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CHEEGER-CHERN-SIMONS CLASSES OF REPRESENTATIONS
OF FINITE SUBGROUPS OF SL(2,C) AND THE SPECTRUM OF

RATIONAL DOUBLE POINT SINGULARITIES

JOSÉ ANTONIO ARCINIEGA-NEVÁREZ, JOSÉ LUIS CISNEROS-MOLINA,
AND AGUSTÍN ROMANO-VELÁZQUEZ

Abstract. Let L be a compact oriented 3-manifold and ρ : π1(L) → GL(n,C) a
representation. Evaluating the Cheeger-Chern-Simons class ĉρ,k ∈ H2k−1(L;C/Z)
of ρ in homology classes ν ∈ H2k−1(L;Z) we get characteristic numbers that we call
the k-th CCS-numbers of ρ. In Theorem 3.3 we prove that if ρ is a topologically
trivial representation, the second CCS-number ĉρ,2([L]), where [L] is the funda-

mental class of L, is given by the invariant ξ̃ρ(D) of the Dirac operator D of L
twisted by ρ, defined by Atiyah, Patodi and Singer [5]. If L is a rational homology

sphere we also give a formula for ĉρ,2([L]) for any representation ρ in terms of ξ̃-
invariants of D. Given a topologically trivial representation ρ : π1(L) → GL(n,C)
we construct an element 〈L, ρ〉 in K3(C), the 3rd algebraic K-theory group of the
complex numbers. When L is an integral homology sphere we prove that 〈L, ρ〉
coincides with the element in K3(C) constructed by Jones and Westbury in [24]
and that Theorem 3.3 generalizes [24, Theorem A]. For rational homology spheres
of the form L = S3/Γ, where Γ is a finite subgroup of SU(2), we compute the first
and second CCS-numbers of all the irreducible representations of Γ, with respect to
the generators of H2k−1(L;Z) with i = 1, 2. Using these CCS-numbers, we recover
the spectrum of all rational double point singularities, which is an invariant of
hypersurface singularities defined by Steenbrink in [47]. Motivated by this result,
we define the topological spectrum for rational surface singularities and Gorenstein
singularities. Given a normal surface singularity (X, x) with link L a rational ho-

mology sphere, we show how to compute the invariant ξ̃ρ(D) for the Dirac operator
of L using a resolution or a smoothing of (X, x).

1. Introduction

Cheeger-Chern-Simons classes ĉk(E,∇) ∈ H2k−1(M ;C/Z) are secondary charac-
teristic classes of a vector bundle E over a smooth manifoldM with a flat connection
∇, they were defined by Cheeger and Simons in [12]. Given a representation ρ : M →
GL(n,C) of the fundamental group of M , there is an associated flat vector bundle
Vρ with a canonical flat connection ∇ρ, following [12, §8] the Cheeger-Chern-Simons
classes of the representation ρ are defined by ĉρ,k = ĉk(Vρ,∇ρ) ∈ H2k−1(M ;C/Z).

2010 Mathematics Subject Classification. Primary: 13C14, 13H10, 14E16, 32S25, 32S05.
1

http://arxiv.org/abs/2302.02000v1
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Evaluating ĉρ,k on a homology class ν ∈ H2k−1(M ;Z) one gets characteristic numbers
ĉρ,k(ν) which we call CCS-numbers.

In the present article we restrict to the case of a compact oriented 3-manifold L.
Using the Index Theorem for flat bundles by Atiyah, Patodi and Singer [5, (5.3)],
in Theorem 3.3 we prove that for topologically trivial representations ρ : π1(L) →
GL(n,C) the second CCS-number ĉρ,2([L]), where [L] ∈ H3(L;Z) is the fundamental

class of L, agrees with the invariant ξ̃ρ(D) of the Dirac operator D of L twisted by
the representation ρ, defined also in [5, (3.2)]. For the case when L is a rational
homology 3-sphere, we also give a formula for the second CCS-number ĉρ,2([L]) of
any representation ρ.

