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Abstract
Noisy mean field annealing (NMFA) is an algorithm that mimics a coherent Ising machine (CIM), which is an optical system for solving Ising

problems. The NMFA has reproduced the solver performance of the CIM for systems of limited size even though it simplifies the interaction

between spins with a mean-field approximation. However, recent experiments observing various thermodynamic quantities have revealed that

the CIM can capture the phase transitions of the two-dimensional Ising models that the mean field cannot capture. This situation leads to a

fundamental question as to how well the NMFA can capture the features of the thermodynamic quantities around the phase transition. This

paper answers that the NMFA reproduces the thermodynamic features of the mean field, but cannot reproduce the CIM results. This suggests

that, in terms of sampling, the level of performance of the CIM is beyond that of the NMFA.

I. INTRODUCTION

An Ising machine is a specific-use computer for solv-

ing Ising problems by minimizing the Hamiltonian H =
1/2

∑

ij Jijsisj +
∑

i hisi, where si(= ±1) is a two-valued

Ising spin, Jij is an interaction between spins, and hi is a mag-

netic term. Ising problems, which are equivalent to quadratic

unconstrained binary optimization problems, can be applied to

various problems in the real world [1, 2]. Recent realizations

of physical Ising machines using various systems, such as,

trapped ions [3], ultra-cold atoms [4], superconducting qubits

[5, 6], special CMOS devices [7], digital devices [8], elec-

tromechanics [9], magnets [10], and optical systems [11–19],

have attracted much interest in various research fields. Here,

physical principles, e.g., minimizing photon loss in the optical

Ising machine [17], help us to quickly find solutions to Ising

problems. These machines have outperformed the conven-

tional algorithms operating on CPUs [19–23]. On the other

hand, algorithms inspired by physical machines encoded with

a graphical processing unit (GPU) or a field programmable

gate array (FPGA) sometime exhibit better performance than

physical machines [24–29]. However, recent progress indi-

cates that physical machines may surpass such algorithms on

conventional digital hardware [30, 31]. Given this state of

affairs, we expect that research on computation method will

proceed with both physical and physics-inspired solvers.

The coherent Ising machine (CIM) [17–19] is one such op-

tical Ising machine. In the CIM, a degenerate optical para-

metric oscillator (DOPO) set in a ring cavity is bifurcated by

pump pulses to produce signal pulses corresponding to Ising

spins [17]. The measurement feedback method [18, 19] is

used to implement the interactions between the spins. In this

method, parts of the DOPO pulses ci are extracted from the

cavity and measured. The measurements are multiplied by an

interaction matrix Jij and are added to the magnetic term hi

by using FPGAs to form feedback. The calculated feedback

amplitudes φi =
∑

j Jijcj + hi are injected back to the left

∗ kensuke.inaba.yg@hco.ntt.co.jp

portion of the DOPO pulse circulating in the cavity. This pro-

cedure to create spin-spin interactions is at first glance mean-

field-like. However, the measurement of the coherent optical

pulses may cause non-trivial back action on the unmeasured

part of DOPO pulses, because the balanced homodyne mea-

surement used here is not a simple projective measurement

[32]. Note that the CIM operates near the standard quantum

limit with squeezing effects [33]. Thus, the validity of the sim-

ple mean-field assumption is suspect if it is applied to the mea-

surement feedback procedure in the CIM. In fact, our recent

experiments show that the CIM can capture the phase transi-

tion of the two-dimensional Ising model beyond the capacity

of the mean-field approximation [34]. Note that another kind

of optical Ising machine has reproduced a mean-field descrip-

tion of the phase transition in spin-grass Ising models [16].

