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Abstract

Given a C1 functionH defined in the unit sphere S2, anH-surface M is a surface

in the Euclidean space R3 whose mean curvature HM satisfies HM(p) = H(Np),

p ∈ M, where N is the Gauss map of M. Given a closed simple curve Γ ⊂ R3

and a function H, in this paper we investigate the geometry of compact H-surfaces

spanning Γ in terms of Γ. Under mild assumptions onH, we prove non-existence of

closedH-surfaces, in contrast with the classical case of constantmean curvature. We

give conditions on H that ensure that if Γ is a circle, then M is a rotational surface.

We also establish the existence of estimates of the area ofH-surfaces in terms of the

height of the surface.
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1 Introduction

In 1910, Bernstein considered the prescribed mean curvature equation

M(u) := div

(
Du√

1 + |Du|2

)
= (1 + |Du|2)m, (1)

where m is an integer, and u = u(x) is a function defined in some domain of R2 [4, 5].
The left-hand side M(u) is the known mean curvature operator. In [4, p. 240], and
when m = −1/2, he called Eq. (1) “l’équation des surfaces, dont la courbure en chaque point

is proportionnelle (égale) au cosinus de l’angle de la normale en ce point avec l’axe des z”. The
unit normal vector field on a surface in Euclidean space R3 is known as the Gauss map.
Motivated by Bernstein, in this paper we study compact surfaces in Euclidean space R3

whosemean curvature is a function of the Gaussmap. In PDE terminology, this equation
can be viewed as the prescribed mean curvature equation

M(u) = F (Du), (2)

in subsets of R
2 , where the function F : R

2 → R is given. Although the literature is
enormous replacing F by a function of type F = F (x, u), the case considered in Eq. (2)
is rather smaller. It was Bernstein itself who proved solvability of the Dirichlet problem
of (1) for arbitrary boundary data in convex analytic domains, provided m ≤ −1/2.

Sixty years later, Serrin revisited this equation in his seminal paper [31]. Although
this article is rather known by the solvability of the Dirichlet problem for the constant
mean curvature equation, Serrin considers many other types of quasilinear elliptic equa-
tions. In [31, pages 477-8], he investigated again the Dirichlet problem of the equation
studied by Bernstein, changing analyticity of the domain by smoothness as well as he
generalized the results to arbitrary dimensions. More recently, equations of type (2)
have been considered, specially for the study of radial solutions and the Dirichlet prob-
lem: see, for example, [2, 3, 11, 12, 13, 14, 15, 26, 27].

Returning to Eq. (1), it is surprising, even intriguing, that the case m = −1/2, that is

div

(
Du√

1 + |Du|2

)
=

1√
1 + |Du|2

, (3)

has acquired considerable interest in recent times. Solutions of Eq. (3) are called trans-
lating solitons of the mean curvature flow which evolve purely by translations. The
theory of the mean curvature flow is of high activity in the last two decades due to the
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pionnering work of Huisken [18]. Translating solitons are eternal solutions of the mean
curvature flow in the sense that their evolution exists for all times −∞ < t < ∞. These
surfaces are of special interest since they arise as a type of singularity in the mean curva-
ture flow. Notice that the flow can develop singularities, that is, solutions which become
non-smooth in finite time. The so-called type II singularities are related with translating
solitons because if the initial surface in the flow is mean convex, and it develops a type
II singularity, then the limit surface, after rescaling the flow, is a translating soliton [19].

A strategy to address with Eq. (2) is that the Gauss map of the graph M of u, when
regarded as a surface in Euclidean space R3, is

Np =
(−Du, 1)√
1 + |Du|2

(x), p = (x, u(x)) ∈ M.

If e3 = (0, 0, 1), then 〈N, e3〉 = 1/
√

1 + |Du|2, where 〈, 〉 is the Euclidean metric of
R

3. This says us that the right-hand side in (2) can be expressed as F (Du) = H(Np),
whereH is a certain function defined on the unit sphere S2. Thismotivates the following
definition:

Definition 1.1 Let H be a C1 function in S2. A surface M in R3 is said to be an H-surface if

its mean curvature HM satisfies

HM(p) = H(Np), ∀p ∈ M. (4)

Notice that Eq. (4) is a prescribed mean curvature equation depending on the Gauss
map of the surface. This dependence on the Gauss map makes that surfaces defined by
(4) can be viewed as a type of anisotropic mean curvature equation [2]. Studying hy-
persurfaces in Lorentz-Minkowski space, the authors in [14] name “gradient dependent
prescribedmean curvature equation” ifF is of typeF (x, u, Du). A last remark about the
above definition is that if we replace in (4) the mean curvature by the Gauss curvature,
the solutions of the corresponding equations are just the solutions of the well-known
Minkowski problem for ovaloids [28].

For particular choices of the prescribed function, some deeply studied geometric the-
ories arise. We highlight the following examples:

1. Surfaces of constant mean curvature (CMC surfaces for short). HereH = H0 ∈ R

is a constant. If H0 = 0 we have minimal surfaces.

2. λ-translators. The prescribed function is H(x) = 〈x,w〉 + λ, where w ∈ S2 and
λ ∈ R. The vector w is called the density vector. When λ = 0, we have translating
solitons of the mean curvature flow.

3



3. Solitons of powers of the mean curvature flow. The mean curvature of these sur-
faces is HM(p) = 〈Np, v〉α +λ, where α > 0 and λ ∈ R. When α > 1, these surfaces
are H-surfaces for H(x) = 〈x, v〉α + λ. Notice that H ∈ C1(S2).

The theory of complete, non-compact H-surfaces has been recently being developed
by the first author in joint work with Gálvez andMira [9, 10], taking as starting point the
theories of CMC surfaces and translating solitons. See also [7, 23] for a study of invari-
ant λ-translators and [6, 8] for a more general linear Weingarten prescribed curvature
problem in R

3.

