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ABSTRACT

A function f from Z to the symmetric matrices over an arbitrary
field K of characteristic 0 is a 1-quasihomomorphism if the matrix
f(x+y) — f(x) — f(y) has rank at most 1 for all x, y € Z. We show
that any such 1-quasihomomorphism has distance at most 2 from
an actual group homomorphism. This gives a positive answer to a
special case of a problem posed by Kazhdan and Ziegler.
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1 INTRODUCTION

We continue the program initiated in [1] of studying particular
instances of a problem posed by Kazhdan and Ziegler in their work
on approximate cohomology [2]. We are given a function f that
behaves roughly like a homomorphism, in the following manner.

Definition 1.1. Let (H,+) be an abelian group. A normon H is a
map || - || : H — R such that

o ||x|| > 0 for all x € H, with equality if and only if x = 0,

o [lx+yll < [lx[| +[ly|l for all x,y € H,

e || —x|| = ||x|| for all x € H.

Note that equipping H with a norm is equivalent to equipping it
with an equivariant metric d, that is, a metric such that d(x,y) =
d(x+z,y+z) forall x, y, z € H; the connection is given by d(x, y) =
llx = yll.

Definition 1.2. Let (G,+) and (H, +) be abelian groups, where H

is equipped with a norm || - ||. A map f : G — H is a c-quasihomo-
morphism (where c € Rxo) if for all x, y € Z we have that
If(x+y) = f(x) = fF)ll <c 1

The natural question is whether every c-quasihomomorphism
can be approximated by an actual group homomorphism.

Question 1.3. Fix G, H and c. Does there exist a constant C € Rx¢
such that for every c-quasihomomorphism f : G — H, there exists a
group homomorphism ¢ : G — H such that

VxeG: |If(x)—eM)ll <C

A variant of this question, where G = H and G can be nonabelian,
was asked already by Ulam [3, Chapter VI.1] in 1960. Our case of
interest is when G = Z is the additive group of integers, and H is
the additive group of matrices over some field K, where the norm
is given by the rank. The argument from [1, Remark 1.11] shows
that in this case the answer is affirmative for fields of positive
characteristic. For the rest of the paper, we will fix a field K of
characteristic 0. Note that every group morphism ¢ : Z — H is of
the form ¢(x) = x - A, where A € H is a fixed element.
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Question 1.4. Fixc € N. Does there exist a constant C € Rx¢ such
that for every natural number n and every c-quasihomomorphism
f:Z — Mat(n xn,K), there exists a matrix A € Mat(nx n,K) such
that

Vx€eZ: rk(f(x)—x-A)<C.

This is the instance of Question 1.3 asked by Kazhdan and Ziegler.
It was answered affirmatively in [1] under the assumption that f
lands in the space of diagonal matrices and by choosing C = 28c.
In this paper, we study the case ¢ = 1. We are able to prove a much
better bound than the predicted C = 28: indeed, the constant C can
be chosen equal to 2. Moreover, we can weaken the assumption
that f lands in the space of diagonal matrices.

Theorem 1.5. Assume char(K) = 0 and let Sym(n X n,K) be the
space of symmetric matrices. If f : Z — Sym(n X n,K) is assumed to
be a 1-quasihomomorphism, there is an A € Sym(n X n,K) such that

tk(f(x)—x-A) <2 VxelZ (2)

The rest of this paper is devoted to proving Theorem 1.5. The
strategy is to prove that the sequence of consecutive differences
Ag(i) = f(i+1) — f(i) satisfies two kinds of symmetries. One is a
reflection symmetry in a local sense, which we call palindromicity.
The other is a periodicity. By expressing f as a sum of deltas, and
applying the symmetries, we arrive to the result.

2 LEMMAS ABOUT SYMMETRIC MATRICES

In this section we prove some elementary lemmas about symmetric
matrices that we will use later during the proof. Let (-, -) be the
bilinear form on K" given by

(x,y) == x1y1+ - + XnyYn

for all x,y € K. Then an n X n matrix over K is symmetric if that
(Ax,y) = (x, Ay) for all x,y € K™.

Lemma 2.1. Let A € Sym(n X n,K). Then im(A) = ker(A)=.