Noisy mean field annealing (NMFA) is a method to solve

Ising problems by mimicking a CIM whereby the measure-

ment feedback procedures is simplified to a mean field proce-

dure [24]. The NMFA algorithm is as follows: (i) initialize

each spin si to be zero; (ii) calculate the feedback Φi with a

noise term Φi = (
∑

j Jijsj + hj)/
√

h2
i +

∑

j J
2
ij + ξ(0, σ),

where ξ(0, σ) is Gaussian noise with standard deviation σ;

(iii) calculate the mean field equation ŝi = − tanh(Φiβ̃),

where β̃ is inverse temperature; (iv) replace spin si with the

convex combination si = αŝi + (1−α)si, where α is a feed-

back constant (α < 1). Procedures (ii)-(iv) are repeated Nstep

times and β̃ is increased in each step. This approach algo-

rithmically corresponds to a generalized mean field annealing

[35] with a noise term. In Ref. [24], King et al. show that the

time evolution of si in the NMFA gives similar results to those

of the optical pulses ci in the CIM even with a mean-field ap-

proximation and stressed that the accuracies of the solutions

are comparable to each other.

In this paper, we discuss whether the NMFA is suitable for

describing the dynamics of the CIM. For this purpose, we

used the NMFA to solve an Ising model problem on a two-

dimensional square lattice and then compared those results

with the results of a CIM experiment. The Ising model on

the square lattice is exactly solvable [36, 37], and it is well

known that the behaviors of magnetism and other thermody-
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namic quantities obtained by the mean-field approximation

are distinctly different from those exactly obtained. We sys-

tematically varied the parameters of the NMFA and revealed

that the NMFA and CIM show distinct behaviors in terms of

the temperature dependence of the magnetization and other

thermodynamic quantities on the square-lattice Ising model.

Namely, the CIM captures the features of the exact solution,

while the NMFA exhibits the mean-field results. We conclude

that the NMFA cannot reach the same level of sampling per-

formance as the CIM, even though its performance in regard

to low-energy-state search is comparable to that of the CIM

for small systems.

II. METHODS

Here, we extend the NMFA so it can be used to calculate

thermodynamic quantities at a given temperature T = 1/β.

First, we rearrange the feedback term as Φi =
∑

j(Jijsj +

hj)+ξ(0, σ)
√

h2
i +

∑

j J
2
ij . This is because we have to avoid

the scale of β̃ being renormalized by the term
√

h2
i +

∑

j J
2
ij .

We repeat steps (ii)-(iv) by linearly increasing β̃ from 0 to β
over Nstep steps. In what follows, we set Nstep = 10000.

To calculate thermodynamic quantities, we perform sampling

and calculate averaged values as follows by repeating the

above procedure with Nsample = 5000, where Nsample is the

number of samples. The internal energy is given by

U =
1

Nsample

Nsample
∑

k=1

Ek,

where Ek = 1/2
∑

ij Jijs
k
i s

k
j and ski is the k(=

1, · · · , Nsample)-th sampled i(= 1, · · · , N)-th spin, where N
is the system size. The specific heat is obtained from the sta-

tistical equation,

Cstat = β2





1

Nsample

Nsample
∑

k=1

E2
k − U2



 ,

and from the thermodynamic relationship,

Cthermo = T
∂S

∂T
.

The entropy S is calculated from,

S =
∑

E

P̄ (E) ln
P̄ (E)

D(E)
,

where the energy distribution P̄ (E) is obtained from,
1

Nsample

∑

k δ(E − Ek), counts of the state with an energy

E over Nsample in the sampling and D(E) is the density of

states of the Ising model explained bellow. The mean root

square magnetization is given by

√
M2 =

√

√

√

√

1

Nsample

Nsample
∑

k=1

(
1

N

∑

i

ski )
2.

Note that small value of Nstep and Nsample sometimes cause

thermodynamic quantities to show unphysical behavior.

Next, we explain the Wang-Landau method [38] for calcu-

lating the “exact” values of thermodynamic quantities. This

method is a kind of Monte Carlo simulation, meaning that it

can be only used to a small system, and it allows us to cal-

culate the density of states D(E) of an Ising model, where

E is the energy of the model. Upon getting D(E), we can

straightforwardly calculate the internal energy,

U =
∑

E

EP (E),

the specific heat,

Cstat = β2

(

∑

E

E2P (E)− U2

)

,

and the entropy,

S = −
∑

E

P (E) ln
P (E)

D(E)
,

where P (E) = D(E) exp(−βE)/Z and Z =
∑

E exp(−βE)D(E). Note that the relationCthermo = Cstat

can be straightforwardly obtained from the derivative of the

above equation of S. To obtain the root mean square magneti-

zation, we simply extend the Wang-Landau method to obtain

density of states, D̄(E,M), as a function of magnetization

M = 1
N

∑

i si and energy E [39]. Here, to obtain D̄(E,M),
we perform the Wang-Landau calculation as usual in a

limited Hilbert space with a fixed M . The mean root square

magnetization is given by

√
M2 =

√

∑

E

∑

M

M2D̄(E,M) exp(−βE)/Z.

