One-quasihomomorphisms from the integers into symmetric matrices

Tim Seynnaeve KU Leuven Belgium tim.seynnaeve@kuleuven.be Nafie Tairi Universität Bern Switzerland nafie.tairi@unibe.ch Alejandro Vargas Nantes Université France alejandro@vargas.page

ABSTRACT

A function f from $\mathbb Z$ to the symmetric matrices over an arbitrary field K of characteristic 0 is a 1-quasihomomorphism if the matrix f(x+y)-f(x)-f(y) has rank at most 1 for all $x,y\in\mathbb Z$. We show that any such 1-quasihomomorphism has distance at most 2 from an actual group homomorphism. This gives a positive answer to a special case of a problem posed by Kazhdan and Ziegler.

KEYWORDS

Quasihomomorphisms, rank metric, linear approximation

1 INTRODUCTION

We continue the program initiated in [1] of studying particular instances of a problem posed by Kazhdan and Ziegler in their work on approximate cohomology [2]. We are given a function f that behaves roughly like a homomorphism, in the following manner.

Definition 1.1. Let (H,+) be an abelian group. A *norm* on H is a map $\|\cdot\|: H \to \mathbb{R}$ such that

- $||x|| \ge 0$ for all $x \in H$, with equality if and only if x = 0,
- $||x + y|| \le ||x|| + ||y||$ for all $x, y \in H$,
- ||-x|| = ||x|| for all $x \in H$.

Note that equipping H with a norm is equivalent to equipping it with an equivariant metric d, that is, a metric such that d(x, y) = d(x+z, y+z) for all $x, y, z \in H$; the connection is given by d(x, y) = ||x-y||.

Definition 1.2. Let (G, +) and (H, +) be abelian groups, where H is equipped with a norm $\|\cdot\|$. A map $f: G \to H$ is a c-quasihomomorphism (where $c \in \mathbb{R}_{\geq 0}$) if for all $x, y \in \mathbb{Z}$ we have that

$$||f(x+y) - f(x) - f(y)|| \le c.$$
 (1)

The natural question is whether every c-quasihomomorphism can be approximated by an actual group homomorphism.

Question 1.3. Fix G, H and c. Does there exist a constant $C \in \mathbb{R}_{\geq 0}$ such that for every c-quasihomomorphism $f: G \to H$, there exists a group homomorphism $\varphi: G \to H$ such that

$$\forall x \in G: ||f(x) - \varphi(x)|| \le C.$$

A variant of this question, where G=H and G can be nonabelian, was asked already by Ulam [3, Chapter VI.1] in 1960. Our case of interest is when $G=\mathbb{Z}$ is the additive group of integers, and H is the additive group of matrices over some field \mathbb{K} , where the norm is given by the rank. The argument from [1, Remark 1.11] shows that in this case the answer is affirmative for fields of positive characteristic. For the rest of the paper, we will fix a field \mathbb{K} of characteristic 0. Note that every group morphism $\varphi:\mathbb{Z}\to H$ is of the form $\varphi(x)=x\cdot A$, where $A\in H$ is a fixed element.

Question 1.4. Fix $c \in \mathbb{N}$. Does there exist a constant $C \in \mathbb{R}_{\geq 0}$ such that for every natural number n and every c-quasihomomorphism $f : \mathbb{Z} \to \operatorname{Mat}(n \times n, \mathbb{K})$, there exists a matrix $A \in \operatorname{Mat}(n \times n, \mathbb{K})$ such that

$$\forall x \in \mathbb{Z} : \operatorname{rk} (f(x) - x \cdot A) \leq C.$$

This is the instance of Question 1.3 asked by Kazhdan and Ziegler. It was answered affirmatively in [1] under the assumption that f lands in the space of diagonal matrices and by choosing C=28c. In this paper, we study the case c=1. We are able to prove a much better bound than the predicted C=28: indeed, the constant C can be chosen equal to 2. Moreover, we can weaken the assumption that f lands in the space of diagonal matrices.

Theorem 1.5. Assume char(\mathbb{K}) = 0 and let $\operatorname{Sym}(n \times n, \mathbb{K})$ be the space of symmetric matrices. If $f : \mathbb{Z} \to \operatorname{Sym}(n \times n, \mathbb{K})$ is assumed to be a 1-quasihomomorphism, there is an $A \in \operatorname{Sym}(n \times n, \mathbb{K})$ such that

$$\operatorname{rk}(f(x) - x \cdot A) \le 2 \quad \forall x \in \mathbb{Z}.$$
 (2)

The rest of this paper is devoted to proving Theorem 1.5. The strategy is to prove that the sequence of consecutive differences $\Delta_f(i) = f(i+1) - f(i)$ satisfies two kinds of symmetries. One is a reflection symmetry in a local sense, which we call palindromicity. The other is a periodicity. By expressing f as a sum of deltas, and applying the symmetries, we arrive to the result.

2 LEMMAS ABOUT SYMMETRIC MATRICES

In this section we prove some elementary lemmas about symmetric matrices that we will use later during the proof. Let (\cdot, \cdot) be the bilinear form on \mathbb{K}^n given by

$$(x,y) \coloneqq x_1y_1 + \cdots + x_ny_n$$

for all $x, y \in \mathbb{K}^n$. Then an $n \times n$ matrix over \mathbb{K} is symmetric if that (Ax, y) = (x, Ay) for all $x, y \in \mathbb{K}^n$.