Although the main properties of complete H-surfaces have been exhibited in the
aforementioned papers, less is known about compact H-surfaces with boundary. When
H is constant, there is a large literature about this topic; see e.g. [22] for an outline of
the development of this theory. This line of inquiry has been also studied for translat-
ing solitons [29] and λ-translators [24], but as far as we know, there is not a dedicated
research for an arbitrary prescribed function H. To fix the terminology, let Γ ⊂ R3 a
closed curve and ψ : M → R3 be an immersion of a surface M with boundary ∂M. We
say that Γ is the boundary of M (if the immersion ψ is understood) if ψ|∂M is a diffeomor-
phism onto Γ. When we regard M immersed in R3, we will not distinguish between Γ

and ∂M, provided that both are diffeomorphic, and we will commonly say that M spans
Γ. The main problem addressed in this paper is to investigate the geometry of compact
H-surfaces in terms of their boundary. For example, it is desirable that M inherits the
symmetries of Γ, or that for a fixed curve Γ, not every H is admissible for the existence
of an H-surface with boundary Γ.

Based on the above examples, in this paper we study the solutions of (4) using ideas
and techniques coming from the theory of surfaces with constant mean curvature. This
adds a geometric viewpoint to the problems related with (2). For example, we will use
the moving plane method introduced by Alexandrov, who proved that spheres are the
only compact constant mean curvature surfaces embedded in R

3, [1]. Later, Serrin used
the same method in the study of elliptic overdetermined problems [32].

In virtue of Eq. (4), the following are three fundamental properties of H-surfaces
that will allow us to approach these questions: (1) H-surfaces are invariant under Eu-
clidean translations; (2)H-surfaces are locally solutions of a quasilinear, elliptic PDE and
in particular the maximum principle applies; and (3) any symmetry of H in S2 induces
a linear isometry of R3 that sends H-surfaces into H-surfaces. Nonetheless, the arbi-
trariness of H entails further incoming difficulties that have to been taken into account.
For example, in general,H-surfaces are not solutions to a variational problem involving
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geometric measures such as the area or volume. On the other hand, we need to take
into account the loss of symmetry of Eq. (4). For instance, the reflection of anH-surface
with respect to an arbitrary plane is not necessarily an H-surface, unless this plane is a
symmetry plane of H. In some of the results that we will obtain, we will compare the
analogue situation for CMC surfaces, emphasizing the differences, if any.

The organization of this paper is as follows. In Section 2, we state the maximum and
comparison principles, which are the cornerstone to obtain the majority of the forthcom-
ing results. We analyze the existence and non-existence of closedH-surfaces, proving in
Prop. 2.4 that the condition H 6= 0 is necessary for the existence of a closed H-surface.
Nonetheless, in contrast to the CMC case, the condition H 6= 0 is not sufficient for the
existence of a closed H-surface, as revealed in Prop. 2.5. In Section 3, we investigate
whether the symmetries of Γ are inherited to a compactH-surface spanning Γ. The usual
method to study this problem is the so-called Alexandrov reflection technique, and one
of the major issues that we can find is that the compact surface with planar boundary
may have points lying at both sides of the plane where its boundary lies, just as in the
CMC case. In Section 4, we give sufficient conditions to guarantee that a compact H-
surface lies at one side of the plane containing its boundary: Ths. 4.1 and 4.3. As a par-
ticular but important case of H-surfaces, these results will be applied to λ-translators
when |λ| ≤ 1. Finally, in Section 5, we establish an estimate of the area of a compact
H-surface with planar boundary in terms of the height to the boundary (Th. 5.1).

2 The maximum principle for H-surfaces and first conse-

quences

In this section, we state the maximum principle for H-surfaces, extending the well-
known situation of CMC surfaces. Let (x1, x2, x3) be the canonical coordinates of R3

and let {e1, e2, e3} denote the usual basis of R
3. Given anH-surface in R

3, we can locally
express it as the graph of a function u over each tangent plane, being u a solution to an
elliptic, second order quasilinear PDE. Specifically, if u = u(x1, x2), then u satisfies the
equation

div

(
Du√

1 + |Du|2

)
= 2H

(
(−Du, 1)√
1 + |Du|2

)
, (5)
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where div, D denote respectively the divergence and gradient operators on R2. In this
spirit, Eq. (5) can be expressed as Q(u) = 0, where

Q(u) =
2

∑
i,j=1

aij(x, u, Du)
∂2u

∂xi∂xj
+ b(x, u, Du), x = (x1, x2).

As a consequence, the difference of two solutions of Q(u) = 0 satisfies a linear elliptic
equation. The term b(x, u, Du) gathers the right-hand side of (5). In order to apply the
Hopf maximum principle in its interior and boundary versions, it is required that b is
continuously differentiablewith respect to the variable Du [16, Th. 92], hencewe require
the functionH to be C1 in Definition 1.1. A geometric version of the maximum principle
is the following:

Lemma 2.1 (Maximum principle of H-surfaces) Let M1, M2 be two H-surfaces, possibly

with smooth boundary. Assume that one of the following two conditions holds:

1. There exists p ∈ int(M1) ∩ int(M2) such that (N1)p = (N2)p, where Ni is the Gauss

map of Mi.

2. There exists p ∈ ∂M1 ∩ ∂M2 such that (N1)p = (N2)p and ν1(p) = ν2(p), where νi

denotes the interior unit conormal of ∂Mi.

If M1 lies at one side of M2 around p, then M1 = M2.

In the theory of CMC surfaces, the maximum principle has a stronger version when
applied to minimal surfaces, the so-called tangency principle. It states that two minimal
surfaces cannot have a common tangent point and one lying at one side of the other,
regardless of the orientation chosen. This is because the orientation of a minimal sur-
face can be reversed without changing the underlying PDE. In this spirit, we have the
corresponding tangency principle of H-surfaces for a certain type of functions H.

Corollary 2.2 (Tangency principle of H-surfaces) Let H such that H(−x) = −H(x),

x ∈ S2. If M1, M2 are two H-surfaces and M1 lies at one side of M2, then M1 = M2.

