
Chaining of Maximal Exact Matches in Graphs
Nicola Rizzo

nicola.rizzo@helsinki.fi
Manuel Cáceres

manuel.caceres@helsinki.fi

Veli Mäkinen
veli.makinen@helsinki.fi

Department of Computer Science, University of Helsinki, Finland

Abstract
We show how to chain maximal exact matches (MEMs) between a

query string Q and a labeled directed acyclic graph (DAG) G = (V, E)
to solve the longest common subsequence (LCS) problem between Q and
G. We obtain our result via a new symmetric formulation of chaining in
DAGs that we solve in O(m + n + k2|V | + |E| + kN log N) time, where
m = |Q|, n is the total length of node labels, k is the minimum number
of paths covering the nodes of G and N is the number of MEMs between
Q and node labels, which we show encode full MEMs.
Keywords sequence to graph alignment, longest common subsequence,
sparse dynamic programming
Funding This project received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sk lodowska-
Curie grant agreement No. 956229, and from the Academy of Finland
grants No. 352821 and 328877.

1 Introduction
Due to recent developments in pangenomics [6] there is a high interest to extend
the notion of string alignments to graphs. A common pangenome representa-
tion is a node-labeled directed acyclic graph (DAG), whose paths represent
plausible individual genomes from a species. Unfortunately, even finding an
exact occurrence of a query string as a subpath in a graph is a conditionally
hard problem [11, 10]: only quadratic time dynamic programming solutions are
known and faster algorithms would contradict the Strong Exponential Time
Hypothesis (SETH). Due to this theoretical barrier, parameterized solutions
have been developed [2, 8, 7, 18], and/or the task has been separated into
finding short exact occurrences (anchors) and then chaining them into longer
matches [16, 13, 14, 5]. Although the chaining algorithms provide exact solutions
to their internal chaining formulations and their solutions can be interpreted as
alignments of queries to a graph with edit operations, so far they have not been
shown to provide exact solutions to the corresponding alignment formulation.

In this paper, we integrate a symmetric formulation from string chaining
[19, 15] to graph chaining [16] yielding the first chaining-based parameterized
exact alignment algorithm between a query string and a graph. Namely, we

1

ar
X

iv
:2

30
2.

01
74

8v
3

 [
cs

.D
S]

 5
 J

ul
 2

02
3

https://orcid.org/0000-0002-2035-6309
https://orcid.org/0000-0003-0235-6951
https://orcid.org/0000-0003-4454-1493

obtain an O(m + n + k2|V |+ |E|+ kN log N) time algorithm for computing the
length of a longest common subsequence (LCS) between a query string Q and a
path of G, where m = |Q|, n is the total length of node labels, k is the width
(minimum number of paths covering the nodes) of G, and N is the number of
maximal exact matches (MEMs) between Q and the node labels (node MEMs).

The paper is structured as follows. The preliminaries in Section 2 and the
basic concepts in Section 3 follow the notions developed in our recent work [17],
where we introduce the definition of a MEM between a string and a graph, and
study the non-trivial problem of finding graph MEMs with a length threshold;
for the purposes of this paper, we observe that node MEMs are sufficient. In
Section 4.1, we revise the solution for an asymmetric chaining formulation in
DAGs [16] for the case of node MEMs. Then, in Section 4.2, we tailor the
string to string symmetric chaining algorithm [19, 15] to use MEM anchors. In
Section 4.3, we show how to integrate these two approaches to obtain our main
result. Finally, in Section 5 we discuss the length threshold setting and cyclic
graphs.

2 Preliminaries
Strings. We work with strings coming from a finite alphabet Σ = [1..σ] and
assume that σ is at most the length of the strings we work with. For two integers
x and y we use [x..y] to denote the integer interval {x, x+1, . . . , y} or the empty
set ∅ when x > y. A string T is an element of Σn for a non-negative integer n,
that is sequence of n symbols from Σ, where n = |T | is the length of the string.
We denote ε to the only string of length zero. We also denote Σ+ = Σ∗ \ {ε}.
For two strings T1 and T2 we denote their concatenation as T1 ·T2, or just T1T2.
For a set of integers I and a string T , we use T [I] to denote the subsequence of T
made of the concatenation of the characters indicated by I in increasing order.
If I is an integer interval [x..y], then T [x..y] is a substring: if x = y then we also
use T [x], if y < x then T [x..y] = ε, if x ≤ y = n we call it a suffix (proper suffix
when x > 1) and if 1 = x ≤ y we call it a prefix (proper prefix when y < n). A
length-κ′ substring Q[x..x+κ′−1] occurs in T if Q[x..x+κ′−1] = T [i..i+κ′−1];
in this case, we say that (x, i, κ′) is an (exact) match between Q and T , and
maximal (a MEM) if the match cannot be extended to the left (left-maximality),
that is, x1 = 1 or x2 = 1 or Q[x1 − 1] ̸= T [x2 − 1] nor it can be extended to the
right (right-maximality) x1 + ℓ = |Q| or x2 + ℓ = |T | or Q[x1 + ℓ] ̸= T [x2 + ℓ].

Labeled graphs. We work with labeled directed acyclic graphs (DAGs) G =
(V, E, ℓ), where V is the vertex set, E the edge set, and ℓ : V → Σ+ a labeling
function on the vertices. A length-k path P from v1 to vk is a sequence of nodes
v1, . . . , vk such that (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ E, in this case we say
that v1 reaches vk. We extend the labeled function to paths by concatenating
the corresponding node labels, that is, ℓ(P) := ℓ(v1) · · · ℓ(vk). For a node v
and a path P we use ∥·∥ to denote its string length, that is ∥v∥ = |ℓ(v)| and
∥P∥ = |ℓ(P)|. We say that a length-κ′ substring Q[x..x + κ′ − 1] occurs in
G if Q[x..x + κ′ − 1] occurs in ℓ(P) for some path P . In this case, we say
that ([x..x + κ′ − 1], (i, P = v1 . . . vk, j)) is an (exact) match between Q and
G, where Q[x..x + κ′ − 1] = ℓ(v1)[i..] · ℓ(v2) · · · ℓ(vk−1) · ℓ(vk)[..j], with 1 ≤
i ≤ ∥v1∥ and 1 ≤ j ≤ ∥vk∥. We call the triple (i, P, j) a substring of G

