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Abstract. Active fluctuations are known to play a significant role in the intracellular

transport of passive objects. However, the effect of viscoelasticity of the environment in

shaping such processes is relatively less understood. Here, with a minimal experiment

using a driven colloid in a viscoelastic bath, we show that viscoelasticity significantly

increases the mean injected power to the passive object (∼ 50% compared to a viscous

medium), for the same strength of the external driving. Additionally, we observe

a notable reduction in negative work fluctuations across a wide range of driving

amplitudes. These findings collectively suggest an enhanced directionality in driven

processes within a viscoelastic bath, which we attribute to the emergence of interactions

between the colloid and the viscoelastic medium.

1. Introduction

Microscopic biophysical processes are vital for the functioning of living organisms.

Many of these processes, such as intracellular transport of passive objects [1, 2], are

non-equilibrium in nature, mostly driven by ATP-consuming molecular motors such as

kinesins [3, 4]. Developing accessible models for these processes is of utmost importance

as it provides novel perspectives into the functioning of the fundamental components of

life within complex environments.

In a zeroth order approximation, such processes can be modelled assuming a

separation of time-scales between the environmental and system degrees of freedom,

leading to, effectively, a Markovian description for the dynamics of the system. The

thermodynamics of such processes has been extensively studied in recent decades,

particularly in the context of stochastic thermodynamics [5, 6]. This field has focused

on various aspects, including fluctuation relations [7, 8, 9], as well as advancements in

stochastic inference techniques [10, 11, 12, 13, 14, 15, 16, 17, 18]. These theories have

now been well tested in experiments, and have provided us with accurate estimates of
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thermodynamic quantities, such as equilibrium free energy differences and dissipation

for specific biophysical systems [19, 20] and efficiencies of molecular motors [21, 22].

A vast majority of these experiments are carried out in in-vitro conditions where

the experimental medium is usually a homogeneous viscous solution and the Markovian

assumption is valid. This is also the case for most artificially synthesized molecular

motors, Brownian Carnot engines and other nanoscale devices [22, 23]. Contrary

to this, in reality, microscopic biophysical processes differ from simplified models by

two key features. Firstly, living cells possess inherent activity and dynamic behavior,

contributing to complex fluctuations that primarily govern the underlying processes,

except in some situations where passive diffusion also may play big roles. For example,

diffusive processes with directed motility of various intracellular elements are crucial

in positioning and distributing organelles inside a cell [24, 25]. However, overall, the

hidden nature of many such sub-cellular processes leads to non-Markovian dynamics

for the observable microscopic processes. Secondly, the intracellular medium is highly

viscoelastic. This viscoelasticity arises from the intricate composition and structure

of the cellular environment, characterized by a combination of viscous and elastic

properties [26, 27]. This also leads to memory effects due to the large relaxation times,

which again breaks the effective Markovian description for the dynamics of the system

[28, 29, 30, 31, 32, 33].

Quite naturally, both of these issues have individually generated significant recent

interest. Studies on various systems, such as bacterial suspensions or self-propelled

particles, have revealed that active fluctuations can induce non-trivial transport

phenomena inside cells [34, 35], enhance mixing [36] and diffusion [37, 38], and even

drive the emergence of collective behaviour [39]. Studies have also shown that active

fluctuations can drive the self-assembly of colloidal systems [40], lead to fluctuation

induced phase transitions [41], and enhance the efficiency of microscopic heat engines

[42]. Yet another interesting observation was made in Ref. [43], which showed that

the molecular motor kinesin accelerates in the presence of an active noise in the

environment, implying active fluctuations in cells are utilized to promote various

physiological processes. This finding was further explored in detail recently in Ref. [44].

Similarly, recent experiments have shown several intriguing phenomena related to

the dynamics of an embedded particle as well as swimmers in viscoelastic fluids [45, 46].

These observations include the increase in Kramer’s rate of transitions [47, 48, 49],

circular motion of active particles instead of only persistent random walks [50, 51],

increase in the rotational diffusion coefficient of an active Brownian particle by orders

of magnitude compared to that in a viscous fluid [51], and very interestingly, the

possibility of attaining the Carnot efficiency in microscopic sterling engine [52]. Several

recent studies also show that viscoelasticity is essential for facilitating various biological

processes [53, 35, 54].

Compared to the vast literature on the individual fields, the study of the combined

effects of active processes in viscoelastic baths is relatively underexplored. Some notable

findings in this emerging area include the swelling of a polymer in an active and
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viscoelastic bath, where the extent of swelling depends on the viscoelastic properties

of the environment [55], the study of active diffusion of model chromosomal loci driven

by athermal noise, revealing the influence of the polymeric effect on the anomalous

diffusion exponent [56], the reduction of quasi-static efficiency in Brownian engines due

to the viscoelasticity of the active suspension [57], and the implications of complex

multi-scale effects leading to time-dependent temperature [58].

Despite these recent progresses, two interconnected open questions remain: Does

the viscoelasticity of the environment affect the performance of micro-engines driven by

active processes, and does it influence the arrow of time and fluctuations associated with

such processes? In this work, we address these issues through a minimal experiment in

a viscoelastic environment. We consider a colloidal particle in a harmonic trap, whose

mean position is modulated according to an Ornstein-Uhlenbeck (OU) process. The

usage of this type of driving is very common in the context of active matter systems,

where the OU process is typically used to mimic the interaction of the passive colloid

with the surrounding active particles (such as molecular motors) [59, 60, 57, 61]. The

stochastic thermodynamics of this system in a viscous medium has been extensively

studied both experimentally [62, 14, 63] and theoretically [64, 65, 66, 67, 68, 60].

In this paper, we study this model in a homogeneous viscoelastic medium, for

which there are no known results to the best of our knowledge. We first analyze the

particle dynamics experimentally and theoretically using a generalised Langevin model.

The model is solved analytically and the solutions match well with our experimental

results. We then proceed to characterizing the non-equilibrium thermodynamics of

the system. We calculate the average power supplied to the particle by stochastic

driving, which in this case is the same as the thermodynamic arrow of time or total

entropy production of the process, up to a scaling factor of the temperature of the

environment. Interestingly, coupling the system with a viscoelastic medium, as opposed

to a viscous medium with the same zero-shear viscosity, leads to approximately 50%

enhancement in the mean value of this quantity. This suggests that, rather counter

intuitively, viscoelasticity amplifies the process’s directionality under identical external

driving forces. Furthermore, based on a recent theory for interacting particle systems,

we propose that this increase in entropy production in a viscoelastic bath is a generic

property, independent of the system’s specifics. Next, we look into the fluctuations

of the injected power both experimentally and theoretically. In particular, we obtain

previously unknown, exact analytical solutions for the work distribution at short-

times, which are non-Gaussian, yet completely determined in terms of the mean and

variance of the single-step work fluctuations. The solution obeys a modified fluctuation

relation P (W )/P (−W ) = exp(−2βws W ), where 2βws ≪ 1. We also obtain an

approximate solution for arbitrary time work distribution, which agree excellently with

the experimental data. Interestingly, we observe a significant reduction in negative work

fluctuations, both at short and arbitrary times, in the viscoelastic environment compared

to their viscous counterparts. This finding is consistent with the improved arrow of

time we observed, highlighting the influence of viscoelasticity on the directionality of
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the process.

