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Abstract

An acyclic edge coloring of a graph is a proper edge coloring in which there are no bichromatic cycles. The
acyclic chromatic index of a graph G denoted by a

′(G), is the minimum positive integer k such that G has
an acyclic edge coloring with k colors. It has been conjectured by Fiamč́ık that a′(G) ≤ ∆+ 2 for any graph
G with maximum degree ∆. Linear arboricity of a graph G, denoted by la(G), is the minimum number of
linear forests into which the edges of G can be partitioned. A graph is said to be chordless if no cycle in the
graph contains a chord. Every 2-connected chordless graph is a minimally 2-connected graph. It was shown
by Basavaraju and Chandran that if G is 2-degenerate, then a

′(G) ≤ ∆+ 1. Since chordless graphs are also
2-degenerate, we have a

′(G) ≤ ∆ + 1 for any chordless graph G. Machado, de Figueiredo and Trotignon
proved that the chromatic index of a chordless graph is ∆ when ∆ ≥ 3. They also obtained a polynomial time
algorithm to color a chordless graph optimally. We improve this result by proving that the acyclic chromatic
index of a chordless graph is ∆, except when ∆ = 2 and the graph has a cycle, in which case it is ∆ + 1.
We also provide the sketch of a polynomial time algorithm for an optimal acyclic edge coloring of a chordless
graph. As a byproduct, we also prove that la(G) = ⌈∆

2
⌉, unless G has a cycle with ∆ = 2, in which case

la(G) = ⌈∆+1

2
⌉ = 2. To obtain the result on acyclic chromatic index, we prove a structural result on chordless

graphs which is a refinement of the structure given by Machado, de Figueiredo and Trotignon for this class
of graphs. This might be of independent interest.

Keywords: Acyclic chromatic index; Acyclic edge coloring; Chordless graphs; Linear arboricity; Minimally

2-connected graphs

1 Introduction

All graphs considered in this paper are finite and simple. A path in a graph G is a sequence of distinct vertices
of G such that the consecutive vertices in the sequence are adjacent. A cycle in a graph is a path together
with an edge between the starting vertex and the ending vertex of the path. A proper edge coloring of a graph
G = (V,E), with a given set of colors C, is a function c : E → C such that c(e1) 6= c(e2) for any adjacent edges
e1 and e2. The minimum number of colors required to perform a proper edge coloring of a given graph G is
called the chromatic index of G and is denoted by χ′(G). A linear forest is a graph without cycles, in which
every vertex has degree at most two. In other words, a linear forest is a disjoint union of paths. A proper edge
coloring of a graph G is said to be acyclic if there are no bichromatic cycles in G or equivalently if the union
of any two color classes induces a linear forest in G. The acyclic chromatic index (also called as acyclic edge
chromatic number) of a graph G is the minimum number of colors required to perform an acyclic edge coloring of
G and is denoted by a′(G). The concept of acyclic coloring was first introduced by Grünbaum [13]. The acyclic
chromatic index and its vertex analogue can be used to bound other parameters like oriented chromatic number
[18] and star chromatic number of a graph, both of which have many practical applications including wavelength
routing in optical networks [4]. By Vizing’s theorem [9], we have ∆ ≤ χ′(G) ≤ ∆+ 1 where ∆ = ∆(G) denotes
the maximum degree of a vertex in the graph G. Since any acyclic edge coloring is also a proper edge coloring,
we have a′(G) ≥ χ′(G) ≥ ∆.

It has been conjectured by Fiamč́ık [11] (and independently by Alon, Sudakov and Zaks [2]) that a′(G) ≤ ∆+ 2
for any graph G. The best known upper bound for a′(G) for an arbitrary graph till date is ⌈3.74(∆ − 1)⌉ + 1
given by Giotis et al. [12] which is obtained by using probabilistic techniques. Even though this bound is far
from the conjectured bound, the conjecture has been proved for some special classes of graphs. Alon et al. [2]
proved that there exists a constant k such that a′(G) ≤ ∆+ 2 for any graph G with girth at least k∆ log∆.
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It is known that finding the chromatic index of a graph is NP-Complete even for special classes of graphs. As
per Holyer [14], it is NP-Complete even for cubic graphs. Leven and Galil [19] proved that it is NP-complete to
determine whether it is possible to color the edges of a regular graph of degree k with k colors for any k ≥ 3.
Therefore, it is interesting to find out the classes of graphs where the problem is solvable in polynomial time.
There are polynomial time algorithms to find the chromatic index of bipartite graphs, series parallel graphs and
so on. Machado et al. [21] studied the problem in case of chordless graphs.

An edge e = uv of a graph G is said to be a chord if the vertices u and v are part of a cycle in G \ e which
is obtained by deleting the edge e from G. A graph is said to be chordless if it does not contain a chord. A
2-connected graph G is said to be minimally 2-connected if G \ e is no longer 2-connected for any edge e in G. A
chordless graph which is 2-connected is minimally 2-connected. The study of structural properties of chordless
graphs and minimally 2-connected graphs can be found in [10], [21] and [22].

Machado et al. [21] proved that the edges of any connected chordless graph can be colored using exactly ∆ colors
unless G is an odd cycle. They refined the structure of chordless graphs as given by Lévêque et al. [20], which
helped them in proving the result. Since any proper coloring requires at least ∆ colors, this means that the
chromatic index of any chordless graph can be determined exactly in polynomial time. Machado et al. [21] also
gave a polynomial time algorithm to color the given chordless graph with optimum number of colors.

The acyclic chromatic index has been determined exactly for some classes of graphs like outer planar graphs when
∆ 6= 4 (Hou and Wu [16], Hou et al. [17]), series-parallel graphs when ∆ 6= 4 (Wang and Shu [23]), planar graphs
with girth at least 5 and ∆ ≥ 19 (Basavaraju et al. [7]) and planar graphs with ∆ ≥ 4.2 × 1014 (Cranston [8]).
In case of outer planar graphs and series-parallel graphs, a′(G) = ∆ if ∆ ≥ 5 and when ∆ = 3, they characterize
the graphs that require 4 colors. Note that in case of acyclic edge coloring, at most one color class can be a
perfect matching since otherwise the two color classes which are perfect matchings will give rise to at least one
cycle when we take their union. This implies that for any regular graph G, we have a′(G) ≥ ∆(G)+ 1. Thus any
cubic graph requires at least 4 colors for acyclic edge coloring. We also know that any cubic graph can be colored
using at most 5 colors. Andersen et al. [5] proved that any cubic graph other than K4 or K3,3 can be colored
using 4 colors which determines the acyclic chromatic index of cubic graphs exactly. Further, we note that all
the above mentioned results are constructive in nature and hence, they also yield a polynomial time algorithm
for the optimum coloring.

A graph G is said to be k-degenerate, if every subgraph of G has a vertex of degree at most k. Observe that if a
graph G is chordless, then since every subgraph of G is also chordless, Lemma 4 guarantees that every subgraph
of G has a vertex of degree at most 2. Therefore, the class of chordless graphs is a proper subclass of the class
of 2-degenerate graphs. Basavaraju and Chandran [6] proved that the edges of any 2-degenerate graph can be
acyclically colored using ∆+1 colors. Therefore, a′(G) ≤ ∆+1 for a chordless graph G. Thus we know that the
acyclic chromatic index is either ∆ or ∆ + 1.

The acyclic chromatic index of any cubic graph can be determined exactly. But Alon and Zaks [3] proved that it
is NP-Complete to determine a′(G) even when ∆ = 3. We can infer that it is NP-Complete to determine a′(G)
when ∆ = 3 and G is not cubic. But these graphs are 2-degenerate. Thus it is NP-complete to determine a′(G)
for 2-degenerate graphs.