PRroOF. Since our bilinear form is nondegenerate we see that
Ax=0 & (Ax,y) =0 Vy & (x,Ay) =0 Vy.
Therefore,
x € ker(A) & x L im(A),

which means that im(A) = ker(A)* . O

Lemma 2.2. Let A, B be symmetric matrices. Moreover, suppose that
im(A) Nim(B) = 0. Then rk (A + B) = rk (A) + rk (B).



Proor. We always have inequalities
rk (A + B) = dimim(A + B)
< dim(im(A) + im(B))
< dim(im(A)) + dim(im(B))
=1k (A) +rk (B).
Our assumption im(A) N im(B) = 0 implies that the second “<" is
an equality. We show that the first “<" is an equality as well. For
this we need to show that im(A + B) = im(A) + im(B). Taking L of
both sides and applying Lemma 2.1, this is equivalent to showing
ker(A + B) = ker(A) N ker(B). But this again follows from our
assumption im(A) N im(B) = 0:
veker(A+B) = Av=-Bv =
Av=Bov=0 = o € ker(A) Nker(B). O

In fact, we will only need the following corollaries:

Corollary 2.3. Let A, B be symmetric matrices. If tk (B) = 1 and
im(B) ¢ im(A), thentk (A+ B) =1k (A) + 1.

ProorF. This is just the main claim for B of rank one. O

Corollary 2.4. Let A € Sym(n X n,K) with rk (A) < 2. Assume
there are three rank-1 symmetric matrices B; (i = 1,2,3) such that
dim(im(Bp) + im(Bz) + im(B3)) = 3 andrk (A-B;) < 1 fori =
1,2,3. Then A =0.
PRrROOF. Suppose by contradiction that rk (A) > 1. Then
rk(A—-B;j) <1< 2<rk(A) +1k(Bj),

thus by the contraposition of Lemma 2.2, it follows that im(B;) C
im(A). However, this would imply that

3 = dim(im(By) + im(Bz) + im(B3)) < dim(im(A)) =rk (4) < 2,

which is a contradiction. O

3 DELTA SEQUENCE
We begin by arguing that without loss of generality, we can assume

that f(1) = 0. This follows from the following observation.

Observation 3.1. Let H be a normed abelian groupand f : Z — H
any function. If g is defined by
9(x) =f(x) +x-C,

where C € H, then:

e fisa l-quasihomomorphism if and only if g is.

e We have that

If(x) —x-Al <2 & lg(x) —x-A'| <2,
where A= A-C

Hence, by choosing C = —f(1), we see that proving Theorem 1.5

under the additional assumption f(1) = 0 is enough to prove it in
general.

From now on we always assume f(1) = 0. This allows us to
reformulate the condition of f being a 1-quasihomomorphism in
terms of a difference operator on f.

Definition 3.2. Given a function f : Z — H, we define its delta
map Agp(x) :Z — H as

Ap(x) = f(x+1) = f(x).

Tim Seynnaeve, Nafie Tairi, Alejandro Vargas

Remark 3.3. If f(1) = 0, we can write f in terms of A

x—1
Fx) =" Ap(i) forx > 1, 3)
i=1
and .
f(x) = —Z A (i) for x < 0. )
=0
A

Lemma 3.4. Let f : Z — H be a map with f(1) = 0. The map f is
a c-quasihomomorphism if and only if for allk € Z>( and z € Z we
have

k k
ZAf(i)—ZAf(z—i) <c (5)
i=1 i=0
k k-1
ZAf(—i)—ZAf(z—i) <c. (6)
i=0 i=0

ProoF. In essence, this is just plugging in Equations (3) and (4)
into Equation (1). We present the proof in a slightly different way,
to avoid doing case distinctions on the signs of x, y, and x + y.
Calculate:

k k
ZA(i)—ZA(z—i) =
i=1 i=0
k k
DUFG+D) = fi)] = D [fz—i+1) = fz= )] =
i=1 i=0
flk+1)+f(z—k) - f(z+1).
By setting x = k + 1,y = z — k, we see that Equation (5) holds if
and only if the c-quasihomomorphism condition (1) is fullfilled for
x € Z»1 and y € Z. Similarly, calculate:

k k-1
Z A(=i) — Z Az—i) =
i=0 i=0
k k-1
DUfi+ D) = f(=D] = Y [fz=i+ 1) = flz=i)] =
i=0 i=0
—f(-k)—f(z+ 1)+ f(z+1-k).
By setting x = —k,y = z + 1, we see that Equation (6) is equivalent
to the quasihomomorphism condition for x € Z<p and y € Z, and
we are done. O

In particular, Condition (5) for k = 0 states that ||A(y)|| < ¢ for
ally e Z.