2. Results

Our experimental system primarily consists of an optically trapped, spherical

polystyrene particle of diameter 2a0 = 3 µm (Sigma Aldrich) dispersed in a 0.05% (w/v)

aqueous solution of poly-ethylene oxide (PEO) [Fig. 1(a)]. PEO is a polymer that

creates a stable configuration in water, which provides elasticity along with its inherent

viscosity and renders the solution viscoelastic. The stiffness of the trap is measured to

be 12± 0.5 pN/µm. To mimic the active noise in the background of different strengths,

we spatially modulate the trapping laser using an acousto-optic modulator (AOM)

connected to a signal generator that generates the Orstein-Uhlenbeck (OU) noise of

various amplitudes. The trajectory we measure consists of the position of the laser spot

x0(t), as well as the one-dimensional position of the particle x(t) at a spatio-temporal

resolution of 1nm − 10kHz. The readings are obtained using a balanced detector for

∼ 100s (see Appendix E for details).

It is known that x(t) is well described using a generalized stochastic differential

equation [69]:

mẍ(t) = −k[x(t)− x0(t)]−
∫ t

−∞
Γ(t− t′)ẋ(t′)dt′ + η′(t). (1)

Here the function Γ(t) is referred to as the memory kernel. Further, the noise term η′(t)

satisfied ⟨η′(t)⟩ = 0, and has correlations ⟨η′(t)η′(t′)⟩ = kBTΓ(t − t′); where kB is the

Boltzmann constant and T is the temperature of the bath [69]. We further modulate

x0(t) according to the Ornstein-Uhlenbeck process:

ẋ0(t) = −x0(t)

τe
+

√
2A

τe
ϕext(t). (2)

Here ϕext(t) is a zero-mean delta-correlated Gaussian noise with standard deviation

equal to 1, i.e., ⟨ϕext(t)⟩ = 0, ⟨ϕext(t)ϕext(t
′)⟩ = δ(t− t′). A is the strength of that noise

(which we experimentally vary using the AOM), and τe is the correlation time of that

process. The correlation of x0 is given by ⟨x0(t)x0(t
′)⟩ = A

τe
exp

(
− |t−t′|

τe

)
.

For the memory kernel Γ, we consider the Jeffrey’s fluid model of viscoelasticity

[30, 50, 51, 47, 52]. According to this model [69, 70, 71, 72]:

Γ(t− t′) = 2γ0δ(t− t′) +
γ

τ
exp

(
−|t− t′|

τ

)
. (3)

Here τ is the relaxation time of the fluid, γ0 and γ are the solvent and the polymer

contributions of the frictional coeffecient, respectively [70]. Notably, the memory kernel

will be viscous-like (delta-correlated) in the τ → 0 limit as discussed in Refs. [47, 52].

Hereafter, we refer to this limit as the viscous limit.



Enhanced directionality of active processes in a viscoelastic bath 5

𝑥0(𝑡) 𝑥(𝑡)

〈𝑥0 𝑡 𝑥0 𝑡′ 〉 =
A

𝜏𝑒
𝑒

−
𝑡−𝑡′

𝜏𝑒

(a) (b)

Figure 1. (a) Schematic of a spherical particle trapped in a viscoelastic bath by optical

potential whose mean position (x0) is externally modulated by Ornstein-Uhlenbeck

noise. (b) Typical trajectories of the particle in (x, x0) plane for different strengths

of the external noise (Gray dots) with corresponding non-zero probability flux (Red

arrows).

There are two distinct advantages of using this model for the viscoelastic bath.

Firstly, we can identify the parameters that appear in this model using independent

measurements. One such mapping is due to a technique developed in Ref. [32]. In this

approach, one measures the phase response of a particle embedded in the fluid to an

external perturbation and computes the relevant parameters by fitting it to theoretical

predictions obtained using the Jeffrey’s fluid model. By this method, the phase response

of the particle over a wide frequency range can be obtained from a single trajectory using

a 3 Hz square wave as the perturbation (For the details, see Appendix D). We perform

this analysis in our setup and the results are shown in Fig. D1 of Appendix D. We

obtain the estimates τ = 0.018±0.002s and the ratio between the polymer contribution

to the viscosity and solvent contribution to the viscosity, µr(≡ γ/γ0) = 1.805 ± 0.10.

Secondly, as we show in Appendix AI, using the values of parameters inferred in the

previous step, and by introducing an additional auxiliary variable X(t), we can write

down a Markovian evolution equation in a three dimensional space, whose projection to
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one dimension results in the Langevin equation in Eq. (1). The same approach has also

been used previously in other works to convert a non-Markovian process into Markovian

so that the dynamics may be determined conveniently [69, 72]. Moreover, it is to be

noted that this method can also be extended easily to other more general viscoelastic

Maxwellian fluids with more than one relaxation time [73].

Introducing the auxiliary variable X(t), the total dynamical system can then be

described using a three-dimensional, linear, stochastic differential equation,

Ẏ (t) = −λY (t) +DΦ(t). (4)

Where Y (t) = [x(t), X(t), x0(t)]
T , and,

λ =

 k
γ0

+ γ
γ0τ

− γ
γ0τ

− k
γ0

− 1
τ

1
τ

0

0 0 1
τe

 , D =


√
2D0 0 0

0
√
2D1 0

0 0
√
2Dext

 . (5)

Here Φ(t) = [ϕ0(t), ϕ1(t), ϕext]
T is a 3× 1 dimensional Gaussian-distributed white

noise with ⟨ϕi(t)⟩ = 0 and ⟨ϕi(t)ϕj(s)⟩ = δijδ(t − s). The corresponding diffusion

constants are given by D0 =
kBT
γ0

, D1 =
kBT
γ

and Dext =
A
τ2e
. For the convenience of our

discussion, we further define a dimensionless parameter θ = Dext

D0
= A/τ2e

kBT/γ0
. As we keep

all other parameters except A fixed in our experiment, the variation of θ directly maps

to the variation of A (i.e., the strength of the OU noise).

Eq. (4) is an example of a linear multivariate OU process, and the corresponding

Fokker-Planck equation can be solved using standard techniques [74, 69] to compute

the steady state distribution Pss(Y ) (see the Appendix AI). Due to the presence of

the Ornstein-Uhlenbeck driving, this steady state will be not be in equilibrium, being

characterized by a nonzero probability flux Jss(Y ), as shown in Fig.1(b).