Result:

In this paper, we consider the chordless graphs and prove that the acyclic chromatic index can be determined
exactly. This improves the result by Machado et al. [21]. To achieve this, we refine the structure of chordless
graphs obtained in [21]. This result (Lemma 5) might be of independent interest where we need a more refined
structure than that is required for proper edge coloring. In particular, we prove the following theorem.

Theorem 1. Let G be a connected chordless graph with maximum degree ∆. Then a′(G) = ∆, unless G is a
cycle (in which case a′(Cn) = ∆ + 1 = 3).

Remark 1. Since the acyclic edge coloring of the components of a graph can be easily extended to the coloring of
the whole graph, it is enough to prove the statement for connected graphs. Hence, we have the following Corollary.

Corollary 1. Let G be a chordless graph with maximum degree ∆. Then a′(G) = ∆, unless G has a cycle with
∆ = 2 (in which case a′(G) = ∆ + 1 = 3).
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Remark 2. Linear arboricity of a graph G denoted by la(G), is the minimum positive integer k such that the edges
of G can be partitioned into k linear forests. It is conjectured by Akiyama et al. [1] that la(G) ≤ ⌈∆+1

2 ⌉. Since

the union of any two color classes in acyclic edge coloring is a linear forest, we can infer that la(G) ≤ ⌈a′(G)
2 ⌉.

By a result of Basavaraju and Chandran [6], the conjecture is true for 2-degenerate graphs. Our result in this
paper shows that the linear arboricity of chordless graphs can be determined exactly, i.e., for a chordless graph
G, we have la(G) = ⌈∆

2 ⌉ unless ∆ = 2 and G contains a cycle, in which case la(G) = ⌈∆+1
2 ⌉ = 2. Thus we have

the following Corollary.

Corollary 2. If G is a chordless graph with maximum degree ∆, then la(G) = ⌈∆
2 ⌉, unless G has a cycle with

∆ = 2 (in which case la(G) = ⌈∆+1
2 ⌉ = 2).

Remark 3. From Theorem 1 and Remark 1, we can infer that a′(G) can be determined exactly for chordless
graphs in polynomial time. We also give a sketch of a polynomial time algorithm to acyclically color the edges of
a given chordless graph with optimum number of colors.

2 Preliminaries

Let G = (V,E) be a simple, finite and undirected graph with n vertices and m edges. The degree of any vertex
x in G, represented as degG(x) or simply deg(x) (if G is understood from the context), is the number of edges
in G which are incident on the vertex x. A vertex with degree zero is said to be an isolated vertex. Maximum
degree and minimum degree of G, represented as ∆(G) and δ(G) respectively or simply ∆ and δ (if the graph G
is obvious), are the maximum degree and minimum degree of vertices in G respectively. For any vertex x ∈ V ,
NG(x) is the set of all neighbors of x in G. Throughout the paper, NG(x) is written as N(x) whenever G is
understood from the context. Let R be a subset of E, i.e., R ⊆ E. Then G \R is the subgraph of G obtained by
the vertex set V and the edge set E \ R. Let S ⊆ V . Then G \ S is the subgraph of G obtained by the vertex
set V \ S and the edge set E \ {e ∈ E / ∃v ∈ S such that e is incident on v}. If either R or S is a singleton set
{x}, then we write G \ {x} as G \ x throughout the paper.

A vertex x ∈ V is said to be a cut vertex in G if G \ x is disconnected. A graph G is said to be k-connected if
the removal of less than k vertices does not disconnect G. Let S ⊆ V . Then G[S] is the subgraph of G induced
by the vertices in S, i.e., G[S] = (V ′, E′) where V ′ = S and E′ = {ab ∈ E / a ∈ S, b ∈ S}. Let e = xy be an
edge in G. Then the process of deleting the vertices x and y from G and replacing it by a new vertex z such
that N(z) = (N(x) \ y) ∪ (N(y) \ x) is called as edge contraction corresponding to the edge e. If the operation
results in a multi edge, we keep only one edge between those vertices. The number of edges in a path is said to
be the length of the path. Distance between any two vertices x and y in G is the number of edges in the shortest
(x, y)-path. An odd cycle in a graph is a closed path of odd length. Graph G is said to be a bipartite graph, if
the vertex set V can be partitioned into two sets X and Y such that every edge in G has one end in X and the
other end in Y . It is proved that a graph is bipartite if and only if it does not have an odd cycle in it. See [24]
for further notations and definitions. Throughout the paper, whenever just the word coloring is mentioned, it
should be taken as acyclic edge coloring.

The following definitions and lemmas are given by Basavaraju and Chandran [6]. We will mention the ones which
are required for our discussion below.

Definition 1 ([6]). An edge coloring c of a subgraph H of a graph G is called a partial edge coloring of G.

Note that H can be G itself. Therefore, an edge coloring of G is also a partial edge coloring of G. Given partial
edge coloring c of G is proper (and acyclic) if it is proper (and acyclic) in the corresponding subgraph H . Note
that c(e) may not be defined for an edge e with respect to a partial coloring c. So, whenever we use c(e), we are
considering an edge e for which c(e) is defined, even though it is not explicitly mentioned. Let c be a partial edge
coloring of G. For any vertex u ∈ V , we define Fu(c) = {c(uv) / v ∈ NG(u)}. For an edge ab ∈ E, we define
Fab(c) = Fb(c) \ {c(ab)}. We will abbreviate the notation as Fu and Fab when the coloring c is obvious from the
context. Note that Fab is different from Fba.

Definition 2 ([6]). An (α, β)-maximal bichromatic path with respect to a partial coloring c of G is a maximal
path in G consisting of edges that are colored using the colors α and β alternatingly. An (α, β, a, b)-maximal

bichromatic path is an (α, β)-maximal bichromatic path which starts at the vertex a with an edge colored with
α and ends at the vertex b.
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The following lemma (mentioned as a fact in [6]) follows from the definition of acyclic edge coloring. We implicitly
assume this lemma throughout the paper.

Lemma 1 ([6]). Given a pair of colors α and β of a proper coloring c of G, there can be at most one (α, β)-
maximal bichromatic path containing a particular vertex v in G, with respect to the coloring c.

Definition 3 ([6]). An (α, β, a, b)-maximal bichromatic path in a graph G, which ends at b with an edge colored
α, is said to be an (α, β, ab)-critical path if the vertices a and b are adjacent in G.

Definition 4 ([6]). Let c be a partial coloring of G. Let u, i, j ∈ V (G) and ui, uj ∈ E(G). A color exchange

with respect to the edges ui and uj is defined as the modification of the current partial coloring c by exchanging
the colors of the edges ui and uj to get a partial coloring c′, i.e., c′(ui) = c(uj), c′(uj) = c(ui) and for all other
edges e in G, c′(e) = c(e). The color exchange with respect to the edges ui and uj is said to be proper if the
coloring obtained after the exchange is proper. The color exchange with respect to the edges ui and uj is valid if
and only if the coloring obtained after the exchange is acyclic.

A color α is said to be a candidate for an edge e in G with respect to a partial coloring c of G if none of the
adjacent edges of e are colored α. A candidate color α is said to be valid for an edge e if assigning the color α
to e does not result in any bichromatic cycle in G. Following lemma is mentioned as a fact by Basavaraju and
Chandran [6], since it is obvious.

Lemma 2 ([6]). Let c be a partial coloring of G. A candidate color β is not valid for an edge e = (a, b) if and
only if there exists α ∈ Fba ∩ Fab such that there is an (α, β, ab)-critical path in G with respect to the coloring c.

3 Structure of Chordless Graphs

We will start with a strict subclass of chordless graphs before actually moving into the structure of chordless
graphs.