Notation 3.5. For the rest of this paper, f will denote a 1-quasi-
homomorphism Z — Sym(n x n,K) with (1) = 0; its delta map
Ay will be denoted by A. We will denote im(A(i)) by L;. Since
rk (A(i)) < 1, we have that dim(L;) < 1.

Note that if dim(}};¢7 Li) < 2, then by (3) and (4) we also have
rk (f(x)) < 2 for all x € Z, and Theorem 1.5 is true with A = 0. So
from now on we will assume:

Assumption 3.6. dim(};c7z L;) > 3.

Then we can make the following observation.
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Lemma 3.7. If Assumption 3.6 holds, then A(0) + A(-1) = 0.

ProoF. Note that Equation (6) for k = 1 tells us that forall z € Z
we have
rk (A(0) + A(-1) — A(z)) < 1.
By Assumption 3.6, we can apply Corollary 2.4 to conclude that
A(0) + A(-1) =0. O

Observation 3.8. Still working under Assumption 3.6, now Equa-
tion (6) for k > 0 can be rewritten as

k+1 k
rk (Z A(—i)—ZA(y—i)) <1 @)
i=2 i=0

Note the symmetry: if we define A(x) := A ~(—1 —x), then A satisfies
the assumptions (5) and (7) if and only if A does.

| AGR=1) e A-2) A=) A(k)|m

k k k+1

A(O)|A(1)

Az—k) - A@R)|...

Figure 1: Equation (5) says that the sum of the right red block and the sum of
the blue block differ by a rank one matrix. Similarily, Equation (6) says that the
sum of the left red block and the sum of the blue block differ by a rank one

matrix.

Next, note that if dim(};ez Li) > 3butdim(};ez) {01} Li) < 2,
it still holds that rk (f(x)) < 2 for all x € Z. So we will replace
Assumption 3.6 with something slightly stronger:

Assumption 3.9. dim(};ez) (0,-1) Li) = 3.

Under this assumption, we will show that A needs to have a very
specific structure.

4 PALINDROMICITY

Now we show that A satisfies a property reminiscent of palin-
dromes.

Notation 4.1. For m € N, write
Vim=L_m—1+---+Lo+L1+...+Ly. 8)

Note that L_1, Ly are not part of the sum. Assumption 3.9 precisely
says that there exists an m with dim V,, > 3.

Lemma 4.2. Let m be such that Vi, 2 Vip—1.
(1) Foralli € {1,...,m — 1} we have that
Ay =A(m-i)=A(-i—-1)=A(i-m-1). 9)
(2) Moreover, if dim Vy,, > 3, it holds that
A(m+1)=-A(m) and A(-m-2)=-A(-m-1).
In particular, Ly, = Lipy1 and L_yy— = L_pp—1.
Remark 4.3. To state Lemma 4.2 more visually: if V;, 2 V-1 and

dim V;;, > 3, then A has the following structure:

i |-m-2 -m-1 -1 0

o m m+1
A(i)‘ a -« ab -~ ba p -pab - ’

bay -y
A

Proor. For Item (1) we show 3 equalities for i € {1,...,m — 1}:

e A(i) = A(m — i), which encodes palindromicity of the right
blue block;
e A(m —i) = A(—i — 1), which encodes equality of the blocks;
e A(—i—1) = A(i — m — 1), which encodes palindromicity of
the left blue block.
Note that the third equality follows from the first two by substitut-
ing i for m — i. By symmetry (cfr. Observation 3.8) we may assume
that L, & Vip—1.
We first prove the identity A(i) = A(m — i) by induction on i.
For the base case i = 1, observe that setting k = 1 and z = m in
Equation (5) gives

rk (A(1) —=A(m—1) — A(m)) < 1.

By Corollary 2.3 we get that A(1) = A(m — 1). For the case i = 2,
we put k = 2 and z = m in Equation (5):

rk (A(1) +A(2) - A(m—2) - A(m—1) — A(m)) < 1.

Using A(1) = A(m — 1) and Corollary 2.3 we find A(2) = A(m - 2).