Using this analytical solution, we can further obtain the variance of the particle

position as,

Var(x(t)) =
kBT

k
+

Ak

(γ + γ0 + kτ)
− Ak2(τ 2e − τ 2)

(γ + γ0 + kτ)(γτe + γ0τ + γ0τe + kτ 2e + kττe)
. (6)

Note that we can obtain the variance of P (x) for an active viscous bath (Eq.(A.12) of

Appendix AI) by considering the limit τ → 0 in Eq. (6) which is exactly similar to the

related expression given in Ref.[59].

Our experimental measurements agree very well with the model. In Fig. 2(a), we

show the experimentally measured mean-square displacement functions (MSD) along

with the corresponding theoretical lines for two different amplitudes of the OU noise.

We also show the theoretical MSD line in grey colour for zero external applied noise.

Each of these MSD flattens at large times due to the spatial confinement of the particle

by optical tweezers, and the corresponding value depends linearly on the effective

temperature (defined from the variance of the probability distribution function as

Teff = kVar (x(t)) /kB).
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(a) (b)

(c) (d)

(e)

Figure 2. (a) Mean squared displacement (MSD) of the probe particle in the

viscoelastic fluid. (b) Comparison of the MSD of the particle between viscous and

viscoelastic fluid for θ = 0.56. The solid lines denote the theoretical predictions

of all the cases. (c) Probability distribution of position fluctuations of the trapped

particle in the viscoelastic fluid plotted for different strengths of the external noise.

(d) The probability distribution of position fluctuations of the trapped particle in

the viscoelastic and in viscous fluid plotted for a fixed strength of the external noise.

θ = 0.56. (e) Theoretical estimation of the variance of the displacement of the trapped

particle at different noise strengths plotted against the relaxation timescale of the fluid

(τ). The dash-dotted line denotes the timescale of the fluid used in the experiment.

(Inset) The nonmonotonic behaviour of the variance with τ .
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In the θ → 0 limit, it reaches the equilibrium value 2kBT/k. In Fig. 2(b) we show

experimental measures of MSDs in the viscoelastic and viscous fluids for a fixed value of

θ along with corresponding theory curves. For experiments in the viscous fluid, we have

chosen a solution of ultra-pure glycerol in water with volume fraction ∼ 0.254 to reach

the viscosity ∼ 2452 µP.s at the room temperature 20◦C, which is very close to the zero-

shear viscosity (when τ → 0) of the viscoelastic fluid, i.e., 2496 µP.s = (γ0 + γ)/6πa0
[75, 76]. Note that due to the change in the refractive index when glycerol is mixed in

water, the trap stiffness gets changed. To bring the stiffness back to our fixed value, we

changed the trapping laser power appropriately.

It is clear in Fig. 2(b) that the effective temperature in a viscoelastic fluid is slightly

higher as compared to that in a viscous fluid. Further, due to the change in the fluid

time scale, a prominent difference in the short-time region is also visible. Fig. 2(c)

represents the measured steady-state probability distributions of x(t) for the same two

noise amplitudes as in Fig. 2(a) in the viscoelastic fluid. Certainly, due to higher

effective temperature for θ = 0.56, the broadening of the corresponding distribution

is higher compared to that of θ = 0.12. Interestingly, the higher effective temperature

is also visible in Fig. 2(d) which shows the experimental and theoretical steady-state

probability distribution of x(t) in viscous and viscoelastic fluids, for a fixed value of θ.

In Fig. 2(e), we plot Var(x(t)) as a function of τ . We find that for large values of τ ,

Var(x(t)) saturates to a constant value, which is higher than the corresponding value in

the viscous (τ → 0) limit. Interestingly, however, Var(x(t)) is non-monotonic in τ and

features a minimum at an intermediate τ value, that depends on the two other inherent

time-scales of the system only and not on θ (see Eq.(A.11) of the Appendix AI for the

expression of τ corresponding to the minima). We show this in the inset of Fig. 2(e).

Note that this is purely an effect of viscoelasticity of the medium since the effect of the

OU driving alone does not result in this non-monotonic behaviour (see Ref. [59]).

Now we move on to study the non-equilibrium thermodynamics of this system. To

this end, we look at the statistics of the injected mechanical work done by the external

forcing on the colloidal particle, defined as [77, 6, 65, 66, 63]:

Wτm =
k

kBT

∫ t+τm

t

ẋ(t′)x0(t
′)dt′. (7)

Using this expression, the average power delivered to the particle can be

straightforwardly computed from the experimental data both in viscous and viscoelastic

fluids. The results are shown in Fig. 3(a), as a function of noise-strength θ. We find that

⟨Wτm⟩ is positive as expected from the Second Law, and increases linearly as a function

of θ. The estimates also agree well with the analytically computed estimate (solid lines

in Fig. 3(a), see Appendix AII for details) from the model, given by,

⟨Wτm⟩ =
kτm
kBT

Ak(τ + τe)

τe(γ0τ + γτe + γ0τe + kτ 2e + kττe)
. (8)

Interestingly, the obtained average power in a viscoelastic bath is significantly higher

compared to the same for a ‘memory-less’ Newtonian bath with our chosen parameters.
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(a) (b)

Figure 3. (a) Rate of mean work done by the external modulation on the trapped

Brownian particle in viscoelastic bath and viscous bath ( τ → 0) plotted against the

strength of the external noise. The solid lines denote the theoretical predictions. (b)

Variation of work with the relaxation timescale of the medium plotted for different

strengths of the external noise along with experimental points. The dash-dotted line

denotes the timescale of the fluid used in the experiment.

This implies that for the same amplitude of external driving, a higher power is delivered

to a particle in a viscoelastic bath compared to its viscous counterpart (See the Eq.(A.17)

and Eq.(A.18) of Appendix AII for corresponding expressions in terms of θ both for

viscous and viscoelastic fluids for a comparison).

Even though our finding is for a particular example of a non-equilibrium system, it

is possible to argue that this is a generically expected property for any non-equilibrium

system in a viscoelastic environment. The argument is based on the observation that

the average injected power for this system is the same as the average total entropy

production, irrespective of the rheological properties of the bath (See Appendix C). This

is because the injected power is the only time extensive source of dissipation in the

system. Furthermore, for systems in contact with a heat reservoir, this quantity can be

considered as representative of the global arrow of time, defined as,

Arrow of time =
1

T

∑
Y (·)

P [Y (·)] log P [Y (·)]
P [Ỹ (·)]

, (9)

where Y (·) = {Y (t)}Tt=0 is the trajectory of the system measured for a time duration

T , and Ỹ (t) is its time reversed counterpart defined as Ỹ (t) = Y (T − t). It was

recently shown that the presence of interactions increases the evidence of the global

arrow of time [78]. In a viscoelastic bath, we know already that the polymers in

the viscoelastic solution contribute to additional interactions and that can significantly

affect the statistics of the position of the particle. Thus we argue that the increase in

entropy production is due to the interaction of the colloidal particle with polymers in

the solution. We note that a similar argument can be put forward on the basis of the

theoretical model, where the random variable X(t) is the additional interacting degree

of freedom which is absent in a viscous bath.