A representation ρ : π1(L) → GL(n,C) is topologically trivial if and only if it
factors through SL(n,C). Hence, it induces a map fn : L → BSL(n,C)d between L
and the classifiying space of SL(n,C) with discrete topology, and a homomorphism in
homology (fn)∗ : H3(L;Z) → H3(BSL(n,C)

d;Z). The image of the fundamental class
of L gives an element 〈L, ρ〉 = f∗([L]) ∈ H3(BSL(n,C)

d;Z). The second Cheeger-

Chern-Simons class ĉρ,2 of ρ is the pull-back by fn of a class ̂̂c2 ∈ H3(BSL(n,C)d;C/Z)
(the restriction to BSL(n,C)d of the k-th universal Cheeger-Chern-Simons class ĉ2 ∈

H3(BGL(n,C)d;C/Z), see Remark 2.4), thus, evaluating ̂̂c2 on 〈L, ρ〉 we recover the

second CCS-number ĉρ,2([L]) = ξ̃ρ(D). We can identify the element 〈L, ρ〉 with
an element in the 3rd algebraic K-theory group of the complex numbers via the
isomorphism K3(C) = H3(SL(n,C)

d;Z) for n ≥ 3. On the other hand, given an
integral homology sphere Σ and a representation ρ : π1(Σ) → GL(n,C), in [24] Jones
and Westbury construct an element [Σ, ρ] ∈ K3(C) whose image under a regulator

homomorphism e : K3(C) → C/Z gives the invariant ξ̃ρ(D). We prove that for an
integral homology sphere Σ we have 〈Σ, ρ〉 = [Σ, ρ] ∈ K3(C) and that Theorem 3.3
is a generalization of [24, Theorem A].

Next, we focus on the rational homology 3-spheres of the form L = S3/Γ, where Γ
is a finite subgroup of SU(2). We compute the first and second CCS-numbers of all
the irreducible representations of Γ, with respect to the generators of H1(L;Z) and
the fundamental class [L] respectively.

Quoting Arnol’d in [1] “Much progress in singularity theory of differentiable maps
is based on empirical data. Some of these empirical facts later become theorems.”
Our next result is an empirical fact about rational double point singularities, that
we hope it will become a theorem. A rational double point singularity is a quotient
singularity of the form (C2/Γ, 0), where Γ is a finite subgroup of SL(2,C). Its link is
the rational homology sphere L = S3/Γ mentioned above. In [47] Steenbrink defined
an invariant for hypersurface singularities using the mixed Hodge structure on the
cohomology of the Milnor fibre together with the monodromy. It is called the spec-
trum and it is a set of rational numbers (not necessarily all different). In Theorem 6.8
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we give a recipe to recover the spectrum of a rational double point singularity from
the first CCS-numbers of the irreducible representations of Γ and a new invariant
ΞαNat

(X, X̃) which is a multiple of the second CCS-number of the natural represen-
tation given by the coefficients of the fundamental cycle of the minimal resolution of
the singularity. Motivated by Theorem 6.8 we define a new invariant, the topological
spectrum, for rational surface singularities and Gorenstein singularities, using respec-
tively, the Cheeger-Chern-Simons classes of special [49] and cohomologically special
[18] representations of the fundametal group of its link.

Finally, given a normal surface singularity (X, x) with link L a rational homology
sphere, using a result by Atiyah, Patodi and Singer [4, pp. 415] we show how to

compute ξ̃ρ(D) for the Dirac operator of L using a resolution or a smoothing of
(X, x).

2. Characteristic classes of representations

In this section we recall basics on classifying spaces, we give the definition of the
Chern classes of a representation given by Atiyah in [8] and we define the Chern
and Cheeger-Chern-Simons classes of a representation of the fundamental group of a
manifold. We assume basic familiarity with group homology, representation theory,
fibre bundles and Chern-Weil theory, see [9, 21, 13] for more details.