2

Figure 1: Co-linear chaining setting between a string Q and a labeled graph
G. If v is the last node to the right, then ([16..20], (1, v, 5)) is a match, with
lext(1, v, 5) = {G, T} and rext(1, v, 5) = {A}. It is a MEM, since |lext(i, P, j)| ≥ 2
and it cannot be extended to the right (Definition 1). In fact, all exact matches
are MEMs and they form a symmetric chain A′ (blue-green-red-yellow) inducing
the subsequence Q | A′ (the last C of green match is omitted due to overlap with
the red match).

and we define its left-extension lext(i, P, j) as the singleton {ℓ(v1)[i − 1]} if
i > 1 and {ℓ(u)[∥u∥] | (u, v1) ∈ E} otherwise. Analogously, the right-extension
rext(i, P, j) is {ℓ(vk)[j + 1]} if j < ∥vk∥ and {ℓ(v)[1] | (vk, v) ∈ E} otherwise.
Note that the left (right) extension can be equal to the empty set ∅, if the start
(end) node of P does not have incoming (outgoing) edges. See Figure 1.

Chaining of matches. An asymmetric chain A′[1..N ′] is an ordered subset
of a set A of N exact matches between a labeled DAG G = (V, E, ℓ) and a
query string Q, with the ordering A′[l] < A′[l + 1] for 1 ≤ l < N ′ defined as
([x′..x′ + κ′′ − 1], (i′, Pl, j′)) < ([x..x + κ′ − 1], (i, Pl+1, j)) iff the start of path
Pl+1 is strictly reachable from the end of path Pl and x′ ≤ x. The asymmetry
comes from the fact that overlaps are not allowed in G, but they are allowed
in Q. We are interested in chains that maximize the length of an induced
subsequence Q′, denoted Q′ = Q | A′, that is obtained by deleting all parts of
Q that are not covered by chain A′. For example, consider Q = ACATTCAGTA
and A′ = ([2..4], (i1, P1, j1)), ([3..6], (i2, P2, j2)), ([9..10], (i3, P3, j3)). Then Q′ =
Q | A′ = CATTCTA; anchors cover the underlined part of Q = ACATTCAGTA.

We could define symmetric chains by considering overlaps of paths, but
for the purposes of this paper it will be sufficient to consider overlaps of exact
matches inside the nodes of G: A symmetric chain A′[1..N ′] is an ordered subset
of a set A of N exact matches between the nodes of a labeled DAG G = (V, E, ℓ)
and a query string Q, with the ordering A′[l] < A′[l + 1] for 1 ≤ l < N ′ defined
as ([x′..x′ + κ′′ − 1], (i′, v, j′)) < ([x..x + κ′ − 1], (i, w, j)) iff (i) w is strictly
reachable from v or v = w and i′ ≤ i and (ii) x′ ≤ x. We extend the notation
Q′ = Q | A′ to cover symmetric chains A′ so that Q′ is obtained by deleting
all parts of Q that are not mutually covered by chain A′. We define mutual
coverage in Section 4.2: Informally, Q′ is formed by concatenating the prefixes
of exact matches until reaching the overlap between the next exact match in
the chain. Figure 1 illustrates the concept.

3

3 Finding MEMs in labeled DAGs
We now consider the problem of finding all maximal exact matches (MEMs)
between a labeled graph G and a query string Q for the purpose of chaining.

Definition 1 (MEM between a pattern and a graph [17]). Let G = (V, E, ℓ)
be a labeled graph, with ℓ : V → Σ+, and Q ∈ Σ+. We say that a match
([x..y], (i, P, j)) between Q and G is left-maximal (right-maximal) if it cannot
be extended to the left (right) in both Q and G, that is,

(LeftMax) x = 1 ∨ lext(i, P, j) = ∅ ∨Q[x− 1] /∈ lext(i, P, j) and
(RightMax) y = |Q| ∨ rext(i, P, j) = ∅ ∨Q[y + 1] /∈ rext(i, P, j).

The pair ([x..y], (i, P, j)) is a MEM if it is left-maximal or its left (graph) exten-
sion is not a singleton, and right-maximal or its right (graph) extension is not a
singleton, that is LeftMax ∨ |lext(i, P, j)| ≥ 2 and RightMax ∨ |rext(i, P, j)| ≥ 2.

See Figure 1 for an example. We use this particular extension of MEMs to
graphs—with the additional conditions on non-singletons lext and rext—as it
captures all MEMs between Q and ℓ(P), where P is a source-to-sink path in G.
Moreover, we will show that this MEM formulation captures LCS through co-
linear chaining, whereas avoiding the additional conditions would fail. Indeed,
consider Q, G, and match ([16..20], (1, v, 5)) from Figure 1: the match is not left-
maximal, since Q[15] = G and G ∈ lext(1, v, 5), but extending it would impose
any chain using it as an anchor to go through the bottom suboptimal path, that
in this case does not capture the LCS between Q and G. Also, it turns out that
we can focus on MEMs between the node labels and the query, as chaining will
cover longer MEMs implicitly.

To formalize the intuition, we say that a node MEM is a match (i, P, j) of
Q[x..y] in G such that P = v and it is left and right maximal w.r.t. ℓ(P) only
in the string sense: conditions LextMax ∨ i = 1 and RightMax ∨ j = ∥v∥ hold.
Consider the text

Tnodes =
∏
v∈V

0 · ℓ(v),

where 0 /∈ Σ is used as a delimiter to prevent MEMs spanning more than a node
label. Running the MEM finding algorithm [1] on Q and Tnodes will retrieve
exactly the node MEMs we are looking for [17] (a more involved problem of
finding graph MEMs with a length threshold is studied in [17], but here a
simplified result without the threshold is sufficient):

Lemma 1 ([17]). Given a labeled DAG G = (V, E, ℓ), with ℓ : V → Σ+, and
a query string Q, we can compute all node MEMs between Q and G in time
O(n + m + N), where n is the total length of node labels, m = |Q|, and N is the
number of node MEMs.

