denotes the (m, 1) entry of the matrix
f(Λ)). In virtue of (A.6), it follows

Cf(A)B = ḡf [−a1, . . . ,−am].

Then Lemma 18 implies

Cf(−ξA)B = Cf−ξ(A)B = (−ξ)m−1ḡf [ξa1, . . . , ξam],

(in accordance with Lemma 18, f−ξ(x) = f(−ξx)).
Step 3: Equality (17) is now straightforward by notic-
ing that r(ξ) = Cϕ(−ξA)B. To prove (18), recall that,
for any differentiable invertible matrix functionX, one
has (X(ξ)−1)′ = −X(ξ)−1X ′(ξ)X(ξ)−1. Therefore,

d

dξ
(e−ξA − I)−1 = (e−ξA − I)−1Ae−ξA(e−ξA − I)−1 =

= Ae−ξA(e−ξA − I)−2 = (−ξ)−1ψ(−ξA).

Hence, r′(ξ) = (−ξ)−1Cψ(−ξA)B, entailing (18) 2

Introducing the polylogarithm [28,27] of order s ∈ R

Lis(z) =

∞∑
j=1

zj

js
, z ∈ C, |z| < 1, (19)

it can be checked that ϕ(y) = −1 + 1/(1 − e−y) =
Li0(e−y) and, by using induction over k,

ϕ(k)(y) = (−1)kLi−k(e−y). (20)

Remark 12 Notice that Lis(z) > 0 for z being a real
number from (0, 1). Equality (20) thus shows that ϕ is
completely monotonic [23]: (−1)kϕ(k)(y) > 0 for all y >
0. In agreement with Corollary 6, r(ξ) > 0 for all ξ > 0,
thanks to (17) and (15), for any orderm and every choice
of parameters ai, gi > 0.

As follows from Lemma 14 below, the function ψ, is not
completely monotonic, and hence (18) does not allow
to establish that r′(ξ) < 0 for all ξ > 0. Nevertheless,
for a low order m, the derivative r′(ξ) is indeed sign-
preserving, which allows to prove Theorem 2. For an
exact formulation, we state a corollary.

Corollary 13 If (−1)m−1ψ(m−1)(ζ) > 0 at all ζ > 0,
then r′ < 0 (i.e., r is decreasing) on (0,∞). More gener-
ally, r is decreasing on any interval (ξ0, ξ1) provided that
(−1)m−1ψ(m−1)(ζ) > 0 for ζ ∈ (ξ0 mini ai, ξ1 maxi ai).

PROOF. The proof is immediate from (18) and (15)
(applied to k = m− 1) 2

Corollary 13 implies, e.g., that, for m = 3, the function
r is decreasing, because ψ is convex [5].
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The derivatives ψ(k) and their estimates

The derivatives of the function ψ, in fact, are also closely
related to polylogarithm (19) as summarized in the fol-
lowing lemma.

Lemma 14 For each k = 1, 2, . . ., one has

Ψk(x)
∆
= (−1)kψ(k)(x) =

= xLi−k−1(e−x)− kLi−k(e−x),
(21)

where Ψk possesses the following properties:

(i) Ψk(x) > 0 for 0 ≤ x < x̄(k)
∆
= 2π/ k+1

√
2kζ(k + 1);

(ii) Ψk(x) > 0 for x ≥ k;
(iii) Ψk(x) > 0 for all x > 0 if k ≤ 9;
(iv) in general, the following inequality holds

Ψk(x) ≥ −2k
k!

(2π)(k+1)
ζ(k + 1) ∀x ≥ 0, (22)

where ζ is the Riemann ζ-function (13);
(v) however, Ψ10 attains negative values at some points

x > 0.

The proof of Lemma 14 is quite technical and given in
Appendix B. Numerical simulation shows, in fact, that
Ψk is negative for all k > 9. Fig. 1 illustrates the behavior
of Ψ9 (positive) and functions Ψ10,Ψ14 that can attain
negative values.

Fig. 1. Graphs of Ψk(x) for k = 9, 10, 14.