A natural question that then arises is whether the arrow of time of the process can
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be continuously increased by working with a medium of increased viscoelastic response.

Although this is experimentally challenging to address, we can seek an answer using

the expressions derived using the theoretical model. In Fig. 3(b), we show that in

the limit of increasing relaxation time τ of the viscoelastic bath, ⟨Wτm⟩ increases and

saturates to a constant value that depends only on the properties of the trap parameters.

However, in contrast to the non-monotonic behavior observed for Var(x(t)), we find that

⟨Wτm⟩ exhibits a monotonically increasing function of τ . This observation reinforces the

suggestion that hidden interactions play a significant role in the amplification of the

thermodynamic arrow of time.

Finally, we look at the fluctuations of the injected power by computing the

probability distribution P (Wτm). In certain cases, it is known that this probability

distribution obeys a fluctuation theorem of the form:

ln
P (Wτm = w)

P (Wτm = −w)
→ w

kBT
, τm >> τl, (10)

where τl denotes the largest time scale of the system and kB is the Boltzmann

constant. The work fluctuation theorem has already been tested and validated in

diverse experiments and numerical simulations. Similar setups to ours include an

optically trapped particle dragged with a constant velocity [79], Brownian oscillator

with deterministic periodic driving in the non-markovian bath[80], a colloidal particle

trapped in a bi-stable potential subjected to periodic modulation [81], Brownian particle

trapped in an optical trap with discontinuously varying trap stiffness [82, 83] and also

in other cases such as electronic circuits [84], mechanical oscillators [85], etc. However,

violations are also found in many systems, e.g., a colloidal particle under the action of

a Gaussian distributed white and coloured noise [86, 87, 62, 68], wave turbulence [88],

an RC circuit driven with a stochastic voltage [89], a rotating active Brownian particle

in a viscoelastic medium [90], etc. These violations have been explored very well, and

it is known that the primary reason for the violation is the presence of time intensive

contributions to the total entropy production, which can significantly contribute to

fluctuations at short times and in continuous state space systems [91, 92].

An exact expression for the work probability distribution that appears in the

fluctuation relations is known only in a handful of cases. For example, in the case of a

colloidal particle in a harmonic trap with the mean position externally controlled, for

any arbitrary deterministic driving, the work distribution can be shown to be a Gaussian

[93, 94]. The case where the stiffness is time dependently controlled is one of the simplest

models showing non-Gaussian work fluctuations [95]. Another system for which an exact

calculation of the work distribution has been carried out is the colloidal particle in a

logarithmic-harmonic potential [96], which also has non-Gaussian work fluctuations. A

similar occurrence of non-Gaussian work fluctuations in a complex fluid in the context

of an optically trapped particle with deterministically varying trap stiffness has also

been discussed by Carberry et.al. in Ref.[83]. In [97], exact work statistics have also

been obtained for a colloidal particle in the uniformly dragged two dimensional confining
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𝑃
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𝑅
(𝑊
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𝑅
(𝑊

)

𝑊 × 𝑘𝐵𝑇

(e) (f) (g) (h)

(i)

(m) (n) (o) (p)

(j) (k) (l)

(a) (b) (c) (d)

Figure 4. (a)-(d) Probability density function of single-step work done (calculated

from experimental data) by the external modulation on the trapped particle in the

viscoelastic bath plotted for different strengths of the external noise. Corresponding

probability ratios are plotted in (e)-(h). (i)-(l) The numerically calculated probability

density functions of single-step work done are shown for different strengths of the

modulation. (m)-(n) Numerically estimated probability ratios for the corresponding

cases. Theoretical estimations in all the cases are represented by solid red lines.

potential, and in the presence of additional non-conservative forces such as torques. In

this case, however, the work distribution is found to be a Gaussian, although it deviates

from the conventional work fluctuation theorem. A general framework for computing

the large-time form of the work distribution, for linear Langevin processes, is described

in Refs. [80, 64, 65]. The method is based on the calculation of the corresponding

moment-generating function using a large deviation technique and gives closed form

expressions exact to sub leading order in 1/t. The methods developed in Refs. [66, 67]

provides exact analytical expressions for the moment generating function for any value

of t for the same class of systems. However, inverting them to obtain a closed form

expression for P (W, t) is challenging.

Here, using a novel technique, we are able to compute a closed form expression

of the probability distribution P (Wτm) in the single-step (short-time) limit. This limit
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Figure 5. Variation of βws with τ . (Inset) βws shows extremely slow variation with

θ for both viscous and viscoelastic baths.

has received a lot of attention recently, primarily in the context of saturation of the

thermodynamic uncertainty relation [11, 13, 12, 14, 15, 98, 99]. In particular, it is

known that in the strict limit of τm → 0 fluctuations of any time-integrated current in

an overdamped diffusive system is Gaussian. The single-step limit we consider here is the

closest to the short-time limit (that is experimentally accessible), where the distribution

is expected to be non-Gaussian. The technique we use is based on the fact that the single-

step work W appears as the product of two zero-mean Gaussian distributed quantities

ẋ(t) and x0(t) which are cross-correlated (see Eq. (7)). The probability distribution of

W , therefore, can be obtained directly from the joint probability distribution function

of ẋ(t) and x0(t) as a skewed zeroth-order modified Bessel function [100]

P (W ) = Aws exp (βwsW )K0(αws|W |), (11)

where

βws =
⟨W⟩

Var(W)− 2⟨W⟩2
,

αws =

[
β2
ws +

βws

⟨W⟩

] 1
2

,

Aws =

√
α2
ws − β2

ws

π
.

(12)

The subscript ‘ws’ stands for single-step work. See Appendix AIII for a detailed

derivation of the expression above.
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Clearly, the expression above is non-Gaussian. However, interestingly, it is entirely

determined in terms of the mean and variance of single-step work. Further note that,

except for an exponential factor of eβwsW, the distribution P (W ) does not depend on the

sign of W . Hence, it is straightforward to write down a modified fluctuation relation,

of the form:

R(W ) = ln
P (W )

P (−W )
= 2βwsW. (13)

In Fig. 4 (a) – (d) and (i) – (l), we show the excellent agreement between this analytically

computed expression with the experimental as well as numerical data. In Fig. 4 (e) –

(h), and (m) – (p) we again verify this fluctuation theorem using both experimental and

numerical data.