Definition 5. A graph G is 2-sparse if every edge of G is incident on at least one vertex of degree at most 2.

Observe that a 2-sparse graph is also chordless since a chord of a cycle in a graph is an edge whose end vertices
have degree at least 3.

Definition 6. A proper 2-cutset of a connected graph G = (V,E) is a pair of non-adjacent vertices (a, b) such
that V can be partitioned into non-empty sets X, Y and {a, b} so that there is no edge between any vertex in X
and any vertex in Y and both G[X ∪ {a, b}] and G[Y ∪ {a, b}] contain an ab-path but neither G[X ∪ {a, b}] nor
G[Y ∪{a, b}] is an induced path. Then (X,Y, a, b) is called a split of the proper 2-cutset (a, b). The block GX(a, b)
(respectively GY (a, b)) is the graph obtained by taking G[X ∪{a, b}] (respectively G[Y ∪{a, b}]) and adding a new
vertex w called as the marker vertex, adjacent to both a and b.

The structure of chordless graphs and minimally 2-connected graphs were studied by Dirac [10] and Plummer
[22]. Recently Lévêque et al. [20] gave another structural property of chordless graphs. In particular, they proved
the following lemma.

Lemma 3 ([20]). If G is a 2-connected chordless graph, then either G is 2-sparse or G admits a proper 2-cutset.

This is a useful property in proving many results on chordless graphs. But when Machado et al. [21] tried to
study the edge coloring of chordless graphs, they needed a refined structure with respect to the proper 2-cutsets
that are mentioned in the above statement. Hence, they proved the following lemma.

Lemma 4 ([21]). Let G be a 2-connected, not 2-sparse chordless graph. Let (X,Y, a, b) be a split of a proper
2-cutset of G such that |X | is minimum among all possible such splits. Then both a and b have at least two
neighbors in X and GX(a, b) is 2-sparse.

This structural result helped them in proving that the edges of every chordless graph with maximum degree at
least 3 can be colored using ∆ colors. The split helps in the inductive proof. The main idea is to extend the
coloring of GY (a, b) to the coloring of G by exploiting the structure of GX(a, b) which is 2-sparse.

In this paper, we also use the induction method. The proper 2-cutset and GX(a, b) play a major role in choosing
the smaller subgraph. But since the coloring has to be acyclic, we need to limit the cycles to one block where
we can handle them. We try to limit the possible cycles within GX(a, b) \ w since it is 2-sparse. But the major
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hurdle is when all the edges in the 2-sparse side are incident on the vertices a and b. In proper edge coloring
we can give the missing colors on those vertices to the edges in GX(a, b) \ w by appropriately permuting the
colors if needed. But that does not work with respect to acyclic edge coloring since there is a possibility of cycles
being created in the graph even when we permute the colors. Hence we need a much more refined structure with
respect to the proper 2-cutset than what is required by Machado et al. [21].

Note that when all the edges are incident to either a or b, then the graph GX(a, b) is isomorphic to a complete
bipartite graph K2,t for t ≥ 2. When t = 2, the graph GX(a, b) is a 4-cycle. We prove the following lemma.

Lemma 5. Let G be a 2-connected, not 2-sparse chordless graph. Then there exists a split (X,Y, a, b) in G with
the following properties.

(i). GX(a, b) is 2-sparse.

(ii). GX(a, b) is not isomorphic to K2,t for any t ≥ 3.

(iii). In GX(a, b), we have deg(a) ≥ 3 and either deg(b) ≥ 3 or deg(b) = 2 with X being minimal.

Proof. Since G is a 2-connected, not 2-sparse chordless graph, the existence of splits with the property (i) follows
from Lemma 3 and Lemma 4. We define S(G) to be the set of all splits (X,Y, a, b) of any proper 2-cutset of
G such that GX(a, b) is 2-sparse. A proper 2-cutset (a, b) of G is said to be an isolating pair, if there exists a
split (X,Y, a, b) such that GX(a, b) is isomorphic to K2,t for some t ≥ 3. The set of all isolating pairs of G is
represented as I(G). For each (a, b) ∈ I(G), we define the corresponding set of all degree 2 neighbors denoted by
N2

G(a, b), as follows.

N2
G(a, b) = {x ∈ V (G) / N(x) = {a, b}}

Note that |N2
G(a, b)| ≥ 2 for any (a, b) ∈ I(G). For each (a, b) ∈ I(G), we arbitrarily select a vertex from N2

G(a, b)
as a representative vertex of the pair (a, b) and denote it as rab. An ip-deleted subgraph of G is the graph obtained
from G by deleting all the vertices in N2

G(u, v) other than ruv for each isolating pair (u, v) ∈ I(G). We make the
following observations about the subgraph H .

Observation 1. If (u, v) ∈ I(G), then ruv is the unique degree 2 vertex in the set NH(u) ∩NH(v).

Observation 2. The only vertices in H whose degrees decrease with respect to their degree in G are those which
are part of an isolating pair in G.

Observation 3. While obtaining H from G, all the vertices that are removed from G have degree 2 in G.

Now, to prove the property (ii) of the lemma, it is enough to prove that there exists a split (X,Y, a, b) ∈ S(G)
such that GX(a, b) is not isomorphic to K2,t for any t ≥ 3. If such a split exists then we get a split satisfying
the property (ii) of the lemma. Otherwise every split (X,Y, a, b) ∈ S(G) is such that GX(a, b) is isomorphic to
K2,t for some t ≥ 3. Since G is 2-connected, we have δ(G) ≥ 2. Let H be the ip-deleted subgraph of G. Since
δ(G) ≥ 2, it is clear that δ(H) ≥ 2.

Claim 1. There exists no isolating pair in H, i.e., I(H) = φ.

Proof. By way of contradiction, assume that there exists an isolating pair (u, v) in H which implies the existence
of a split (X,Y, u, v) in H such that HX(u, v) is isomorphic to K2,t for some t ≥ 3. Since (u, v) ∈ I(H), we
have that degH(u) ≥ 3 and degH(v) ≥ 3. Since |N2

H(u, v)| ≥ 2, NH(u) ∩ NH(v) contains at least two degree 2
vertices. Suppose (u, v) ∈ I(G). Then by Observation 1, ruv is the unique degree 2 vertex in NH(u) ∩NH(v), a
contradiction to the fact that |N2

H(u, v)| ≥ 2. Therefore, we infer that (u, v) /∈ I(G). Hence, there exists a vertex
z ∈ N2

H(u, v) such that degG(z) ≥ 3. But degH(z) = 2. Hence by Observation 2, z is part of an isolating pair,
say (z, w) in G. Note that rzw ∈ V (H) and zrzw ∈ E(H). But we know that NH(z) = {u, v}. Hence, we can
infer that rzw ∈ {u, v}. But degH(rzw) = 2, a contradiction since degH(u) ≥ 3 and degH(v) ≥ 3. Thus we can
infer that I(H) = φ and hence the claim holds. �

Further, we claim that there exists a degree 2 vertex in H which has a higher degree in G.
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Claim 2. There exists an edge ac ∈ E(G) satisfying degH(a) = 2, degG(a) > 2 and degG(c) > 2.

Proof. Suppose H is 2-sparse. Since G is not 2-sparse, there exists an edge ac ∈ E(G) such that degG(a) > 2
and degG(c) > 2. Thus by Observation 3, we infer that a, c ∈ V (H). Since H is 2-sparse, one of these vertices,
either a or c should have degree 2 in H . Without loss of generality let it be a. Therefore, we have the desired
edge ac satisfying the statement of the claim.