Lemma 2.1. Let $A \in \text{Sym}(n \times n, \mathbb{K})$. Then $\text{im}(A) = \text{ker}(A)^{\perp}$.

PROOF. Since our bilinear form is nondegenerate we see that

$$Ax = 0 \iff (Ax, y) = 0 \ \forall y \iff (x, Ay) = 0 \ \forall y.$$

Therefore,

$$x \in \ker(A) \iff x \perp \operatorname{im}(A),$$

which means that $im(A) = ker(A)^{\perp}$.

Lemma 2.2. Let A, B be symmetric matrices. Moreover, suppose that $im(A) \cap im(B) = 0$. Then rk(A + B) = rk(A) + rk(B).

PROOF. We always have inequalities

$$\operatorname{rk}(A + B) = \dim \operatorname{im}(A + B)$$

$$\leq \dim(\operatorname{im}(A) + \operatorname{im}(B))$$

$$\leq \dim(\operatorname{im}(A)) + \dim(\operatorname{im}(B))$$

$$= \operatorname{rk}(A) + \operatorname{rk}(B).$$

Our assumption $\operatorname{im}(A) \cap \operatorname{im}(B) = 0$ implies that the second " \leq " is an equality. We show that the first " \leq " is an equality as well. For this we need to show that $\operatorname{im}(A+B) = \operatorname{im}(A) + \operatorname{im}(B)$. Taking \perp of both sides and applying Lemma 2.1, this is equivalent to showing $\ker(A+B) = \ker(A) \cap \ker(B)$. But this again follows from our assumption $\operatorname{im}(A) \cap \operatorname{im}(B) = 0$:

$$v \in \ker(A + B) \implies Av = -Bv \implies$$

 $Av = Bv = 0 \implies v \in \ker(A) \cap \ker(B).$

In fact, we will only need the following corollaries:

Corollary 2.3. Let A, B be symmetric matrices. If $\operatorname{rk}(B) = 1$ and $\operatorname{im}(B) \not\subset \operatorname{im}(A)$, then $\operatorname{rk}(A+B) = \operatorname{rk}(A) + 1$.

PROOF. This is just the main claim for B of rank one. \Box

Corollary 2.4. Let $A \in \operatorname{Sym}(n \times n, \mathbb{K})$ with $\operatorname{rk}(A) \leq 2$. Assume there are three rank-1 symmetric matrices B_i (i = 1, 2, 3) such that $\dim(\operatorname{im}(B_1) + \operatorname{im}(B_2) + \operatorname{im}(B_3)) = 3$ and $\operatorname{rk}(A - B_i) \leq 1$ for i = 1, 2, 3. Then A = 0.

PROOF. Suppose by contradiction that $\operatorname{rk}(A) \geq 1$. Then

$$\operatorname{rk}(A - B_i) \le 1 < 2 \le \operatorname{rk}(A) + \operatorname{rk}(B_i)$$

thus by the contraposition of Lemma 2.2, it follows that $im(B_i) \subseteq im(A)$. However, this would imply that

 $3 = \dim(\operatorname{im}(B_1) + \operatorname{im}(B_2) + \operatorname{im}(B_3)) \le \dim(\operatorname{im}(A)) = \operatorname{rk}(A) \le 2,$ which is a contradiction.

3 DELTA SEQUENCE

We begin by arguing that without loss of generality, we can assume that f(1) = 0. This follows from the following observation.

Observation 3.1. Let *H* be a normed abelian group and $f: \mathbb{Z} \to H$ any function. If *q* is defined by

$$g(x) = f(x) + x \cdot C,$$

where $C \in H$, then:

- f is a 1-quasihomomorphism if and only if g is.
- We have that

$$||f(x) - x \cdot A|| \le 2 \iff ||g(x) - x \cdot A'|| \le 2,$$

where $A' = A - C$

Hence, by choosing C = -f(1), we see that proving Theorem 1.5 under the additional assumption f(1) = 0 is enough to prove it in general.

From now on we always assume f(1) = 0. This allows us to reformulate the condition of f being a 1-quasihomomorphism in terms of a difference operator on f.

Definition 3.2. Given a function $f: \mathbb{Z} \to H$, we define its *delta* $map \ \Delta_f(x): \mathbb{Z} \to H$ as

$$\Delta_f(x) = f(x+1) - f(x).$$

Remark 3.3. If f(1) = 0, we can write f in terms of Δ_f :

$$f(x) = \sum_{i=1}^{x-1} \Delta_f(i) \text{ for } x \ge 1,$$
 (3)

and

$$f(x) = -\sum_{i=0}^{x} \Delta_f(i) \text{ for } x \le 0.$$
 (4)