By definition, βws corresponds to the relative likelihood of having a positive work

fluctuation over the negative one of the same magnitude. It is hence interesting to check

how this factor is affected by the viscoelasticity of the medium. In Fig. 5, we plot βws as

a function of the viscoelastic fluid time-scale τ and find that it monotonically increases

with it. This trend is qualitatively similar to that observed for the average entropy

production rate (see Fig. 3b), and shows that for a fixed strength of non-equilibrium

driving, a positive work fluctuation is relatively more favoured in a viscoelastic bath

with a higher value of τ . We have further found that the effect of viscoelasticity on βws

is much more significant as compared to the effect of θ on the same. In the inset of Fig.

5, we analytically compare βws obtained for a range of θ values for the viscoelastic case

and viscous case. We find that βws for the viscoelastic case is always higher than βws

for the viscous case, but in both cases, it varies negligibly with θ.

Next, we consider finite time work distributions, which represent the distributions

of cumulative work Wτm obtained using Eq. (7). To approximate this distribution,

we assume an uncorrelated time series of short-time work and utilize the probability

distribution function from Eq. (11). However, in reality, the short-time work time series

is not perfectly uncorrelated, rendering the expression invalid. Nevertheless, we find

that by modifying our approximations based on the mean and variance of Wτm directly

calculated from the Langevin dynamics of the process, we can achieve good agreement

with experimentally and numerically measured distributions, particularly for typical

work fluctuations (see Eq.(A.40) of Appendix AIV). This is illustrated in Fig. 6(a) and

(b). We also observe that positive work fluctuations are significantly more favoured

in the viscoelastic case as compared to the corresponding viscous limit. In Fig. 6

(c) and (d), we further compute the ratio of probabilities [R(Wτm)] for positive and

negative work fluctuations. While the ratio is not linear for all work values, it shows

linear behaviour with a unit slope for small work values, deviating for larger ones. The

deviations are greater in a viscoelastic bath compared to a viscous environment, which

again substantiates stronger deviations from equilibrium.
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(a)

(c)

(b)

(d)

Figure 6. (a) Probability density function of work done (calculated from experimental

data) by the external modulation on the trapped particle in the viscoelastic bath

plotted for different strengths of the external noise. Theoretical estimations in all the

cases are represented by solid lines. (b) Probability of positive fluctuations of work

are enhanced for the viscoelastic bath as seen from the comparison of the same for

the viscous bath. Theoretical estimations (Eq.(A.40) of Appendix IV) in all the cases

are represented by solid lines. (c) R(Wτm) (estimated from the experimental data)

plotted as a function of Wτm for different strengths of the external modulation when

the particle is in the viscoelastic environment. (d) R(Wτm) for the viscoelastic bath

is found to be deviating from the usual work fluctuation theorem (black dashed line)

with smaller external noise than the same for the viscous bath.

3. Conclusions

In summary, we have shown that the viscoelasticity of the environment has a

significant impact on the thermodynamics and fluctuations of a driven colloidal particle.

Specifically, we have found a substantial increase (around 50%) in the mean injected

power to the system when compared to the same system in a viscous bath under the

same external driving strength, even though the steady-state variance of the position

fluctuations gets nominally (around 10%) enhanced. Additionally, we have observed

lower negative work fluctuations across a wide range of driving amplitudes. Since the

injected power corresponds to the thermodynamic arrow of time (entropy production) in
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this process, these findings suggest an enhanced directionality in a driven process when

it takes place in a viscoelastic bath rather than a viscous bath with the same zero-shear

viscosity.

In light of recent work [78], our findings suggest that the influence of viscoelasticity

on directionality and thermodynamics may extend beyond the specific experimental

setup studied in this work, potentially affecting a wide range of driven processes

in biological contexts. For example, it will be interesting to study whether the

viscoelasticity of the medium affects the directionality of molecular motors studied in

vitro. Our results also suggest that viscoelastic environments may provide a more

controlled and predictable environment for driven processes, potentially leading to

improved performance and reliability in practical applications, such as the assembly

of nanoscale materials [101]. We plan to address some of these issues in a future work.
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Appendix A. Analytical way to calculate PDF of stochastic work by

external force

I. Dynamics of the system

We model the one-dimensional dynamics of an externally forced spherical Brownian

particle of mass m confined in a harmonic potential of stiffness k in a homogeneous and

isotropic viscoelastic medium with the following stochastic differential equation [69]:

mẍ(t) = −k[x(t)− x0(t)]−
∫ t

−∞
Γ(t− t′)ẋ(t′)dt′ + η′(t) (A.1)
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where x0(t) is the random position of the potential minimum at time t originated from

the equation

ẋ0(t) = −x0(t)

τe
+

√
2A

τe
ϕext(t). (A.2)

ϕext(t) is a zero-mean delta-correlated Gaussian noise with unit standard deviation, and

A is the strength of that noise. Note that x0(t) is an Ornstein-Uhlenbeck (OU) process

with correlation time τe, with the correlation given by ⟨x0(t)x0(t
′)⟩ = A

τe
exp

(
− |t−t′|

τe

)
.

η′(t) is the Gaussian-distributed stochastic noise representing the thermal agitation of

the fluid molecules. To satisfy the fluctuation-dissipation theorem (FDT) in equilibrium,

the correlation of the noise is related to the memory kernel Γ(t) as ⟨η′(t)η′(t′)⟩ =

kBTΓ(t − t′), where kB is the Boltzmann constant and T is the temperature of the

bath. As a viscoelastic model, we consider Jeffrey’s fluid model where the memory

Kernel is of the kind:

Γ(t− t′) = 2γ0δ(t− t′) +
γ

τ
exp

(
−t− t′

τ

)
, (A.3)

where τ is the relaxation time of the fluid; γ0 and γ are the solvent and the polymer

contributions respectively. The thermal noise η′(t) can be represented as the sum of two

zero-mean independent Gaussian processes as η′(t) = η′0(t)+η′1(t), where the correlations

of these two processes are given by ⟨η′0(t)η′0(t′)⟩ = 2kBTγ0δ(t − t′) and ⟨η′1(t)η′1(t′)⟩ =
kBT

γ
τ
exp

(
− |t−t′|

τ

)
respectively with γ0 = 6πa0µs and γ = 6πa0µp. µp and µs are the

viscosities of the polymer and the solvent, respectively. At the overdamped limit (where

the inertial effect is negligible), after carrying out an integration by parts, Eq. (A.1) can

be written as

ẋ(t) = −
(

k

γ0
+

γ

γ0τ

)
x(t) +

γ

γ0τ 2

∫ t

−∞
exp

(
−t− t′

τ

)
x(t′)dt′ + η0(t) + η1(t) +

k

γ0
x0(t).