Let A be the set of node MEMs found using Lemma 1. In Appendix A, we
show that any long MEM spanning two or more nodes in G can be formed by
concatenating node MEMs into perfect chains—chains that have no gap between
consecutive matches.

Theorem 1. For every MEM ([x..y], (i, P, j)) between G and Q, there is a
perfect chain A′[1..p] ⊆ A such that A′[1] · · ·A′[p] = ([x..y], (i, P, j)).

4

Corollary 1. The set A is a compact representation of the set M of MEMs
between query Q and a labeled DAG G = (V, E, ℓ): it holds |A| ≤ ∥M∥, where
∥M∥ is the length of the encoding of the paths in MEMs as the explicit sequence
of its nodes.

Our strategy is to use set A as the representation of MEMs: Perfect chains
are implicitly covered by the chaining algorithms of next section.

4 Symmetric co-linear chaining in labeled DAGs
Mäkinen et al. [16, Theorem 6.4] gave an O(kN log N +k|V |)-time algorithm to
find an asymmetric chain A′[1..N ′] of a set A of N anchors1 between a labeled
DAG G = (V, E, ℓ) and a query string Q maximizing the length of an induced
subsequence Q′ = Q | A′. Here k is the width of G, that is, the minimum
number of paths covering nodes V of G. The algorithm assumes a minimum
path cover as its input, which can be computed in O(k2|V | + |E|) time [4, 3].
A limitation of this chaining algorithm is that anchors in the solution are not
allowed to overlap in the graph, which has been partially solved by considering
one-node overlaps [14]. However, both of these approaches maximize the length
of the sequence induced by the reported chain only on the string Q, which makes
the problem formulation asymmetric.

In the case of two strings as input, the asymmetry of the coverage metric
was solved by Mäkinen and Sahlin [15] applying the technique by Shibuya and
Kurochkin [19]. They provided an O(N log N)-time algorithm to find a sym-
metric chain A′[1..N ′] of a set A of N anchors maximizing the length of an
induced common subsequence C = Q | A′ = T | A′ between two input strings Q
and T , that is obtained by deleting all parts of Q, or equivalently all parts of T ,
that are not mutually covered by chain A′ (to be defined below). Here anchors
are assumed to be exact matches (x, i, κ′) (not necessarily maximal) such that
Q[x..x+κ′−1] = T [i..i+κ′−1], and A′[j] < A′[j +1] for 1 ≤ j < N ′, where the
order < between anchors is defined as (x′, i′, κ′′) < (x, i, κ′) iff x′ ≤ x and i′ ≤ i.
For completeness, in Appendix B we include a revised proof that this algorithm
computes the length of a longest common subsequence of strings Q and T if it is
given all (string) MEMs between Q and T as input [15]. The concept of mutual
coverage [15, Problem 1] is defined through the score

coverage(A′) =
N ′∑

j=1
min

(i, x, κ′) := A′[j + 1],
(i′, x′, κ′′) := A′[j]

{
min(i, i′ + κ′′)− i′,
min(x, x′ + κ′′)− x′,

where A′[N ′ + 1] = (∞,∞, 0). Each part of the sum contributes the corre-
sponding number of character matches from the beginning of the anchors to
the induced common subsequence. These form the mutually covered part of the
inputs; see Figure 1 for an illustration on an extension of this concept to graphs.

Consider now the symmetric chaining problem between a DAG and a string:

Problem 1 (Symmetric DAG chaining with overlaps). Find a symmetric chain
A′[1..N ′] of a set A of N anchors between a labeled DAG G = (V, E, ℓ) and

1Anchors have the same representation as graph MEMs, ([x..y], (i, P, j)), but they do not
necessarily represent exact matches.

5

a query string Q maximizing the length of an induced common subsequence
C = P | A′ = Q | A′ for some path P of G, where P | A′ denotes the subsequence
obtained by deleting the parts of ℓ(P) that are not mutually covered by chain A′

and Q | A′ denotes the subsequence obtained by deleting the parts of Q not
mutually covered by chain A′.

In this section, we will solve this problem in the special case where the an-
chors are all node MEMs between G and Q: thanks to Theorem 1 we know
that the algorithm by Mäkinen et al. [16] solves the problem when a longest
induced common subsequence C is covered by node MEMs that appear in differ-
ent nodes. Since in our setting the overlaps can only occur inside node labels, we
are left with what essentially is the symmetric string-to-string chaining problem
[19, 15]. However, we cannot separate these subproblems and call the respec-
tive algorithms as black boxes, but instead we need to carefully interleave the
computation of both techniques in one algorithm.

4.1 DAG chaining with node MEMs
Algorithm 1 shows the pseudocode of [16, Algorithm 1] simplified to take node
MEMs as anchors. The original algorithm uses two arrays to store the start and
the end nodes of anchor paths, but in the case of node MEMs one array suffices.
We also modified [16, Lemma 3.2] below to explicitly use primary and secondary
keys (the original algorithms [16, 15] implicitly assumed distinct keys). We still
use primary keys to store MEM ending positions in Q to do range searches, and
we use the secondary key to store the MEM identifiers to update the values of
the corresponding anchors.

Just like the original algorithm, our simplified version fills a table C[1..N]
such that C[j] is the maximum coverage of an asymmetric chain that uses the j-
th node MEM as its last item. That is, there is an asymmetric chain that induces
a subsequence Q′ of the query Q of length C[j]. In addition, our simplified
version is restricted to chains that can include at most one MEM per node and
includes an intermediate step to fill table C−[1..N] such that C−[j] = C[j]−κ′,
where κ′ is the length of the j-th node MEM. The reason for these modifications
will become clear when we integrate the algorithm with the symmetric string-
to-string chaining.