Lemma 3.4. Let $f: \mathbb{Z} \to H$ be a map with f(1) = 0. The map f is a c-quasihomomorphism if and only if for all $k \in \mathbb{Z}_{\geq 0}$ and $z \in \mathbb{Z}$ we have

$$\left\| \sum_{i=1}^{k} \Delta_f(i) - \sum_{i=0}^{k} \Delta_f(z-i) \right\| \le c, \tag{5}$$

$$\left\| \sum_{i=0}^{k} \Delta_f(-i) - \sum_{i=0}^{k-1} \Delta_f(z-i) \right\| \le c. \tag{6}$$

PROOF. In essence, this is just plugging in Equations (3) and (4) into Equation (1). We present the proof in a slightly different way, to avoid doing case distinctions on the signs of x, y, and x + y. Calculate:

$$\begin{split} \sum_{i=1}^k \Delta(i) - \sum_{i=0}^k \Delta(z-i) &= \\ \sum_{i=1}^k \left[f(i+1) - f(i) \right] - \sum_{i=0}^k \left[f(z-i+1) - f(z-i) \right] &= \\ f(k+1) + f(z-k) - f(z+1). \end{split}$$

By setting x = k + 1, y = z - k, we see that Equation (5) holds if and only if the c-quasihomomorphism condition (1) is fullfilled for $x \in \mathbb{Z}_{\geq 1}$ and $y \in \mathbb{Z}$. Similarly, calculate:

$$\begin{split} &\sum_{i=0}^k \Delta(-i) - \sum_{i=0}^{k-1} \Delta(z-i) = \\ &\sum_{i=0}^k \left[f(-i+1) - f(-i) \right] - \sum_{i=0}^{k-1} \left[f(z-i+1) - f(z-i) \right] = \\ &- f(-k) - f(z+1) + f(z+1-k). \end{split}$$

By setting x = -k, y = z + 1, we see that Equation (6) is equivalent to the quasihomomorphism condition for $x \in \mathbb{Z}_{\leq 0}$ and $y \in \mathbb{Z}$, and we are done.

In particular, Condition (5) for k=0 states that $\|\Delta(y)\| \le c$ for all $y \in \mathbb{Z}$.

Notation 3.5. For the rest of this paper, f will denote a 1-quasi-homomorphism $\mathbb{Z} \to \operatorname{Sym}(n \times n, \mathbb{K})$ with f(1) = 0; its delta map Δ_f will be denoted by Δ . We will denote $\operatorname{im}(\Delta(i))$ by L_i . Since $\operatorname{rk}(\Delta(i)) \leq 1$, we have that $\dim(L_i) \leq 1$.

Note that if $\dim(\sum_{i\in\mathbb{Z}}L_i)\leq 2$, then by (3) and (4) we also have $\operatorname{rk}(f(x))\leq 2$ for all $x\in\mathbb{Z}$, and Theorem 1.5 is true with A=0. So from now on we will assume:

Assumption 3.6. dim $(\sum_{i\in\mathbb{Z}} L_i) \geq 3$.

Then we can make the following observation.

Lemma 3.7. If Assumption 3.6 holds, then $\Delta(0) + \Delta(-1) = 0$.

PROOF. Note that Equation (6) for k = 1 tells us that for all $z \in \mathbb{Z}$ we have

$$\operatorname{rk}(\Delta(0) + \Delta(-1) - \Delta(z)) \leq 1.$$

By Assumption 3.6, we can apply Corollary 2.4 to conclude that $\Delta(0) + \Delta(-1) = 0$.

Observation 3.8. Still working under Assumption 3.6, now Equation (6) for $k \ge 0$ can be rewritten as

$$\operatorname{rk}\left(\sum_{i=2}^{k+1} \Delta(-i) - \sum_{i=0}^{k} \Delta(y-i)\right) \le 1. \tag{7}$$

Note the symmetry: if we define $\tilde{\Delta}(x) := \Delta(-1-x)$, then Δ satisfies the assumptions (5) and (7) if and only if $\tilde{\Delta}$ does.

$$\dots \boxed{ \Delta(-k-1) \quad \cdots \quad \Delta(-2) } \ \Delta(-1) \ \boxed{ \Delta(0) \ \boxed{ \Delta(1) \quad \cdots \quad \Delta(k) } \ \dots \ \boxed{ \Delta(z-k) \quad \cdots \quad \Delta(z) } \ \dots }$$

Figure 1: Equation (5) says that the sum of the right red block and the sum of the blue block differ by a rank one matrix. Similarly, Equation (6) says that the sum of the left red block and the sum of the blue block differ by a rank one matrix.

Next, note that if $\dim(\sum_{i\in\mathbb{Z}} L_i) \ge 3$ but $\dim(\sum_{i\in\mathbb{Z}\setminus\{0,-1\}} L_i) \le 2$, it still holds that $\operatorname{rk}(f(x)) \le 2$ for all $x \in \mathbb{Z}$. So we will replace Assumption 3.6 with something slightly stronger:

Assumption 3.9. dim
$$(\sum_{i \in \mathbb{Z} \setminus \{0,-1\}} L_i) \ge 3$$
.

Under this assumption, we will show that Δ needs to have a very specific structure.

4 PALINDROMICITY

Now we show that Δ satisfies a property reminiscent of palindromes.