Proof : Suppose that M1 lies at one side of M around some common (interior or bound-
ary) point p0. If (N1)p0 = (N2)p0 , then we apply the maximum principle of H-surfaces
to get the result. Otherwise, that is, when (N1)p0 = −(N2)p0 , we reverse the orientation
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of M1. Then M1 is also an H-surface with this orientation because its mean curvature
H′

M1
satisfies that for all p ∈ M1, we have

H′
M1

(p) = −HM1
(p) = −H((N1)p) = H(−(N1)p).

Then we are again under the conditions to apply the maximum principle of H-surfaces
around p0, obtaining the result. �

Some examples of functionsH satisfying the conditionH(−x) = −H(x) areH(x) =

〈x, v〉n, for a fixed v ∈ S2 and n an odd number (n = 1 corresponds with translating
solitons) andH(x) = sin(〈x, v〉), for a fixed v ∈ S2.

The following result is the classicalmean curvature comparison principle but adapted
to H-surfaces.

Lemma 2.3 (Comparison principle of H-surfaces) Let Mi be Hi-surfaces, i = 1, 2. As-

sume that there exists p ∈ M1 ∩ M2 such that (N1)p = (N2)p. If M1 lies locally above M2

around p, then, H1((N1)p) ≥ H2((N2)p).

A fundamental property that will be applied throughout the paper is the following.
Let v ∈ S2 and assume that H(v) = 0. Then it is immediate that any plane oriented by
v is an H-surface regardless of whether H is not identically 0. We show next that in the
same class of H-surfaces, one may have different types of examples that widely differ
one from the other. Fix some ε ∈ (0, 1) and let us define

f (t) =





1, if t ≤ 0

g(t), if t ∈ [0, ε]

0, if t ≥ ε,

where g(0) = 1, g(ε) = 0, g is decreasing and such that f is of class C∞. Define H ∈

C1(S2) by H(x) = f (〈x, e3〉). Some H-surfaces are the following:

1. The upper half-sphere S2
+ (or any open subset of it) with the downwards orienta-

tion.

2. Any plane oriented by v, being v ∈ S2 such that 〈v, e3〉 ≥ ε.

Note that the coexistence of both planes and half-spheres in the same class ofH-surfaces
does not contradict neither themaximumnor themean curvature comparison principles.
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Indeed, if they are tangent at some point their unit normals are necessarily opposite;
otherwise, they are no longer H-surfaces since they do not fulfill (4).

We now derive some direct consequences of the maximum principle. Given H ∈

C1(S2), we are interested in the existence of closed (compact without boundary) H-
surfaces. WhenH is a positive constant there are such closed examples, namely, spheres.
This makes a huge difference whenH is identically zero, since it is well-known the non-
existence of closed minimal surfaces. The following result proves that it is sufficient for
H to vanish at just one point of S

2 in order to forbid the existence of a closed H-surface.

Proposition 2.4 Let H ∈ C1(S2). If H vanishes at some point, then there are no closed H-

surfaces in R3.

Proof : By contradiction, assume that M is a closedH-surface. Without loss of generality,
we can assume that H(e3) = 0. Let Π be the plane of equation x3 = 0, which we orient
by e3. After a vertical translation, and by compactness of M, we can assume that M is
contained in the half-space {x ∈ R3 : x3 ≥ 0} and that M ∩ Π 6= ∅. Let p0 ∈ M ∩ Π.
Since p0 is an interior point of M, then Np0 = ±e3.

If Np0 = e3, we apply themaximumprinciple forH-surfaces between the planeΠ and
M and we conclude that M ⊂ Π. This is a contradiction because M is closed. Therefore,
Np0 = −e3. We now consider Π oriented with the vector −e3. The comparison prin-
ciple of H-surfaces yields H(−e3) ≤ 0. Moreover, H(−e3) < 0 for if H(−e3) = 0 we
contradict the maximum principle.

By compactness again, let be p1 ∈ M a point of maximum height to Π and P the
affine tangent plane to M at p1. At this point we have Np1

= ±e3. If Np1
= e3 we

contradict the maximum principle. If Np1
= −e3, then M lies locally above P around p1

but H(−e3) < 0, which contradicts the comparison principle. In any case, we arrive to
the desired contradiction. �

From this result, the condition H 6= 0 is necessary for the existence of closed H-
surfaces. In the same fashion as in the case that H is a non-zero constant, it would be
expectable that the condition H 6= 0, say H > 0, is also sufficient for the existence
of a closed H-surface. Nevertheless, the following result exhibit examples of positive
functions H for which there are no closed H-surfaces.

Proposition 2.5 Let be H such thatH(x) = h0(x) + λ, where λ ∈ R and h0 ∈ C1(S2) is not

identically zero. If there is v ∈ S2 such that h0(x)〈x, v〉 ≥ 0 for all x ∈ S2, then there are no

closedH-surfaces.
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Proof : By contradiction, assume that M is a closed H-surface with H = h0 + λ defined
under the hypothesis of the proposition. The function f ∈ C∞(M) defined by f (p) =

〈p, v〉 satisfies ∆ f = 2H〈N, v〉, where ∆ is the Laplacian in M. Since ∂M = ∅, the
divergence theorem gives

0 =
∫

M
H(N)〈N, v〉 dM =

∫

M
h0(N)〈N, v〉 dM + λ

∫

M
〈N, v〉 dM.

The second integral vanishes since M is closed. Therefore, the first integral must vanish
as well, but h0(N)〈N, v〉 ≥ 0 and h0 is not identically zero by hypothesis, arriving to the
desired contradiction. �

Examples of positive functionsH ∈ C1(S2) under the hypothesis of Prop. 2.5 are the
following:

1. Let v ∈ S
2. For λ > 1 and n an odd natural number, define H(x) = 〈x, v〉n + λ.

2. Let v ∈ S
2. For λ > 2, defineH(x) = 〈x, v〉(1 + sin(〈x, v〉)) + λ.

The last two results exhibit that under mild assumptions on H, there do not exist
closed H-surfaces. Therefore, for these prescribed functions, any compact H-surface
has non-empty boundary. This makes the study of compact H-surfaces with boundary
not only natural, but necessary.

