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ABSTRACT
A function 𝑓 from Z to the symmetric matrices over an arbitrary

field 𝐾 of characteristic 0 is a 1-quasihomomorphism if the matrix

𝑓 (𝑥 +𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦) has rank at most 1 for all 𝑥,𝑦 ∈ Z. We show

that any such 1-quasihomomorphism has distance at most 2 from

an actual group homomorphism. This gives a positive answer to a

special case of a problem posed by Kazhdan and Ziegler.
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1 INTRODUCTION
We continue the program initiated in [1] of studying particular

instances of a problem posed by Kazhdan and Ziegler in their work

on approximate cohomology [2]. We are given a function 𝑓 that

behaves roughly like a homomorphism, in the following manner.

Definition 1.1. Let (𝐻, +) be an abelian group. A norm on 𝐻 is a

map ∥ · ∥ : 𝐻 → R such that

• ∥𝑥 ∥ ≥ 0 for all 𝑥 ∈ 𝐻 , with equality if and only if 𝑥 = 0,

• ∥𝑥 + 𝑦∥ ≤ ∥𝑥 ∥ + ∥𝑦∥ for all 𝑥,𝑦 ∈ 𝐻 ,
• ∥ − 𝑥 ∥ = ∥𝑥 ∥ for all 𝑥 ∈ 𝐻 .

Note that equipping 𝐻 with a norm is equivalent to equipping it

with an equivariant metric 𝑑 , that is, a metric such that 𝑑 (𝑥,𝑦) =
𝑑 (𝑥 +𝑧,𝑦 +𝑧) for all 𝑥,𝑦, 𝑧 ∈ 𝐻 ; the connection is given by 𝑑 (𝑥,𝑦) =
∥𝑥 − 𝑦∥.

Definition 1.2. Let (𝐺, +) and (𝐻, +) be abelian groups, where 𝐻

is equipped with a norm ∥ · ∥. A map 𝑓 : 𝐺 → 𝐻 is a 𝑐-quasihomo-
morphism (where 𝑐 ∈ R≥0) if for all 𝑥,𝑦 ∈ Z we have that

∥ 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)∥ ≤ 𝑐. (1)

The natural question is whether every 𝑐-quasihomomorphism

can be approximated by an actual group homomorphism.

Question 1.3. Fix 𝐺 , 𝐻 and 𝑐 . Does there exist a constant 𝐶 ∈ R≥0
such that for every 𝑐-quasihomomorphism 𝑓 : 𝐺 → 𝐻 , there exists a
group homomorphism 𝜑 : 𝐺 → 𝐻 such that

∀𝑥 ∈ 𝐺 : ∥ 𝑓 (𝑥) − 𝜑 (𝑥)∥ ≤ 𝐶.

A variant of this question, where𝐺 = 𝐻 and𝐺 can be nonabelian,

was asked already by Ulam [3, Chapter VI.1] in 1960. Our case of

interest is when 𝐺 = Z is the additive group of integers, and 𝐻 is

the additive group of matrices over some field K, where the norm
is given by the rank. The argument from [1, Remark 1.11] shows

that in this case the answer is affirmative for fields of positive

characteristic. For the rest of the paper, we will fix a field K of

characteristic 0. Note that every group morphism 𝜑 : Z→ 𝐻 is of

the form 𝜑 (𝑥) = 𝑥 · 𝐴, where 𝐴 ∈ 𝐻 is a fixed element.

Question 1.4. Fix 𝑐 ∈ N. Does there exist a constant 𝐶 ∈ R≥0 such
that for every natural number 𝑛 and every 𝑐-quasihomomorphism
𝑓 : Z→ Mat(𝑛 ×𝑛,K), there exists a matrix𝐴 ∈ Mat(𝑛 ×𝑛,K) such
that

∀𝑥 ∈ Z : rk (𝑓 (𝑥) − 𝑥 · 𝐴) ≤ 𝐶.

This is the instance of Question 1.3 asked by Kazhdan and Ziegler.

It was answered affirmatively in [1] under the assumption that 𝑓

lands in the space of diagonal matrices and by choosing 𝐶 = 28𝑐 .

In this paper, we study the case 𝑐 = 1. We are able to prove a much

better bound than the predicted 𝐶 = 28: indeed, the constant 𝐶 can

be chosen equal to 2. Moreover, we can weaken the assumption

that 𝑓 lands in the space of diagonal matrices.

Theorem 1.5. Assume char(K) = 0 and let Sym(𝑛 × 𝑛,K) be the
space of symmetric matrices. If 𝑓 : Z→ Sym(𝑛 ×𝑛,K) is assumed to
be a 1-quasihomomorphism, there is an 𝐴 ∈ Sym(𝑛 ×𝑛,K) such that

rk (𝑓 (𝑥) − 𝑥 · 𝐴) ≤ 2 ∀𝑥 ∈ Z. (2)

The rest of this paper is devoted to proving Theorem 1.5. The

strategy is to prove that the sequence of consecutive differences

Δ𝑓 (𝑖) = 𝑓 (𝑖 + 1) − 𝑓 (𝑖) satisfies two kinds of symmetries. One is a

reflection symmetry in a local sense, which we call palindromicity.

The other is a periodicity. By expressing 𝑓 as a sum of deltas, and

applying the symmetries, we arrive to the result.

2 LEMMAS ABOUT SYMMETRIC MATRICES
In this section we prove some elementary lemmas about symmetric

matrices that we will use later during the proof. Let (·, ·) be the
bilinear form on K𝑛 given by

(𝑥,𝑦) B 𝑥1𝑦1 + · · · + 𝑥𝑛𝑦𝑛

for all 𝑥,𝑦 ∈ K𝑛 . Then an 𝑛 × 𝑛 matrix over K is symmetric if that

(𝐴𝑥,𝑦) = (𝑥,𝐴𝑦) for all 𝑥,𝑦 ∈ K𝑛 .

Lemma 2.1. Let 𝐴 ∈ Sym(𝑛 × 𝑛,K). Then im(𝐴) = ker(𝐴)⊥.