Within negligibly small numerical errors, the obtained ther-

modynamic quantities are almost identical to the exact values

in a finite size system [38].

III. RESULTS

First, we revealed that the NMFA reproduces the mean-

field behavior in terms of magnetization. In what follows,

we consider a two-dimensional 10 × 10 square lattice with

periodic boundary conditions. The Hamiltonian is given by

H = −J/2
∑

〈i,j〉 sisj , where
∑

〈i,j〉 indicates a summation

over adjacent sites. Figure 1 shows the root mean square mag-

netization as a function of βJ for different σ = 0.15, 0.75,

and 1.25 with fixed α = 0.15. For comparison, Fig. 1 also

shows (noise-less) mean-field results (see Appendix), exact

results calculated by the Wang-Landau method [38], and ex-

perimental results from Ref. [34]. Note that, without spon-

taneous symmetry breaking, the root mean square magnetiza-

tion has a finite value when the system favors the magnetic

ordered phase, and thus, we use this quantity to investigate
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FIG. 1. Magnetization as a function of β on a square 10× 10 lattice

obtained by the NMFA with α = 0.15, the Wang Landau method

(exact), the mean field approximation (MF), and the CIM. The CIM

results are extracted from Ref. [34].

magnetization in the finite system. For a small noise deviation

σ(= 0.15), the NMFA results are close to the noiseless mean-

field results, while the experimental CIM results are similar

to the exact results. This suggests that the measurement feed-

back of the CIM experiments is not a simple mean-field. For

a large σ(= 0.75), it seems that the NMFA becomes close

to the exact results and CIM results, whereas it does not re-

produce an important low-temperature behavior, namely, the

development of the magnetization up to unity. Namely, the

NFMA cannot capture the phase transition to the ferromag-

netic state at very low temperatures for large σ. This is be-

cause the large amount of noise behaves like thermal fluctu-

ations. A further increase in σ causes the magnetization to

show rather unphysical behavior. In addition, we found that,

for all σ, the root mean square magnetization vanishes at high

temperatures even though the system size is finite. This is also

a characteristic of the mean-field approximation. In contrast,

the CIM successfully captures the feature of the magnetization

at high temperature.

Figure 2 and 3 show the internal energy U and entropy S
for the same parameters as those used in Fig. 1. In these

figures, the NMFA shows mean-field like behavior, such as,

U and S plateaus at high temperature and sudden drops from

the plateau region with kinks. On the other hand, the CIM

captures the features of the exact results, with gradual and

smooth changes in both U and S. Note that, in the CIM exper-

iments, the inverse temperature β was derived from the infor-

mation on U by using maximally likelihood method, so that

the agreement between exact and CIM results is not surprising

(see Ref. [34]). However, independently obtained quantity S
also shows good agreement, suggesting that the CIM can cap-

ture the features of the exact solution. It should be noted that

S for the NMFA shows rather unphysical behavior whereby

∂S/∂β > 0 (∂S/∂T < 0), e.g., around βJ = 0.7 with

0.0 0.2 0.4 0.6 0.8 1.0
βJ

−200

−150

−100

−50
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U
/J

NMFA σ=0.15
NMFA σ=0.75
NMFA σ=1.25
exact
MF
CIM

FIG. 2. Internal energy as a function of β on a square 10× 10 lattice

obtained by the NMFA with α = 0.15, the Wang Landau method

(exact), the mean field approximation (MF), and the CIM. The CIM

results are extracted from Ref. [34].
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FIG. 3. Entropy as a function of β on a square 10×10 lattice obtained

by the NMFA with α = 0.15, the Wang Landau method (exact), the

mean field approximation (MF), and the CIM. The CIM results are

extracted from Ref. [34].