Combining the mean-value formula (Lemma 10)
with (18) and (22), the following corollary is immediate.

Corollary 15 For each ξ > 0, the derivative r′(ξ) ad-
mits the following upper bound

r′(ξ) <
ḡ

Cm
, (23)

where Cm is defined in (14).

As discussed in Section 4, C−1
m decays exponentially as

m→∞. Nevertheless, the right-hand side of (23) is pos-
itive, and for some parameters of IGO(m), m ≥ 11, it is
possible that r′ attains positive values. In such a situa-
tion, the IGO may possess multiple 1-cycles (Section 6).

Proof of Theorem 2

Ifm ≤ 10, Lemma 14 implies that (−1)m−1ψ(m−1)(ξ) =
Ψm−1(ξ) > 0 for all ξ > 0; in general, Ψm−1(ξ) > 0 for
ξ ≥ m − 1. Applying Corollary 13, one proves that r(·)
decreases on the interval (ρ,∞), where

ρ
∆
=

{
0, 1 ≤ m ≤ 10,
m−1

mini ai
, otherwise.

When either 1 ≤ m ≤ 10 or inequality (12) holds, then,
obviously, Φ(y) > ρ for all y ∈ R+. Recalling that Φ, F
are, respectively, non-decreasing and non-increasing,
R(y) = r(Φ(y))F (y) is thus a non-increasing function,
which means that equation (10) has only one solution
on R+, and thus the IGO(m) has a unique 1-cycle 2

Proof of Theorem 3

Theorem 3 is straightforward from Corollary 15. Indeed,
the composition r(Φ(y)) of a continuously differentiable
(thus, locally Lipschitz) function and an absolutely con-
tinuous function is absolutely continuous, and one has

d

dy
r(Φ(y)) = r′(Φ(y))Φ′(y) <

1

F (0)
,

for almost all y > 0 in view of (14) and (23). The func-
tion R(y) = r(Φ(y))F (y) is now also absolutely continu-
ous as a product of two absolutely continuous functions.
Recalling that F ′(y) ≤ 0 at almost all y > 0, one has
(y−R(y))′ = 1−r′(Φ(y))Φ′(y)F (y)−r(Φ(y))F ′(y) > 0,
hence, y − R(y) is increasing on (0,∞). Here, we used
the fact that 0 ≤ F (y) ≤ F (0) for all y > 0 2

6 An example of the IGOwithmultiple 1-cycles.

In this subsection, we construct IGO(m) with at
least three distinct 1-cycles for every m such that
Ψm−1(v0) < 0 at some point v0. This holds, e.g., for
m = 11 (Lemma 14).

Let Φσ,y∗ be the Gaussian density distribution function
with variance σ2 and expectation y∗, that is,

Φσ,y∗(y)
∆
=

1

σ
√

2π

∫ y

−∞
e−

(s−y∗)2

2σ2 ds.
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For each σ > 0, one has 0 < Φσ,y∗(y∗) = 1/2 <
Φσ,y∗(∞) = 1; also, Φσ,y∗ is strictly increasing. By
construction, the derivative

Φ′σ,y∗(y) =
1

σ
√

2π
e−

(y−y∗)2

2σ2

attains its maximum 1/(σ
√

2π) at y = y∗.

The existence of multiple 1-cycles is established by the
following lemma.

Lemma 16 Choose numbers y∗ > 0, σ > 0, and let
v0 > 0 be a point where Ψm−1(v0) < 0. Define IGO(m)
with the following parameters:

• a non-increasing differentiable function F obeying (5);
• Φ = Φσ,y∗ (this function is strictly increasing on R);
• a1 = . . . = am = a

∆
= v0/Φσ,y∗(y∗) = 2v0;

• finally, g1, . . . , gm−1 > 0 are such that 2

ḡ = (−1)(m−1) 2m−1(m− 1)!y∗
ϕ(m−1)(v0)F (y∗)

. (24)

Then, for a small enough σ > 0, this IGO possesses at
least three distinct positive 1-cycles.