On the other hand suppose H is not 2-sparse. Then since I(H) = φ, by Lemma 4, we obtain a split (X̃, Ỹ , u, v)
in S(H) such that GX̃(u, v) is not isomorphic to K2,t for any t ≥ 3. Since every split (X,Y, a, b) ∈ S(G) is such

that GX(a, b) is isomorphic to K2,t for some t ≥ 3, we have (X̃, Ỹ , u, v) /∈ S(G) which implies that GX̃(u, v) is
not 2-sparse. Hence, there exists an edge ac ∈ E(GX̃(u, v)) such that degG

X̃
(u,v)(a) > 2 (therefore degG(a) > 2)

and degG
X̃
(u,v)(c) > 2 (therefore degG(c) > 2). Therefore, by Observation 3, we infer that a, c ∈ V (H). Further,

HX̃(u, v) is 2-sparse since (X̃, Ỹ , u, v) ∈ S(H). Therefore, one of these vertices, either a or c should have degree
2 in HX̃(u, v) (also in H). Without loss of generality let it be a. Hence, we have the desired edge ac satisfying
the statement of the claim.

Thus in any case, there exists an edge ac ∈ E(G) satisfying degH(a) = 2, degG(a) > 2 and degG(c) > 2. �

By Claim 2, there exists a degree 2 vertex a in H which has a higher degree in G. By Observation 2, the
vertex a was part of an isolating pair, say (a, b) in G with a corresponding split (X,Y, a, b). Since (a, b) ∈ I(G),
X = N2

G(a, b) and Y = V (G) \ ({a, b}∪N2
G(a, b)). We know that rab ∈ H . Since degG(c) > 2 and ac ∈ E(G), we

infer that c ∈ Y . Since degH(a) = 2 and rab ∈ H , c is the unique neighbor of a in Y . Hence NH(a) = {c, rab}.
Now consider the vertex pair (b, c). If bc ∈ E(G), then either c is a cut vertex or bc is a chord, a contradiction since
G is a 2-connected chordless graph. Thus bc /∈ E(G). Now, consider a split (X ′, Y ′, b, c) where X ′ = X ∪ {a}
and Y ′ = Y \ c. We claim that GX′(b, c) is 2-sparse. Since GX(a, b) is 2-sparse, it is enough to prove that
degG

X′(b,c)(c) = 2. Since c is the unique neighbor of a in Y and bc /∈ E(G), we have that NG(c) ∩ X ′ = {a}.
Thus, degG

X′(b,c)(c) = 2 which implies that GX′(b, c) is 2-sparse. Therefore by definition, (X ′, Y ′, b, c) ∈ S(G).
Notice that b /∈ NG

X′(b,c)(a), which implies that GX′(b, c) is not isomorphic to K2,t for any t ≥ 3. But this is a
contradiction to the fact that every split in S(G), in particular (X ′, Y ′, b, c) is such that G′

X(b, c) is isomorphic
to K2,t for some t ≥ 3. Hence, we can conclude that there exists a split (X,Y, a, b) ∈ S(G) such that GX(a, b) is
not isomorphic to K2,t for any t ≥ 3. This includes the property (ii) of the Lemma into S(G).

Now, we define S′(G) to be the set of all splits (X,Y, a, b) of any proper 2-cutset of G such that GX(a, b) is
2-sparse and is not isomorphic to K2,t for any t ≥ 3. Consider a split s = (X,Y, a, b) in S′(G) such that X is
minimal. Since G is a chordless graph, every (a, b)-path in GX(a, b) is an induced path. Hence, an (a, b)-path
P of maximum length in GX(a, b) is also an induced path. Since (X,Y, a, b) ∈ S′(G), P has at least 3 edges,
otherwise the corresponding GX(a, b) is isomorphic to K2,t for some t ≥ 3, a contradiction. Hence, there exist
x, y ∈ X such that x is adjacent to a but not b and y is adjacent to b but not a. Note that both a and b have at
least one neighbor each in X and at least one neighbor each in Y as per the definition of a proper 2-cutset.

First we claim that at least one among a or b has at least two neighbors in X . By way of contradiction, assume
that both a and b have unique neighbors in X . Since G[X ∪ {a, b}] is not an induced path in G which is a
chordless graph, the unique neighbors of a and b in X are two distinct non adjacent vertices in G. This implies
that x and y are the unique neighbors of a and b in X respectively. Now, consider the split (X ′, Y ′, x, b) where
X ′ = X\x and Y ′ = Y ∪{a}. Since degGX(a,b)(b) = degG

X′(x,b)(b) = 2, GX′(x, b) is not isomorphic to K2,t for any
t ≥ 3. Moreover, GX′(x, b) is 2-sparse, since GX(a, b) is 2-sparse. Thus we can infer that (X ′, Y ′, x, b) ∈ S′(G),
a contradiction to the minimality of s in S′(G). Therefore, we have that at least one among a or b has at least
two neighbors in X , implying that either deg(a) ≥ 3 or deg(b) ≥ 3 in GX(a, b). Without loss of generality let
deg(a) ≥ 3 in GX(a, b).

If deg(b) ≥ 3 in GX(a, b), then we are done. Otherwise let deg(b) = 2 in GX(a, b). This implies that y is the
unique neighbor of b in X . Now, consider the split (X ′′, Y ′′, a, y) where X ′′ = X \ y and Y ′′ = Y ∪ {b}. If
GX′′(a, y) is not isomorphic to K2,t for any t ≥ 3, then since GX′′(a, y) is 2-sparse (as GX(a, b) is 2-sparse), we
have (X ′′, Y ′′, a, y) ∈ S′(G), a contradiction to the minimality of s in S′(G). Therefore, GX′′(a, y) is isomorphic
to K2,t for some t ≥ 3, implying the minimality of X as desired.

This concludes the proof of the lemma. �
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4 Proof of Theorem 1

Proof. Let G be the given connected chordless graph with n vertices and m edges. If ∆ = 1, then G has only
one edge which requires only one color for any coloring, indicating that a′(G) = 1 = ∆. If ∆ = 2 and G is
acyclic, then G is a path. We know that any path can be acyclically edge colored using 2 colors. If ∆ = 2 and
G is not acyclic, then G is a cycle. Note that for the acyclic coloring of the edges of a cycle, we need at least
3 colors by the definition of acyclic edge coloring. It is easy to see that 3 colors are also sufficient. Therefore,
a′(G) = 3 = ∆+ 1. Hence we assume that ∆ ≥ 3. Further, we use induction on m in the proof, when necessary.

If G is not 2-connected, then there exists a vertex x ∈ V which is a cut vertex. Let C1, C2, ..., Ck be the
components in G \ x. For each i ∈ {1, 2, ...., k} we define C′

i as G[V (Ci) ∪ x]. Since each C′

i is chordless and has
less than m edges, by Induction Hypothesis (I.H.), we acyclically color all C′

i’s with ∆ colors since ∆(C′

i) ≤ ∆, ∀i.
Let this coloring be c′. Now, we extend c′ to a coloring c of G. Observe that the coloring of each C′

i is independent
of each other except for the edges incident on x. Now permute the colors in each C′

i so that the edges incident
on x receive different colors, to get the coloring c of G. It is easy to see that the coloring c is proper and acyclic
and hence we are done. Thus, we also assume that G is 2-connected. This also implies that δ(G) ≥ 2.