σ = 0.15 and at around βJ = 0.5 with σ = 1.25. Namely,

the second law of thermodynamics is violated, suggesting the

imperfection of the NMFA. For example, an increase in Nstep

does not improve this imperfection.

Figure 4 shows specific heats Cstat and Cthermo for the

same parameters as those in Fig. 1. We found that the peak

positions of Cthermo given by the mean-field approximation

are different from the exact results. It is known that the

mean-field and the exact solutions in the thermodynamic limit

[36, 37] show different transition points around βJ = 1/4
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FIG. 4. Specific heats Cstat and Cthermo as functions of β on a

square 10 × 10 lattice obtained by the NMFA with α = 0.15, the

mean-field approximation (MF), the Wang Landau method (exact),

and the CIM. The CIM results are extracted from Ref. [34].

and ln(1 +
√
2)/2 ∼ 0.44. Note that, even in the finite sys-

tem, the Wang-Landau solutions show that the precursor of the

transition creates the peak of C(= Cthermo = Cstat) around

0.44. Regarding the CIM results, we found that both Cthermo

and Cstat show clear peak structures around βJ ∼ 0.44 and

0.5, respectively, which are closer to the exact solution than

that of the mean field. The deviation between these two def-

initions of specific heat at low temperature indicates that the

spins delivered by the CIM are not perfectly sampled from an

ideal canonical ensemble. At high temperature, the canoni-

cal sampling assumption is satisfied, which is nontrivial and

surprising because such a fundamental assumption is not at

all assured to be true in the present nonequilibrium open op-

tical system [34]. On the other hand, Cstat of the NMFA

with σ = 0.15 and 0.75 show flat specific heats, which

may be due to the fact that mean-field approximation neglects

some fluctuations (see the Appendix). Cstat of the NMFA

with σ = 1.25 shows a broad peak at very low tempera-

ture, which is different from the exact behavior. The ther-

modynamic specific heat Cthermo of the NMFA is similar to

Cthermo of the mean-field approximation, while sometimes it

takes unphysical negative values, reflecting the violation of

the second law of thermodynamics mentioned above. This

unphysical behavior is conspicuous for large σ = 1.25. We

should note that the statistical and thermodynamic relation-

0.0 0.2 0.4 0.6 0.8 1.0
βJ

−200

−175

−150

−125

−100

−75

−50

−25

0

U
/J

NMFA α=0.05
NMFA α=0.15
NMFA α=0.95
exact
MF

FIG. 5. Feedback constant α dependence on internal energy of the

NMFA with σ = 0.15.

ship C = β2(〈H2〉 − 〈H〉2) = T∂S/∂T is not satisfied by

the NMFA at all, while such a relationship is satisfied by the

CIM at high temperature [34]. Note that the breakdown of

the relationship in the CIM results at low temperature is not

similar to the breakdown of the NMFA; the CIM captures the

qualitative feature, the peak, of the specific heats. This indi-

cates that the CIM reproduces the behavior of specific heats

beyond the capacity of a mean-field approximation.

Next, we investigated the effect of the parameter α. Figure

5 plots U for different α at σ = 0.15. Note that, in the limit

α → 1, the mean field shown in the Appendix is recovered

for small σ. Thus, α = 0.95 shows very good agreement with

the mean field value. A small α slightly causes a deviation

from the mean-field results. However, we found that α does

not have effect in the high-temperature region. Other quanti-

ties, S and
√
M2, have similar features (not shown). Thus, the

mean-field properties in the high-temperature region, i.e., the

plateaus in the quantities and so on as mentioned above, still

remain even when σ and α are varied. We thus conclude that

the NMFA recovers the mean field results and cannot qualita-

tively reproduce thermodynamic quantities like the CIM can.

Finally, we discuss how the noise parameter σ affects the

performance of the solver. For this purpose, we solved a

benchmark maximum cut problem with 100 nodes. Figure

6 shows a histogram of the scores of this benchmark problem

for 1000 trial calculations. We found that the performance of

the solver deteriorate for larger σ. This tendency coincides

with the unphysical behavior at low temperature, where the

magnetization does not develop for large σ and thus the com-

plete ferromagnetic phase does not appear. In contrast, the

CIM keeps good solver performance when the physical quan-

tities show qualitatively similar behavior to the exact one at

low temperatures. Here, the CIM was operated under the same

DOPO oscillation conditions as in Ref. [34].
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FIG. 6. Histogram of scores of maximum cut problem, which takes

into account 1000 samples.