PROOF. Combining (17) and (16), one has

r(Φ(y∗)) =
(−1)(m−1)Φ(y∗)

m−1ḡ

(m− 1)!
ϕ(m−1)(a(σ)Φ(y∗)) =

=
(−1)(m−1)ḡ

2m−1(m− 1)!
ϕ(m−1)(v0) =

y∗
F (y∗)

.

Recalling that R(y) = r(Φ(y))F (y), one shows that
R(y∗) = y∗.

Retracing the arguments from the proof of Theorem 3
above, one has

(y −R(y))′|y=y∗ = 1− r′(Φ(y∗))Φ
′(y∗)F (y∗)︸ ︷︷ ︸

P1

−

− r(Φ(y∗))F
′(y∗)︸ ︷︷ ︸

P2

.

In view of (17) and (24), P2 does not depend on σ, being
determined by y∗ and F only:

P2 =
y∗F

′(y∗)

F (y∗)
.

2 Due to Remark 12, the right-hand side of (24) is positive.

Recalling that Φ′(y∗) = 1/(σ
√

2π) and applying (18),

P1 = r′(Φ(y∗))Φ
′(y∗)F (y∗) =

=
(−1)m−2ḡΦ(y∗)

m−2ψ(m−1)(a(σ)Φ(y∗))Φ
′(y∗)F (y∗)

(m− 1)!
=

= − ḡF (y∗)Ψm−1(v0)

2m−2(m− 1)!σ
√

2π
=

=
2(−1)m−1y∗
ϕ(m−1)(v0)

(−Ψm−1(v0))

σ
√

2π
> 0.

One notices that P1 can be arbitrarily large for small
σ > 0; In particular, it is possible to choose σ > 0 in
such a way that 1 − R′(y∗) < 0. Since y∗ − R(y∗) = 0,
in there exists ε ∈ (0, y∗) such that

y −R(y) > 0, y ∈ (y∗ − ε, y∗),
y −R(y) < 0, y ∈ (y∗, y∗ + ε).

On the other hand, y − R(y) < 0 as y → 0+ and y −
R(y) → +∞ as y → ∞ (see the proof of Theorem 1).
Hence, (10) has at least two additional solutions y1 ∈
(0, y∗) and y2 ∈ (y∗,∞). In view of Theorem 1, y1, y∗, y2

correspond to three distinct 1-cycles of the IGO 2

Remark 17 Onemay suspect that the existence of mul-
tiple 1-cycles is caused by the multiplicity of the eigen-
values ai = a = 2v0, however, this is not the case. The
construct in Lemma 16 can be generalized to the case
where ai are close enough to 2v0 yet pairwise distinct.
We omit this for brevity.

6.1 Numerical example

The existence of multiple 1-cycles for the IGO of order
m = 11 is demonstrated now numerically by computa-
tions in Matlab, following the IGO construction method
in Lemma 16. Set y∗ = 2, σ = 2 · 10−4, F (y) = 1 (con-
stant) and v0 = 8.64, which corresponds to Ψm−1(v0) =
Ψ10(v0) < 0. We consider matrices (2), where a1 = . . . =
a11 = a = 17.28 and g1 = . . . = g10 = 22.6486, which
correspond, in view of (20), to the values

ḡ = 3.5515 · 1013, P1 = 1.1257, P2 = 0.

In particular

(y −R(y))′|y=y∗ = −0.1257,

which indicates the existence of three solutions y1, y∗, y2

to the equation y − R(y) = 0 and three corresponding
1-cycles. y1, y2 are found numerically to have the values

y1 = 1.9998234, y2 = 2.0002739.
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The fixed points of Q(x) corresponding to y1, y∗, y2 are
calculated according to Theorem 1 to

x1 =


0.00019
0.00216
0.01213
0.04535
0.12731
0.28635
0.53835
0.87280
1.25282
1.63477
1.99982

 , x∗ =


0.00018
0.00200
0.01135
0.04287
0.12155
0.27608
0.52400
0.85724
1.24048
1.62906

2

 , x2 =


0.00015
0.00178
0.01024
0.03927
0.11305
0.26064
0.50199
0.83277
1.22041
1.61921
2.00027

 .