Notation 4.1. For $m \in \mathbb{N}$, write

$$V_m = L_{-m-1} + \dots + L_{-2} + L_1 + \dots + L_m. \tag{8}$$

Note that L_{-1} , L_0 are not part of the sum. Assumption 3.9 precisely says that there exists an m with dim $V_m \ge 3$.

Lemma 4.2. Let m be such that $V_m \supseteq V_{m-1}$.

(1) For all $i \in \{1, ..., m-1\}$ we have that

$$\Delta(i) = \Delta(m-i) = \Delta(-i-1) = \Delta(i-m-1). \tag{9}$$

(2) Moreover, if dim $V_m \geq 3$, it holds that

$$\Delta(m+1) = -\Delta(m)$$
 and $\Delta(-m-2) = -\Delta(-m-1)$.

In particular, $L_m = L_{m+1}$ and $L_{-m-2} = L_{-m-1}$.

Remark 4.3. To state Lemma 4.2 more visually: if $V_m \supseteq V_{m-1}$ and dim $V_m \ge 3$, then Δ has the following structure:

PROOF. For Item (1) we show 3 equalities for $i \in \{1, ..., m-1\}$:

- Δ(i) = Δ(m i), which encodes palindromicity of the right blue block:
- $\Delta(m-i) = \Delta(-i-1)$, which encodes equality of the blocks;
- $\Delta(-i-1) = \Delta(i-m-1)$, which encodes palindromicity of the left blue block.

Note that the third equality follows from the first two by substituting i for m-i. By symmetry (cfr. Observation 3.8) we may assume that $L_m \not\subset V_{m-1}$.

We first prove the identity $\Delta(i) = \Delta(m-i)$ by induction on i. For the base case i=1, observe that setting k=1 and z=m in Equation (5) gives

$$\operatorname{rk} \left(\Delta(1) - \Delta(m-1) - \Delta(m) \right) \le 1.$$

By Corollary 2.3 we get that $\Delta(1) = \Delta(m-1)$. For the case i=2, we put k=2 and z=m in Equation (5):

$$\operatorname{rk} \left(\Delta(1) + \Delta(2) - \Delta(m-2) - \Delta(m-1) - \Delta(m) \right) \le 1.$$

Using $\Delta(1) = \Delta(m-1)$ and Corollary 2.3 we find $\Delta(2) = \Delta(m-2)$. One proceeds in a similar fashion for higher i. Namely, if the equality is true for i, one gets the equality for i+1 from Equation (5) by setting k=i+1 and z=m. The equality $\Delta(m-i)=\Delta(-i-1)$ is proven analogously, using Equation (7).

For Item (2), we want to show that $\Delta(m+1) + \Delta(m) = 0$. If i is in $\{1, \dots m-1, m\}$, Equation (5) for z = m+1 and k = i, combined with (9), imply that

$$\operatorname{rk} \left(\Delta(m+1) + \Delta(m) - \Delta(i) \right) \leq 1.$$

When i is in $\{-m-1, -m, \ldots, -2\}$ the same equation can be derived from Equation (7) for z=m+1 and k=-i-1. Since dim $V_m\geq 3$, by Corollary 2.4 this implies that $\Delta(m+1)+\Delta(m)=0$. The proof that $\Delta(-m-2)+\Delta(-m-1)=0$ is analogous. Finally we have that $L_m=\operatorname{im}(\Delta(m))=\operatorname{im}(\Delta(m+1))=L_{m+1}$, and analogously for the other one.

5 APAP SEQUENCES

Now, our aim is to show that the finite pattern observed in Section 4 can be extended to infinity. We call a sequence satisfying this pattern APAP, meaning *almost periodic almost palindromic*. In this section, we define APAP sequences and prove some general lemmas; in the next section we will show that our delta sequence is APAP. For the purposes of this section, H can be any abelian group.

Definition 5.1. A sequence $(\Delta(i))_{i=-N}^{N-1}$, with $\Delta(i) \in H$ is APAP with period $p \in [2, N]$, if

$$\Delta(i+p) = \Delta(i) \quad \text{if } i \not\equiv -1 \text{ or } 0 \mod p, \tag{10}$$

$$\Delta(j-1) + \Delta(j) = 0 \qquad \forall j \in \{-N+1, \dots, N-1\} \text{ with } p|j,$$
(11)

$$\Delta(p-1-i) = \Delta(i) \quad \forall i = 1, \dots, p-2. \tag{12}$$

From now on we will refer to the respective Conditions (10), (11), (12). We call $\Delta(1), \ldots, \Delta(p-3), \Delta(p-2)$ the *palindromic block*, and will write B_{Δ} for the "block sum" $\Delta(1) + \cdots + \Delta(p-2)$.

Remark 5.2. The next two pictures illustrate how an APAP sequence looks like. First we see a global picture:

The blue box represents the palindromic block, whereas the red circles represent the p-cancellation. Eack box has length p-2. Note that while the blue box is always meant to be the same, the red circles are not.

Next, we see the same picture but now zoomed in:

In this picture we see the cancellation in red and the palindromic block in blue. $\hfill \triangle$

The following result is a quick calculation that uses the three properties of being an APAP sequence.