Given a simple closed curve Γ, our first approach to this study is to derive some
restrictions forH in terms of the geometry of Γ for the existence of a compactH-surface
spanning Γ. In the theory of CMC surfaces, it is known that given a closed curve Γ ⊂ R

3,
not all H ∈ R are allowed to have H-surfaces spanning Γ. This was proved initially by
Heinz [17] and generalized later using a flux formula for CMC surfaces: see details in
[22]. For example, if Γ is a closed simple curve, then |H| ≤ L/(2area(Ω)), where L is
the length of Γ and Ω is the planar domain bounded by Γ. As far as the authors know,
there is no an analogue to the flux formula in the theory ofH-surfaces. Nonetheless, we
are able to prove a similar necessary condition in case that the surface is a graph.

Proposition 2.6 Let Γ be a closed simple curve contained in a plane Π = v⊥, v ∈ S2. IfH > 0

is a C1 function defined in S2, then a necessary condition for the existence of a compactH-graph

spanning Γ is

Hmin := min{H(x) : x ∈ S
2} ≤

L

2 area(Ω)
,

where L is the length of Γ and Ω ⊂ Π is the domain bounded by Γ.

9



Proof : By (5) and the divergence theorem, we have

∫

Ω
2(H ◦ N) dΩ =

∫

Ω
div

(
(−Du, 1)√
1 + |Du|2

)
dΩ =

∫

∂Ω
〈

(−Du, 1)√
1 + |Du|2

, n〉 ds ≤ L,

where n is the unit outward normal vector of ∂Ω as planar curve of Π. SinceH > 0, the
first term in the above identities can be estimated from below by 2Hmin

∫
Ω

dΩ, obtaining
the result. �

Going back to Prop. 2.4, one may expect that ifH(v) = 0, the class ofH-surfaces be-
haves as minimal surfaces. The following result emphasizes this relationship by gener-
alizing the convex hull property of minimal surfaces, which states that any compact minimal
surface must lie inside the convex hull of its boundary.

Proposition 2.7 Let Γ be a closed curve in R3. LetH ∈ C1(S2) such thatH(±v) = 0 for some

v ∈ S2. If M is a compactH-surface with boundary Γ, then M is contained in the slab

{x ∈ R
3 : µ1(v) ≤ 〈x, v〉 ≤ µ2(v)},

where

µ1 = min{〈p, v〉 : p ∈ Γ}, µ2(v) = max{〈p, v〉 : p ∈ Γ}.

Proof : After a change of coordinates, we assume v = e3. Arguing by contradiction,
assume that M contains points whose third coordinate x3 is bigger than µ2(e3). Consider
p ∈ M the highest point of M, which in particular satisfies x3(p) > µ2(e3), and hence
p is an interior point of M. Moreover, Np = e3 or Np = −e3. We orient the (affine)
tangent plane TpM by the vector Np. Since H(Np) = 0, then TpM is an H-surface and
the maximum principle implies that M is included in TpM: this a contradiction because
Γ ∩ TpM = ∅. �

3 The Alexandrov method for H-surfaces

In this section, we investigate how the geometry of a simple closed curve Γ determines
the shape of a compact H-surface that spans it. A first interesting case is to investigate
whether the symmetries of the boundary curve Γ are inherited to a compact H-surface.
The main tool for achieving this purpose is the so-called Alexandrov reflection tech-
nique. A major difference with the CMC setting is that in the case of an arbitrary pre-
scribed function H, we have to take into account the loss of symmetries of the resulting
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PDE fulfilled by the H-surfaces. As a matter of fact, the reflection about an arbitrary
plane no longer sends an H-surface into an H-surface. In this spirit, the third hypothe-
sis of the following result is paramount.

Theorem 3.1 Let Γ be a closed simple curve contained in a plane Π. Assume that:

1. Γ is symmetric with respect to the reflection about a plane P orthogonal to Π,

2. P separates Γ into two graphs over the line Π ∩ P.

3. H is invariant with respect to the reflection about the vector plane parallel to P.

If M is a compact, embedded H-surface spanning Γ and M lies at one side of Π, then M is

symmetric with respect to P.

Proof : After a change of coordinates, we assume that Π is the plane of equation x3 = 0

and that P is the plane of equation x1 = 0. Let Ω ⊂ Π the domain bounded by Γ. Since
M is embedded, M ∪ Ω defines a closed surface, possible singular along M ∩ Ω, that
bounds a domain W in R3. Assume without losing generality that M ⊂ {x3 ≥ 0}. Let
us orient M so N points towards the interior of W.

For any t ∈ R, we denote Pt the plane of equation x1 = t. We define M(t)− =

M ∩ {x1 ≤ t}, M(t)+ = M ∩ {x1 ≥ t} and M(t)∗ the reflection of M(t)+ about Pt. At
this point, the third item in the hypotheses of Th. 3.1 allows us to assert that M(t)∗ is
again a H-surface where the orientation on M(t)∗ is N∗, being N∗ = RPt(N). Here RPt

denotes the reflection about the plane Pt. Indeed, if q ∈ M(t)∗ , then q = RPt
(p) for some

p ∈ M(t)+ . Then

HM(t)∗(q) = HM(t)+(p) = H(Np) = H(RPt(Np)) = H(N∗
q ),

where we have used the identityH = H◦ RPt thanks to the third item of the hypothesis.

Although the proof of theorem is standard, by completeness we present an outline of
it in order to emphasize where the third hypothesis in the statement of Th. 3.1 is crucial.
Arguing by contradiction, assume that M is not symmetric with respect to P. Then, there
are two points q1, q2 ∈ M\Γ such that the line q1q2 is orthogonal to P, q1 and q2 are in
different components of R

3\P and dist(q1, P) 6= dist(q2, P); without losing generality,
assume x1(q2) < 0 < x1(q1). If we name x∗ to the reflection of x ∈ R3 about P, then
x1(q

∗
1) < x1(q2).
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By compactness of M, for t large enough we have Pt ∩ M = ∅. We let t decrease until
we arrive to a first instant t0 > 0 where there is a first contact point between Pt0 and M;
we know that t0 > 0 since x1(q1) > 0. The embeddedness of M and since M lies above
Π ensures the existence of ε > 0 such that int(M(t)∗) ⊂ W for every t ∈ (t0 − ε, t0). By
compactness of M and by decreasing t, we define

t1 = inf{t ∈ R : int(M(t)∗) ⊂ W and M(t)∗is a graph over Πt}.