One proceeds in a similar fashion for higher i. Namely, if the
equality is true for i, one gets the equality for i+ 1 from Equation (5)
by setting k = i + 1 and z = m. The equality A(m — i) = A(-i— 1)
is proven analogously, using Equation (7).

For Item (2), we want to show that A(m+1) + A(m) =0.If i is
in {1,...m — 1,m}, Equation (5) for z = m + 1 and k = i, combined
with (9), imply that

rk (A(m+1) + A(m) — A(i)) < 1.

When iisin {-m—1,-m,..., -2} the same equation can be derived
from Equation (7) for z=m+ 1 and k = —i — 1. Since dim V};, > 3,
by Corollary 2.4 this implies that A(m + 1) + A(m) = 0. The proof
that A(—m — 2) + A(—m — 1) = 0 is analogous. Finally we have that
Ly =im(A(m)) = im(A(m + 1)) = Liy4+1, and analogously for the
other one. O

5 APAP SEQUENCES

Now, our aim is to show that the finite pattern observed in Section 4
can be extended to infinity. We call a sequence satisfying this pattern
APAP, meaning almost periodic almost palindromic. In this section,
we define APAP sequences and prove some general lemmas; in the
next section we will show that our delta sequence is APAP. For the
purposes of this section, H can be any abelian group.

Definition 5.1. A sequence (A(i))f\i:}\[, with A(i) € H is APAP
with period p € [2,N], if

A(i+p)=A@) ifiz—-1lor0 modp, (10)
A(-1)+A()=0 Vje{-N+1,...,N — 1} with p|j,

11)

Ap-1-i)=A3G) Vi=1,...,p-2. (12)

From now on we will refer to the respective Conditions (10), (11),
(12). We call A(1), ..., A(p — 3), A(p — 2) the palindromic block, and
will write Bp for the “block sum" A(1) +-- -+ A(p — 2).

Remark 5.2. The next two pictures illustrate how an APAP se-

quence looks like. First we see a global picture:



The blue box represents the palindromic block, whereas the red
circles represent the p-cancellation. Eack box has length p — 2. Note
that while the blue box is always meant to be the same, the red
circles are not.

Next, we see the same picture but now zoomed in:

i |(a=1)p-1 (a-1p ap -1
A(i)‘ a -a ab - ba P

i |ap (a+Dp-1 (a+1)p
A(i)‘—ﬂ ab - ba Y -y

In this picture we see the cancellation in red and the palindromic
block in blue. A

The following result is a quick calculation that uses the three
properties of being an APAP sequence.

Lemma 5.3. Let (A(i))?:]:]l\] be an APAP sequence with period p. For
any k € Zxy, the sum of any kp consecutive elements in (A(i))f\i:}v,
where the index of the first element is not a multiple of p is constant.

Moreover, this constant equals k - Bp. O
Our first source of APAP sequences is Lemma 4.2:

Lemma 5.4. Let m be such that Vy,, 2 Vi—1 and dim 'V, > 3. The
sequence (A(i))i";lZ is APAP with period m + 1. Moreover, for any
other period p that makes this sequence APAP we have that p|m + 1.

Proor. Since dimV;;, > 3, the sequence (A(i))'_"r:’ll_2 is APAP
with period m + 1 by the two items of Lemma 4.2. Now suppose
that (A(i))T’:l_2 is APAP with period p. Since V;; 2 V-1 at least
one of Ly, & Vip—1 or L_py—1 & Vi1 is true. By the symmetry from
Observation 3.8 we assume the former.

Suppose that p does not divide m + 1, som # —1 mod p. If
additionally we have that m £ 0 mod p, then A(m) = A(j) with
Jj the residue of m divided by p. Since j < p < m + 1, we get
A(m) = A(j) is in Vp—1, a contradiction. To finish, assume that
m =0 mod p, sothen A(m — 1) + A(m) = 0, which again implies
that A(m) is in Vj;—1, a contradiction. O

Next, we use the last claim from Lemma 5.4 to study how two
distinct APAP structures on the same sequence interact. We apply
this result in Claim 6.3.