2.1. Principal (flat) bundles. In this section we recall some basic results about
principal bundles, see [21, Chapter 4] for details. For any topological group G there
exist spaces (unique up to homotopy) EG and BG; and a map (unique up to homo-
topy) p : EG → BG. The space EG is contractible and the map p is a G-principal
bundle, that is, EG admits a free G-action, so we can think of BG as the orbit space
EG/G and p as the projection. Therefore, by the long exact homotopy sequence,
we have πn+1(BG) ∼= πn(G). The space BG is called the classifying space of G
and the principal G-bundle p the universal principal G-bundle because any principal
G-bundle over a paracompact space X is the pull-back of p by a classifying map
X → BG. The construction of BG is functorial in G.

Thus, there is a one-to-one correspondence between the set PrinGL(n,C)(X) of iso-
morphism classes of principal GL(n,C)-bundles over X and the set [X,BGL(n,C)]
of homotopy classes of maps from X to BGL(n,C):

PrinGL(n,C)(X) ⇐⇒ [X,BGL(n,C)].

There is also a one-to-one correspondence between principal GL(n,C)-bundles and
complex vector bundles of rank n over X : to any principal GL(n,C)-bundle corre-
sponds the complex vector bundle given by the standard action of GL(n,C) on Cn

and, given a complex vector bundle of rank n its frame bundle is a principal GL(n,C)-
bundle. So, if we denote by Vectn,C(X) the set of isomorphism classes of complex
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vector bundles of rank n over X , then we can write the previous correspondence as

(1) Vectn,C(X) ⇐⇒ [X,BGL(n,C)].

We denote by Gd the same group G but with the discrete topology. Note that
BGd is an Eilenberg-MacLane space of type K(Gd, 1). The natural continuous map
ι : Gd → G given by the identity, induces a natural map between the classifying spaces
ι : BGd → BG. Let M be a compact manifold. A principal G-bundle G → P → M
with classifying map f̄ : M → BG is called flat if f factors up to homotopy as

(2) BGd

ι
��

M
f̄

//

f
<<

BG.

Such a factorization has the effect of reducing the structure group of the bundle to a
discrete group, so that any associated vector bundle has a flat connection, i. e., with
curvature zero, see [41, §4]. So, if we denote by Flat PrinGL(n,C)(M) (respectively
Flat Vectn,C(M)) the set of isomorphism classes of flat principal (flat rank n complex
vector) bundles over X , then one has the following one-to-one correspondences

(3)
Flat PrinGL(n,C)(M) ⇐⇒ [M,BGL(n,C)d],

Flat Vectn,C(M) ⇐⇒ [M,BGL(n,C)d] ⇐⇒ Hom(π1(M),GL(n,C)d).

Remark 2.1. Let Vn(C
K) be the Stiefel manifold of n-frames in CK and Gn(C

K)
the Grassmannian of n-planes in CK . Set Vn = Vn(C

∞) = lim
−→

Vn(C
K) and Gn =

Gn(C
∞) = lim

−→
Gn(C

K). For G = GL(n,C), the classifying space BG is Gn and the
universal principal G-bundle is the Stiefel bundle Vn → Gn. The universal vector
bundle is the canonical complex bundle γn of rank n over Gn [21, Theorem 8-6.1,
Theorem 3-7.2].

Remark 2.2. In [37, Theorem 1] Narasimhan and Ramanan proved that the Stiefel
bundle Vn(C

K) → Gn(C
K) has a connection ϑ which makes it an m-classifying prin-

cipal GL(n,C)-bundle when K = (m+1)(2m+1)n2, that is, any principal G-bundle
over a manifold M with a connection θ with dimM ≤ m, admits a connection pre-
serving bundle map to Vn(C

K), and for any two such connection preserving bundle
morphisms, the corresponding maps f1, f2 : M → Gn(C

K) are smoothly homotopic.
The connections on the Stiefel bundles with different K are compatible, so we have
a universal connection ϑ in the universal bundle Vn → Gn. This defines a uni-
versal connection ∇univ on the universal vector bundle γn → Gn. We denote it by
(γn,BGL(n,C),∇univ). Hence the pull-back (with connection) of γn by the map
ι : BGL(n,C)d → BGL(n,C) = Gn is a universal flat vector bundle with universal
connection. We denote it by (γnd ,BGL(n,C)d,∇d

univ) = (ι∗γn,BGL(n,C)d, ι∗∇univ).
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2.2. The Chern class of a representation. Let Γ be a discrete group. Let ρ : Γ →
GL(n,C) be a representation. Such a representation induces a map between the
classifying spaces