Because Π is a plane of symmetry of Γ, t1 ≥ 0. For t < t1, whatever the reason for which
t fails to be the infimum, it happens M(t)∗ 6⊂ W. In our setting, t1 > 0 because of the
existence of q1, q2 such that x1(q

∗
1) < x1(q2) < 0.

Since M(t)+ is a graph over Pt for t > t1 and Γ ∩ {x1 > 0} is also a graph over the
line P ∩ Π, we have ∂M(t1)

∗ ∩ Γ ⊂ Pt1
. The latter hypothesis is also crucial since it could

happen that the first meeting point p between M(t1)
∗ and M(t1)

− lies in Γ where none
of the surfaces M(t1)

∗ and M(t1)
− are tangent. There are two possibilities for p:

1. There exists p ∈ int(M(t1)
∗)∩ int(M(t1)

−). Since p is an interior point, M(t1)
∗ and

M(t1)
− are tangent and the orientation of both surfaces point towards the interior

of W and in particular they agree. The maximum principle implies that M(t2)
∗ =

M(t2)
− and thus Pt1

is a plane of symmetry of M. However, this contradicts that Γ

is not invariant by reflections about Pt1
.

2. The surface M is orthogonal to Pt1
at some p ∈ ∂M(t1)

∗ ∩ ∂M(t1)
−. This time we

use the boundary version of the maximum principle to conclude that Pt1
is a plane

of symmetry of M, which is again a contradiction.

This implies that M is symmetric with respect to P, proving the result. �

Some examples of prescribed functions under the hypothesis of Th. 3.1 are

H(x) = 〈x, v〉α + λ, x ∈ S
2,

where α ≥ 1 (to ensure thatH is C1) and λ ∈ R. Indeed, if P is a vector plane containing
v and RP is the reflection about P, then for every x ∈ S2 we have H(x) = H(Rp(x)). In
particular, if M is anH-surface then the reflection about any plane parallel to P is again
an H-surface.

For the particular case that the above symmetry property holds for every vector plane
containing v, then H is also invariant under any rotation of S2 that preserves the v-
direction pointwise fixed. Our purpose is to conclude that M is a rotational H-surface
when its boundary is a circle. In this fashion, we give the following definition.
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Definition 3.2 Let be v ∈ S2. A function H ∈ C1(S2) is said to be rotational about the v-

direction if there exists h ∈ C1([−1, 1]) such that

H(x) = h(〈x, v〉), ∀x ∈ S
2.

As a consequence, ifH is rotational about some direction v, then rotations about any line
parallel to v send H-surfaces into H-surfaces and in particular the notion of rotational
H-surface is well-defined. We refer the reader to [9] for a deep study and classification
of rotational H-surfaces, including the achievement of a Delaunay-type classification
theorem. Furthermore, as a particular case of a more general study regarding a linear
Weingarten relation, it was exhibited in [6] necessary and sufficient conditions for the
existence of a rotationalH-surface M+ (resp. M−) intersecting orthogonally the rotation
axis with unit normal N = v (resp. N = −v). The following result gives a characteriza-
tion of M±.

Corollary 3.3 LetH be a rotational functional about v ∈ S2. Let Γ be a circle in a plane Π = v⊥

such the plane Π is oriented with v. Assume that M is a compact, embeddedH-surface spanning

Γ and lying at one side of Π.

1. If M lies above Π, thenH(−v) > 0 and M = M−.

2. If M lies below Π, thenH(v) > 0 and M = M+.

4 CompactH-surfaces with planar boundary

As a consequence of Th. 3.1, it is interesting to have conditions that ensure that an
embedded compact H-surface with planar boundary lies contained in one side of the
boundary plane. We will prove two results in this direction. The first one extends a
similar situation for CMC surfaces [20].

Theorem 4.1 Let Π be a plane and Γ ⊂ Π be a closed simple curve that bounds a domain Ω, and

let ext(Ω) = Π\Ω. If M is a compact, embeddedH-surface that spans Γ and M∩ ext(Ω) = ∅,

then int(M) lies contained in one of the two closed halfspaces determined by Π.

Proof : Without loss of generality, we assume that Π is the plane of equation x3 = 0.
Let S1(r) ⊂ Π a circle of radius r and S2

+(r) the upper hemisphere in the half-space
{x3 ≥ 0}, with ∂S2

+(r) = S1(r), and D(r) the disc bounded by S1(r). Since M is compact,
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let r big enough such that M ∩ {x3 ≥ 0} is strictly contained in the domain bounded by
D(r) ∪ S2

+(r). In this setting,

K = M ∪ (D(r)\Ω) ∪ S
2
+(r)

is an embedded, closed surface in R3, possibly not smooth along Γ ∪ S1(r), that bounds
a domain W in R3. Let N be the unit normal of M and take on K the orientation Ñ such
that Ñ|M = N. Then Ñ points towards either the interior of the exterior of W. We will
assume that Ñ points towards the interior of W: on the contrary, the argument is similar.

By contradiction, assume that M has interior points in both sides of Π. Let p, q ∈

int(M) be the points of minimum andmaximum height, respectively, to Π with x3(p) <

0 and x3(q) ≥ 0 (if x3(p) ≤ 0 and x3(q) > 0 the argument is similar). Since Ñ points
towards the interior of W, then Np = Nq = e3. Let TpM and TqM be the affine tangent
planes to M at p and q, oriented with unit normal e3. Since M lies above TpM (resp.
below TqM) locally around p (resp. around q), hence the mean curvature comparison
principle yields HM(p) ≥ 0 and HM(q) ≤ 0. Thus

0 ≤ H(p) = H(Np) = H(e3) = H(Nq) = H(q) ≤ 0.