(A.4)

We define η0(t) = η′0(t)/γ0 and η1(t) = η′1(t)/γ0. Now, in order to model the system as

Markovian we introduce an auxiliary variable

X(t) =
1

τ

∫ t

−∞
exp

(
−t− t′

τ

)[
x(t′) + τ

√
2kBT

γ
ϕ1(t

′)

]
dt′ (A.5)

and combining Eqns. (A.2), (A.4) and (A.5) we can write in the matrix form, ẋ(t)

Ẋ(t)

ẋ0(t)

 = −

 k
γ0

+ γ
γ0τ

− γ
γ0τ

− k
γ0

− 1
τ

1
τ

0

0 0 1
τe


 x(t)

X(t)

x0(t)

+


√
2D0 0 0

0
√
2D1 0

0 0
√
2Dext


 ϕ0(t)

ϕ1(t)

ϕext(t)


(A.6)
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where ϕ0, ϕ1 and ϕext are Gaussian-distributed white noises with mean zero and unit

standard deviation. D0 =
kBT
γ0

, D1 =
kBT
γ

and Dext =
A
τ2e
. Considering

Y (t) =

 x(t)

X(t)

x0(t)

 , λ =

 k
γ0

+ γ
γ0τ

− γ
γ0τ

− k
γ0

− 1
τ

1
τ

0

0 0 1
τe

 ,

D =


√
2D0 0 0

0
√
2D1 0

0 0
√
2Dext

 , Φ(t) =

 ϕ0(t)

ϕ1(t)

ϕext(t)


we can rewrite the Eq. (A.6) as the following:

Ẏ (t) = −λY (t) +DΦ(t). (A.7)

Clearly, Eq. (A.7) is a multivariate Ornstein-Uhlenbeck process with correlation matrix

[69]

C = exp(−λt)σ. (A.8)

σ is the covariance matrix determined by the stationary condition of the process in

terms of Lyapunov equation λσ + (λσ)T = DDT [74]. The corresponding steady-

state probability distribution (Pss(Y)) and the corresponding current (Jss(Y)) can be

described as:

Pss(Y) = (2π
√
detσ)−1e−

1
2
YTσ−1Y

Jss(Y) = (−λY +Dfσ
−1Y)Pss(Y),

(A.9)

where Df = 1
2
DDT . The variance of x(t) is given by σ11 and after solving the stationary

condition, we get the following expression:

Var(x) = σ11 =
kBT

k
+

Ak

(γ + γ0 + kτ)
− Ak2(τ 2e − τ 2)

(γ + γ0 + kτ)(γτe + γ0τ + γ0τe + kτ 2e + kττe)
.

(A.10)

Interestingly, Var(x) shows non-monotonic dependence (Fig.2(e) of main text) on the

relaxation timescale of the fluid (τ) with the minima at τ = τmin such that,

τmin = τe
[(γ0 + γ)(2γ0 + γ + 2kτe)]

1/2 − (γ0 + γ)

γ0 + 2kτe
(A.11)

It is clear that τmin has a non-trivial dependence on the other timescales of the system

and is independent of the strength of external perturbation (A).

The expression for the variance of P (x) for a Newtonian fluid can be easily

calculated by considering the limit τ → 0 in σ11, which becomes

σN =
kBT

k
+

Ak

γ + γ0 + kτe
. (A.12)
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Note that this expression is similar to that obtained in an active viscous bath given

in Ref. [59]. The position auto-correlation function (ACFx) of the particle is C11(t),

i.e., ⟨x(t)x(t′)⟩ = C11(t − t′), that can be easily calculated from Eq. (A.8). The mean-

square displacement (MSD) of the particle for our system is related to the ACFx as

⟨(x(t)− x(0))2⟩ = 2[C11(0)− C11(t)] [70].

II. Work fluctuations

The stochastic mechanical work by the external force over a time τm is defined as the

following [77, 6, 65, 66, 63]:

Wτm =
k

kBT

∫ t+τm

t

ẋ(t′)x0(t
′)dt′, (A.13)

and the mean of work is given by,

⟨Wτm⟩ =
k

kBT

∫ t+τm

t

⟨ẋ(t′)x0(t
′)⟩dt′. (A.14)

Considering c =
[
x0(t) 0 0

]
and multiplying with Eq. (A.7) from the left we get

⟨ẋ(t)x0(t)⟩ = −
(
λ11⟨x(t)x0(t)⟩+ λ12⟨X(t)x0(t)⟩+ λ13⟨x0(t)

2⟩
)
+ 2D0⟨x0(t)ϕ0(t)⟩.

As, ⟨x0(t)ϕ0(t)⟩ = 0 and ⟨x(t)x0(t)⟩ = σ13, ⟨X(t)x0(t)⟩ = σ23, ⟨x0(t)
2⟩ = σ33; we finally

have,

⟨ẋ(t)x0(t)⟩ = − (λ11σ13 + λ12σ23 + λ13σ33)

=
Ak(τ + τe)

τe(γ0τ + γτe + γ0τe + kτ 2e + kττe)
(A.15)

Therefore,

⟨Wτm⟩ =
kτm
kBT

Ak(τ + τe)

τe(γ0τ + γτe + γ0τe + kτ 2e + kττe)
(A.16)

The mean rate of work done (⟨Wτm⟩/τm) can further be expressed in terms of θ(= A/τ2e
kBT/γ0

)

as,
⟨Wτm⟩
τm

=
k2τe
γ0

θ(1 + τ/τe)

[γ + γ0(1 + τ/τe) + kτe(1 + τ/τe)]
. (A.17)

The corresponding expression for the viscous environment can be obtained by taking

τ → 0 limit as[
⟨Wτm⟩
τm

]
τ→0

=
k2τe
γ0

θ

(γ + γ0 + kτe)
≡ Ak2

kBT

1

τe(γ + γ0 + kτe)
, (A.18)

where (γ + γ0) is the effective viscosity of the viscous fluid.
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Now the variance of the work is the following:

Var(Wτm) = ⟨(Wτm − ⟨Wτm⟩)2⟩ =
(

k

kBT

)2
[
τm∆tACFx0ẋ(0) + 2τm

∫ τm

∆t

ACFx0ẋ(t
′)dt′

− 2

∫ τm

∆t

t′ACFx0ẋ(t
′)dt′

]
,

(A.19)

where, ∆t is the time step between two observations and ACFx0ẋ(t) is the auto-

correlation function of the product of x0(t) and ẋ(t), i.e., ACFx0ẋ(t) = ⟨x0(t)ẋ(t) −
x0(0)ẋ(0)⟩. ACFx0ẋ(t) can be related to the auto and cross correlation functions of

x0(t) and x(t), i.e., ACFx, ACFx0 , XCFx,x0 and XCFx0,x, which is described in the sub-

section below.

Relating ACFx0ẋ to ACFx, ACFx0, XCFx,x0 and XCFx0,x:

To find the auto-correlation function of x0(t)ẋ(t), note that the steady-state probability

density function of Y (see Eq. (A.7)) is a multivariate Gaussian distribution. If χ is a

multivariate Gaussian distribution with components χi, χj, χk and χl then

⟨χiχjχkχl⟩ = Cov(χi, χj)Cov(χk, χl) + Cov(χi, χk)Cov(χj, χl) + Cov(χi, χl)Cov(χj, χk).