Proof. Since our bilinear form is nondegenerate we see that

𝐴𝑥 = 0 ⇐⇒ (𝐴𝑥,𝑦) = 0 ∀𝑦 ⇐⇒ (𝑥,𝐴𝑦) = 0 ∀𝑦.

Therefore,

𝑥 ∈ ker(𝐴) ⇐⇒ 𝑥 ⊥ im(𝐴),

which means that im(𝐴) = ker(𝐴)⊥. □

Lemma 2.2. Let𝐴, 𝐵 be symmetric matrices. Moreover, suppose that
im(𝐴) ∩ im(𝐵) = 0. Then rk (𝐴 + 𝐵) = rk (𝐴) + rk (𝐵).
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Proof. We always have inequalities

rk (𝐴 + 𝐵) = dim im(𝐴 + 𝐵)
≤ dim(im(𝐴) + im(𝐵))
≤ dim(im(𝐴)) + dim(im(𝐵))
= rk (𝐴) + rk (𝐵) .

Our assumption im(𝐴) ∩ im(𝐵) = 0 implies that the second “≤" is
an equality. We show that the first “≤" is an equality as well. For

this we need to show that im(𝐴 + 𝐵) = im(𝐴) + im(𝐵). Taking ⊥ of

both sides and applying Lemma 2.1, this is equivalent to showing

ker(𝐴 + 𝐵) = ker(𝐴) ∩ ker(𝐵). But this again follows from our

assumption im(𝐴) ∩ im(𝐵) = 0:

𝑣 ∈ ker(𝐴 + 𝐵) =⇒ 𝐴𝑣 = −𝐵𝑣 =⇒
𝐴𝑣 = 𝐵𝑣 = 0 =⇒ 𝑣 ∈ ker(𝐴) ∩ ker(𝐵) . □

In fact, we will only need the following corollaries:

Corollary 2.3. Let 𝐴, 𝐵 be symmetric matrices. If rk (𝐵) = 1 and
im(𝐵) ⊄ im(𝐴), then rk (𝐴 + 𝐵) = rk (𝐴) + 1.

Proof. This is just the main claim for 𝐵 of rank one. □

Corollary 2.4. Let 𝐴 ∈ Sym(𝑛 × 𝑛,K) with rk (𝐴) ≤ 2. Assume
there are three rank-1 symmetric matrices 𝐵𝑖 (𝑖 = 1, 2, 3) such that
dim(im(𝐵1) + im(𝐵2) + im(𝐵3)) = 3 and rk (𝐴 − 𝐵𝑖 ) ≤ 1 for 𝑖 =
1, 2, 3. Then 𝐴 = 0.

Proof. Suppose by contradiction that rk (𝐴) ≥ 1. Then

rk (𝐴 − 𝐵𝑖 ) ≤ 1 < 2 ≤ rk (𝐴) + rk (𝐵𝑖 ) ,
thus by the contraposition of Lemma 2.2, it follows that im(𝐵𝑖 ) ⊆
im(𝐴). However, this would imply that

3 = dim(im(𝐵1) + im(𝐵2) + im(𝐵3)) ≤ dim(im(𝐴)) = rk (𝐴) ≤ 2,

which is a contradiction. □

3 DELTA SEQUENCE
We begin by arguing that without loss of generality, we can assume

that 𝑓 (1) = 0. This follows from the following observation.

Observation 3.1. Let𝐻 be a normed abelian group and 𝑓 : Z→ 𝐻

any function. If 𝑔 is defined by

𝑔(𝑥) = 𝑓 (𝑥) + 𝑥 ·𝐶,
where 𝐶 ∈ 𝐻 , then:

• 𝑓 is a 1-quasihomomorphism if and only if 𝑔 is.

• We have that

∥ 𝑓 (𝑥) − 𝑥 · 𝐴∥ ≤ 2 ⇐⇒ ∥𝑔(𝑥) − 𝑥 · 𝐴′∥ ≤ 2,

where 𝐴′ = 𝐴 −𝐶
Hence, by choosing 𝐶 = −𝑓 (1), we see that proving Theorem 1.5

under the additional assumption 𝑓 (1) = 0 is enough to prove it in

general.

From now on we always assume 𝑓 (1) = 0. This allows us to

reformulate the condition of 𝑓 being a 1-quasihomomorphism in

terms of a difference operator on 𝑓 .

Definition 3.2. Given a function 𝑓 : Z → 𝐻 , we define its delta
map Δ𝑓 (𝑥) : Z→ 𝐻 as

Δ𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥).

Remark 3.3. If 𝑓 (1) = 0, we can write 𝑓 in terms of Δ𝑓 :

𝑓 (𝑥) =
𝑥−1∑︁
𝑖=1

Δ𝑓 (𝑖) for 𝑥 ≥ 1, (3)

and

𝑓 (𝑥) = −
𝑥∑︁
𝑖=0

Δ𝑓 (𝑖) for 𝑥 ≤ 0. (4)

△

Lemma 3.4. Let 𝑓 : Z→ 𝐻 be a map with 𝑓 (1) = 0. The map 𝑓 is
a 𝑐-quasihomomorphism if and only if for all 𝑘 ∈ Z≥0 and 𝑧 ∈ Z we
have 




 𝑘∑︁

𝑖=1

Δ𝑓 (𝑖) −
𝑘∑︁
𝑖=0

Δ𝑓 (𝑧 − 𝑖)





 ≤ 𝑐, (5)




 𝑘∑︁

𝑖=0

Δ𝑓 (−𝑖) −
𝑘−1∑︁
𝑖=0

Δ𝑓 (𝑧 − 𝑖)





 ≤ 𝑐. (6)

Proof. In essence, this is just plugging in Equations (3) and (4)

into Equation (1). We present the proof in a slightly different way,

to avoid doing case distinctions on the signs of 𝑥 , 𝑦, and 𝑥 + 𝑦.
Calculate:

𝑘∑︁
𝑖=1

Δ(𝑖) −
𝑘∑︁
𝑖=0

Δ(𝑧 − 𝑖) =

𝑘∑︁
𝑖=1

[𝑓 (𝑖 + 1) − 𝑓 (𝑖)] −
𝑘∑︁
𝑖=0

[𝑓 (𝑧 − 𝑖 + 1) − 𝑓 (𝑧 − 𝑖)] =

𝑓 (𝑘 + 1) + 𝑓 (𝑧 − 𝑘) − 𝑓 (𝑧 + 1).
By setting 𝑥 = 𝑘 + 1, 𝑦 = 𝑧 − 𝑘 , we see that Equation (5) holds if

and only if the 𝑐-quasihomomorphism condition (1) is fullfilled for

𝑥 ∈ Z≥1 and 𝑦 ∈ Z. Similarly, calculate:

𝑘∑︁
𝑖=0

Δ(−𝑖) −
𝑘−1∑︁
𝑖=0

Δ(𝑧 − 𝑖) =

𝑘∑︁
𝑖=0

[𝑓 (−𝑖 + 1) − 𝑓 (−𝑖)] −
𝑘−1∑︁
𝑖=0

[𝑓 (𝑧 − 𝑖 + 1) − 𝑓 (𝑧 − 𝑖)] =

− 𝑓 (−𝑘) − 𝑓 (𝑧 + 1) + 𝑓 (𝑧 + 1 − 𝑘).
By setting 𝑥 = −𝑘,𝑦 = 𝑧 + 1, we see that Equation (6) is equivalent

to the quasihomomorphism condition for 𝑥 ∈ Z≤0 and 𝑦 ∈ Z, and
we are done. □

In particular, Condition (5) for 𝑘 = 0 states that ∥Δ(𝑦)∥ ≤ 𝑐 for
all 𝑦 ∈ Z.

Notation 3.5. For the rest of this paper, 𝑓 will denote a 1-quasi-

homomorphism Z→ Sym(𝑛 × 𝑛,K) with 𝑓 (1) = 0; its delta map

Δ𝑓 will be denoted by Δ. We will denote im(Δ(𝑖)) by 𝐿𝑖 . Since
rk (Δ(𝑖)) ≤ 1, we have that dim(𝐿𝑖 ) ≤ 1.

Note that if dim(∑𝑖∈Z 𝐿𝑖 ) ≤ 2, then by (3) and (4) we also have

rk (𝑓 (𝑥)) ≤ 2 for all 𝑥 ∈ Z, and Theorem 1.5 is true with 𝐴 = 0. So

from now on we will assume:

Assumption 3.6. dim(∑𝑖∈Z 𝐿𝑖 ) ≥ 3.

Then we can make the following observation.
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Lemma 3.7. If Assumption 3.6 holds, then Δ(0) + Δ(−1) = 0.

Proof. Note that Equation (6) for 𝑘 = 1 tells us that for all 𝑧 ∈ Z
we have

rk (Δ(0) + Δ(−1) − Δ(𝑧)) ≤ 1.

By Assumption 3.6, we can apply Corollary 2.4 to conclude that

Δ(0) + Δ(−1) = 0. □

Observation 3.8. Still working under Assumption 3.6, now Equa-

tion (6) for 𝑘 ≥ 0 can be rewritten as

rk

(
𝑘+1∑︁
𝑖=2

Δ(−𝑖) −
𝑘∑︁
𝑖=0

Δ(𝑦 − 𝑖)
)
≤ 1. (7)

Note the symmetry: if we define Δ̃(𝑥) := Δ(−1−𝑥), then Δ satisfies

the assumptions (5) and (7) if and only if Δ̃ does.

𝑘 𝑘 𝑘 + 1

Figure 1: Equation (5) says that the sum of the right red block and the sum of

the blue block differ by a rank one matrix. Similarily, Equation (6) says that the

sum of the left red block and the sum of the blue block differ by a rank one

matrix.

Next, note that if dim(∑𝑖∈Z 𝐿𝑖 ) ≥ 3 but dim(∑𝑖∈Z\{0,−1} 𝐿𝑖 ) ≤ 2,

it still holds that rk (𝑓 (𝑥)) ≤ 2 for all 𝑥 ∈ Z. So we will replace

Assumption 3.6 with something slightly stronger:

Assumption 3.9. dim(∑𝑖∈Z\{0,−1} 𝐿𝑖 ) ≥ 3.

Under this assumption, we will show that Δ needs to have a very

specific structure.

4 PALINDROMICITY
Now we show that Δ satisfies a property reminiscent of palin-

dromes.

Notation 4.1. For𝑚 ∈ N, write
𝑉𝑚 = 𝐿−𝑚−1 + · · · + 𝐿−2 + 𝐿1 + . . . + 𝐿𝑚 . (8)

Note that 𝐿−1, 𝐿0 are not part of the sum. Assumption 3.9 precisely

says that there exists an𝑚 with dim𝑉𝑚 ≥ 3.

Lemma 4.2. Let𝑚 be such that 𝑉𝑚 ⊋ 𝑉𝑚−1.
(1) For all 𝑖 ∈ {1, . . . ,𝑚 − 1} we have that

Δ(𝑖) = Δ(𝑚 − 𝑖) = Δ(−𝑖 − 1) = Δ(𝑖 −𝑚 − 1) . (9)

(2) Moreover, if dim𝑉𝑚 ≥ 3, it holds that

Δ(𝑚 + 1) = −Δ(𝑚) and Δ(−𝑚 − 2) = −Δ(−𝑚 − 1).
In particular, 𝐿𝑚 = 𝐿𝑚+1 and 𝐿−𝑚−2 = 𝐿−𝑚−1.

Remark 4.3. To state Lemma 4.2 more visually: if𝑉𝑚 ⊋ 𝑉𝑚−1 and
dim𝑉𝑚 ≥ 3, then Δ has the following structure:

𝑖 −𝑚 − 2 −𝑚 − 1 · · · −1 0 · · · 𝑚 𝑚 + 1

Δ(𝑖) 𝛼 −𝛼 𝑎 𝑏 · · · 𝑏 𝑎 𝛽 −𝛽 𝑎 𝑏 · · · 𝑏 𝑎 𝛾 −𝛾 .