Therefore H(e3) = 0. Hence TpM and TqM are H-surfaces. The maximum principle of
H-surfaces applied to M and TpM implies that M is included in TpM. This is a contra-
diction because Γ is not included in the plane TpM. �

An immediate application of this theorem is for graphs.

Corollary 4.2 If M is a compactH-graph spanning a planar closed simple curve, then lies con-

tained in one of the two closed halfspaces determined by the boundary plane.

In the second result, we prove that the surface lies contained in one side of the bound-
ary plane Π = v⊥ ifH takes a special behaviour at v ∈ S2. Comparing with the hypoth-
esis of Th. 4.1, we drop the assumption of the embeddedness of the surface.

Theorem 4.3 Let H ∈ C1(S2) and v ∈ S2 such that H(v)H(−v) < 0 and Π = v⊥. Let M

be a compactH-surface whose boundary ∂M is contained in the plane Π = v⊥.

1. If H(v) > 0, then int(M) lies in the halfspace {x ∈ R3 : 〈x, v〉 < 0}.

2. If H(v) < 0, then int(M) lies in the halfspace {x ∈ R3 : 〈x, v〉 > 0}.
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Examples of functions H satisfying the condition of this theorem are H(x) = 〈x, v〉n,
where n is an odd natural number.

Proof : Without loss of generality, we assume that v = e3. We prove the first item, since
the second one is analogous. Assume H(e3) > 0 and, by hypothesis, H(−e3) < 0.
Arguing by contradiction, suppose the existence of interior points of M in {x ∈ R3 :

〈x, e3〉 ≥ 0}. Let q = max{〈p, e3〉 : p ∈ M}, in particular, 〈q, e3〉 ≥ 0. Since q is an
interior point, its tangent plane TqM is the plane of equation x3 = x3(q). Thus Nq = e3

or Nq = −e3.

Suppose that Nq = e3. We orient TqM by the vector e3 and in particular, TqM is an
H1-surface where H1(x) = H(x) − H(e3). Then TqM lies above M around q and the
comparison principle of H-surfaces implies H1(Nq) ≥ H(Nq). This says 0 ≥ H(e3),
which is not possible. Thus necessarily Nq = −e3. Now we orient TqM by −e3, being
TqM an H2-surface for H2(x) = H(x)−H(−e3). Since now M lies above TqM around
q, the comparison principle yields H(Nq) ≥ H2(Nq), that is, H(−e3) ≥ 0. This contra-
diction proves the result. �

A context where Theorem 4.3 is useful is in the study of λ-translators with boundary.
Recall that a surface M in R3 is a λ-translator if its mean curvature HM satisfies HM(p) =

〈Np,w〉+ λ, where w ∈ S2 is called the density vector and λ ∈ R. After a change of the
orientation, we can assume λ ≥ 0 without losing generality. In [24], the second author
addressed the study of compact λ-translators with boundary. We now improve these
results, by showing that the hypothesis 0 ≤ λ ≤ 1 has a paramount consequence in Th.
4.3.

Corollary 4.4 Let 0 ≤ λ ≤ 1 and M be a compact λ-translator with density vector w and

whose boundary is contained in a plane Π = v⊥, v ∈ S
2. If |〈v,w〉| ≥ λ, then int(M) ⊂ {x ∈

R3 : sign(〈v,w〉)〈x, v〉 ≤ 0}. Moreover, there exists p0 ∈ int(M) ∩ Π 6= ∅ if and only if M

is planar and |〈v,w〉| = λ.

Proof : If M is a λ-translator, we have H(x) = 〈x,w〉+ λ. First, assume |〈v,w〉| > λ.
This condition yields H(v)H(−v) = λ2 − 〈v,w〉2

< 0, hence we are in the hypothesis
of Th. 4.3. Moreover, if sign(〈v,w〉) > 0 then H(v) = 〈v,w〉 + λ > 0 and M lies in
{x ∈ R3 : 〈x, v〉 < 0}. In case that sign(〈v,w〉) < 0, then M lies in {x ∈ R3 : 〈x, v〉 > 0}.

For the second part, assume the existence of some p0 ∈ int(M) ∩ Π. Without losing
generality, we suppose 〈v,w〉 > 0, which in particular yields 〈v,w〉 ≥ λ. From the first
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part, we know that M lies in {〈x, v〉 ≤ 0}, hence at p0 we have Np0 = ±v. If Np0 = v,
then Π lies locally above M around p0 and the mean curvature comparison principle
yields

0 ≥ HM(p0) = H(v) = 〈v,w〉+ λ > 0,

a contradiction. Consequently, Np0 = −v and M lies locally above Π around p0. The
comparison principle with the mean curvature gives

HM(p0) = H(Np0) = H(−v) = −〈v,w〉+ λ ≥ 0,

and consequently 〈v,w〉 = λ. Then, Π with the orientation −v is an H-surface and the
maximum principle yields that M is planar.

If 〈v,w〉 < 0, which in particular yields 〈v,w〉 ≤ −λ, the proof is similar. This time,
M lies above Π around p0 and Np0 = v necessarily. Consequently, by the comparison
principle we have 〈v,w〉+ λ ≥ 0, from where we conclude 〈v,w〉 = −λ. This time, the
maximum principle applied to M and Π with orientation v allows us to assert that M is
contained in Π, proving the result. �

We can combine this corollary together Cor. 3.3 to conclude the following result of
symmetry for λ-translators. We illustrate the result in the case that the boundary is a
circle.

Corollary 4.5 Let M be a compact embedded λ-translator with density vector v ∈ S2 and |λ| ≤

1. If the boundary of M is a circle contained in a plane Π = v⊥, then M is an open piece of a

rotational λ-translator that intersects orthogonally the rotation axis.

We finish this section with a generalization of a result due to Pyo. In [29] it was
proved that a compact translating soliton with density v spanning a circle contained in a
plane Π⊥ is a rotational surface. The techniques to proved this result can now be viewed
in a natural way in the context of the theory of H-surfaces.