Stability of the corresponding 1-cycles is determined by
the Schur stability of the Jacobian matrix

Q′(x) = eAΦ(Cx)(I + F ′(Cx)BC) + Φ′(Cx)AQ(x)C,

evaluated at the fixed points. The numerical calculation
shows that all three 1-cycles are unstable, and the spec-
tral radii of the corresponding Jacobian matrices are:

ρ(Q′(x1)) = 68.64, ρ(Q′(x∗)) = 64.91, ρ(Q′(x2)) = 58.47.

7 Conclusions

A special case of periodic solutions in the impulsive
Goodwin’s oscillator (IGO) characterized by one im-
pulse generated by the pulse-modulated feedback in the
least period, i.e. a 1-cycle, is considered. The continu-
ous part of the IGO is allowed to be of arbitrary order,
in contrast with the established in the literature case of
third-order dynamics. The structure of the continuous
part is still assumed to be a chain of first-order blocks. It
is proved that a 1-cycle always exists in the IGO, regard-
less of the continuous part order. Further, when the con-
tinuous part order is at most ten, the 1-cycle is unique.
It is demonstrated, by a constricting an example, that
uniqueness does not generally apply to higher orders of
the continuous part, e.g. for order eleven. Uniqueness
of 1-cycle can however be recovered by restricting the
slopes of the modulation functions of the IGO or even
by restricting the feedback impulses to be sufficiently
sparse.
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A Divided differences and Opitz formula

Divided differences (DD) are widely used in numerical
analysis and employed in this work to compute matrix
functions. Here we review some basic properties of the
DDs, referring the reader to [2,9,16] for further details.

Definitions of DD

Throughout this section, we deal with functions f : I →
R, where I ⊆ R is some interval (possibly, open). The
standard definition of the k-th order DD (briefly, k-DD)
for such a function at a sequence of pairwise distinct
points x0, . . . , xk ∈ I is as follows. We formally define
the 0-DD as f [x0]

∆
= f(x0) and, subsequently, the 1-DD

as
f [x0, x1]

∆
=
f(x1)− f(x0)

x1 − x0
.

For k ≥ 2, the k-DD is constructed inductively as

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
. (A.1)

An equivalent and more compact definition of the k-
DD is based on the concept of interpolation polynomial,

which can be written in the Lagrange or Newton form.
By definition, the interpolation polynomial of f at the
points x0, . . . , xk (where xi 6= xj ∀i 6= j) is the (unique)
polynomial L = Lf,x0,...,xk of degree ≤ k such that all
xi are roots of the equation

L(x) = f(x). (A.2)

It can be proven [2] that L admits the form

Lf,x0,...,xk(x) = f [x0] + f [x0, x1](x− x0) + . . .

+ f [x0, x1, . . . , xk]
∏k−1

j=0
(x− xj),

(A.3)

known as Newton’s form of the interpolation polyno-
mial. This leads to an alternative definition of the k-DD
f [x0, x1, . . . , xk], which is the lead (degree k) coefficient
of the interpolation polynomial.

If f is differentiable k times on I, then the latter ap-
proach allows to define the k-DD to an arbitrary se-
quence x0, . . . , xk. If some number ξ occurs s times in
this sequence (1 ≤ s ≤ k), then ξ is a root of (A.2)
with multiplicity s: L(p)(ξ) = f (p)(ξ) p = 0, . . . , s− 1.
Adopting such a convention, the interpolation polyno-
mial remains uniquely determined [2], and hence its lead
coefficient f [x0, x1, . . . , xk] is well defined.

Example: If x0 = . . . = xk = ξ, then the interpolation
polynomial is nothing else than the Taylor sum

L(x) =

k∑
j=0

f (j)(ξ)

j!
(x− ξ)j , (A.4)

whose lead coefficient is

f [ξ, . . . , ξ] = f (k)(ξ)/k!.

Technical properties of DDs

In the next subsections, we will use the following simple
property of the DD.