To fill tables C[1..N] and C−[1..N], the algorithm considers a) MEMs from
different nodes without overlap in the query and b) MEMs from different nodes
with overlap in the query. These cases are illustrated in the left panel of Figure 2.
The algorithm maintains the following data structure for each case and for each
path in a given path cover of k paths (see e.g. [9, Chapter 5]):

Lemma 2. The following four operations can be supported with a balanced
binary search tree T in time O(log n), where n is the number of key-value pairs
((k, j), val) stored in the tree. Here k is the primary key, j is the secondary key
to break ties, and k, j, val are integers.

• value(k, j): Return the value associated to key (k, j) or −∞ if (k, j) is not
a proper key.

• update((k, j), val): Associate value val to key (k, j).

• upgrade((k, j), val): Associate value max(val, value(k, j)) to key (k, j).

6

ALGORITHM 1: Asymmetric co-linear chaining between a se-
quence and a DAG using a path cover and node MEMs.

Input: A DAG G = (V, E, ℓ), a query string Q, a path cover
P1, P2, . . . , Pk of G, and node MEMs A[1..N] of the form
([x..x + κ′ − 1], (i, v, i + κ′ − 1)), where
ℓ(v)[i..i + κ′ − 1] = Q[x..x + κ′ − 1].

Output: Index of a MEM ending at a chain with maximum coverage
maxj C[j] allowing at most one MEM per node of G.

1 Use Lemma 3 to find all forward propagation links;
2 for k′ ← 1 to k do
3 Initialize data structures T a

k′ and T b
k′ with keys (x + κ′ − 1, j) such

that ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], 1 ≤ j ≤ N , and with
key (0, 0), all keys associated with values −∞;

4 T a
k′ .update((0, 0), 0);

5 T b
k′ .update((0, 0), 0);

/* Save to anchors[v] all node MEMs of node v. */
6 for j ← 1 to N do
7 ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j];
8 anchors[v].push(j);
9 C−[j]← 0;

10 C[j]← κ′;
11 for v ∈ V in topological order do
12 for j ∈ anchors[v] do

/* Update the data structures for every path that
covers v, stored in paths[v]. */

13 ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j];
14 for k′ ∈ paths[v] do
15 T a

k′ .upgrade((x + κ′ − 1, j), C[j]);
16 T b

k′ .upgrade((x + κ′ − 1, j), C−[j]− x);

/* PROPAGATE FORWARD STARTS */
17 for (w, k′) ∈ forward[v] do
18 for j ∈ anchors[w] do
19 ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j];
20 Ca[j]← T a

k′ .RMaxQ(0, x− 1);
21 Cb[j]← x + T b

k′ .RMaxQ(x, x + κ′ − 1);
22 C−[j]← max(C−[j], Ca[j], Cb[j]);
23 C[j] = C−[j] + κ′;

/* PROPAGATE FORWARD ENDS */

24 return argmaxj C[j];

7

• RMaxQ(l, r): Return maxl≤k≤r,(k,j) is a key in T value(k, j) (Range Maxi-
mum Query), or −∞ if the range is empty.

Moreover, the balanced binary search tree can be constructed in O(n) time, given
the n pairs ((k, j), val) sorted by component (k, j).

The algorithm processes the nodes in topological order, keeping the invariant
that once node v is visited, the final values C[j] and C−[j] are known for all
anchors j included in node v. These values are then stored in the search trees.
As a final step in the processing of v, the information stored in the search
trees is propagated forward to nodes w, where v is the last node reaching w on
some path-cover path. This propagated information is used for updating the
intermediate values for MEMs at node w. These forward links are preprocessed
with the following lemma:

Lemma 3 (Adaptation of [16, Lemma 3.1]). Let G = (V, E) be a DAG, and
let P1, . . . , Pk be a path cover of G. We can compute in O(k2|V |) time the set
of forward propagation links forward[u] defined as follows: for any node v and
path k′, (v, k′) ∈ forward[u] if and only if u is the last node on path k′ that
reaches v such that u ̸= v.

Proof. The original DP algorithm [16] runs in O(k|E|) time, but recently it has
been shown [12, Algorithms 6 and 7] how to do this in time O(k|Ered|), where
Ered are the edges in the transitive reduction of G. Finally, Cáceres et al. [3, 4]
showed a transitive sparsification scheme proving that |Ered| ≤ k|V |.

Data structures T a
k′ store as primary keys all ending positions of MEMs in

Q and as values the corresponding C[j]s for node MEMs A[j] processed so far
and reaching path Pk′ (line 15). When a new node MEM is added to a chain at
line 20, the range query on T a

k′ guarantees that only chains ending before v in G
and before the start of the new node MEM in Q are taken into account. Data
structures T b

k′ also store as primary keys all ending positions of node MEMs in
Q, but as values they store the values C−[j] with an invariant subtracted (line
16). This invariant is explained by the range query at line 21, that considers
chains overlapping (only) in Q with the new node MEM to be added: consider
the chain ending at node MEM A[j′] = ([x′..x′ + κ′′− 1], (i′, v′, i′ + κ′′− 1)) and
the new node MEM A[j] = ([x..x + κ′− 1], (i, v, i + κ′− 1) is to be added to this
chain, where x ≤ x′ + κ′′− 1 ≤ x + κ′− 1. This addition increases the part of Q
covered by the chain (excluding the new node MEM) by x− x′. This is exactly
the value computed at line 21, maximizing over such overlapping node MEMs.

4.2 Revisiting symmetric string-to-string chaining with
MEMs

Before modifying the algorithm to properly consider overlaps of node MEMs
in G, let us first modify the symmetric string-to-string chaining algorithm of
Mäkinen and Sahlin [15, Algorithm 2] to harmonize the notation and to consider
the simplification of [15, Theorem 6] that applies in the case of (string) MEMs.
This modification computes the optimal chain given MEMs A[1..N] between
strings T and Q and is given as Algorithm 2.

8

Figure 2: Precedence of MEMs partitioned to three classes (left, top right, and
bottom right subfigures) by occurrence in graph/text (top part of each subfigure)
and thereafter to two out of total four cases that require different data structure
on the query (bottom part of each subfigure).

ALGORITHM 2: Symmetric chaining with two-sided overlaps using
MEMs.