Theorem 4.6 Let v ∈ S
2 and H ∈ C1(S2) such that H(x) = 0 for every x ∈ S

2 orthogonal

to v. Assume that H(−x) = −H(x) for all x ∈ S2. Let Γ be a closed convex curve contained

in Π = v⊥ and let Ω ⊂ Π denote the domain bounded by Γ. If M is an H-surface spanning Γ,

then Γ is contained in the solid cylinder CΩ = Ω × Rv. If, in addition, Γ is a circle and H is

rotational about v, then M is a rotational surface.

Notice that we do not require in the hypothesis that M is embedded.
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Proof : Up to a change of coordinates, we assume v = e3 and that Π is the plane of
equation x3 = 0. Hence, H vanishes on the equator 〈x, e3〉 = 0 and in particular any
vertical plane is anH-surface. From the hypothesisH(−x) = −H(x), ∀x ∈ S2 we know
that the tangency principle 2.2 applies. We define the solid cylinder CΩ = Ω × R.

First, we show that int(M) lies inside CΩ. By contradiction, assume that there exists
some p ∈ int(M) lying outside CΩ. Let p̂ be the orthogonal projection of p onto Π, so
p̂ 6∈ Ω. Let q ∈ Ω be a point of Ω realizing the distance to p̂. If P is the vertical planewith
q ∈ P, then Ω lies contained in one side of P because Γ is convex. Moving P outwards Ω

and parallel in the direction of its normal vector, let P0 be the last position that touches
M. Then P0 lies at one side of M and the tangency principle yields a contradiction.

Once we have proved that int(M) lies inside CΩ, next we show that M is a graph over
Ω, which in particular yields that M is embedded. Let us denote the vertical translations
Ms = M + se3, s ≥ 0, which are again H-surfaces. By compactness and for s large
enough, Ms and M are disjoint. We decrease s until reaching a time s0 where Ms0 meets
M at the first time. It is not possible that s0 > 0 because otherwise, the tangency principle
implies that Ms0 = M and we arrive to the contradiction ∂Ms0 = Γ + s0e3 6= Γ. Thus
necessarily by vertical translations, the first contact point occurs at s = 0, that is, M

comes to its initial position. Arguing similarly with vertical translation of type M − se3,
s ≥ 0, we conclude that M is a graph.

In case that Γ is a circle and H is rotational, we use Cor. 3.3. �

Aswe stated, Th. 4.6 generalizes the main result of [29] for translating solitons, since
H(x) = 〈x, v〉, and there is a large family of functionsH in the conditions of the theorem.
For instance, given a C1 odd function f (t), t ∈ [−1, 1], the function H(x) = f (〈x, v〉),
for a fixed v ∈ S2, lies in the hypothesis of Th. 4.6.

5 A height estimate in terms of the height

We obtain a relation between the area of a compact H-surface with planar boundary
and the height to the plane where its boundary lies. This result extends to the class of
H-surfaces others concerning the height and area of CMC surfaces in R3 [25], product
spaces M2 × R [21], and of λ-translators in R3 [24]. In our result, we need to assume
that the surface is a graph.
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Theorem 5.1 LetH > 0 and M be a compactH-graph on a plane Π. Suppose that the boundary

of M is contained in Π. If h is the height of M with respect to Π, then

h ≤
Hmax area(M)

2π
,

whereHmax = max{H(x) : x ∈ S2}.

Proof : Without loss of generality, we assume that Π is the horizontal plane of equation
x3 = 0. By Cor. 4.2 , we know that M lies at one side of Π, say {x ∈ R3 : x3 > 0}. Since
H > 0, the Gauss map N of M points downwards, that is, N3 = 〈N, e3〉 < 0. In this
setting, the height of M is h = max{x3(p) : p ∈ M}.

For each t > 0, we define M(t) = M ∩ {x ∈ R3 : x3 ≥ t} and Π(t) = {x ∈ R3 : x3 =

t}. Let A(t) be the area of M(t) and Γ(t) = M(t) ∩ Π(t). From the coarea formula [30,
Th. 5.8],

A′(t) = −
∫

Γ(t)

1

|∇x3|
dst,

where dst is the line element of Γ(t). Let us denote by L(t) to the length of Γ(t). On the
one hand, by the Cauchy-Schwarz inequality we get

L(t)2 =

(∫

Γ(t)
dst

)2

≤
∫

Γ(t)

1

|∇x3|
dst

∫

Γ(t)
|∇x3| dst = −A′(t)

∫

Γ(t)
|∇x3| dst,

where dst stands for the line element of Γ(t).

Since Γ(t) is a level curve of x3 and M(t) ⊂ {x ∈ R3 : x3 ≥ t}, we have |∇x3||Γ(t) =

〈ν(t), e3〉, where ν(t) is the unit inner conormal of M(t) along Γ(t). Therefore,

L(t)2 ≤ −A′(t)
∫

Γ(t)
〈ν(t), e3〉 dst. (6)

Because ∆x3 = 2HN3, the divergence theorem yields
∫

M(t)
2HN3 dMt = −

∫

Γ(t)
〈ν(t), e3〉 dst.

We substitute this integral in (6). Using that A′(t) ≤ 0 and N3 ≤ 0, we have

L(t)2 ≤ A′(t)
∫

M(t)
2HN3 dMt ≤ 2HmaxA′(t)

∫

M(t)
N3 dMt.

The curve Γ(t) is possibly non-connected, hence the inner region bounded by it, Ω(t)

consists on a finite union of compact, connected domains, Ωi(t), i = 1, ..., nt, in Π(t).
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By applying the divergence theorem to the vector field e3 in the, possibly disconnected,
3-domain W(t) bounded by M(t) and Ω(t), we arrive to

L(t)2 ≤ −2Hmax A′(t)area(Ω(t)). (7)

By denoting Li(t) to the length of ∂Ωi(t), the classical isoperimetric inequality gives

L(t)2 ≥
nt

∑
i=1

Li(t)
2 ≥ 4π

nt

∑
i=1

area(Ωi(t)) = 4π area(Ω(t)).

Plugging this inequality in (7), we deduce

2π ≤ −HmaxA′(t).