Lemma 5.3. Let $(\Delta(i))_{i=-N}^{N-1}$ be an APAP sequence with period p. For any $k \in \mathbb{Z}_{\geq 0}$, the sum of any kp consecutive elements in $(\Delta(i))_{i=-N}^{N-1}$, where the index of the first element is not a multiple of p is constant. Moreover, this constant equals $k \cdot B_{\Lambda}$.

Our first source of APAP sequences is Lemma 4.2:

Lemma 5.4. Let m be such that $V_m \supseteq V_{m-1}$ and $\dim V_m \ge 3$. The sequence $(\Delta(i))_{-m-2}^{m+1}$ is APAP with period m+1. Moreover, for any other period p that makes this sequence APAP we have that p|m+1.

PROOF. Since $\dim V_m \geq 3$, the sequence $(\Delta(i))_{-m-2}^{m+1}$ is APAP with period m+1 by the two items of Lemma 4.2. Now suppose that $(\Delta(i))_{-m-2}^{m+1}$ is APAP with period p. Since $V_m \supseteq V_{m-1}$ at least one of $L_m \not\subset V_{m-1}$ or $L_{-m-1} \not\subset V_{m-1}$ is true. By the symmetry from Observation 3.8 we assume the former.

Suppose that p does not divide m+1, so $m \not\equiv -1 \mod p$. If additionally we have that $m \not\equiv 0 \mod p$, then $\Delta(m) = \Delta(j)$ with j the residue of m divided by p. Since $j , we get <math>\Delta(m) = \Delta(j)$ is in V_{m-1} , a contradiction. To finish, assume that $m \equiv 0 \mod p$, so then $\Delta(m-1) + \Delta(m) = 0$, which again implies that $\Delta(m)$ is in V_{m-1} , a contradiction.

Next, we use the last claim from Lemma 5.4 to study how two distinct APAP structures on the same sequence interact. We apply this result in Claim 6.3.

Lemma 5.5. Let $(\Delta(i))_{i=-N}^{N-1}$ be APAP with period p. Suppose there is $a \neq [2, p-1]$ such that

- (1) $\Delta(i) = \Delta(i+q)$ for i = 1, ..., p-q-2 (q-periodicity),
- (2) $\Delta(i) = \Delta(q-1-i)$ for $i=1,\ldots,q-2$ (palindromicity of the first q-2 elements),
- (3) $\Delta(q-1) + \Delta(q) = 0,$

Write $g = \gcd(p, q)$. If g > 1 then Δ is APAP with period g. If g = 1 then all $\Delta(i)$ are the same up to a sign.

We will deduce this using the following easy number-theoretic lemma:

Lemma 5.6. Let q < p be integers and write $g = \gcd(p, q)$. Consider the equivalence relation \sim on \mathbb{Z} generated by:

- $x \sim y \text{ if } x \equiv y \mod q \text{ (q-periodic)},$
- $x \sim q-1-x$ for x in $\{0,\ldots,q-1\}$ (q-palindromic),
- $x \sim p-1-x$ for x in $\{0,\ldots,p-1\}$ (p-palindromic).

Then we have that $x \sim y$ if and only if $x \equiv y \mod g$ or $x + y \equiv -1 \mod g$.

PROOF OF LEMMA 5.6. We first show \sim is also p-periodic. For this, take any $x \in \mathbb{Z}$, and let $m \in \mathbb{Z}$ be the unique integer for which $p - q \le x - mq \le p - 1$. Indeed,

$$x \sim x - mq \sim p - 1 - (x - mq) \sim q - 1 - (p - 1 - x + mq)$$

= $x - p - (m - 1)q \sim x - p$.

In the previous calculation, x-mq is contained in $\{0,\ldots,p-1\}$ and p-1-(x-mq) is in $\{0,\ldots,q-1\}$, so the operations are valid. The combination of q-periodicity and p-periodicity is equivalent to g-periodicity, namely $x\sim y$ when $x\equiv y\mod g$. Additionally, palindromicity gives $x\sim y$ when $x+y\equiv -1\mod g$. Indeed, by g-periodicity we may assume that x is in $\{1,\ldots,g-1\}$, then by q-palindromicity and periodicity we have that $x\sim q-1-x\sim y$.

Proof of Lemma 5.5. We first consider the case g > 1. Let us write $[a]_q$ for the unique integer in $\{1, \ldots, q\}$ that is congruent to a modulo q.

Claim 5.7. It suffices to check the APAP property on the interval [1, q]. In other words: if we verify the identities

- (a) $\Delta(i) = \Delta(i+g)$ for $i \in \{1, \dots, q-g-2\}$ with $i \not\equiv -1$ or $0 \mod a$.
- (b) $\Delta(kg-1) + \Delta(kg) = 0$ for k = 1, ..., q/g,
- (c) $\Delta(i) = \Delta(g 1 i)$ for i = 1, ..., g 2,

then Δ is APAP with period q.

PROOF. For palindromicity there is nothing to prove. For periodicity: given any $i \neq -1$ or $0 \mod g$, we have

$$\Delta(i) = \Delta([i]_p) = \Delta([[i]_p]_q) = \Delta([i]_g),$$

where we used p-periodicity, q-periodicity, and (a).