If G has an edge uv whose end vertices have degree 2, then we obtain a graph H from G by contracting the
edge uv to a new vertex kuv. Let u′ be the neighbor of u other than v and let v′ be the neighbor of v other
than u in G. Note that H is chordless and has less than m edges. Hence by I.H., H can be colored using ∆
colors, since ∆(H) ≤ ∆. Let d be one such coloring. Now we extend the coloring d to a coloring c of G. Assign
c(uu′) = d(kuvu

′), c(vv′) = d(kuvv
′) and assign a color other than these two colors, to the edge uv (we have at

least three colors since ∆ ≥ 3). For any other edge e in G, c(e) = d(e). It is easy to see that the coloring c is
acyclic and we are done. Hence, we also assume that G does not have an edge whose end vertices have degree 2.

The following observations and the subsequent lemma are used multiple times further down the proof.

Observation 4. Let G be a 2-connected, 2-sparse graph such that no edge is incident on two degree 2 vertices.
Then G is bipartite.

Proof. Since G is 2-sparse and 2-connected, we have δ(G) = 2. Also since G is 2-sparse, the set of vertices
{x ∈ V (G) / deg(x) ≥ 3} form an independent set. Now, since there is no edge between any two vertices of
degree 2, the set of degree 2 vertices also form an independent set. Therefore, G is bipartite. �

Observation 5. Let G be a 2-connected, not 2-sparse chordless graph such that no edge is incident on two degree
2 vertices and let (X,Y, a, b) be a split of G such that GX(a, b) is 2-sparse, deg(a) ≥ 3 and deg(b) ≥ 3. Then any
(a, b)-path in GX(a, b) is of even length.

Proof. Since G is 2-connected and not 2-sparse, by Lemma 4 we have a split (X,Y, a, b) of G such that GX(a, b)
is 2-sparse. Since there is no edge incident on two degree 2 vertices in G and deg(a) ≥ 3 and deg(b) ≥ 3, there is
no edge incident on two degree 2 vertices in GX(a, b) as well. Hence by Observation 4, GX(a, b) is bipartite with
a and b on the same side of the bipartition. Hence, any (a, b)-path should be of even length. �

Lemma 6. Let d be a partial acyclic edge coloring of a graph G using at most ∆ colors. Let P = v1v2 · · · vk be
a maximal bichromatic path with d(v2i−1v2i) = α and d(v2iv2i+1) = β for 1 ≤ i ≤ ⌊k−1

2 ⌋. For all v2i−1 ∈ V (P ),
let deg(v2i−1) = 2 and for all v2i ∈ V (P ), let the neighbors of v2i are all degree 2 vertices. Let N(v1) = {v2, s},
deg(s) ≥ 3 and s /∈ V (P ). Further, let the edge v1s be not colored with respect to the coloring d. Then there
exists a valid partial acyclic edge coloring c of G using at most ∆ colors such that all the edges colored in d and
the edge v1s are colored in c.

Proof. If there is a valid color for the edge sv1, then we assign the same to sv1 to get the required coloring c.
From now on, we assume that there is no valid color for the edge v1s. Hence, either there is no candidate color
for the edge sv1 which implies that |Fs ∪Fv1 | = ∆ and α /∈ Fv1s or no candidate color, say η is valid for the edge
sv1 which implies that α ∈ Fv1s and there exists an (α, η, v1s)-critical path in G with respect to the coloring d.
Note that in the latter case η 6= β since the (α, β)-bichromatic path P does not reach the vertex s.

We obtain a coloring c′ from d, by exchanging the colors α and β along the path P so that Fsv1(c
′) = {β} and

Fv1s(c
′) = Fv1s(d). If there is no bichromatic cycle created by this exchange, then we let coloring c′′ = c′.
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Figure 1: Path P and it’s neighborhood

Otherwise, let C be a bichromatic cycle formed because of the exchange (an instance is depicted in Figure 1).
Since P is maximal, it is clear that C is not an (α, β)-bichromatic cycle. Note that one of the colors in C is either α
or β because we did not change any color other than α and β. This implies that V (P )∩V (C) ⊆ {v1, v2, vk−1, vk}
since the alternate degree 2 vertices in P see only the colors α and β. Therefore, the cycle C may contain only
the first or the last edge of the path P . The cycle C can not contain the first edge of P since the edge v1s is
not assigned any color in the coloring d as well as in c′. Therefore, we can infer that the cycle contains only
the last edge (which is vk−1vk) of P with V (P ) ∩ V (C) = {vk−1, vk}. This also implies that deg(vk−1) ≥ 3 and
deg(vk) = 2. We can also infer that C is the unique bichromatic cycle formed by the color exchange in P because
any cycle formed has to contain the vertex vk and deg(vk) = 2.

Let r be the neighbor of vk−1 in the cycle C but not in the path P . Clearly deg(r) = 2 and deg(vk−2) = 2.
It is easy to see that d(vk−1vk) = β. Hence, c′(vk−1vk) = α. Note that Fvk−1vk−2

= {α}. Let c′(vk−1r) = γ.
Therefore, C is an (α, γ)-bichromatic cycle. Now swap the colors with respect to the edges vk−1r and vk−1vk−2

to get a coloring c′′ which clearly kills the bichromatic cycle C. Any new bichromatic cycle C′ formed should
involve at least one of the edges {vk−1r, vk−1vk−2} and hence at least one of the vertices {r, vk−2}. Note that
since Fr = {α, β} and Fvk−2

= {α, γ}, we can infer that the cycle C′ contains α as one of the colors. Since
c′′(vk−1vk) = α, the cycle C′ contains the vertex vk. But Fvk = {α, γ}, implying that C′ is an (α, γ)-bichromatic
cycle. This is a contradiction since the (α, γ)-bichromatic path from vk−1 going towards the vertex vk ends at r.
Hence, the coloring c′′ is a valid partial coloring of G.

Now, we need to assign a color to the edge v1s. Note that either c′′(v1v2) = β or c′′(v1v2) = γ with k = 3. If
α /∈ Fv1s, then we assign the color α to the edge v1s to get the coloring c. Notice that Fsv1 is either {β} or {γ}.
If Fsv1 = {β}, the only possible bichromatic cycle with respect to the coloring c is an (α, β)-cycle. But we know
that the path P ends at vk. In the coloring c′′, the (β, α)-bichromatic path from v1 would end at vk or vk−2,
both of which are not the same as s. Thus we conclude that there does not exist a (β, α, v1s)-critical path with
respect to c′′. If Fsv1 = {γ}, the only possible bichromatic cycle with respect to the coloring c is an (α, γ)-cycle.
But we know that in the coloring c′′, the (α, γ)-bichromatic path from v1 would go through vk and end at r.
Further, since deg(r) = 2 and deg(s) ≥ 3, r 6= s. Thus we conclude that there does not exist a (γ, α, v1s)-critical
path with respect to c′′. Hence, the coloring c is the required coloring.

On the other hand suppose α ∈ Fv1s. Then we have |Fv1s(d) ∪ Fsv1 (d)| ≤ ∆ − 1 and there exists a candidate
color η for the edge v1s with respect to the coloring d as well as c′′. Recall that η 6= β.

Assume that Fsv1 = {β}. Suppose the color η is not valid for the edge v1s. Then there exists a (β, η, v1s)-critical
path with respect to c′′. Let this path be Q = v1v2u1u2 · · · s. Note that deg(u1) = 2 and hence c′′(u1u2) = β.
Recall that there existed an (α, η, v1s)-critical path with respect to d which implies d(u1u2) = α. The only edges
that are recolored from α to β while obtaining c′′ from d are the edges in P . If k ≤ 3, then it is easy to see
that P does not reach the vertex u1. If k > 3, then observe that any edge colored α in P goes from a degree 2
vertex to a higher degree vertex with respect to the coloring d. But deg(u1) = 2 implying that vk 6= u1. Hence,
irrespective of the value of k, P does not reach the vertex u1. Therefore, c′′(u1u2) = α, a contradiction to the
fact that c′′(u1u2) = β. Hence, the color η is valid for the edge v1s.