△

Proof. For Item (1) we show 3 equalities for 𝑖 ∈ {1, . . . ,𝑚 − 1}:

• Δ(𝑖) = Δ(𝑚 − 𝑖), which encodes palindromicity of the right

blue block;

• Δ(𝑚 − 𝑖) = Δ(−𝑖 − 1), which encodes equality of the blocks;

• Δ(−𝑖 − 1) = Δ(𝑖 −𝑚 − 1), which encodes palindromicity of

the left blue block.

Note that the third equality follows from the first two by substitut-

ing 𝑖 for𝑚 − 𝑖 . By symmetry (cfr. Observation 3.8) we may assume

that 𝐿𝑚 ⊄ 𝑉𝑚−1.
We first prove the identity Δ(𝑖) = Δ(𝑚 − 𝑖) by induction on 𝑖 .

For the base case 𝑖 = 1, observe that setting 𝑘 = 1 and 𝑧 = 𝑚 in

Equation (5) gives

rk (Δ(1) − Δ(𝑚 − 1) − Δ(𝑚)) ≤ 1.

By Corollary 2.3 we get that Δ(1) = Δ(𝑚 − 1). For the case 𝑖 = 2,

we put 𝑘 = 2 and 𝑧 =𝑚 in Equation (5):

rk (Δ(1) + Δ(2) − Δ(𝑚 − 2) − Δ(𝑚 − 1) − Δ(𝑚)) ≤ 1.

Using Δ(1) = Δ(𝑚 − 1) and Corollary 2.3 we find Δ(2) = Δ(𝑚 − 2).
One proceeds in a similar fashion for higher 𝑖 . Namely, if the

equality is true for 𝑖 , one gets the equality for 𝑖 +1 from Equation (5)

by setting 𝑘 = 𝑖 + 1 and 𝑧 =𝑚. The equality Δ(𝑚 − 𝑖) = Δ(−𝑖 − 1)
is proven analogously, using Equation (7).

For Item (2), we want to show that Δ(𝑚 + 1) + Δ(𝑚) = 0. If 𝑖 is

in {1, . . .𝑚 − 1,𝑚}, Equation (5) for 𝑧 =𝑚 + 1 and 𝑘 = 𝑖 , combined

with (9), imply that

rk (Δ(𝑚 + 1) + Δ(𝑚) − Δ(𝑖)) ≤ 1.

When 𝑖 is in {−𝑚−1,−𝑚, . . . ,−2} the same equation can be derived

from Equation (7) for 𝑧 =𝑚 + 1 and 𝑘 = −𝑖 − 1. Since dim𝑉𝑚 ≥ 3,

by Corollary 2.4 this implies that Δ(𝑚 + 1) + Δ(𝑚) = 0. The proof

that Δ(−𝑚 − 2) + Δ(−𝑚 − 1) = 0 is analogous. Finally we have that

𝐿𝑚 = im(Δ(𝑚)) = im(Δ(𝑚 + 1)) = 𝐿𝑚+1, and analogously for the

other one. □

5 APAP SEQUENCES
Now, our aim is to show that the finite pattern observed in Section 4

can be extended to infinity.We call a sequence satisfying this pattern

APAP, meaning almost periodic almost palindromic. In this section,

we define APAP sequences and prove some general lemmas; in the

next section we will show that our delta sequence is APAP. For the

purposes of this section, 𝐻 can be any abelian group.

Definition 5.1. A sequence (Δ(𝑖))𝑁−1
𝑖=−𝑁 , with Δ(𝑖) ∈ 𝐻 is APAP

with period 𝑝 ∈ [2, 𝑁 ], if

Δ(𝑖 + 𝑝) = Δ(𝑖) if 𝑖 . −1 or 0 mod 𝑝, (10)

Δ( 𝑗 − 1) + Δ( 𝑗) = 0 ∀𝑗 ∈ {−𝑁 + 1, . . . , 𝑁 − 1} with 𝑝 | 𝑗,
(11)

Δ(𝑝 − 1 − 𝑖) = Δ(𝑖) ∀𝑖 = 1, . . . , 𝑝 − 2. (12)

From now on we will refer to the respective Conditions (10), (11),

(12). We call Δ(1), . . . ,Δ(𝑝 − 3),Δ(𝑝 − 2) the palindromic block, and
will write 𝐵Δ for the “block sum" Δ(1) + · · · + Δ(𝑝 − 2).

Remark 5.2. The next two pictures illustrate how an APAP se-

quence looks like. First we see a global picture:

· · ·· · ·· · ·
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The blue box represents the palindromic block, whereas the red

circles represent the 𝑝-cancellation. Eack box has length 𝑝 − 2. Note

that while the blue box is always meant to be the same, the red

circles are not.

Next, we see the same picture but now zoomed in:

𝑖 (𝑎 − 1)𝑝 − 1 (𝑎 − 1)𝑝 · · · 𝑎𝑝 − 1

Δ(𝑖) 𝛼 −𝛼 𝑎 𝑏 · · · 𝑏 𝑎 𝛽

𝑖 𝑎𝑝 · · · (𝑎 + 1)𝑝 − 1 (𝑎 + 1)𝑝
Δ(𝑖) −𝛽 𝑎 𝑏 · · · 𝑏 𝑎 𝛾 −𝛾 .

In this picture we see the cancellation in red and the palindromic

block in blue. △

The following result is a quick calculation that uses the three

properties of being an APAP sequence.