Input: An array A[1..N] of (string) MEMs (x, i, κ′) between Q and T .
Output: Index of a MEM ending a chain with maximum coverage

maxj C[j].
1 Initialize data structures T a and T b with keys (x + κ′ − 1, j) and data

structures T c and T d with keys (x− i, j), where (x, i, κ′) = A[j],
1 ≤ j ≤ N , and all trees with key (0, 0). Associate values −∞ to all
keys.

2 T a.upgrade((0, 0), 0);
3 M = {(x, j) | (x, i, κ′) = A[j], 1 ≤ j ≤ N} ∪ {(x + κ′ − 1, j) | (x, i, κ′) =

A[j], 1 ≤ j ≤ N};
4 M.sort();
5 for (x′, j) ∈M do
6 (x, i, κ′) = A[j];
7 if x == x′ then

/* Start of MEM. */
8 Ca[j] = T a.RMaxQ(0, x− 1);
9 Cb[j] = x + T b.RMaxQ(x, x + κ′ − 1);

10 Cc[j] = i + T c.RMaxQ(−∞, x− i);
11 Cd[j] = x + T d.RMaxQ(x− i + 1,∞);
12 C−[j] = max(Ca[j], Cb[j], Cc[j], Cd[j]);
13 C[j] = C−[j] + κ′;
14 T c.upgrade((x− i, j), C−[j]− i);
15 T d.upgrade((x− i, j), C−[j]− x);
16 else

/* End of MEM. */
17 T a.upgrade((x + κ′ − 1, j), C[j]);
18 T b.upgrade((x + κ′ − 1, j), C−[j]− x);
19 T c.update((x− i, j),−∞);
20 T d.update((x− i, j),−∞);

21 return argmaxj C[j];

9

The algorithm uses the same two data structures as before to handle the
cases illustrated at the top right of Figure 2. Moreover, the two additional data
structures (balanced binary search trees) in Algorithm 2 handle the overlaps in
T by dividing the computation further into cases c) and d) illustrated at the
bottom right of Figure 2): c) if two MEMs overlap more in T than in Q, tree
T c is used for storing the solution; d) otherwise, tree T d is used for storing the
solution. We refer to the original work [15] for the derivation of the invariants
and the range queries to handle these cases. The handling of these cases is
highlighted with gray background in Algorithm 2.

4.3 Integration of symmetry to DAG chaining
We will now merge the two algorithms from previous subsections to solve Prob-
lem 1. This algorithm is shown as Algorithm 3; lines highlighted with a dark
gray background are from Algorithm 2, whereas lines highlighted with a light
gray background are a hybrid of both, and the rest are from Algorithm 1. When
visiting node v the algorithm executes the steps of Algorithm 2 on anchors in-
cluded in v, with Ca[j] and Cb[j] having already been updated with anchors
not included in v through forward propagation identical to Algorithm 1. The
hybrid parts reflect the required changes to Algorithm 1 in order to visit the
MEM anchors twice as in Algorithm 2. This merge covers all three cases of
Figure 2.

Theorem 2. Given labeled DAG G = (V, E, ℓ) with path cover P1, . . . , Pk,
query string Q, and set A[1..N] of node MEMs between Q and G, Algorithm 3
solves the symmetric DAG chaining with overlaps problem (Problem 1) in time
O(k2|V |+ kN log N).

Corollary 2. The length of a longest common subsequence (LCS) between a
path in a labeled DAG G = (V, E, ℓ) and string Q can be computed in time
O(n + m + k2|V |+ |E|+ kN log N), where m = |Q|, n is the total length of node
labels, k is the width (minimum number of paths covering the nodes) of G, and
N is the number of node MEMs.

Proof. The node MEMs can be computed in time O(n+m+N) with Lemma 1.
A minimum path cover with k paths can be computed in O(k2|V |+ |E|) time [4,
3]. Forward propagation links can be computed in O(k2|V |) time with Lemma 3.
Finally, the term kN log N comes from Theorem 2. The connection between
LCS and solution to symmetric chaining follows with identical arguments as in
the proof of Corollary 3 in Appendix B. If P is a path containing an LCS of
length c, then Algorithm 3 finds a chain of coverage exactly c as its execution
considers the corresponding chain between ℓ(P) and Q as done in Algorithm 2.
In this case node MEMs are not necessarily MEMs between ℓ(P) and Q, but
exact matches supporting the necessary character matches, see Appendix B.

Note that the LCS connection can be easily adapted for long MEMs spanning
two or more nodes of G: Definition 1 considers all (string) MEMs between Q
and ℓ(P), for any arbitrary path P ; we did not consider symmetric chains of
long MEMs due to the difficulty of handling path overlaps efficiently (see also
[16]).

10

ALGORITHM 3: Symmetric co-linear chaining between a sequence
and a DAG using a path cover and node MEMs.

Input: Same as in Algorithm 1.
Output: Index of a MEM ending at a chain with maximum coverage

maxj C[j] allowing overlaps in G.
1 Use Lemma 3 to find all forward propagation links.
2 for k′ ← 1 to k do
3 Initialize data structures T a

k′ and T b
k′ with keys (x + κ′ − 1, j) and

key (0, 0), and data structures T c
k′ and T d

k′ with keys (x− i, j),
where ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], 1 ≤ j ≤ N .
Associate values −∞ to all keys.