Therefore, we can write

⟨x0nxnx0(n+p)x(n+p)⟩ = Cov(x0n, xn)Cov(x0(n+p), x(n+p)) + Cov(x0n, x0(n+p))Cov(xn, x(n+p))

+ Cov(x0n, x(n+p))Cov(xn, x0(n+p)),

(A.20)

where x0n and xn are the n-th points of x0 and x time series respectively, and ”Cov”

represents covariance. Now, note that the auto-correlation function of x0(t)x(t) is

represented in the discrete form for lag-time p∆t as
[
⟨x0nxnx0(n+p)x(n+p)⟩ − ⟨x0nxn⟩2

]
. In

the continuous form, from Eq. (A.20), we have the autocorrelation function of x0(t)x(t),

ACFx0x(t) = ACFx0(t)ACFx(t) + XCFx0,x(t)XCFx,x0(t), (A.21)

where, ”XCF” represents cross-correlation function. Similarly, we can write in the

discrete form,

ACFx0ẋ(p∆t) = ⟨x0nẋnx0(n+p)ẋ(n+p)⟩ − ⟨x0nẋn⟩2 (A.22)

=

〈
x0n

(
xn − x(n−1)

∆t

)
x0(n+p)

(
x(n+p) − x(n−1+p)

∆t

)〉
−

〈
x0n

(
xn − x(n−1)

∆t

)〉2

when ∆t → 0. After rearranging carefully and using Eq. (A.21), we get the expression

of the auto-correlation function of x0(t)ẋ(t) as the following:

ACFx0ẋ(t) = ACFx0(t)ACFẋ(t)− XCFx0,ẋ(t)XCFẋ,x0(t). (A.23)
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Where,

ACFẋ(t) = − d2

dt2
{ACFx(t)}, (A.24)

XCFx0,ẋ(t) =
d{XCFx0,x(t)}

dt
, (A.25)

and

XCFẋ,x0(t) =
d{XCFx,x0(t)}

dt
. (A.26)

Further, from Eq. (A.8), we have, ACFx(t) = C11(t), XCFx0,ẋ(t) = C31(t) and

XCFẋ,x0(t) = C13(t). Therefore the corresponding expressions can be derived from

the correlation matrix C.

III. Short-time work probability density function

We can write Eq. (A.13) in the discrete form as

Wτm =
k

kBT

n(=τm/∆t)∑
i=1

x0iẋi∆t =

n(=τm/∆t)∑
i=1

Wi. (A.27)

where Wi is the i-th point of the short-time work W , which is defined as

Wi =
k

kBT
x0iẋi∆t. (A.28)

Now, note that x0 and ẋ∆t are two Gaussian distributed cross-correlated quantities

which are given by N (0, σ2
33) and N (0,∆t2ACFẋ(0)) respectively with the normalized

cross-correlation ρ =
XCFx0,ẋ

(0)

σ33

√
ACFẋ(0)

. Therefore, the probability density function of

z = x0ẋ∆t, can be calculated from the joint probability density function f of these

two quantities from the relation [100]

P(z) =

∫ ∞

−∞

1

|y|
f(y, z/y)dy. (A.29)

Here,

f(x0, ẋ∆t) =
1

2πσ33

√
∆t2ACFẋ(0)

√
1− ρ2

× (A.30)

exp

[
− 1

2(1− ρ2)

(
x2
0

σ2
33

− 2ρx0ẋ∆t

σ33

√
∆t2ACFẋ(0)

+
(ẋ∆t)2

∆t2ACFẋ(0)

)]
.

Using Eq. (A.30) for Eq. (A.29), we get,

P (z) =

exp

(
ρz

σ33

√
∆t2ACFẋ(0)(1−ρ2)

)
2πσ33

√
∆t2ACFẋ(0)

√
1− ρ2

∫ ∞

−∞

1

|y|
exp

[
− 1

2(1− ρ2)

(
y2

σ2
33

+
z2

∆t2ACFẋ(0)y2

)]
dy.

(A.31)
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The integral can be solved using the formula given in [102], and we calculate,

P (z) = A exp(βz)K0(α|z|), (A.32)

where, A = 1

πσ33

√
∆t2ACFẋ(0)

√
1−ρ2

, β = ρ

σ33

√
∆t2ACFẋ(0)(1−ρ2)

, α = 1

σ33

√
∆t2ACFẋ(0)(1−ρ2)

and K0 is the zeroth order modified Bessel function. The moment-generating function

corresponding to P (z) is

M1(s) = A
∫ ∞

−∞
eszeβzK0(α|z|)dz (A.33)

= Aπ
1√

α2 − (s+ β)2

From the normalization condition, M1(0) = 1, we find a relation between A and α,

β. Now to take into account the factor k
kBT

in the Eq. (A.28), defining αws = α
k/kBT

,

βws =
β

k/kBT
and Aws =

√
α2
ws−β2

ws

π
, we finally obtain the exact expression of the short-

time work probability density function

P (W ) = Aws exp(βwsW )K0(αws|W |). (A.34)

The related moment generating function will be exactly the same as given in the

Eq. (A.33) after replacing A and α, β by Aws and αws, βws.

IV. Cumulative work probability density function

Assuming the time-series of W uncorrelated, we can say Wτm is just the summation

over the independent points from that time-series of W as defined in the Eq. (A.27).

Therefore, the corresponding moment generating function will be the following:

Mn(s) =

(
Awsπ√

α2
ws − (s+ βws)2

)n

. (A.35)

Interestingly, the characteristic function of this moment-generating function can be

written as

CF(s) =

(
Awsπ√
α2
ws − β2

ws

)n(
1− is

αws − βws

)−n
2
(
1 +

is

αws + βws

)−n
2

. (A.36)

The inverse fourier transform of CF(s) is the probability density function of the sum

of n number of W points. Now, note that
(
1− is

αws−βws

)−n
2
(
1 + is

αws+βws

)−n
2
is related

to the CF of the probability density function of y = y1 − y2 where y1 and y2 are two

independent numbers drawn from two Gamma distributions Γ(n
2
, α−β) and Γ(n

2
, α+β)

respectively [103, 102]. Therefore, the desired probability density function (for the

uncorrelated W) is the convolution of two Gamma distributions and is given by

P(Wτm) =
An

wsπ
n

√
πΓ(n

2
)

1

(2αws)
n−1
2

eβwsZ |Wτm|
n−1
2 Kn−1

2
(αws|Wτm|), (A.37)
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where Kn−1
2

is the modified Bessel function of order (n− 1)/2. Further, it can be shown

that αws and βws are also related to the mean and variance of Wτm from the moment

generating function Eq. (A.35) such that

⟨Wτm⟩ =
d

ds
[Mn(s)]s=0 =

nβws

α2
ws − β2

ws

,

Var(Wτm) =
d2

ds2
[Mn(s)]s=0 =

n(α2
ws + β2

ws)

α2
ws − β2

ws

.