Now, we have Fsv1 6= {β}. Then, Fsv1 = {γ} with k = 3. Note that c′′(v2r) = β, Fv2r = {α} and c′′(v2v3) = α.
Recall that there existed an (α, γ)-bichromatic cycle C′ involving the vertices {r, v2, v3} with respect to the
coloring c′ which in turn implied that there was an (α, γ)-bichromatic path starting from v1 going through r
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ending at v3 with respect to the coloring d. Suppose η = γ. Then, since there is no valid color for the edge v1s
with respect to d, there exists an (α, γ, v1s)-critical path. Therefore, in the coloring d, the (α, γ)-bichromatic
path starting from v1 going through r ends at s, a contradiction since v3 6= s. Thus we can infer that η 6= γ.
Suppose the color η is not valid for the edge v1s. Then there exists a (γ, η, v1s)-critical path with respect to
c′′. Let this path be R = v1v2w1w2 · · · s. Note that deg(w1) = 2 and hence c′′(w1w2) = γ. Recall that there
existed an (α, η, v1s)-critical path with respect to d which implies d(w1w2) = α. Note that the only edge that
was colored α in d which was recolored to γ in c′′ is the edge v1v2. Therefore, c

′′(w1w2) = α, a contradiction to
the fact that c′′(w1w2) = γ. Hence, the color η is valid for the edge v1s in c′′.

Therefore, irrespective of whether Fsv1 = {β} or not, the color η is valid for the edge v1s in c′′. Hence, we assign
η to the edge v1s to get the required valid coloring c. �

Recall that we have a 2-connected graph G with ∆ ≥ 3, δ ≥ 2 and no edge incident on both degree 2 vertices.
Depending upon whether G is 2-sparse or not, we have the following cases.

Case-i: G is 2-sparse.

Consider any edge xy of G. Since G is 2-sparse, either deg(x) = 2 or deg(y) = 2. Without loss of generality
assume that deg(x) = 2. Then 3 ≤ deg(y) ≤ ∆. Since deg(x) = 2, |N(x) \ y| = 1. Let x′ be the neighbor of
x other than y. Let G′ = G \ xy. Since G′ is chordless and has less than m edges, by I.H., we can acyclically
color G′ with ∆ colors because ∆(G′) ≤ ∆. Let c′ be an acyclic partial edge coloring of G corresponding to the
subgraph G′. Let c′(xx′) = α. Now, we extend c′ to a coloring c of G.

If Fyx ∩ Fxy 6= φ, then α ∈ Fyx ∩ Fxy. Thus |Fyx ∪ Fxy| ≤ ∆− 1. Hence, there exists a candidate color γ for the
edge xy. If there is no (α, γ, xy)-critical path, then γ is also valid for the edge xy by Lemma 2. Otherwise there
exists an (α, γ, xy)-critical path, say P . Let y′ be the neighbor of y along P . Then c′(yy′) = α and Fyy′ = {γ}
since deg(y′) = 2. Let β be a color other than α and γ (β exists because ∆ ≥ 3). Let Q be the (α, β)-maximal
bichromatic path starting from the vertex x. Since Fyy′ = {γ}, Q does not reach y through an edge colored α.

If Fyx ∩ Fxy = φ, then there is no (α, β, xy)-critical path in G for any β. Hence, if there exists at least one
candidate color γ for the edge xy, then we are done since γ is also valid by Lemma 2. Otherwise no color is a
candidate color for the edge xy. Thus |Fyx ∪ Fxy| = ∆. Let β be a color other than α. Let Q be the (α, β)-
maximal bichromatic path starting from the vertex x. Since there is no (α, β, xy)-critical path in G, Q does not
reach y through an edge colored α.

Hence, irrespective of whether Fyx ∩ Fxy = φ or not, we have an (α, β)-maximal bichromatic path Q starting
from x which does not reach y through an edge colored α. If Q reaches y through an edge colored β, we have
an odd cycle in a 2-sparse graph G, a contradiction to Observation 4. Thus we can infer that Q does not reach
y. Since G is 2-sparse, the alternate vertices in Q are of degree 2 with degree of x being equal to 2 and all the
neighbors of any higher degree vertex in Q are of degree 2. Further, we have N(x) = {x′, y}, deg(y) ≥ 3 and
y /∈ V (Q). Also since the edge xy is not colored in c′, the path Q and the coloring c′ satisfy the conditions
required by Lemma 6. Hence, we obtain an acyclic partial edge coloring c of G with a valid color for the edge xy
as per Lemma 6. Since all the edges of G have been colored, c is also an acyclic edge coloring of G.

Case-ii: G is not 2-sparse.

By Lemma 3, G admits a proper 2-cutset with a corresponding split. Let S be the set of all splits (X,Y, a, b)
of G such that GX(a, b) is 2-sparse, is not isomorphic to K2,t for any t ≥ 3 and in GX(a, b), deg(a) ≥ 3 and
either deg(b) ≥ 3 or deg(b) = 2 with X being minimal. By Lemma 5, we know that S 6= φ. If there exists a split
(X,Y, a, b) in S such that deg(a) ≥ 3 and deg(b) ≥ 3, then consider the split (X,Y, a, b). Otherwise consider a
split (X,Y, a, b) in S such that deg(a) ≥ 3 and deg(b) = 2 with X being minimal in S. Let x be a vertex in
GX(a, b) which is adjacent to a but not b and let y be a vertex in GX(a, b) which is adjacent to b but not a. Since
deg(a) ≥ 3 in G and in GX(a, b), any neighbor of a in X should have degree 2 because GX(a, b) is 2-sparse. This
implies that deg(x) = 2. By a similar argument, if b has at least two neighbors in X (i.e., if deg(b) ≥ 3), then
any neighbor of b in X (in particular, the vertex y) is of degree 2.

Now consider G′ = G \ xa. Since G′ is chordless and has less than m edges, by I.H., we can acyclically color the
edges of G′ with ∆ colors since ∆(G′) ≤ ∆. Let c′ be an acyclic partial edge coloring of G corresponding to the
subgraph G′. Since deg(x) = 2 and x is adjacent to a but not b, x should have a neighbor u other than a. Let
c′(xu) = α. Now, we extend c′ to a coloring c of G. The following claim is useful further down the proof.
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Claim 3. Let R be the (α, β)-maximal bichromatic path starting from the vertex x and let T be the (α, γ)-maximal
bichromatic path starting from the vertex x. Then either R or T does not reach the vertex b.

Proof. By way of contradiction, assume that both R and T reach the vertex b. Since G does not have an edge
whose end vertices have degree 2 and GX(a, b) is 2-sparse, the alternate vertices in R and T are of degree 2.
These paths start from a degree 2 vertex x such that the edge from a degree 2 vertex to a higher degree vertex
is colored α and the edge from a higher degree vertex to a degree 2 vertex is colored β and γ with respect to R
and T . Suppose R and T reach the vertex b through an edge colored α. This implies that deg(b) ≥ 3. We can
infer that any neighbor of b in X is of degree 2. Let r be a neighbor of b in X such that c′(rb) = α. Since r is
of degree 2, r can see at most one color in {β, γ}, a contradiction to our assumption that both R and T reach
the vertex b. Thus we can infer that R and T can not reach the vertex b through an edge colored α indicating
that R and T reach the vertex b through edges colored β and γ respectively and hence deg(b) ≥ 3. Since we
already have that deg(a) ≥ 3, R (or T ) together with the edge (a, x) is an (a, b)-path of odd length in GX(a, b),
a contradiction to Observation 5. Thus we can infer that either R or T does not reach the vertex b. �

Suppose there is no candidate color for the edge xa. Hence |Fax ∪Fxa| = ∆, which implies Fax ∩Fxa = φ. Let β
and γ be two colors other than α. Clearly there is no (α, β, xa)-critical path and no (α, γ, xa)-critical path in G
since Fax ∩ Fxa = φ. Let R and T be the (α, β)-maximal bichromatic path and the (α, γ)-maximal bichromatic
path starting from the vertex x. Then by Claim 3, either R or T does not reach b. Without loss of generality
assume that R does not reach b. Since R does not reach a as well as b, R is completely in GX(a, b) which is
2-sparse. Note that since GX(a, b) is 2-sparse, the alternate vertices in R are of degree 2 with degree of x being
equal to 2 and all the neighbors of any higher degree vertex in R are of degree 2. Further, we have N(x) = {u, a},
deg(a) ≥ 3 and a /∈ V (R). Also since the edge ax is not colored in c′, the path R and the coloring c′ satisfy the
conditions required by Lemma 6. Hence, we obtain an acyclic partial edge coloring c of G with a valid color for
the edge xy as per Lemma 6. Since all the edges of G have been colored, c is an acyclic edge coloring of G.