4 T a
k′ .update((0, 0), 0);

5 T b
k′ .update((0, 0), 0);

6 Initialize arrays: anchors, C− and C as in Algorithm 1;
7 for v ∈ V in topological order do
8 M = {(x, j) | ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) = A[j], j ∈

anchors[v]} ∪ {(x + κ′ − 1, j) | ([x..x + κ′ − 1], (i, v, i + κ′ − 1)) =
A[j], j ∈ anchors[v]};

9 M.sort();
/* Update the data structures for every path that covers

v, stored in paths[v]. */
10 for k′ ∈ paths[v] do
11 for (x′, j) ∈M do
12 (x, i, κ′) = A[j];
13 if x == x′ then

/* Start of MEM. */
14 Ca[j] = T a

k′ .RMaxQ(0, x− 1);
15 Cb[j] = x + T b

k′ .RMaxQ(x, x + κ′ − 1);
16 Cc[j] = i + T c

k′ .RMaxQ(−∞, x− i);
17 Cd[j] = x + T d

k′ .RMaxQ(x− i + 1,∞);
18 C−[j] = max(C−[j], Ca[j], Cb[j], Cc[j], Cd[j]);
19 C[j] = C−[j] + κ′;
20 T c

k′ .upgrade((x− i, j), C−[j]− i);
21 T d

k′ .upgrade((x− i, j), C−[j]− x);
22 else

/* End of MEM. */
23 T a

k′ .upgrade((x + κ′ − 1, j), C[j]);
24 T b

k′ .upgrade((x + κ′ − 1, j), C−[j]− x);
25 T c

k′ .update((x− i, j),−∞);
26 T d

k′ .update((x− i, j),−∞);

27 Execute PROPAGATE FORWARD subroutine of Algorithm 1;
28 return argmaxj C[j];

11

5 Discussion
In this paper, we focused on MEMs with no lower threshold on their length to
achieve the connection with LCS. In practical applications, chaining is sped up
by using as anchors only MEMs that are of length at least κ, a given threshold.
Just finding all such κ-MEMs is a non-trivial problem and solvable in sub-
quadratic time only on some specific graph classes [17]. However, once such κ-
MEMs are found, one can split them to node-MEMs and then apply Algorithm 3
to chain them. The resulting chain optimizes the length |C| of a longest common
subsequence C between the query Q and a path P such that each match C[k] =
Q[ik] = ℓ(P)[jk] is supported by an exact match of length at least κ, where
1 ≤ k ≤ |C|, i1 < i2 < · · · < i|C|, and j1 < j2 < · · · < j|C|. That is,
there is a κ-MEM ([xk, yk], [ck, dk]) with respect to Q and ℓ(P) s.t. xk ≤
ik ≤ yk and ck ≤ jk ≤ dk for each k. Additionally, Ma et al. [14, Appendix
C] showed that asymmetric co-linear chaining can be extended to graphs with
cycles by considering the graph of the strongly connected components. In the
extended version of this paper we will show how to combine our results to obtain
symmetric chaining in general graphs.

References
[1] Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen.

Linear-time string indexing and analysis in small space. ACM Trans. Al-
gorithms, 16(2):17:1–17:54, 2020. doi:10.1145/3381417.

[2] Manuel Cáceres. Parameterized algorithms for string matching to dags:
Funnels and beyond. In Laurent Bulteau and Zsuzsanna Lipták, editors,
34th Annual Symposium on Combinatorial Pattern Matching, CPM 2023,
June 26-28, 2023, Marne-la-Vallée, France, volume 259 of LIPIcs, pages
7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.CPM.2023.7.

[3] Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and
Alexandru I. Tomescu. Minimum path cover in parameterized linear time.
CoRR, abs/2211.09659, 2022. arXiv:2211.09659, doi:10.48550/arXiv
.2211.09659.

[4] Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and
Alexandru I. Tomescu. Sparsifying, shrinking and splicing for minimum
path cover in parameterized linear time. In Joseph (Seffi) Naor and
Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria,
VA, USA, January 9 - 12, 2022, pages 359–376. SIAM, 2022. doi:
10.1137/1.9781611977073.18.

[5] Ghanshyam Chandra and Chirag Jain. Sequence to graph alignment us-
ing gap-sensitive co-linear chaining. In Haixu Tang, editor, Research in
Computational Molecular Biology - 27th Annual International Conference,
RECOMB 2023, Istanbul, Turkey, April 16-19, 2023, Proceedings, volume
13976 of Lecture Notes in Computer Science, pages 58–73. Springer, 2023.
doi:10.1007/978-3-031-29119-7_4.

12

https://doi.org/10.1145/3381417
https://doi.org/10.4230/LIPIcs.CPM.2023.7
https://doi.org/10.4230/LIPIcs.CPM.2023.7
https://arxiv.org/abs/2211.09659
https://doi.org/10.48550/arXiv.2211.09659
https://doi.org/10.48550/arXiv.2211.09659
https://doi.org/10.1137/1.9781611977073.18
https://doi.org/10.1137/1.9781611977073.18
https://doi.org/10.1007/978-3-031-29119-7_4

[6] The Computational Pan-Genomics Consortium. Computational pan-
genomics: status, promises and challenges. Briefings in Bioinformatics,
19(1):118–135, 10 2016. arXiv:https://academic.oup.com/bib/artic
le-pdf/19/1/118/25406834/bbw089.pdf, doi:10.1093/bib/bbw089.

[7] Nicola Cotumaccio. Graphs can be succinctly indexed for pattern match-
ing in O(|E|2 + |V |5/2) time. In Ali Bilgin, Michael W. Marcellin, Joan
Serra-Sagristà, and James A. Storer, editors, Data Compression Confer-
ence, DCC 2022, Snowbird, UT, USA, March 22-25, 2022, pages 272–281.
IEEE, 2022. doi:10.1109/DCC52660.2022.00035.

[8] Nicola Cotumaccio and Nicola Prezza. On indexing and compressing fi-
nite automata. In Dániel Marx, editor, Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Con-
ference, January 10 - 13, 2021, pages 2585–2599. SIAM, 2021. doi:
10.1137/1.9781611976465.153.

[9] Mark de Berg, Marc Van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer Science & Business Media, 2000.

[10] Massimo Equi, Veli Mäkinen, and Alexandru I. Tomescu. Graphs cannot be
indexed in polynomial time for sub-quadratic time string matching, unless
SETH fails. In Tomás Bures, Riccardo Dondi, Johann Gamper, Giovanna
Guerrini, Tomasz Jurdzinski, Claus Pahl, Florian Sikora, and Prudence
W. H. Wong, editors, SOFSEM 2021: Theory and Practice of Computer
Science - 47th International Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, Jan-
uary 25-29, 2021, Proceedings, volume 12607 of Lecture Notes in Computer
Science, pages 608–622. Springer, 2021. doi:10.1007/978-3-030-67731-
2_44.