Lemma 18 (Scaling) Given a function f : (a,∞) → R
and a number ξ 6= 0, denote fξ(x)

∆
= f(ξx). Then

fξ[x0, . . . , xk] = ξkf [ξx0, . . . , ξxk].

PROOF. Notice that if L(x) = Lf,x0,...,xk is the in-
terpolation polynomial for f , then L(ξx) is the inter-
polation polynomial for fξ. Recalling that fξ[x0, . . . , xk]
and f [x0, . . . , xk] are the lead coefficients of respectively
L(ξx), L(x), one obtains the desired relation 2
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Finally, we notice that the DDs linearly depend on f ,
that is, for two functions f1, f2 defined on (a, b) and two
coefficients α1, α2, one has (α1f1 + α2f2)[x0, . . . , xk] =
α1f1[x0, . . . , xk] + α2f2[x0, . . . , xk].

Functions on matrices and the Opitz formula

Let D ⊆ C be an open simply connected set containing
the eigenvalues λj of the matrix A and f : C → C be
holomorphic on D. Then, for any simple closed curve
Γ ⊂ D that encircles all λj in the counter-clockwise
direction [16, Section 6.2],

f(A)
∆
=

1

2πı

∮
Γ

f(z)(zI −A)−1dz. (A.5)

In particular, if S is an invertible matrix, then
f(SAS−1) = Sf(A)S−1. Also, for every two functions
f, g, the matrices f(A) and g(A) commute.

Consider now the two-diagonal matrix below

Λ =


λ1 0 0 0

1 λ2 0 0

0
. . . . . . 0

0 0 1 λm

 .

Assuming f complex analytic in vicinity of λ1, . . . , λn,
the matrix f(Λ) admits an elegant representation,
known as the Opitz formula 3 [10]. Namely, f(Λ) is the
lower-triangular matrix whose entries are

(f(Λ))ij =

{
f [λi, . . . , λj ], i ≥ j,
0, i < j.

(A.6)

For instance, the left-bottom corner entry is the (m−1)-
DD of function f , that is, f(Λ)m1 = f [λ1, . . . , λm].

B Proof of Lemma 14

To obtain the expression for Ψk, note that ψ(x) can be
expressed as a series:

ψ(x) =
xex

(ex − 1)2
= −x

(
1

1− e−x

)′
=

= −x
( ∞∑
j=0

e−jx
)′

=

∞∑
j=0

xje−jx =

∞∑
j=1

xje−jx,

3 Usually, the Opitz formula is given for upper-triangular
two-diagonal matrices, the case of lower triangular is
straightforward by noticing that f(Λ>) = f(Λ>)>.

which implies the expression for the k-th derivative

ψ(k)(x) = (−1)k
∞∑
j=1

jk(xj − k)e−jx =

= (−1)k(xLi−k−1(e−x)− kLi−k(e−x)),

resulting in (21).

Statement (ii) follows from [27, Theorem 8].

To prove statements (i) and (iv), we need a representa-
tion of the polylogarithm of order (−k) < 0 [14, 9.553]

Li−k(e−x) = k!

∞∑
l=−∞

(2πli+ x)−k−1,

which leads to an alternative representation of Ψk:

Ψk(x) = xLi−k−1(e−x)− kLi−k(e−x) =

(k + 1)!

∞∑
l=−∞

x(2πli+ x)−k−2 − kk!

∞∑
l=−∞

(2πli+ x)−k−1 =

= k!

∞∑
l=−∞

((k + 1)x(2πli+ x)−k−2 − k(2πli+ x)−k−1) =

= k!

∞∑
l=−∞

(2πli+ x)−k−2((k + 1)x− k(2πli+ x)) =

= k!
( 1

xk+1
+

∞∑
l=−∞
l 6=0

x− 2πkli

(x+ 2πli)k+2

︸ ︷︷ ︸
=hk(x)

)
.