IV. SUMMARY

In summary, we confirmed that the NMFA reproduces

mean-field-like features of various thermodynamic quantities.

We also found that specific heat and entropy sometimes show

unphysical behaviors, which are due to the mean-field approx-

imation violating the thermodynamic and statistical relation-

ship. In contrast, the CIM captures the exact behaviors of

the thermodynamic quantities, in particular, at high temper-

ature [34]. At low temperature, the specific heats obtained

by the CIM show breakdown of relationship between ther-

modynamics and statistics. However, the CIM captures the

qualitative features of the specific heats; in particular, it re-

produces the qualitative features of the phase transition. This

fact suggests that an assumption of statistics, i.e., canonical

ensembles, will be violated in this region, and a different type

of ensemble may reproduce the phase transition. This issue

about the breakdown of the statistical assumption, e.g., what

kind of ensemble appears, will be left as an important future

work for us. The present results suggest that the measurement

feedback of the CIM outperform the mean field approxima-

tion, especially, in terms of sampling. The performance of

physical Ising machines and algorithms inspired by them as

sampler has not been well studied. The future studies on this

issue might give us an answer to a lingering question: ”what

is the killer application of physical machines?”

Appendix A: Mean field

The mean field approximation starts with the Hamilto-

nian HMF =
∑

ij Jijsi〈sj〉 − ∑

i<j Jij〈si〉〈sj〉 with a

self-consistent condition 〈si〉 = − tanhβΦi and Φi =
∑

j Jij〈sj〉. HMF is derived from by neglecting the fluc-

tuation term 〈(si − 〈si〉)(sj − 〈sj〉)〉 ∼ 0. By consid-

ering the translational symmetry, we obtain Φi = 4J〈si〉
for a two-dimensional square lattice. The thermodynamic

quantities are as follows: the magnetization M = 〈si〉,
the internal energy U = 〈HMF 〉 =

∑

i<j Jij〈si〉〈sj〉 =

−2NJ〈si〉, the specific heat Cthermo = ∂U/∂T , and the

entropy S =
∫ T

0
Cthermo/T̄dT̄ , where derivative and inte-

gration in Cthermo and S are done numerically. Note that

thermodynamic relationship Cthermo = T∂S/∂T is surely

satisfied. By using statistical relationships, the specific heat

can be rewritten as Cstat = β2(〈H2
MF 〉 − 〈HMF 〉2) =

4β2
∑

ij

∑

kl JijJkl(〈sisk〉 − 〈si〉〈sk〉)〈sj〉〈sl〉, which re-

duces to zero. This is due to the fact that the mean field ap-

proximation neglect the fluctuation: 〈sisk〉 − 〈si〉〈sk〉 ∼ 0.

Namely, the mean-field approximation violate a relationship

between thermodynamics and statistics, i.e., Cthermo = Cstat.
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[12] F. Böhm, G. Verschaffelt, and G. Van der Sande,

Nat. Commun. 10, 3538 (2019).

[13] Y. Okawachi, M. Yu, J. K. Jang, X. Ji, Y. Zhao, B. Y. Kim,

M. Lipson, and A. L. Gaeta, Nat. Commun. 11, 4119 (2020).

[14] M. Babaeian, D. T. Nguyen, V. Demir, M. Akbulut, P.-A.

Blanche, Y. Kaneda, S. Guha, M. A. Neifeld, and N. Peygham-

barian, Nat. Commun. 10, 3516 (2019).

5

http://dx.doi.org/10.1007/s10878-014-9734-0
http://dx.doi.org/10.1103/PhysRevLett.122.213902
http://dx.doi.org/10.1038/s41467-019-11484-3
http://dx.doi.org/10.1038/s41467-020-17919-6
http://dx.doi.org/ 10.1038/s41467-019-11548-4


[15] T. Inagaki, K. Inaba, T. Leleu, T. Honjo, T. Ikuta, K. En-

butsu, T. Umeki, R. Kasahara, K. Aihara, and H. Takesue,

Nat. Commun. 12, 2325 (2021).