By integrating this inequality from t = 0 to t = h and taking into account that A(0) is
the area of M, we conclude

h ≤
Hmax area(M)

2π
,

which proves the result. �

Comparing the statement of Th. 5.1 with the CMC case [25], the absence of a flux
formula for H-surfaces makes that in (6) and for an H-surface not necessarily a graph,
we cannot express the integral

∫
Γ(t)〈ν(t), e3〉 dst in terms of Hmax and area(Ω(t)). Con-

sequently, we need to consider M a graph in the statement of Th. 5.1.

Acknowledgements

Antonio Bueno has been partially supported by the Projects P18-FR-4049 and Fundación
Séneca 21937/PI/22. Rafael López is a member of the Institute of Mathematics of the
University of Granada and he has been partially supported by the Projects PID2020-
117868GB-I00 and MCIN/AEI/10.13039/501100011033.

References

[1] A. D. Alexandrov, Uniqueness theorems for surfaces in the large. I. Vestnik Leningrad.
Univ. 11 (1956), no. 19, 5–17.

[2] M. Bergner, The Dirichlet problem for graphs of prescribed anisotropic mean curvature in

Rn+1. Analysis (Munich) 28 (2008), 149–166.

19



[3] M. Bergner, S. Fröhlich, On two-dimensional immersions of prescribedmean curva-
ture in Rn. Z. Anal. Anwend. 27 (2008), 31–52.

[4] S. Bernstein, Sur les surfaces définies au moyen de leur courbure moyenne ou totale, Ann.
Sci. École Norm. Sup. 27 (1910), 233–256.

[5] S: Bernstein, Conditions nécessaires et suffisantes pour la possibilité du problème de Dirich-

let, C. R. Math. Acad. Sci. Paris. 150 (1910), 514–515.

[6] A. Bueno, R. López, Radial solutions for equations of Weingarten type, J. Math. Anal.
Appl. 517 (2023).

[7] A. Bueno, I. Ortiz, Invariant hypersurfaceswith linear prescribedmean curvature, J. Math.
Anal. Appl. 487 (2020).

[8] A. Bueno, I. Ortiz, Surfaces of prescribed linear Weingarten curvature in R3, Proc. Roy.
Soc. Edinburgh Sect. A, 1-24.

[9] A. Bueno, J. A. Gálvez, P. Mira, Rotational hypersurfaces of prescribed mean curvature, J.
Differential Equations 268 (2020), 2394–2413.

[10] A. Bueno, J. A. Gálvez, P. Mira, The global geometry of surfaces with prescribed mean

curvature in R3, Trans. Amer. Math. Soc. 373 (2020), 4437-4467.

[11] C.Corsato, C.DeCoster, N. Flora, P.Omari,Radial solutions of theDirichlet problem for

a class of quasilinear elliptic equations arising in optometry, Nonlinear Anal. 181 (2019),
9–23.

[12] C. Corsato, C. De Coster, P. Omari, Radially symmetric solutions of an anisotropic mean

curvature equation modeling the corneal shape, Discrete Contin. Dyn. Syst. (2015), 297–
303.

[13] C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic

mean curvature equation: Existence, uniqueness and regularity of solutions, J. Differential
Equations. 260 (2016), 4572–4618.

[14] C. Corsato, F. Obersnel, P. Omari, The Dirichlet problem for gradient dependent pre-

scribed mean curvature equations in the Lorentz-Minkowski space, Georgian Math. J. 24
(2017), 113–134.

20



[15] C. Enache, R. López. Minimum principles and a priori estimates for some translating

soliton type problems,Nonlinear Anal. 187 (2019), 352–364.

[16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Or-

der, Grundlehren der mathematischen Wissenschaften 224, Springer-Verlag, Berlin,
1977.

[17] E. Heinz,Über die Existenz einer Fläche konstanter mittlerer Krümmung belvorgegebener

Berandung, Math. Ann. 127 (1954), 258–287.

[18] G. Huisken, Flow by mean-curvature of convex surfaces into spheres, J. Differential
Geom. 20 (1984), 237–266.

[19] G. Huisken, C. Sinestrari, Convexity estimates for mean curvature flow and singularities

of mean convex surfaces,Acta Math. 183 (1999), 45–70.

[20] M. Koiso, Symmetry of hypersurfaces of constant mean curvature with symmetric bound-

ary,Math. Z. 191 (1986), 567–574.

[21] C. Leandro, H. Rosenberg, A relation between height, area, and volume for compact con-

stant mean curvature surfaces in M2 × R, Michigan Math. J. 61 (2012), 123–131.

[22] R. López, Constant Mean Curvature Surfaces with Boundary, Springer Science, New
York, 2013.

[23] R. López, Invariant surfaces in Euclidean space with a log-linear density,Adv.Math. 339
(2018) 285–309.

[24] R. López, Compact λ-solitons with boundary, Mediterr. J. Math. 15 (2018).

[25] R. López, S. Montiel, Constant mean curvature surfaces with planar boundary, Duke
Math. J. 85 (1996), 583–604.

[26] R. Ma, M. Xu, Positive rotationally symmetric solutions for a Dirichlet problem involving

the higher mean curvature operator in Minkowski space, J. Math. Anal. Appl. 460(2018),
33–46.

[27] H. Mitake, L. Zhang, Remarks on the generalized Cauchy-Dirichlet problem for graph

mean curvature flow with driving force, Partial Differ. Equ. Appl. 2 (2021), 40.

[28] H. Minkowski, Volumen und Oberfläche,Math. Ann. 57 (1903), 447–495.

21



[29] J. Pyo, Compact translating solitons with non-empty planar boundary, Diff. Geom. App.
47 (2016), 79–85..

[30] T. Sakai, Riemannian geometry, Transl. Math. Monogr. 149, Amer. Math. Soc., Provi-
dence, RI. 1992.

[31] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many

independent variables, Phil. Trans. R. Soc. Lond. 264 (1969), 413–496.

[32] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43
(1971), 304–318.

22


	1 Introduction
	2 The maximum principle for H-surfaces and first consequences
	3 The Alexandrov method for H-surfaces
	4 Compact H-surfaces with planar boundary
	5 A height estimate in terms of the height