Notice that for each x > 0, one has∣∣∣∣ x− 2πkli

(x+ 2πli)k+2

∣∣∣∣ ≤ 1

|x+ 2πli|k+1

∣∣∣∣x− 2πkli

x+ 2πli

∣∣∣∣ ,
where themultipliers are, obviously, less, than (2π|l|)−k−1

and k, respectively. Statement (iv) and (22) are now
straightforward from the following estimate:

|hk(x)| ≤ 2

∞∑
l=1

∣∣∣∣ x− 2πkli

(x+ 2πli)k+2

∣∣∣∣ ≤ 2k

(2π)k+1

∞∑
l=1

1

lk+1
.

To prove statement (i), it suffices to notice that x = x̄(k)
is the unique real positive solution to the equation

1

xk+1
− 2k

(2π)k+1

∞∑
l=1

1

lk+1
= 0;
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Obviously, Ψk(x) > 0 as 0 < x < x̄(k).

Statement (iii) is proved similarly, refining the estimate
for the term hk(x). Notice that for k ≤ 4, statement (iii)
follows from statements (i) and (ii), because x̄(k) < k.
For k = 5, . . . , 8, one can use a more precise estimate:

hk(x) =

∞∑
l=−∞
l 6=0,±1

x− 2πkli

(x+ 2πli)k+2

︸ ︷︷ ︸
h̃k(x)

+

+
x− 2πki

(x+ 2πi)k+2
+

x+ 2πki

(x− 2πi)k+2
,

where h̃k(x) is estimated similarly to hk(x), that is,

|h̃k(x)| ≤ 2k

(2π)k+1

∞∑
l=2

1

lk+1
=

2k(ζ(k + 1)− 1)

(2π)k+1
.

Therefore, one obtains the following estimate for Ψk:

Ψk(x)

k!
≥ 1

xk+1
− 2k

(2π)k+1
(ζ(k + 1)− 1)+

+
x− 2πki

(x+ 2πi)k+2
+

x+ 2πki

(x− 2πi)k+2
=

=
pk(x)

xk+1(x2 + 4π2)k+2
,

where pk(x) is a polynomial of degree 3k + 5 such that
pk(0) = 4π2 > 0. To prove that Ψk(x) > 0 for x > 0,
in view of statement (ii), it suffices to check that pk
has no real roots on [0, k]. This is indeed the case for
k = 5, . . . , 8, as reported in Table B.1 (the roots were
found numerically using Matlab), however, for k = 9
this condition is violated.

To prove statement (iii) for k = 9, one needs an even
more refined estimate of hk as follows:

hk(x) =

∞∑
l=−∞

l 6=0,±1,±2

x− 2πkli

(x+ 2πli)k+2

︸ ︷︷ ︸
h̄k(x)

+

+

2∑
l=1

x− 2πkli

(x+ 2πli)k+2
+

2∑
l=1

x+ 2πkli

(x− 2πli)k+2
,

where h̄k(x) can be estimated similar to hk, h̃k:

|h̄k(x)| ≤ 2k

(2π)k+1

∞∑
l=3

1

lk+1
=

2k(ζ(k + 1)− 1− 2−k−1)

(2π)k+1
.

Table B.1
Real roots of polynomials pk (for k = 5, . . . , 8) and q9.

k Real roots

5 ±9.563 . . .

6 10.115 . . .

7 ±10.369 . . .

8 10.291 . . .

9 ±15.456 . . .

This entails a more refined estimate for Ψk:

Ψk(x)

k!
≥ 1

xk+1
− 2k

(2π)k+1
(ζ(k + 1)− 1− 1

2k+1
)

+
x− 2πki

(x+ 2πi)k+2
+

x+ 2πki

(x− 2πi)k+2

+
x− 4πki

(x+ 4πi)k+2
+

x+ 4πki

(x− 4πi)k+2
=

=
qk(x)

xk+1(4π2 + x2)k+2(16π2 + x2)k+2
,

where qk(x) is a polynomial of order 5k + 9 satisfying
qk(0) = (64π2)k+2 > 0. As shown in Table B.1, the real
roots of q9(x) are located outside the interval (0, 9].

Finally, statement (v) can be validated by computing
the polylogarithmic functions in Matlab:

Ψ10(8.64) ≈ −2.087496 · 10−62
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