[11] Massimo Equi, Veli Mäkinen, Alexandru I Tomescu, and Roberto Grossi.
On the complexity of string matching for graphs. ACM Transactions on
Algorithms, 19(3):1–25, 2023.

[12] Giorgos Kritikakis and Ioannis G Tollis. Fast and practical DAG decom-
position with reachability applications. arXiv preprint arXiv:2212.03945,
2022. To appear in the proceedings of SEA 2023.

[13] Heng Li, Xiaowen Feng, and Chong Chu. The design and construction of
reference pangenome graphs with minigraph. Genome Biology, 21:1–19,
2020.

[14] Jun Ma, Manuel Cáceres, Leena Salmela, Veli Mäkinen, and Alexandru I.
Tomescu. Chaining for accurate alignment of erroneous long reads to acyclic
variation graphs. bioRxiv, 2022. URL: https://www.biorxiv.org/cont
ent/early/2022/05/19/2022.01.07.475257, arXiv:https://www.bior
xiv.org/content/early/2022/05/19/2022.01.07.475257.full.pdf,
doi:10.1101/2022.01.07.475257.

[15] Veli Mäkinen and Kristoffer Sahlin. Chaining with overlaps revisited. In
Inge Li Gørtz and Oren Weimann, editors, 31st Annual Symposium on

13

https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/19/1/118/25406834/bbw089.pdf
https://arxiv.org/abs/https://academic.oup.com/bib/article-pdf/19/1/118/25406834/bbw089.pdf
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.1137/1.9781611976465.153
https://doi.org/10.1007/978-3-030-67731-2_44
https://doi.org/10.1007/978-3-030-67731-2_44
https://www.biorxiv.org/content/early/2022/05/19/2022.01.07.475257
https://www.biorxiv.org/content/early/2022/05/19/2022.01.07.475257
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/05/19/2022.01.07.475257.full.pdf
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2022/05/19/2022.01.07.475257.full.pdf
https://doi.org/10.1101/2022.01.07.475257

Combinatorial Pattern Matching, CPM 2020, June 17-19, 2020, Copen-
hagen, Denmark, volume 161 of LIPIcs, pages 25:1–25:12. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CPM.2020.
25.

[16] Veli Mäkinen, Alexandru I. Tomescu, Anna Kuosmanen, Topi Paavilainen,
Travis Gagie, and Rayan Chikhi. Sparse dynamic programming on DAGs
with small width. ACM Trans. Algorithms, 15(2):29:1–29:21, 2019. doi:
10.1145/3301312.

[17] Nicola Rizzo, Manuel Cáceres, and Veli Mäkinen. Finding maximal exact
matches in graphs, 2023. To appear in the proceedings of WABI 2023.
URL: https://arxiv.org/abs/2305.09752, arXiv:2305.09752.

[18] Nicola Rizzo, Alexandru I. Tomescu, and Alberto Policriti. Solving
string problems on graphs using the labeled direct product. Algorithmica,
84(10):3008–3033, 2022. doi:10.1007/s00453-022-00989-x.

[19] Tetsuo Shibuya and Igor Kurochkin. Match Chaining Algorithms for cDNA
Mapping. In Gary Benson and Roderic D. M. Page, editors, Algorithms in
Bioinformatics, pages 462–475, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

14

https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://doi.org/10.1145/3301312
https://doi.org/10.1145/3301312
https://arxiv.org/abs/2305.09752
https://arxiv.org/abs/2305.09752
https://doi.org/10.1007/s00453-022-00989-x

A Chaining for longer MEMs
We now show that graph MEMs of Definition 1 can be captured simply by
concatenating node MEMs. Given two graph substrings (i, P = u1..uk, j) and
(i′, P ′ = v1..vk′ , j′), they can be concatenated into (i, P, j) · (i′, P ′, j′) only if
one of the following two conditions hold: (uk, v1) ∈ E, j = ∥uk∥, and i′ = 1; or
uk = v1 and i′ = j + 1. In the former case, (i, P, j) · (i′, P ′, j′) := (i, P · P ′, j′),
whereas in the latter case (i, P, j) ·(i′, P ′, j′) := (i, u1..uk−1 ·v1..vk′ , j′). We then
say that two MEMs ([x..y], (i, P, j)) and ([x′..y′], (i′, P ′, j′)) can be concatenated
if (i, P, j) can be concatenated to (i′, P ′, j′) and x′ = y + 1, and in such case
we analogously define ([x..y], (i, P, j)) · ([x′..y′], (i′, P ′, j′) := ([x..y′], (i, P, j) ·
(i′, P ′, j′).

Let A be the set of node MEMs found using algorithm of Section 3. We call a
sequence of node MEMs A′[1..p] ⊆ A a perfect chain if A′[j] can be concatenated
to A′[j + 1] for 1 ≤ j < p. Note that the concatenation of all such node MEMs
in the perfect chain yields a longer exact match.

Theorem 1. For every MEM ([x..y], (i, P, j)) between G and Q, there is a
perfect chain A′[1..p] ⊆ A such that A′[1] · · ·A′[p] = ([x..y], (i, P, j)).

Proof. Let path P be spanning nodes v1, v2, . . ., vp and spelling ℓ(v1)[i..∥v1∥]
ℓ(v2) · · · ℓ(vp−1) ℓ(vp)[1..j]. That is, there exist exact matches ([i1..i2 − 1], (i,
v1, ∥v1∥)), ([i2..i3 − 1], (1, v2, ∥v2∥)), . . ., ([ip−1..ip − 1], (1, vp−1, ∥vp−1∥)), ([ip..
ip+1 − 1], (1, vp, j)) between Q and G. It is clear that if those matches are
node MEMs then they form a perfect chain as they can be concatenated. In-
deed, matches ([il..il+1 − 1], (1, vl, ∥vl∥)) are right-maximal for 1 < l < p since
they end at the end of a node label. For the same reason: matches ([il..il+1 −
1], (1, vl, ∥vl∥)) are left-maximal for 1 < l < p; ([i1..i2 − 1], (i, v1, ∥v1∥)) is right-
maximal; ([ip..ip+1−1], (1, vp, j)) is left-maximal. Finally, if we suppose by con-
tradiction that match ([i1..i2− 1], (i, v1, ∥v1∥)) (([ip..ip+1− 1], (1, vp, j))) can be
extended to the left (right) to ([i1−1..i2−1], (i−1, v1, ∥v1∥)) (([ip..ip+1], (1, vp, j+
1))) we contradict the maximality of ([x..y], (i, P, j)).