Lemma 5.5. Let (A(i))f\:’:}v be APAP with period p. Suppose there
isaq € [2,p— 1] such that

(1) A(i) = A(i+q) fori=1,...,p — q— 2 (q-periodicity),

(2) A(i) =A(q—1-1i) fori=1,...,q— 2 (palindromicity of the

first q — 2 elements),

(3) Alg=1) +Alg) =0,
Write g = ged(p, q). If g > 1 then A is APAP with period g. If g = 1
then all A(i) are the same up to a sign.

We will deduce this using the following easy number-theoretic
lemma:

Lemma 5.6. Letq < p be integers and write g = gcd(p, q). Consider
the equivalence relation ~ on Z generated by:

e x ~yifx =y mod q (g-periodic),

e x ~q—1—xforxin{0,...,q— 1} (g-palindromic),

e x~p—1—xforxin{0,...,p— 1} (p-palindromic).
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Then we have that x ~ y ifand only ifx =y mod gorx+y = -1
mod g.

PRrROOF OF LEMMA 5.6. We first show ~ is also p-periodic. For
this, take any x € Z, and let m € Z be the unique integer for which
p—q<x-mq<p- 1 Indeed,

x~x-mg~p-1-(x—-mq)~q—-1-(p—-1-x+mq)
=x-p-(m-1)g~x-p.
In the previous calculation, x — mgq is contained in {0,...,p — 1}
and p—1—(x—mgq)isin{0,...,q— 1}, so the operations are valid.
The combination of g-periodicity and p-periodicity is equivalent
to g-periodicity, namely x ~ y when x = y mod g. Additionally,
palindromicity gives x ~ y when x + y = -1 mod g. Indeed, by
g-periodicity we may assume that x is in {1,...,g — 1}, then by
g-palindromicity and periodicity we have that x ~ ¢ =1 - x ~
“1-x~uy. a

PRrROOF OF LEMMA 5.5. We first consider the case g > 1. Let us
write [a]4 for the unique integer in {1,..., g} that is congruent to
a modulo q.

Claim 5.7. It suffices to check the APAP property on the interval
[1, g]. In other words: if we verify the identities
(@) A(i)) =A(i+g) forie{1,...,.q—g—2}withi # —1or0
mod g,
(b) A(kg—1)+A(kg) =0fork=1,...,9/g,
(©) A(i))=A(g—-1-i)fori=1,...,9-2,
then A is APAP with period g.

Proor. For palindromicity there is nothing to prove. For period-
icity: given any i # —1 or 0 mod g, we have

AG) = A(lilp) = A[lilplq) = A(lilg),
where we used p-periodicity, g-periodicity, and (a).
Cancellation is similar: if p|j then A(j) = —A(j — 1) by p-cancel-
lation; if g | j but p 4 j then we can use p-periodicity, g-periodicity,
and (b) to find

A =1 +A3G) = AL - 1p) + ALi]p)
=A([[ = 1plg) + A([LiTplg) = 0. o

We now verify the conditions (a), (b), (c) above. For this, we
formally define the g-periodic map A:Z — Hby A(i) = A([i]q).
Since A and A agree on the interval [1,q], by Claim 5.7 we may
work now with A instead. We consider the equivalence relation
~ from the previous lemma. Then showing (a) and (c) amounts to
showing that A is constant on every equivalence class except for
the one generated by 0. Indeed, two numbers x and y in the same
equivalence class can be connected by a chain as in Lemma 5.6, and
the only case this doesn’t imply an equality of A is when x = 0,
q — 1, or p — 1, but then we are in the bad equivalence class.

We are left with showing (b). For this, we in fact will prove
the stronger claim that Akg—1) =A(kg) =0fork =1,.. . q/g.
Viewing A as a map Z/qZ — H, we claim that

Ay =A(p-1-i) (13)
for every i € Z/qZ. The only nontrivial caseis i = 0:if g = p — 1
then A(0) = A(g) = A(p—1),and if g < p — 1 then by g-periodicity
and p-palindromicity we get A(0) = A(q) = A(p—1-q) = A(p—-1).
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This naturally leads us to the sequence
A0), A(p = 1), A(=p),...., A(=(k = 1)p), Alkp = 1), A(=kp), ...

Besides having A(—(k — 1)p) = A(kp — 1) by Equation (13), we
also have A(kp — 1) = A(=kp) by A(i) being APAP with period p,
except when [kplq — 1 = 0 or [kp]q = 0. Since g > 1, we never
have [kp]q = 1. Thus, we let b = g be the smallest natural number
such that [bp]4 = 0, so we get

A(0)=A(p—1) =A(-p) =+ = A(=(b - 1)p) = A(bp — 1).