[16] Y. Fang, J. Huang, and Z. Ruan,

Phys. Rev. Lett. 127, 043902 (2021).

[17] A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto,

Nat. Photon. 8, 937 (2014).

[18] P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Lan-

grock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Ai-

hara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto,

Science 354, 614 (2016).

[19] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate,

T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu,

O. Tadanaga, H. Takenouchi, K. Aihara, K. I. Kawarabayashi,

K. Inoue, S. Utsunomiya, and H. Takesue, Science 354, 603

(2016).

[20] R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli,

A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba,

T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, S. Utsunomiya,

S. Kako, K. ichi Kawarabayashi, R. L. Byer, M. M. Fejer,

H. Mabuchi, D. Englund, E. Rieffel, H. Takesue, and Y. Ya-

mamoto, Sci. Adv. 5, eaau0823 (2019).

[21] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush,

V. Smelyanskiy, J. Martinis, and H. Neven, Phys. Rev. X 6,

031015 (2016).

[22] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov,

D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Sci-

ence 345, 420–424 (2014).

[23] S. Boixo, V. N. Smelyanskiy, A. Shabani, S. V. Isakov, M. Dyk-

man, V. S. Denchev, M. H. Amin, A. Y. Smirnov, M. Mohseni,

and H. Neven, Nat. Commun. 7, 10327 (2016).

[24] A. D. King, W. Bernoudy, J. King, A. J. Berkley, and T. L.

Emulating, arXiv:1806.08422 (2018).

[25] E. S. Tiunov, A. E. Ulanov, and A. I. Lvovsky, Optics Express

27, 10288 (2019).

[26] H. Goto, Sci. Rep. 6, 21686 (2016).

[27] H. Goto, K. Tatsumura, and A. R. Dixon, Sci. Adv. 5, eaav2372

(2019).

[28] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa,

H. Tamura, and H. G. Katzgraber, Front. Phys. 7, 48 (2019).

[29] Y. Haribara, H. Ishikawa, S. Utsunomiya, K. Aihara, and Y. Ya-

mamoto, Quantum Sci. Tech. 2, 044002 (2017).

[30] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting, F. Al-

tomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson, S. Huang,

E. Ladizinsky, A. MacDonald, G. Marsden, T. Oh, G. Poulin-

Lamarre, M. Reis, C. Rich, Y. Sato, J. D. Whittaker, J. Yao,

R. Harris, D. A. Lidar, H. Nishimori, and M. H. Amin,

arXiv:2202.05847 (2022).

[31] T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Ya-

mada, T. Kazama, K. Enbutsu, T. Umeki, R. Kasahara, K. ichi

Kawarabayashi, and H. Takesue, Sci. Adv. 7, eabh0952 (2021).

[32] Y. Yamada and K. Inaba, Adiabatic Quantum Comput-ing Con-

ference (AQC) (2021).

[33] Y. Yamamoto, K. Aihara, T. Leleu, K. i. Kawarabayashi,

S. Kako, M. Fejer, K. Inoue, and H. Takesue, npj Quantum

Information 3, 49 (2017).

[34] H. Takesue, Y. Yamada, K. Inaba, T. Ikuta, Y. Yonezu, T. Ina-

gaki, T. Honjo, T. Kazama, K. Enbutsu, T. Umeki, and R. Kasa-

hara, arXiv:2301.12607 (2023).

[35] G. L. Bilbro, R. Mann, T. K. Miller, W. E. Snyder, D. E. V. D.

Bout, and M. W. White, Advances in Neural Information Pro-

cessing Systems 1, 91 (1989).

[36] L. Onsager, Phys. Rev. 65, 117 (1944).

[37] E. W. Montroll and R. B. Potts, J. Math. Phys. 4, 308 (1963).

[38] F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

[39] D. P. Landau, S.-H. Tsai, and M. Exler, Brazilian Journal of

Physics 34, 354 (2004).

6

http://dx.doi.org/10.1038/s41467-021-22576-4
http://dx.doi.org/ 10.1103/PhysRevLett.127.043902