Corollary 1. The set A is a compact representation of the set M of MEMs
between query Q and a labeled DAG G = (V, E, ℓ): it holds |A| ≤ ∥M∥, where
∥M∥ is the length of the encoding of the paths in MEMs as the explicit sequence
of its nodes.

Proof. The corollary follows from Theorem 1 and the fact that for every node
MEM using node v there is at least one MEM between Q and G whose path
contains v. Indeed, v can be used in multiple MEM paths.

B Co-linear chaining on strings using MEMs
gives LCS

We first prove [15, Theorem 7]2. A string C[1..ℓ] is an LCS of strings Q and T if
it is a longest string that can be written as C = Q[y1]..Q[yℓ] = T [j1]..T [jℓ] with
1 ≤ y1 < .. < yℓ ≤ |Q| and 1 ≤ j1 < .. < jℓ ≤ |T |. Given a set A of anchors

2We provide this proof for completeness since the original proof is incomplete as checked
with co-author Mäkinen.

15

being exact matches between Q and T , we define an anchor-restricted LCS if
it is a longest string such that it can be written as before but additionally for
every character match Q[yl] = T [jl] there exists an anchor (xl, il, κ′

l) ∈ A such
that xl ≤ yl ≤ xl +κ′

l−1, il ≤ jl ≤ il +κ′
l−1 (the anchor supports the character

match) and yl − xl = jl − il (the match occurs within the same offset in the
anchor).

Theorem 3 ([15, Theorem 7]). Given a set of anchors A of exact matches
between two strings Q and T , the length of an anchored-restricted LCS equals the
coverage of a maximum coverage chain under the co-linear chaining formulation
of Mäkinen and Sahlin [15].

Proof. The authors of [15] proved that every chain A′[1..N ′] of anchors induces a
common subsequence between Q and T whose length equals the coverage of A′:
each anchor A′[l] = (xl, il, κ′

l) contributes cl characters to this subsequence such
that cl is the minimum between the characters of [xl...xl +κ′

l−1] not covered by
the rest of the chain A[l+1..N ′] and the characters of [il...il +κ′

l−1] not covered
by the rest of the chain A[l + 1..N ′]. We now prove that if c is the length of an
anchored-restricted LCS, then there is a weak chain [15] of A with coverage c,
where weak chain is such that consecutive anchors (xl, il, κ′

l), (xl+1, il+1, κ′
l+1)

of a weak chain satisfy xl < xl+1 and il < il+1. Our proof technique consists in
filtering out anchors supporting the LCS (while preserving the coverage of the
chain) so that the final set of anchors corresponds to a weak chain.

Let C[1..c] be an anchored-restricted LCS such that C = Q[y1]..Q[yc] =
T [j1]..T [jc] with 1 ≤ y1 < .. < yc ≤ |Q| and 1 ≤ j1 < .. < jc ≤ |T |, and let
(xl, il, κ′

l) the anchor supporting the match Q[yl] = T [jl] for 1 ≤ l ≤ c, that
is xl ≤ yl ≤ xl + κ′

l − 1 and il ≤ jl ≤ il + κ′
l − 1. We will show that we

can remove anchors from the beginning of the chain so that (after the removal)
x1 < x2 and i1 < i2 (the first anchor weakly precedes the second anchor) while
maintaining the coverage. The proof follows inductively by removing the first
anchor and applying the same procedure in the rest of the chain and the rest
of the anchored-restricted LCS until no anchors remain. We first show that we
can obtain a non-strict inequality x1 ≤ x2 and then how to filter anchors when
x1 = x2. The argument for i1 and i2 follows symmetrically.

Consider the case where x1 ≥ x2, then x2 ≤ x1 ≤ y1 < y2 ≤ x2 + κ′
2 − 1

that is, the second anchor is also covering Q[x1]. If i1 ≥ i2, then i2 ≤ i1 ≤ j1 <
j2 ≤ i2 + κ′

2− 1, thus the second anchor is also supporting the first match Q[i1]
and thus we can safely remove the first anchor without changing the coverage
of the chain. Otherwise i1 < i2, and suppose that the second anchor does not
cover T [i1] (if it does we can remove the first anchor as before), that is j1 < i2
(the case j1 > i2 + κ′

2 − 1 does not exist since j1 < j2 ≤ i2 + κ′
2 − 1). In this

case we can replace the match Q[y1] = T [j1] by the match Q[x2] = T [j2], which
is covered by the second anchor and thus we can safely remove the first anchor
(as we have discovered another anchored-restricted LCS). Indeed, the character
match Q[x2] = T [i2] exists since the second anchor is an exact match and it can
replace the match Q[y1] = T [j1] since it does not interfere with Q[y2] = T [j2]
(x2 ≤ x1 ≤ y1 < y2, and j2 > i2 since j2 − i2 = y2 − x2 > 0).

Corollary 3. The chaining algorithm by Mäkinen and Sahlin [15] computes
the length of an LCS between strings Q and T if it is given all (string) MEMs
between Q and T as input anchors.

16

Proof. It suffices to note that every character match of an LCS of length c is
supported by some MEM within the same offset (as one can start the match
there and extend it to the left and right character by character), and thus, by
Theorem 3, the chaining algorithm by Mäkinen and Sahlin [15] finds a chain of
coverage at least c.

17

	Introduction
	Preliminaries
	Finding MEMs in labeled DAGs
	Symmetric co-linear chaining in labeled DAGs
	DAG chaining with node MEMs
	Revisiting symmetric string-to-string chaining with MEMs
	Integration of symmetry to DAG chaining

	Discussion
	Chaining for longer MEMs
	Co-linear chaining on strings using MEMs gives LCS