Note that the set of arguments in the above chain of equalities
contains every x € Z/qZ that is congruent to 0 or —1 modulo g.
Moreover, since A(g — 1) + A(g) = 0, we get A(bp — 1) = —A(0),
rendering the whole sequence equal to 0, as desired.

Now assume that g equals 1. By g-periodicity it suffices to show
that A(1),...,A(q) are equal up to a sign. We define A as above,
and let a be the smallest natural number such that [ap]q = 1. Then,
by similar arguments, we find that

AO)=A(p-1)=A(-p) == A(=(a-1)p) =
=A(ap-1)=-A(ap) =---
=-A(gp - 1) = A(0).

Note that above, since g = 1 we have that [ap]4 = 0 for the first
time when a = q. So we find that all the A(x), for x € Z/qZ, are
equal up to a sign, as desired. O

6 THE DELTA SEQUENCE IS APAP

In the following theorem we use the same notation as before,
i.e. given a 1-quasihomomorphism f we denote by L; the space

im(Af(0)).

Theorem 6.1. Let f : Z — Sym(n X n,K) be a 1-quasihomomor-
phism. Assume that dim(X;ez\ (0,1} Li) = 3. We can find a natural
number p such that Ay is APAP with period p. Moreover, p can be
chosen such that dim(Ly + --- + Lp—2) < 2; hence in particular
rk (Bp) < 2.

ProoOF OF THEOREM 6.1. Let m be minimal such that dim V,;, > 2.
By Lemma 4.2 we have that the sequence (A(i) ,V:ltlm,z is APAP
with period m + 1. Let p be the minimal positive integer such that
(A(i))l."iﬂn_z is APAP with period p. By Lemma 5.4 we have that
p is a divisor of m + 1. We will show that the entire sequence
(A(i);2_, is APAP with period p. Then, using minimality of m,
we get that

dim(L; +---+ Lp—Z) = dim Vp—Z <2

which implies that rk (Bp) < 2.

Now, assume that for some N the sequence (A(i))f\i :Jl\l is APAP
with period p. We will simultaneously extend the sequence by one
on both sides, and show (A(l’))f\zl_N_1 is still APAP with period p;
thus proving the theorem by induction.

We have three cases. If N = —1 mod p there is nothing to prove,
as illustrated in the following picture.

i | co N N

a0 | [—p—

Figure 2: Here we see that for i = —N and i = N — 1 we start and end with the
palindromic block. Our Definition of APAP is not dependent of what entry we
putnextfori=Nandi=-N-1.

Next, assume that N = 0 mod p. This case is illustrated as
follows:

i | SNA N

A<x>| (J 13 | I 06 I ¢

Figure 3: Here our A starts for i = N with an "end-cancellation”, e.g. —« and
it ends with another "start-cancellation”, e.g. y. Keeping our global picture in
mind, we can see that the sum of the entries A(-N — 1) and A(—N), resp.
A(N —1) and A(N), should be zero.

So we need to show A(N — 1) + A(N) = 0 and A(-N - 1) +
A(—N) = 0. We reason analogously to the proof of Item (2) from
Lemma 4.2. Equations (5) and (7) yield

rk (A(i) = A(N = 1) = A(N)) < 1

foriin {-N,...,N—1}\{-1,0}. Since dim V},, > 2, there are three
indices i with linearly independent L;, so by Corollary 2.4 we get
that A(N — 1) + A(N) = 0. The other equality follows analogously.

For the last case, assume that N # —1,0 mod p.

Let i be the residue of N when dividing by p. Now A(N) and
A(—N —1) are both in a palindromic block, and we want to show
that A(N) = A(i) = A(~N —1). We only prove the first equality,
the second one being analogous.

We will prove that A(N) = A(i) by contradiction in two steps:

(1) Suppose that A(N) # A(i), then Ly ¢ V5.

(2) Ly ¢ V3 leads to a contradiction with minimality of p.

Claim 6.2. Suppose that A(N) # A(i), then Ly ¢ Va.