Bρ : BΓ → BGL(n,C),

which by (1) induces a complex vector bundle Vρ = EΓ×ρC
n → BΓ, where EΓ×ρC

n

is the quotient of EΓ× Cn by the right action of Γ given by (e, v)g = (eg, ρ(g)−1v).
The k-th Chern class of ρ is the k-th Chern class of the vector bundle Vρ, that is,

ck(ρ) = ck(Vρ) ∈ H2k(BΓ;Z),

(for Γ finite see [8], for the general case see [36]).
For Γ a finite group, the Chern class of a representation ρ is characterized by the

following three properties (see [32][33, Theorem 5]):

• If h : Γ′ → Γ is a group morphism, then

ck(h
!ρ) = h∗ck(ρ),

where h! and h∗ are the natural pull-back maps in representation theory and
cohomology.

• If the total Chern class is c(ρ) = 1 + c1(ρ) + · · ·+ cn(ρ), then

c(ρ1 ⊕ ρ2) = c(ρ1) · c(ρ2).

• The homomorphism

c1 : Hom (Γ, U(1)) → H2(BΓ;Z), ρ 7→ c1(ρ),

is an isomorphism.

Remark 2.3. For any representation ρ : Γ → GL(n,C), the first Chern class satisfies

c1(ρ) = c1(det(ρ)),

where det : GL(n,C) → GL(1,C) is the determinant homomorphism and det(ρ) =
det ◦ρ (for a finite group see [8, Appendix (7)], for the general case see [36]).

2.3. Cheeger-Chern-Simons classes. LetM be a smooth manifold. Let (E,M,∇)
be a vector bundle of rank n over M with a connection ∇ and let Θ be its curvature.
Chern-Weil theory allows us to construct characteristic classes of the vector bundle
E using the curvature of a connection [13].

Let Λ = Z or Q. Let Ωk(M) be the group of smooth complex-valued differential
k-forms on M , Ωkcl(M) the subgroup of closed k-forms and Ωkcl(M ; Λ) the subgroup
of closed k-forms with periods in Λ, i. e., Ωkcl(M ; Λ) = ker

(
Ωkcl(M) → Hk(M ;C/Λ)

)
.

Let Mn
∼= Cn2

denote the space of n×n matrices. Let Pk : Mn → C be a symmetric
homogeneous polynomial of degree k with coefficients in Λ, which is invariant, i. e.,
Pk(A) = Pk(gAg

−1) for all A ∈ Mn and all g ∈ GL(n,C). Denote by Ik(GL(n,C))
the set of invariant polynomials and set I(GL(n,C)) =

⊕∞
k=0 I

k(GL(n,C)) which
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is a commutative algebra. Evaluating Pk on the curvature Θ we get the 2k-form
Pk(E,∇) := Pk(Θ) which is closed and its de Rham cohomology class Pk(E) =
[Pk(E,∇)] ∈ H2k(M ;C) does not depend on the choice of connection ∇. This defines
the Weil homomorphism I(GL(n,C)) → H•(M ;C) which assigns to an invariant
polynomial a cohomology class of M . It is an algebra homomorphism.

For instance, using the invariant symmetric homogeneous polynomial Ck(A) of
degree k given by the relation

(4) det(A + tI) =

n∑

k=0

Ck(A)t
n−k,

one gets the Chern forms ck(E,∇) = Ck(Θ) ∈ Ω2k
cl (M ;Z) for 0 ≤ k ≤ n = rankE.

Its de Rham cohomology class cdRk (E) = [ck(E,∇)] ∈ H2k(M ;C) is the image of the
k-th Chern class ck(E) of E in the exact sequence

(5)
· · · → H2k−1(M ;C/Z)

q
−→ H2k(M ;Z)

r
−→ H2k(M ;C)

pZ−→ · · ·

ck(E) 7→ cdRk (E)

induced by the short exact sequence of coefficients

(6) 0 → Z → C → C/Z → 0.