On the other hand, suppose there exists a candidate color γ for the edge xa. If there is no (α, γ, xa)-critical path
in G, then γ is also valid and we are done. Hence, we can assume that there exists an (α, γ, xa)-critical path P
in G. Let v be the neighbor of the vertex a along the path P . Observe that c′(av) = α and γ ∈ Fav. Let β be a
color other than α and γ. Let Q be the (α, β)-maximal bichromatic path starting from the vertex x.

Assume that Q does not reach the vertex b. If Q reaches a through an edge colored β, then we have an odd cycle
in GX(a, b) which is 2-sparse, a contradiction to Observation 4. On the other hand, if Q reaches a through an
edge colored α, then the edge av ∈ Q which implies v ∈ X . Since v ∈ N(a), deg(v) = 2. Therefore, Fav = {β},
a contradiction to the fact that γ ∈ Fav. Thus we can infer that Q does not reach a as well as b. Therefore, Q is
entirely in GX(a, b) which is 2-sparse. Hence, the alternate vertices in Q are of degree 2 with degree of x being
equal to 2 and all the neighbors of any higher degree vertex in Q are of degree 2. Further, we have N(x) = {u, a},
deg(a) ≥ 3 and a /∈ V (Q). Also since the edge ax is not colored in c′, the path Q and the coloring c′ satisfy the
conditions required by Lemma 6. Hence, we obtain an acyclic partial edge coloring c of G with a valid color for
the edge xy as per Lemma 6. Since all the edges of G have been colored, c is an acyclic edge coloring of G.

Now, we assume that Q reaches the vertex b. Note that since P is an (α, γ, xa)-critical path, it is also an (α, γ)-
maximal bichromatic path starting from x. Hence by Claim 3, P does not reach the vertex b implying that P
is entirely in GX(a, b) which is 2-sparse. Therefore, any edge from GY (a, b) incident on the vertex a can not be
colored α. Let z and w be the successors of the vertex u along P and Q respectively.

Suppose w 6= b. Now, we perform a color exchange with respect to the edges uz and uw to obtain a partial
coloring c′′ of G corresponding to the subgraph G \ xa. Since Fuw = Fuz = {α}, the color exchange is valid.
Note that by this color exchange we have removed the (α, γ, xa)-critical path and since Fuw = {α}, there is no
new (α, γ, xa)-critical path formed. Therefore, we can infer that γ is a valid color for the edge xa in c′′. Thus
we can obtain an acyclic edge coloring c of G by assigning the color γ to the edge xa.

On the other hand, suppose w = b. This implies that y = u, deg(b) = 2 and c′(yb) = c′(uw) = β. Thus y is
the unique neighbor of b in X , implying that (X ′, Y ′, a, y) with X ′ = X \ y and Y ′ = Y ∪ {b} is a split in G.
Note that deg(a) ≥ 3 and deg(y) ≥ 3. Further, GX′(a, y) is 2-sparse, since GX(a, b) is 2-sparse. Therefore, if
GX′(a, y) is not isomorphic to K2,t for any t ≥ 3, then (X ′, Y ′, a, y) ∈ S, a contradiction to the minimality of
X in S. Hence, GX′(a, y) is isomorphic to K2,t for some t ≥ 3. Thus we can infer that any neighbor of y in
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X ′ is also a neighbor of a. Hence, uz = yz is colored γ and since c′(av) = γ and v ∈ X , we have z = v. (refer
Figure 2). Further, the proof is divided into two subcases based on the value of ∆(G).

Subcase-i: ∆(G) ≥ 4.

In this subcase, we have a color η /∈ {α, β, γ}. If no edge incident on the vertex y is colored η, then we change the
color of the edge xy to η and assign the color γ to the edge xa to get a coloring c of G. Since c(az) = α, a new
(γ, η)-bichromatic cycle is not formed in the coloring c. Thus c is the required acyclic edge coloring of G. Hence,
we can assume that there exists a vertex k ∈ N(y) ∩ X such that c′(yk) = η. Since any neighbor of y in X is
also a neighbor of the vertex a, the vertices k and z are adjacent to the vertex a. Since P is an (α, γ, xa)-critical
path, c′(az) = α. Therefore, c′(ak) 6= α. Also, since γ is a candidate color for the edge xa, c′(ak) 6= γ (refer
Figure 2). Now, we perform a color exchange with respect to the edges yx and yk to obtain a partial coloring
c′′ of G corresponding to the subgraph G \ xa. The coloring c′′ is proper because c′′(ak) = c′(ak) 6= α. Further,
since c′′(ak) 6= γ, there is no (α, γ, xa)-critical path with respect to c′′. Since c′′(az) = α, there is no new
(γ, η, xa)-critical path formed by the color exchange. Therefore, we can infer that γ is a valid color for the edge
xa in c′′. Hence, we can obtain an acyclic edge coloring c of G by assigning the color γ to the edge xa.

k z x
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b

η
γ α

α

β

Figure 2: G[X ∪ {a, b}] when ∆ ≥ 4
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Figure 3: G[X ′′ ∪ {p, b}] when ∆ = 3

Subcase-ii: ∆(G) = 3.

In this subcase, GX′(a, y) is isomorphic to K2,3. Therefore, clearly v = z is the common neighbor of a and y
in X ′ other than x. Let p be the unique neighbor of a in Y ′. Now for this subcase, we will color separately by
redefining the split and the coloring. Consider a split (X ′′, Y ′′, p, b) where X ′′ = {x, v, y, a} and Y ′′ = Y \ p.
It is easy to see that GX′′(p, b) is 2-sparse, since GX(a, b) is 2-sparse. Also note that deg(x) = 2, deg(v) = 2,
deg(a) = 3 and deg(y) = 3. Now consider the graph G′′ = GY ′′(p, b). Note that G′′ is chordless and has less
than m edges. Thus by I.H., we obtain an acyclic edge coloring c′′ of G′′ with ∆ colors, since ∆(G′′) ≤ ∆. Let
w be the marker vertex in GY ′′(p, b). Let c′′(pw) = α and c′′(bw) = β. Let γ be a color other than α and
β. Now we try to extend c′′ to a coloring c of G. For any edge e in G′′ \ w, assign c(e) = c′′(e). Now, assign
c(pa) = c′′(pw) = α, c(by) = c′′(bw) = β, c(av) = β, c(yx) = α and c(ax) = c(yv) = γ (refer Figure 3). It is easy
to see that there are no bichromatic cycles in G with respect to the coloring c, implying c to be an acyclic edge
coloring of G.