Lemma 5.3. Let (Δ(𝑖))𝑁−1
𝑖=−𝑁 be an APAP sequence with period 𝑝 . For

any 𝑘 ∈ Z≥0, the sum of any 𝑘𝑝 consecutive elements in (Δ(𝑖))𝑁−1
𝑖=−𝑁 ,

where the index of the first element is not a multiple of 𝑝 is constant.
Moreover, this constant equals 𝑘 · 𝐵Δ. □

Our first source of APAP sequences is Lemma 4.2:

Lemma 5.4. Let𝑚 be such that 𝑉𝑚 ⊋ 𝑉𝑚−1 and dim𝑉𝑚 ≥ 3. The
sequence (Δ(𝑖))𝑚+1

−𝑚−2 is APAP with period𝑚 + 1. Moreover, for any
other period 𝑝 that makes this sequence APAP we have that 𝑝 |𝑚 + 1.

Proof. Since dim𝑉𝑚 ≥ 3, the sequence (Δ(𝑖))𝑚+1
−𝑚−2 is APAP

with period𝑚 + 1 by the two items of Lemma 4.2. Now suppose

that (Δ(𝑖))𝑚+1
−𝑚−2 is APAP with period 𝑝 . Since 𝑉𝑚 ⊋ 𝑉𝑚−1 at least

one of 𝐿𝑚 ⊄ 𝑉𝑚−1 or 𝐿−𝑚−1 ⊄ 𝑉𝑚−1 is true. By the symmetry from

Observation 3.8 we assume the former.

Suppose that 𝑝 does not divide 𝑚 + 1, so 𝑚 . −1 mod 𝑝 . If

additionally we have that𝑚 . 0 mod 𝑝 , then Δ(𝑚) = Δ( 𝑗) with
𝑗 the residue of 𝑚 divided by 𝑝 . Since 𝑗 < 𝑝 < 𝑚 + 1, we get

Δ(𝑚) = Δ( 𝑗) is in 𝑉𝑚−1, a contradiction. To finish, assume that

𝑚 ≡ 0 mod 𝑝 , so then Δ(𝑚 − 1) + Δ(𝑚) = 0, which again implies

that Δ(𝑚) is in 𝑉𝑚−1, a contradiction. □

Next, we use the last claim from Lemma 5.4 to study how two

distinct APAP structures on the same sequence interact. We apply

this result in Claim 6.3.

Lemma 5.5. Let (Δ(𝑖))𝑁−1
𝑖=−𝑁 be APAP with period 𝑝 . Suppose there

is a 𝑞 ∈ [2, 𝑝 − 1] such that
(1) Δ(𝑖) = Δ(𝑖 + 𝑞) for 𝑖 = 1, . . . , 𝑝 − 𝑞 − 2 (𝑞-periodicity),
(2) Δ(𝑖) = Δ(𝑞 − 1 − 𝑖) for 𝑖 = 1, . . . , 𝑞 − 2 (palindromicity of the

first 𝑞 − 2 elements),
(3) Δ(𝑞 − 1) + Δ(𝑞) = 0,

Write 𝑔 = gcd(𝑝, 𝑞). If 𝑔 > 1 then Δ is APAP with period 𝑔. If 𝑔 = 1

then all Δ(𝑖) are the same up to a sign.

We will deduce this using the following easy number-theoretic

lemma:

Lemma 5.6. Let 𝑞 < 𝑝 be integers and write 𝑔 = gcd(𝑝, 𝑞). Consider
the equivalence relation ∼ on Z generated by:

• 𝑥 ∼ 𝑦 if 𝑥 ≡ 𝑦 mod 𝑞 (𝑞-periodic),
• 𝑥 ∼ 𝑞 − 1 − 𝑥 for 𝑥 in {0, . . . , 𝑞 − 1} (𝑞-palindromic),
• 𝑥 ∼ 𝑝 − 1 − 𝑥 for 𝑥 in {0, . . . , 𝑝 − 1} (𝑝-palindromic).

Then we have that 𝑥 ∼ 𝑦 if and only if 𝑥 ≡ 𝑦 mod 𝑔 or 𝑥 + 𝑦 ≡ −1
mod 𝑔.

Proof of Lemma 5.6. We first show ∼ is also 𝑝-periodic. For

this, take any 𝑥 ∈ Z, and let𝑚 ∈ Z be the unique integer for which
𝑝 − 𝑞 ≤ 𝑥 −𝑚𝑞 ≤ 𝑝 − 1. Indeed,

𝑥 ∼ 𝑥 −𝑚𝑞 ∼ 𝑝 − 1 − (𝑥 −𝑚𝑞) ∼ 𝑞 − 1 − (𝑝 − 1 − 𝑥 +𝑚𝑞)
= 𝑥 − 𝑝 − (𝑚 − 1)𝑞 ∼ 𝑥 − 𝑝.

In the previous calculation, 𝑥 −𝑚𝑞 is contained in {0, . . . , 𝑝 − 1}
and 𝑝 − 1− (𝑥 −𝑚𝑞) is in {0, . . . , 𝑞 − 1}, so the operations are valid.
The combination of 𝑞-periodicity and 𝑝-periodicity is equivalent

to 𝑔-periodicity, namely 𝑥 ∼ 𝑦 when 𝑥 ≡ 𝑦 mod 𝑔. Additionally,

palindromicity gives 𝑥 ∼ 𝑦 when 𝑥 + 𝑦 ≡ −1 mod 𝑔. Indeed, by

𝑔-periodicity we may assume that 𝑥 is in {1, . . . , 𝑔 − 1}, then by

𝑞-palindromicity and periodicity we have that 𝑥 ∼ 𝑞 − 1 − 𝑥 ∼
−1 − 𝑥 ∼ 𝑦. □

Proof of Lemma 5.5. We first consider the case 𝑔 > 1. Let us

write [𝑎]𝑞 for the unique integer in {1, . . . , 𝑞} that is congruent to
𝑎 modulo 𝑞.

Claim 5.7. It suffices to check the APAP property on the interval

[1, 𝑞]. In other words: if we verify the identities

(a) Δ(𝑖) = Δ(𝑖 + 𝑔) for 𝑖 ∈ {1, . . . , 𝑞 − 𝑔 − 2} with 𝑖 . −1 or 0
mod 𝑔,

(b) Δ(𝑘𝑔 − 1) + Δ(𝑘𝑔) = 0 for 𝑘 = 1, . . . , 𝑞/𝑔,
(c) Δ(𝑖) = Δ(𝑔 − 1 − 𝑖) for 𝑖 = 1, . . . , 𝑔 − 2,

then Δ is APAP with period 𝑔.