Cancellation is similar: if p|j then $\Delta(j)=-\Delta(j-1)$ by p-cancellation; if $g\mid j$ but $p\nmid j$ then we can use p-periodicity, q-periodicity, and (b) to find

$$\begin{split} \Delta(j-1) + \Delta(j) &= \Delta([j-1]_p) + \Delta([j]_p) \\ &= \Delta([[j-1]_p]_q) + \Delta([[j]_p]_q) = 0. \end{split}$$

We now verify the conditions (a), (b), (c) above. For this, we formally define the q-periodic map $\tilde{\Delta}:\mathbb{Z}\to H$ by $\tilde{\Delta}(i)=\tilde{\Delta}([i]_q)$. Since Δ and $\tilde{\Delta}$ agree on the interval [1,q], by Claim 5.7 we may work now with $\tilde{\Delta}$ instead. We consider the equivalence relation \sim from the previous lemma. Then showing (a) and (c) amounts to showing that $\tilde{\Delta}$ is constant on every equivalence class except for the one generated by 0. Indeed, two numbers x and y in the same equivalence class can be connected by a chain as in Lemma 5.6, and the only case this doesn't imply an equality of $\tilde{\Delta}$ is when x=0, q-1, or p-1, but then we are in the bad equivalence class.

We are left with showing (b). For this, we in fact will prove the stronger claim that $\tilde{\Delta}(kg-1) = \tilde{\Delta}(kg) = 0$ for k = 1, ..., q/g. Viewing $\tilde{\Delta}$ as a map $\mathbb{Z}/q\mathbb{Z} \to H$, we claim that

$$\tilde{\Delta}(i) = \tilde{\Delta}(p - 1 - i) \tag{13}$$

for every $i \in \mathbb{Z}/q\mathbb{Z}$. The only nontrivial case is i = 0: if q = p - 1 then $\tilde{\Delta}(0) = \tilde{\Delta}(q) = \tilde{\Delta}(p-1)$, and if q then by <math>q-periodicity and p-palindromicity we get $\tilde{\Delta}(0) = \tilde{\Delta}(q) = \tilde{\Delta}(p-1-q) = \tilde{\Delta}(p-1)$.

This naturally leads us to the sequence

$$\tilde{\Delta}(0), \tilde{\Delta}(p-1), \tilde{\Delta}(-p), \ldots, \tilde{\Delta}(-(k-1)p), \tilde{\Delta}(kp-1), \tilde{\Delta}(-kp), \ldots$$

Besides having $\tilde{\Delta}(-(k-1)p) = \tilde{\Delta}(kp-1)$ by Equation (13), we also have $\tilde{\Delta}(kp-1) = \tilde{\Delta}(-kp)$ by $\Delta(i)$ being APAP with period p, except when $[kp]_q - 1 = 0$ or $[kp]_q = 0$. Since g > 1, we never have $[kp]_q = 1$. Thus, we let $b = \frac{q}{g}$ be the smallest natural number such that $[bp]_q = 0$, so we get

$$\tilde{\Delta}(0) = \tilde{\Delta}(p-1) = \tilde{\Delta}(-p) = \dots = \tilde{\Delta}(-(b-1)p) = \tilde{\Delta}(bp-1).$$

Note that the set of arguments in the above chain of equalities contains every $x \in \mathbb{Z}/q\mathbb{Z}$ that is congruent to 0 or -1 modulo g. Moreover, since $\Delta(q-1) + \Delta(q) = 0$, we get $\tilde{\Delta}(bp-1) = -\tilde{\Delta}(0)$, rendering the whole sequence equal to 0, as desired.

Now assume that g equals 1. By q-periodicity it suffices to show that $\Delta(1), \ldots, \Delta(q)$ are equal up to a sign. We define $\tilde{\Delta}$ as above, and let a be the smallest natural number such that $[ap]_q = 1$. Then, by similar arguments, we find that

$$\tilde{\Delta}(0) = \tilde{\Delta}(p-1) = \tilde{\Delta}(-p) = \dots = \tilde{\Delta}(-(a-1)p) =$$

$$= \tilde{\Delta}(ap-1) = -\tilde{\Delta}(ap) = \dots$$

$$= -\tilde{\Delta}(ap-1) = \tilde{\Delta}(0).$$

Note that above, since g=1 we have that $[ap]_q=0$ for the first time when a=q. So we find that all the $\tilde{\Delta}(x)$, for $x\in\mathbb{Z}/q\mathbb{Z}$, are equal up to a sign, as desired.

6 THE DELTA SEQUENCE IS APAP

In the following theorem we use the same notation as before, i.e. given a 1-quasihomomorphism f we denote by L_i the space $\operatorname{im}(\Delta_f(i))$.

Theorem 6.1. Let $f: \mathbb{Z} \to \operatorname{Sym}(n \times n, \mathbb{K})$ be a 1-quasihomomorphism. Assume that $\dim(\sum_{i \in \mathbb{Z}\setminus\{0,-1\}} L_i) \geq 3$. We can find a natural number p such that Δ_f is APAP with period p. Moreover, p can be chosen such that $\dim(L_1 + \cdots + L_{p-2}) \leq 2$; hence in particular $\operatorname{rk}(B_{\Delta}) \leq 2$.