(A.38)

Using these two relations, βws and αws can be calculated as,

βws =
n⟨Wτm⟩

nVar(Wτm)− 2⟨Wτm⟩2
,

αws =

[
β2
ws +

nβws

⟨Wτm⟩

] 1
2

.

(A.39)

Note that Eq. (A.37) would converge to the short-time work probability distribution

function for n → 1.

Unfortunately, the time-series of W is not uncorrelated, and hence, Eq. (A.37)

does not describe the experimentally and numerically measured data. However, we

have found an approximate expression of the cumulative work probability distribution

function. Assuming that the correlation will not change the form of P (Wτm) given in

the Eq. (A.37), we can use the mean and variance of Wτm calculated directly from the

Langevin equation, i.e., Eqns (A.16) and (A.19) respectively, to calculate the α and β

parameters. Notably, Eqns (A.16) and (A.19) do not neglect the correlation in W . We

call these new parameters αw and βw, and finally reach the approximate expression of

the cumulative work probability distribution function which is the following:

P(Wτm) =
An

wπ
n

√
πΓ(n

2
)

1

(2αw)
n−1
2

eβwZ |Wτm|
n−1
2 Kn−1

2
(αw|Wτm|). (A.40)

where, Aw =

√
α2
w−β2

w

π
. We have found that this approximate expression of P (Wτm)

matches the experimental and numerical data excellently which is described in the main

text.

Appendix B. Work fluctuation theorem

Here we show the ratio of probabilities corresponding to the positive and negative

fluctuations of the stochastic work done on a microscopic particle in the viscoelastic

(Fig. B1(a)) and viscous bath (Fig. B1(b)),– estimated from the numerical data. As

discussed in the main text, R(Wτm) for the viscous bath follows the unit slope line for

higher strength of the external noise than the same in the viscoelastic bath. The slope,

however, as expected, converges to one as θ tends to zero (Fig. B1(c)).
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(a) (b) (c)

Figure B1. Ratio of probabilities corresponding to the positive and negative work

fluctuations is plotted for different strengths of external noise in the viscoelastic (a)

and viscous (b) bath, respectively.(c) Plot of 2βw as a function of θ.

Appendix C. Entropy production rate

The entropy production rate of this system can be calculated using the Fokker-plank

based method as described in Ref. [104, 14, 16, 63]. Starting from an arbitrary initial

condition for x,X and x0, the system will reach to a nonequilibrium steady state in the

long time with a characteristics probability distribution (Pss(Y)) and current (Jss(Y))

that can be described in terms of the steady state covariance matrix σ as shown in

Eq.(A.9).

Now the total entropy production rate (in units of kBs
−1) of the system can be

obtained as,

Π =

∫
dY

D−1
f J2

ss(Y)

Pss(Y)
=

Ak2(τ + τe)

Tτe(γ0τ + γτe + γ0τe + kτ 2e + kττe)
. (C.1)

Note that this expression is exactly similar to the mean rate of work done

(⟨Wτm⟩/τm) as shown in Eq.(A.16).

Appendix D. Method to obtain the rheological properties of the fluid

We deploy a phase-sensitive active microrheological technique to measure the fluid

characteristics of the viscoelastic medium [71]. In this technique, an optically trapped

microscopic particle embedded in the fluid is perturbed by an external square modulation

containing sinusoids of several frequencies, and the position fluctuations of the particle

are recorded. From the recorded trajectory, the relative phase of the particle’s response

to the modulation is measured as a function of the modulation frequency. The relaxation

timescale and the relative viscosity of the fluid can be directly estimated by fitting

the phase response curve with the theoretical expression calculated from the Langevin

description of the trapped particle in the viscoelastic fluid, following Jeffrey’s model.

The overdamped dynamics of the particle trapped in an optical potential with stiffness

k can be written in the frequency domain (taking Fourier transform of the overdamped

version of Eq. (1)) as:

iωΓ(ω)x(ω) + kx(ω) = kx0(ω) (D.1)
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where,

Γ(ω) =

∫ ∞

0

Γ(t) exp(iωt) dt =

[
γ0 +

γ

−iωτ + 1

]
(D.2)

= 6πa0µs

[
1 +

µr

−iωτ + 1

]
. (D.3)

The relative viscosity µr is the ratio of corresponding viscosities of the polymer (µp)

and the solvent(µs). a0 denotes the radius of the trapped particle. Now Eq.D.3 can be

substituted in Eq.D.1 to get the phase response of the particle as:

δ(ω) = tan−1

[
1+µr

τ2
ω + ω3

k
τ2γ0

+ ( k
γ0

− µr

τ
)ω2

]
. (D.4)

As described in Ref.[71], the trapped microparticle embedded in the viscoelastic fluid is

perturbed with a square wave modulation of frequency 3 Hz. The phase response of the

particle to the odd harmonics of the square wave modulation is obtained experimentally

and fitted with Eq.D.4 to estimate the relaxation timescale (τ), and relative viscosity

(µr) of the fluid as shown in Fig.1(b) of the main text.

Figure D1. Phase response of the trapped particle for different frequencies and the

corresponding fit for the phase-sensitive active micro-rheology [71].

Appendix E. Experimental setup

Our Optical tweezers setup (Fig. E1) is developed around a standard inverted microscope

(Olympus IX71) with a high numerical aperture objective lens (100X, NA = 1.3). A
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Figure E1. Schematic of our setup. The annotations are as follows: M: Mirror,

DM: Dichroic mirror, EM: Edge mirror, L: Plano-convex lens of different focal lengths,

HWP: Half-wave plate, PD: Photodiode, AOM: Acousto optic modulator, DAQ: Data

acquisition card (National Instruments).

semiconductor laser (Lasever, Max power 500 mW) of wavelength 1064 nm is tightly

focused through the objective lens on the sample to trap a micro-particle dispersed in

it. The trapping beam is passed through an acousto-optic modulator (AOM) placed

at a plane conjugate to the objective lens. We modulate the beam by using the first-

order diffracted beam off the AOM with a computer-generated signal fed to the AOM

controller via a data acquisition card (which acts as a signal generator here). We employ

a second low-power laser beam (stationary and copropagating with the trapping beam)

of wavelength 785 nm to track the position of the particle, which we determine from the

back-scattered light incident on a balanced detection system [105], constructed using

two high gain-bandwidth photo-detectors (Thorlabs PDA100A2) placed orthogonal to

each other. The displacement data of the particle is recorded into a computer from the

balanced detection signal via a data acquisition card (NI DAQ) at a spatio-temporal

resolution of 1 nm-10kHz.
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