Proor. Apply Equation (5) with k = m and z = N to get:

rk ZA(j)—ZA(N—j) <1
j=1 j=0

Rewrite the sum inside the previous expression as

m+1 m+1
—A(m+1)+ZA(j) (AN -AN-m-1)+ > AN-j)|.
j=1 j=1

Note that by induction hypothesis both Z;":ll A(j) and Z;":il A(N-
Jj) are sums of m + 1 consecutive elements in an APAP sequence,
and recall that m + 1 is a multiple of p, so Lemma 5.3 implies that

both sums cancel each other. Since N —m —1 =i mod p, we have
rk (A(i) + A(m) = A(N)) < 1.

Note that L, ¢ Vo but L; C Va. So if also Ly € V3 this would imply
Ly, ¢ im(A(i) — A(N)), but then Corollary 2.3 yields

tk (A() + A(m) — A(N)) = rk (A(i) = A(N)) +1 > 2,

which is a contradiction. m]



Claim 6.3. If Ly ¢ V2, we get a contradiction with the minimality
of p.

Proor. We write ¢ = i + 1, where i is still the residue of N
modulo p. We will apply Lemma 5.5 to show that (A(i))f\:’ :}V is
APAP with period equal to gcd(p, g). For this, we need to verify the
three conditions.

Write N = ap + g — 1. We apply Equation (5) with k = 1 and
z=N:

tk (A(1) = (A(N) + AN = 1))) < 1. (14)

Since our sequence is APAP with period p, we find that
A(N -1) =A(ap+q—2) =A(g - 2), hence

rk (A(1) = (A(N) + A(g—2))) < 1. (15)
Since Ly ¢ V2 but L1, Lg—2 C V2, we can apply Corollary 2.3 to A =

A(1) —A(q—2) and B = A(N) to conclude that A(1) —A(g—2) = 0.

Repeating the argument for k = 2,...,q — 2, we find that
Ak)=A(g—1-k)fork=1,...,q-2,

showing Condition (2) of Lemma 5.5.
For k = g — 1, we find

tk (A(g—1) = (A(N) + A(ap))) < 1,

but now L) need not be in V2 and we don’t get any new information.

However, for k = g, we get
rk (A(qg — 1) + A(q) — (A(N) + A(ap) + A(ap —1))) < 1.
Now we know that A(ap) + A(ap — 1) = 0 and conclude that
Alg—-1)+A(g) =0,

which shows Condition (3) of Lemma 5.5.
Now we continue with k = g + 1:

rk (A(g+1) = (A(N) + A(ap — 2))) < 1.

But we know that A(ap — 2) = A(p — 2) = A(1), and hence we
conclude

A(g+1) =A(1).
We can continue this up to k = p — 2, and find that
Ak)y=A(k-q)fork=q+1,...,p—2, (16)

which is Condition (1) of Lemma 5.5. We have verified all conditions,

hence it holds that (A(i))ﬁj\] is APAP with period g := ged(p, ).

Hence, the shorter sequence (A(i))™*! _, is APAP with period g

i=—m
strictly less than p; contradicting our choice of p. ]
This finishes our induction, and thus the proof. ]

7 PROOF OF THE MAIN RESULT
Putting everything together we get:

Proor oF THEOREM 1.5. By Theorem 6.1 we find that A is APAP
with period p. Define
By _ A+ +A(p-2) _ f(p—1)
p p p

We will show that Equation (2) holds with this A. We restrict to
the case x > 1; the other case being analogous. Write x = ap +r

A=

Tim Seynnaeve, Nafie Tairi, Alejandro Vargas

with 1 <r < p. If x > 1,we have that f(x) = A(1) +--- + A(x - 1).
Applying Lemma 5.3 we get that:
flx)=A1)+---+A(x—1)
r—1
=aBp + Z A(ap + j)
j=1
r—1
:apA+ZA(ap+j). 17)
j=1
We have two cases. First, we assume that r = p. Equation (17)
becomes
p-1
fx) = apA+ )" Aap +))
j=1
p-2
:apA+ZA(ap+j)+A(x— 1)
Jj=1
=apA+pA+A(x—1)=xA+A(x-1).
It follows that
rk (f(x) —xA) =1k (A(x - 1)) < 1.

If r < p, Equation (17) becomes
r—1
fx) =apA+ Y AG).
j=1

In particular im(f(x) — x - A) C Z‘f:_lz L;. But by Theorem 6.1,
dim }}; L; < 2, and hence rk (f(x) — xA) < 2. o
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