PROOF OF THEOREM 6.1. Let m be minimal such that $\dim V_m > 2$. By Lemma 4.2 we have that the sequence $(\Delta(i))_{i=-m-2}^{m+1}$ is APAP with period m+1. Let p be the minimal positive integer such that $(\Delta(i))_{i=-m-2}^{m+1}$ is APAP with period p. By Lemma 5.4 we have that p is a divisor of m+1. We will show that the entire sequence $(\Delta(i))_{i=-\infty}^{\infty}$ is APAP with period p. Then, using minimality of m, we get that

$$\dim(L_1 + \cdots + L_{p-2}) = \dim V_{p-2} \le 2,$$

which implies that $rk(B_{\Delta}) \leq 2$.

Now, assume that for some N the sequence $(\Delta(i))_{i=-N}^{N-1}$ is APAP with period p. We will simultaneously extend the sequence by one on both sides, and show $(\Delta(i))_{i=-N-1}^{N}$ is still APAP with period p; thus proving the theorem by induction.

We have three cases. If $N \equiv -1 \mod p$ there is nothing to prove, as illustrated in the following picture.

Figure 2: Here we see that for i = -N and i = N - 1 we start and end with the palindromic block. Our Definition of APAP is not dependent of what entry we put next for i = N and i = -N - 1.

Next, assume that $N \equiv 0 \mod p$. This case is illustrated as follows:

Figure 3: Here our Δ starts for i=N with an "end-cancellation", e.g. $-\alpha$ and it ends with another "start-cancellation", e.g. γ . Keeping our global picture in mind, we can see that the sum of the entries $\Delta(-N-1)$ and $\Delta(-N)$, resp. $\Delta(N-1)$ and $\Delta(N)$, should be zero.

So we need to show $\Delta(N-1) + \Delta(N) = 0$ and $\Delta(-N-1) + \Delta(-N) = 0$. We reason analogously to the proof of Item (2) from Lemma 4.2. Equations (5) and (7) yield

$$\operatorname{rk} (\Delta(i) - \Delta(N-1) - \Delta(N)) \le 1$$

for i in $\{-N, \ldots, N-1\} \setminus \{-1, 0\}$. Since dim $V_m > 2$, there are three indices i with linearly independent L_i , so by Corollary 2.4 we get that $\Delta(N-1) + \Delta(N) = 0$. The other equality follows analogously.

For the last case, assume that $N \not\equiv -1, 0 \mod p$.

Let *i* be the residue of *N* when dividing by *p*. Now $\Delta(N)$ and $\Delta(-N-1)$ are both in a palindromic block, and we want to show that $\Delta(N) = \Delta(i) = \Delta(-N-1)$. We only prove the first equality, the second one being analogous.

We will prove that $\Delta(N) = \Delta(i)$ by contradiction in two steps:

- (1) Suppose that $\Delta(N) \neq \Delta(i)$, then $L_N \not\subset V_2$.
- (2) $L_N \not\subset V_2$ leads to a contradiction with minimality of p.

Claim 6.2. Suppose that $\Delta(N) \neq \Delta(i)$, then $L_N \not\subset V_2$.

PROOF. Apply Equation (5) with k = m and z = N to get:

$$\operatorname{rk}\left(\sum_{j=1}^{m}\Delta(j)-\sum_{j=0}^{m}\Delta(N-j)\right)\leq 1.$$

Rewrite the sum inside the previous expression as

$$\left(-\Delta(m+1)+\sum_{j=1}^{m+1}\Delta(j)\right)-\left(\Delta(N)-\Delta(N-m-1)+\sum_{j=1}^{m+1}\Delta(N-j)\right).$$

Note that by induction hypothesis both $\sum_{j=1}^{m+1} \Delta(j)$ and $\sum_{j=1}^{m+1} \Delta(N-j)$ are sums of m+1 consecutive elements in an APAP sequence, and recall that m+1 is a multiple of p, so Lemma 5.3 implies that both sums cancel each other. Since $N-m-1\equiv i \mod p$, we have

$$\operatorname{rk} (\Delta(i) + \Delta(m) - \Delta(N)) \le 1.$$

Note that $L_m \not\subset V_2$ but $L_i \subseteq V_2$. So if also $L_N \subseteq V_2$ this would imply $L_m \not\subset \operatorname{im}(\Delta(i) - \Delta(N))$, but then Corollary 2.3 yields

$$\operatorname{rk}\left(\Delta(i) + \Delta(m) - \Delta(N)\right) = \operatorname{rk}\left(\Delta(i) - \Delta(N)\right) + 1 \ge 2,$$

which is a contradiction.

Claim 6.3. If $L_N \not\subset V_2$, we get a contradiction with the minimality of p.

PROOF. We write q = i + 1, where i is still the residue of N modulo p. We will apply Lemma 5.5 to show that $(\Delta(i))_{i=-N}^{N-1}$ is APAP with period equal to $\gcd(p,q)$. For this, we need to verify the three conditions.