Proof. For palindromicity there is nothing to prove. For period-

icity: given any 𝑖 ≠ −1 or 0 mod 𝑔, we have

Δ(𝑖) = Δ( [𝑖]𝑝 ) = Δ( [[𝑖]𝑝 ]𝑞) = Δ( [𝑖]𝑔),
where we used 𝑝-periodicity, 𝑞-periodicity, and (a).

Cancellation is similar: if 𝑝 | 𝑗 then Δ( 𝑗) = −Δ( 𝑗 − 1) by 𝑝-cancel-
lation; if 𝑔 | 𝑗 but 𝑝 ∤ 𝑗 then we can use 𝑝-periodicity, 𝑞-periodicity,

and (b) to find

Δ( 𝑗 − 1) + Δ( 𝑗) = Δ( [ 𝑗 − 1]𝑝 ) + Δ( [ 𝑗]𝑝 )
= Δ( [[ 𝑗 − 1]𝑝 ]𝑞) + Δ( [[ 𝑗]𝑝 ]𝑞) = 0. □

We now verify the conditions (a), (b), (c) above. For this, we

formally define the 𝑞-periodic map Δ̃ : Z→ 𝐻 by Δ̃(𝑖) = Δ̃( [𝑖]𝑞).
Since Δ and Δ̃ agree on the interval [1, 𝑞], by Claim 5.7 we may

work now with Δ̃ instead. We consider the equivalence relation

∼ from the previous lemma. Then showing (a) and (c) amounts to

showing that Δ̃ is constant on every equivalence class except for

the one generated by 0. Indeed, two numbers 𝑥 and 𝑦 in the same

equivalence class can be connected by a chain as in Lemma 5.6, and

the only case this doesn’t imply an equality of Δ̃ is when 𝑥 = 0,

𝑞 − 1, or 𝑝 − 1, but then we are in the bad equivalence class.

We are left with showing (b). For this, we in fact will prove

the stronger claim that Δ̃(𝑘𝑔 − 1) = Δ̃(𝑘𝑔) = 0 for 𝑘 = 1, . . . , 𝑞/𝑔.
Viewing Δ̃ as a map Z/𝑞Z→ 𝐻 , we claim that

Δ̃(𝑖) = Δ̃(𝑝 − 1 − 𝑖) (13)

for every 𝑖 ∈ Z/𝑞Z. The only nontrivial case is 𝑖 = 0: if 𝑞 = 𝑝 − 1

then Δ̃(0) = Δ̃(𝑞) = Δ̃(𝑝 − 1), and if 𝑞 < 𝑝 − 1 then by 𝑞-periodicity

and 𝑝-palindromicity we get Δ̃(0) = Δ̃(𝑞) = Δ̃(𝑝−1−𝑞) = Δ̃(𝑝−1).
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This naturally leads us to the sequence

Δ̃(0), Δ̃(𝑝 − 1), Δ̃(−𝑝), . . . , Δ̃(−(𝑘 − 1)𝑝), Δ̃(𝑘𝑝 − 1), Δ̃(−𝑘𝑝), . . .

Besides having Δ̃(−(𝑘 − 1)𝑝) = Δ̃(𝑘𝑝 − 1) by Equation (13), we

also have Δ̃(𝑘𝑝 − 1) = Δ̃(−𝑘𝑝) by Δ(𝑖) being APAP with period 𝑝 ,

except when [𝑘𝑝]𝑞 − 1 = 0 or [𝑘𝑝]𝑞 = 0. Since 𝑔 > 1, we never

have [𝑘𝑝]𝑞 = 1. Thus, we let 𝑏 =
𝑞
𝑔 be the smallest natural number

such that [𝑏𝑝]𝑞 = 0, so we get

Δ̃(0) = Δ̃(𝑝 − 1) = Δ̃(−𝑝) = · · · = Δ̃(−(𝑏 − 1)𝑝) = Δ̃(𝑏𝑝 − 1) .

Note that the set of arguments in the above chain of equalities

contains every 𝑥 ∈ Z/𝑞Z that is congruent to 0 or −1 modulo 𝑔.

Moreover, since Δ(𝑞 − 1) + Δ(𝑞) = 0, we get Δ̃(𝑏𝑝 − 1) = −Δ̃(0),
rendering the whole sequence equal to 0, as desired.

Now assume that 𝑔 equals 1. By 𝑞-periodicity it suffices to show

that Δ(1), . . . ,Δ(𝑞) are equal up to a sign. We define Δ̃ as above,

and let 𝑎 be the smallest natural number such that [𝑎𝑝]𝑞 = 1. Then,

by similar arguments, we find that

Δ̃(0) = Δ̃(𝑝 − 1) = Δ̃(−𝑝) = · · · = Δ̃(−(𝑎 − 1)𝑝) =
= Δ̃(𝑎𝑝 − 1) = −Δ̃(𝑎𝑝) = · · ·
= −Δ̃(𝑞𝑝 − 1) = Δ̃(0) .

Note that above, since 𝑔 = 1 we have that [𝑎𝑝]𝑞 = 0 for the first

time when 𝑎 = 𝑞. So we find that all the Δ̃(𝑥), for 𝑥 ∈ Z/𝑞Z, are
equal up to a sign, as desired. □

6 THE DELTA SEQUENCE IS APAP
In the following theorem we use the same notation as before,

i.e. given a 1-quasihomomorphism 𝑓 we denote by 𝐿𝑖 the space

im(Δ𝑓 (𝑖)).

Theorem 6.1. Let 𝑓 : Z → Sym(𝑛 × 𝑛,K) be a 1-quasihomomor-
phism. Assume that dim(∑𝑖∈Z\{0,−1} 𝐿𝑖 ) ≥ 3. We can find a natural
number 𝑝 such that Δ𝑓 is APAP with period 𝑝 . Moreover, 𝑝 can be
chosen such that dim(𝐿1 + · · · + 𝐿𝑝−2) ≤ 2; hence in particular
rk (𝐵Δ) ≤ 2.