Therefore, in any case, we are able to color the graph G with ∆ colors, which marks the completion of the proof
of Theorem 1. �

5 Algorithm and Complexity Analysis

In this section, we provide the sketch of a polynomial time algorithm to acyclically color a chordless graph G with
a′(G) colors along with the complexity analysis of the same. As usual, n and m denote the number of vertices
and edges of the input graph G respectively. If ∆ = 1 or ∆ = 2 with G being acyclic, then G is either a matching
or a set of paths. Note that both of these structures can be colored using a′(G) = ∆ colors trivially. If ∆ = 2
with G being non-acyclic, then each component in G is either a path or a cycle with at least one component
being a cycle. Note that a cycle requires three colors and a path requires two colors for acyclic edge coloring.
Therefore, G can be colored using a′(G) = ∆ + 1 colors. Therefore, we can assume that ∆ ≥ 3. By Remark 1,
we assume that G is connected. We can also assume that G is 2-connected (and hence δ(G) ≥ 2), otherwise we
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can use the linear-time algorithm by Hopcroft and Tarjan [15] to compute the 2-connected components of G,
and the reconstruction of the coloring from the blocks to G, is simple. If G has an edge incident on both degree
2 vertices, then we can contract the edge and obtain the coloring of the resultant graph. Note that extending
this coloring to the graph G is simple. Hence, we contract all the edges of G that are incident on both degree 2
vertices. Note that the colorings (when ∆ ≤ 2) and all the extensions that are discussed in the paragraph can
be done in linear time. Hence, we have a 2-connected graph G with ∆ ≥ 3 and no edge incident on both degree
2 vertices.

First check if the graph G is 2-sparse which can be done in linear time. If G is 2-sparse, then let xy be an
uncolored edge in the 2-sparse graph. Recall that we have an assumption that G does not have an edge whose
end vertices have degree 2. Thus either deg(x) = 2 or deg(y) = 2. Without loss of generality assume that
deg(x) = 2. Now, we obtain a maximal bichromatic path Q starting from x which does not reach y (existence is
proved in Case-i of Section 4) and then obtain the partial acyclic edge coloring of the graph in which the edge xy
is also colored, as per the strategy in Lemma 6. Note that the above mentioned step can be done in linear time
O(m) since this is a mere combination of adjacent color checks and recoloring along a path. We repeat this step
for each edge in the 2-sparse graph G. Therefore, the coloring of 2-sparse graph can be done in O(m2) time.

Otherwise if G is not 2-sparse, then let (X,Y, a, b) be a split in G satisfying the properties in Lemma 5. Now,
we choose a neighbor of the vertex a, say x and color the edge ax assuming a coloring of G \ ax. To do that, we
obtain a maximal bichromatic path P starting from x which does not reach a and also does not reach b (existence
follows from Claim 3) and then obtain the partial acyclic edge coloring of the graph in which the edge ax is also
colored, as per the strategy in Lemma 6. This step (obtaining a color for the edge ax) can be done in linear time
O(m) since this is a mere combination of adjacent color checks and recoloring along a path.

Now we analyze the time required to get the desired split. We are going to show that such a split can be obtained
in O(n3) time. For each pair of non-adjacent vertices (a, b) in G, let S be the set of all components C in G\{a, b}
that are 2-sparse in the graph G[V (C) ∪ {a, b, w}] (w is a marker vertex which is adjacent to both a and b). Let
C1 be the set of all trivial components in S. Let C2 be the set of all non-trivial components in S in which every
neighbor of a and every neighbor of b in G[V (C) ∪ {a, b, w}] is of degree 2. Let C3 be the set of all non-trivial
components in S in which there exists some neighbor of a or b in G[V (C) ∪ {a, b, w}] of degree at least 3.

If |C1 ∪ C2| ≥ 2 with C2 6= φ, then let C′ and C′′ be any two components in C1 ∪ C2 with at least one of them
in C2. Now, assign X = V (C′) ∪ V (C′′) and Y = V (G) \ (X ∪ {a, b}). Hence, (X,Y, a, b) is the required split
with deg(a) ≥ 3 and deg(b) ≥ 3 in GX(a, b). Otherwise if |C1 ∪C2| < 2 and C2 6= φ, then let C̃ ∈ C2. If a and b
has at least two neighbors in C̃, then assign X = V (C̃) and Y = V (G) \ (X ∪ {a, b}) and hence (X,Y, a, b) is the
required split with deg(a) ≥ 3 and deg(b) ≥ 3 in GX(a, b). Suppose either a or b has a unique neighbor in C̃. If
both a and b have a unique neighbor in C̃, then discard the pair (a, b). Hence, we have that exactly one among
a or b has a unique neighbor in C̃. Without loss of generality let b has a unique neighbor b′ in C̃. Note that
since there is no edge incident on both degree 2 vertices in G, deg(b′) ≥ 3. Now, consider the split (X ′, Y ′a, b′)
where X ′ = X \ b′ and Y ′ = Y ∪ {b}. If GX′(a, b′) is not isomorphic to K2,t for any t ≥ 3, then (X ′, Y ′, a, b′) is
the required split with deg(a) ≥ 3 and deg(b′) ≥ 3 in GX′(a, b′). Otherwise if GX′(a, b′) is isomorphic to K2,t for
some t ≥ 3, then (X,Y, a, b) is the required split with deg(a) ≥ 3 and deg(b) = 2 with X being minimal.

Otherwise if C2 = φ and C3 6= φ, then let C be a component in C3. If both a and b have unique neighbor in
X , then discard C and move to the next component in C3, if it exists. Otherwise exactly one of a or b (say
a) has at least two neighbors in C. Let b′′ be the unique neighbor of b in C. Now, assign X = V (C) and
Y = V (G) \ (X ∪ {a, b}). Note that since there is no edge incident on both degree 2 vertices in G, deg(b′′) ≥ 3.
Now, consider the split (X ′′, Y ′′a, b′′) whereX ′′ = X\b′′ and Y ′ = Y ∪{b}. If GX′′ (a, b′′) is not isomorphic to K2,t

for any t ≥ 3, then (X ′′, Y ′′, a, b′′) is the required split with deg(a) ≥ 3 and deg(b′′) ≥ 3 in GX′′(a, b′′). Otherwise
if GX′′ (a, b′′) is isomorphic toK2,t for some t ≥ 3, then (X,Y, a, b) is the required split with deg(a) ≥ 3, deg(b) = 2
and X is minimal. If none of the above mentioned conditions hold, then discard the pair (a, b). Continue this
for each non-adjacent pair (a, b) in G until we get the desired split satisfying the properties in Lemma 5.

Note that this step of verifying whether the given non-adjacent pair (a, b) has a corresponding split in G which is
desired, can be done in linear time O(n+m), which is the time required to characterize the components obtained
by deleting the vertex pair from G. Also, it is easy to see that m = O(n) for a chordless graph G. Therefore,
since there are O(n2) such pairs, obtaining a split in G satisfying the properties in Lemma 5, can be done in
O(n3) time. It is clear that we need to find at most n splits throughout the algorithm. Hence, the algorithm
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takes O(n4) time to find all the splits required throughout the algorithm.

Recall that to color each edge we require O(m) time irrespective of whether the graph is 2-sparse or not. Thus,
to color all the edges we require O(m2) time. Notice that to extend the coloring of the blocks to the whole graph,
we require O(m) time. It is easy to see that we perform at most O(n) such extensions. Therefore, the extensions
take at most O(mn) time.

Hence, the running time of the algorithm is O(n4 +m2 +mn) in which the major contributing step is when we
repeatedly find a split in G satisfying the properties in Lemma 5. Since m = O(n) for a chordless graph, the
running time of the algorithm is O(n4).
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