Write N = ap + q - 1. We apply Equation (5) with k = 1 and z = N:

$$\operatorname{rk}\left(\Delta(1) - \left(\Delta(N) + \Delta(N-1)\right)\right) \le 1. \tag{14}$$

Since our sequence is APAP with period p, we find that $\Delta(N-1) = \Delta(ap+q-2) = \Delta(q-2)$, hence

$$\operatorname{rk}\left(\Delta(1) - (\Delta(N) + \Delta(q-2))\right) \le 1. \tag{15}$$

Since $L_N \not\subset V_2$ but $L_1, L_{q-2} \subset V_2$, we can apply Corollary 2.3 to $A = \Delta(1) - \Delta(q-2)$ and $B = \Delta(N)$ to conclude that $\Delta(1) - \Delta(q-2) = 0$. Repeating the argument for $k = 2, \ldots, q-2$, we find that

$$\Delta(k) = \Delta(q - 1 - k)$$
 for $k = 1, ..., q - 2$,

showing Condition (2) of Lemma 5.5.

For k = q - 1, we find

$$\operatorname{rk} \left(\Delta(q-1) - \left(\Delta(N) + \Delta(ap) \right) \right) \le 1,$$

but now L_{ap} need not be in V_2 and we don't get any new information. However, for k = q, we get

$$\operatorname{rk} \left(\Delta(q-1) + \Delta(q) - \left(\Delta(N) + \Delta(ap) + \Delta(ap-1) \right) \right) \le 1.$$

Now we know that $\Delta(ap) + \Delta(ap - 1) = 0$ and conclude that

$$\Delta(q-1) + \Delta(q) = 0,$$

which shows Condition (3) of Lemma 5.5.

Now we continue with k = q + 1:

$$\operatorname{rk}\left(\Delta(q+1) - (\Delta(N) + \Delta(ap-2))\right) \le 1.$$

But we know that $\Delta(ap-2)=\Delta(p-2)=\Delta(1)$, and hence we conclude

$$\Delta(q+1) = \Delta(1).$$

We can continue this up to k = p - 2, and find that

$$\Delta(k) = \Delta(k - q) \text{ for } k = q + 1, \dots, p - 2,$$
 (16)

which is Condition (1) of Lemma 5.5. We have verified all conditions, hence it holds that $(\Delta(i))_{i=-N}^{N-1}$ is APAP with period $g := \gcd(p,q)$. Hence, the shorter sequence $(\Delta(i))_{i=-m-2}^{m+1}$ is APAP with period g strictly less than p; contradicting our choice of p.

This finishes our induction, and thus the proof.

7 PROOF OF THE MAIN RESULT

Putting everything together we get:

PROOF OF THEOREM 1.5. By Theorem 6.1 we find that Δ is APAP with period p. Define

$$A = \frac{B_{\Delta}}{p} = \frac{\Delta(1) + \cdots + \Delta(p-2)}{p} = \frac{f(p-1)}{p}.$$

We will show that Equation (2) holds with this *A*. We restrict to the case $x \ge 1$; the other case being analogous. Write x = ap + r

with $1 \le r \le p$. If $x \ge 1$, we have that $f(x) = \Delta(1) + \cdots + \Delta(x-1)$. Applying Lemma 5.3 we get that:

$$f(x) = \Delta(1) + \dots + \Delta(x-1)$$

$$= aB_{\Delta} + \sum_{j=1}^{r-1} \Delta(ap+j)$$

$$= apA + \sum_{j=1}^{r-1} \Delta(ap+j). \tag{17}$$

We have two cases. First, we assume that r = p. Equation (17) becomes

$$f(x) = apA + \sum_{j=1}^{p-1} \Delta(ap + j)$$

$$= apA + \sum_{j=1}^{p-2} \Delta(ap + j) + \Delta(x - 1)$$

$$= apA + pA + \Delta(x - 1) = xA + \Delta(x - 1).$$

It follows that

$$\operatorname{rk}(f(x) - xA) = \operatorname{rk}(\Delta(x - 1)) \le 1.$$

If r < p, Equation (17) becomes

$$f(x) = apA + \sum_{i=1}^{r-1} \Delta(j).$$

In particular $\operatorname{im}(f(x) - x \cdot A) \subseteq \sum_{i=1}^{p-2} L_i$. But by Theorem 6.1, $\dim \sum_i L_i \leq 2$, and hence $\operatorname{rk}(f(x) - xA) \leq 2$.

ACKNOWLEDGMENTS

TS, NT were partially supported by Swiss National Science Foundation (SNSF) project grant 200021 191981. TS was partially supported by Science Foundation – Flanders (FWO) grant 1219723N. AV was supported by the Swiss National Science Foundation (SNSF) grant 200142.

REFERENCES

П

- Jan Draisma, Rob H Eggermont, Tim Seynnaeve, Nafie Tairi, and Emanuele Ventura.
 2022. Quasihomomorphisms from the integers into Hamming metrics. arXiv preprint arXiv:2204.08392 (2022). http://doi.acm.org/10.1145/1219092.1219093
- [2] David Kazhdan and Tamar Ziegler. 2018. Approximate cohomology. Selecta Math. (N.S.) 24, 1 (June 2018). https://doi.org/10.1007/s00029-017-0335-5
- [3] S. M. Ulam. 1960. A collection of mathematical problems. Interscience Publishers, New York-London. xiii+150 pages.