Proof of Theorem 6.1. Let𝑚 be minimal such that dim𝑉𝑚 > 2.

By Lemma 4.2 we have that the sequence (Δ(𝑖))𝑚+1
𝑖=−𝑚−2 is APAP

with period𝑚 + 1. Let 𝑝 be the minimal positive integer such that

(Δ(𝑖))𝑚+1
𝑖=−𝑚−2 is APAP with period 𝑝 . By Lemma 5.4 we have that

𝑝 is a divisor of 𝑚 + 1. We will show that the entire sequence

(Δ(𝑖))∞
𝑖=−∞ is APAP with period 𝑝 . Then, using minimality of𝑚,

we get that

dim(𝐿1 + · · · + 𝐿𝑝−2) = dim𝑉𝑝−2 ≤ 2,

which implies that rk (𝐵Δ) ≤ 2.

Now, assume that for some 𝑁 the sequence (Δ(𝑖))𝑁−1
𝑖=−𝑁 is APAP

with period 𝑝 . We will simultaneously extend the sequence by one

on both sides, and show (Δ(𝑖))𝑁
𝑖=−𝑁−1 is still APAP with period 𝑝;

thus proving the theorem by induction.

We have three cases. If 𝑁 ≡ −1 mod 𝑝 there is nothing to prove,

as illustrated in the following picture.

-N-1 N· · ·

· · ·

· · ·· · ·𝑖

Δ(𝑖)

Figure 2: Here we see that for 𝑖 = −𝑁 and 𝑖 = 𝑁 − 1 we start and end with the

palindromic block. Our Definition of APAP is not dependent of what entry we

put next for 𝑖 = 𝑁 and 𝑖 = −𝑁 − 1.

Next, assume that 𝑁 ≡ 0 mod 𝑝 . This case is illustrated as

follows:

-N-1 N· · ·

· · ·

· · ·· · ·𝑖

Δ(𝑖)

Figure 3: Here our Δ starts for 𝑖 = 𝑁 with an "end-cancellation", e.g. −𝛼 and

it ends with another "start-cancellation", e.g. 𝛾 . Keeping our global picture in

mind, we can see that the sum of the entries Δ(−𝑁 − 1) and Δ(−𝑁 ) , resp.
Δ(𝑁 − 1) and Δ(𝑁 ) , should be zero.

So we need to show Δ(𝑁 − 1) + Δ(𝑁 ) = 0 and Δ(−𝑁 − 1) +
Δ(−𝑁 ) = 0. We reason analogously to the proof of Item (2) from

Lemma 4.2. Equations (5) and (7) yield

rk (Δ(𝑖) − Δ(𝑁 − 1) − Δ(𝑁 )) ≤ 1

for 𝑖 in {−𝑁, . . . , 𝑁 − 1} \ {−1, 0}. Since dim𝑉𝑚 > 2, there are three

indices 𝑖 with linearly independent 𝐿𝑖 , so by Corollary 2.4 we get

that Δ(𝑁 − 1) + Δ(𝑁 ) = 0. The other equality follows analogously.

For the last case, assume that 𝑁 . −1, 0 mod 𝑝 .

Let 𝑖 be the residue of 𝑁 when dividing by 𝑝 . Now Δ(𝑁 ) and
Δ(−𝑁 − 1) are both in a palindromic block, and we want to show

that Δ(𝑁 ) = Δ(𝑖) = Δ(−𝑁 − 1). We only prove the first equality,

the second one being analogous.

We will prove that Δ(𝑁 ) = Δ(𝑖) by contradiction in two steps:

(1) Suppose that Δ(𝑁 ) ≠ Δ(𝑖), then 𝐿𝑁 ⊄ 𝑉2.

(2) 𝐿𝑁 ⊄ 𝑉2 leads to a contradiction with minimality of 𝑝 .

Claim 6.2. Suppose that Δ(𝑁 ) ≠ Δ(𝑖), then 𝐿𝑁 ⊄ 𝑉2.

Proof. Apply Equation (5) with 𝑘 =𝑚 and 𝑧 = 𝑁 to get:

rk

©­«
𝑚∑︁
𝑗=1

Δ( 𝑗) −
𝑚∑︁
𝑗=0

Δ(𝑁 − 𝑗)ª®¬ ≤ 1.

Rewrite the sum inside the previous expression as

©­«−Δ(𝑚 + 1) +
𝑚+1∑︁
𝑗=1

Δ( 𝑗)ª®¬ − ©­«Δ(𝑁 ) − Δ(𝑁 −𝑚 − 1) +
𝑚+1∑︁
𝑗=1

Δ(𝑁 − 𝑗)ª®¬ .
Note that by induction hypothesis both

∑𝑚+1
𝑗=1 Δ( 𝑗) and∑𝑚+1

𝑗=1 Δ(𝑁−
𝑗) are sums of𝑚 + 1 consecutive elements in an APAP sequence,

and recall that𝑚 + 1 is a multiple of 𝑝 , so Lemma 5.3 implies that

both sums cancel each other. Since 𝑁 −𝑚 − 1 ≡ 𝑖 mod 𝑝 , we have

rk (Δ(𝑖) + Δ(𝑚) − Δ(𝑁 )) ≤ 1.

Note that 𝐿𝑚 ⊄ 𝑉2 but 𝐿𝑖 ⊆ 𝑉2. So if also 𝐿𝑁 ⊆ 𝑉2 this would imply

𝐿𝑚 ⊄ im(Δ(𝑖) − Δ(𝑁 )), but then Corollary 2.3 yields

rk (Δ(𝑖) + Δ(𝑚) − Δ(𝑁 )) = rk (Δ(𝑖) − Δ(𝑁 )) + 1 ≥ 2,

which is a contradiction. □
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Claim 6.3. If 𝐿𝑁 ⊄ 𝑉2, we get a contradiction with the minimality

of 𝑝 .

Proof. We write 𝑞 = 𝑖 + 1, where 𝑖 is still the residue of 𝑁

modulo 𝑝 . We will apply Lemma 5.5 to show that (Δ(𝑖))𝑁−1
𝑖=−𝑁 is

APAP with period equal to gcd(𝑝, 𝑞). For this, we need to verify the
three conditions.

Write 𝑁 = 𝑎𝑝 + 𝑞 − 1. We apply Equation (5) with 𝑘 = 1 and

𝑧 = 𝑁 :

rk (Δ(1) − (Δ(𝑁 ) + Δ(𝑁 − 1))) ≤ 1. (14)

Since our sequence is APAP with period 𝑝 , we find that

Δ(𝑁 − 1) = Δ(𝑎𝑝 + 𝑞 − 2) = Δ(𝑞 − 2), hence

rk (Δ(1) − (Δ(𝑁 ) + Δ(𝑞 − 2))) ≤ 1. (15)

Since 𝐿𝑁 ⊄ 𝑉2 but 𝐿1, 𝐿𝑞−2 ⊂ 𝑉2, we can apply Corollary 2.3 to𝐴 =

Δ(1) −Δ(𝑞− 2) and 𝐵 = Δ(𝑁 ) to conclude that Δ(1) −Δ(𝑞− 2) = 0.

Repeating the argument for 𝑘 = 2, . . . , 𝑞 − 2, we find that

Δ(𝑘) = Δ(𝑞 − 1 − 𝑘) for 𝑘 = 1, . . . , 𝑞 − 2,

showing Condition (2) of Lemma 5.5.

For 𝑘 = 𝑞 − 1, we find

rk (Δ(𝑞 − 1) − (Δ(𝑁 ) + Δ(𝑎𝑝))) ≤ 1,

but now𝐿𝑎𝑝 need not be in𝑉2 andwe don’t get any new information.

However, for 𝑘 = 𝑞, we get

rk (Δ(𝑞 − 1) + Δ(𝑞) − (Δ(𝑁 ) + Δ(𝑎𝑝) + Δ(𝑎𝑝 − 1))) ≤ 1.

Now we know that Δ(𝑎𝑝) + Δ(𝑎𝑝 − 1) = 0 and conclude that

Δ(𝑞 − 1) + Δ(𝑞) = 0,

which shows Condition (3) of Lemma 5.5.

Now we continue with 𝑘 = 𝑞 + 1:

rk (Δ(𝑞 + 1) − (Δ(𝑁 ) + Δ(𝑎𝑝 − 2))) ≤ 1.

But we know that Δ(𝑎𝑝 − 2) = Δ(𝑝 − 2) = Δ(1), and hence we

conclude

Δ(𝑞 + 1) = Δ(1).
We can continue this up to 𝑘 = 𝑝 − 2, and find that

Δ(𝑘) = Δ(𝑘 − 𝑞) for 𝑘 = 𝑞 + 1, . . . , 𝑝 − 2, (16)

which is Condition (1) of Lemma 5.5. We have verified all conditions,

hence it holds that (Δ(𝑖))𝑁−1
𝑖=−𝑁 is APAP with period 𝑔 := gcd(𝑝, 𝑞).

Hence, the shorter sequence (Δ(𝑖))𝑚+1
𝑖=−𝑚−2 is APAP with period 𝑔

strictly less than 𝑝; contradicting our choice of 𝑝 . □

This finishes our induction, and thus the proof. □

7 PROOF OF THE MAIN RESULT
Putting everything together we get:

Proof of Theorem 1.5. By Theorem 6.1 we find that Δ is APAP

with period 𝑝 . Define

𝐴 =
𝐵Δ

𝑝
=

Δ(1) + · · · + Δ(𝑝 − 2)
𝑝

=
𝑓 (𝑝 − 1)

𝑝
.

We will show that Equation (2) holds with this 𝐴. We restrict to

the case 𝑥 ≥ 1; the other case being analogous. Write 𝑥 = 𝑎𝑝 + 𝑟

with 1 ≤ 𝑟 ≤ 𝑝 . If 𝑥 ≥ 1,we have that 𝑓 (𝑥) = Δ(1) + · · · + Δ(𝑥 − 1).
Applying Lemma 5.3 we get that:

𝑓 (𝑥) =Δ(1) + · · · + Δ(𝑥 − 1)

=𝑎𝐵Δ +
𝑟−1∑︁
𝑗=1

Δ(𝑎𝑝 + 𝑗)

=𝑎𝑝𝐴 +
𝑟−1∑︁
𝑗=1

Δ(𝑎𝑝 + 𝑗) . (17)

We have two cases. First, we assume that 𝑟 = 𝑝 . Equation (17)

becomes

𝑓 (𝑥) = 𝑎𝑝𝐴 +
𝑝−1∑︁
𝑗=1

Δ(𝑎𝑝 + 𝑗)

= 𝑎𝑝𝐴 +
𝑝−2∑︁
𝑗=1

Δ(𝑎𝑝 + 𝑗) + Δ(𝑥 − 1)

= 𝑎𝑝𝐴 + 𝑝𝐴 + Δ(𝑥 − 1) = 𝑥𝐴 + Δ(𝑥 − 1) .
It follows that

rk (𝑓 (𝑥) − 𝑥𝐴) = rk (Δ(𝑥 − 1)) ≤ 1.

If 𝑟 < 𝑝 , Equation (17) becomes

𝑓 (𝑥) = 𝑎𝑝𝐴 +
𝑟−1∑︁
𝑗=1

Δ( 𝑗) .

In particular im(𝑓 (𝑥) − 𝑥 · 𝐴) ⊆ ∑𝑝−2
𝑖=1

𝐿𝑖 . But by Theorem 6.1,

dim

∑
𝑖 𝐿𝑖 ≤ 2, and hence rk (𝑓 (𝑥) − 𝑥𝐴) ≤ 2. □
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