More generally, in place of an invariant polynomial, one can use an invariant power
series of the form P = P0+P1+P2+ · · · , where each Pk is an invariant homogeneous
polynomial of degree k. For example, the invariant formal power series

(7) ch(A) = Tr(eA/2πi),

where Tr is the trace, gives ch(E,∇) ∈ Ωeven(M) representing the Chern character
ch(E) ∈ Heven(M ;Q), which can be writen in terms of the Chern classes of E as

ch(E) = n+ c1(E)+
1

2

(
c1(E)

2− 2c2(E)
)
+

1

6

(
c1(E)

3− 3c1(E)c2(E)+ 3c3(E)
)
+ · · · .

In [12] Cheeger and Simons defined the ring of differential characters ofM and they
constructed a lift of the Weil homomorfism to get secondary characteristic classes.

Let Ck(M ;Z) ⊃ Zk(M ;Z) be the group of smooth singular k-chains and k-cycles
in M and ∂ : Ck(M ;Z) → Ck+1(M ;Z) the boundary operator.

The group of differential characters of degree1 k is defined as

Ĥk(M ;C/Λ) =

{
ψ ∈ Hom(Zk−1(M ;Z),C/Λ)

∣∣∣ψ(∂(a)) =
∫

a

ωψ mod Λ

}
.

1It is convenient to shift the degree by +1 as compared to the original definition in [12].
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The form ωψ is uniquely determined by ψ, we have that ωψ ∈ Ωkcl(M ; Λ). Let r be
the natural map r : Hk(M ; Λ) → Hk(M ;C) and given ω ∈ Ωkcl(M ; Λ) denote by [ω]
its de Rham class. Set

Rk(M ; Λ) = {(ω, u) ∈ Ωkcl(M ; Λ)×Hk(M ; Λ) | r(u) = [ω]}.

There are natural exact sequences (see [12, Theorem 1.1]):

0 → Hk−1(M ;C/Λ) → Ĥk(M ;C/Λ)
δ1−→ Ωkcl(M ; Λ) → 0,(8)

0 → Ωk−1(M)/Ωk−1
cl (M ; Λ) → Ĥk(M ;C/Λ)

δ2−→ Hk(M ; Λ) → 0.(9)

0 → Hk−1(M ;C)/r(Hk(M ; Λ)) → Ĥk(M ;C/Λ)
(δ1,δ2)
−−−→ Rk(M ; Λ) → 0.(10)

Given ψ ∈ Ĥk(M ;C/Λ) we have that r(δ2(ψ)) = [δ1(ψ)]. In particular, by (10) if
Hk−1(M ;C) = 0 then ψ is determined uniquely by (δ1(ψ), δ2(ψ)). In [12] a graded

ring structure is defined in Ĥ•(M ;C/Λ) =
⊕dimM

k=0 Ĥk(M ;C/Λ) so that δ1 and δ2
are ring homomorphisms.

Let (γn,BGL(n,C),∇univ) be the universal vector bundle with universal connec-
tion ∇univ (see Remark 2.2). Let Pk be an invariant polynomial, and Pk(γ

n,∇univ) ∈
Ω2k
cl (BGL(n,C); Λ) the form with periods in Λ representing the characteristic class

Pk(γ
n) ∈ H2k(BGL(n,C); Λ). Since Hodd(BGL(n,C);C) = 0, considering (10)

for BGL(n,C), the element (Pk(γ
n,∇univ), Pk(γ

n)) ∈ R2k(BGL(n,C); Λ) determines

uniquely a differential character P̂k = P̂k(γ
n,∇univ) ∈ Ĥ2k(BGL(n,C);C/Λ), which

we call the universal differential character defined by Pk. Let (E,M,∇) be a vector
bundle with a connection ∇. Let f̄ : M → BGL(n,C) be the classifying map with

connection of (E,M,∇). Then P̂k(E,∇) = f̄ ∗(P̂k) ∈ Ĥ2k(M ;C/Λ) is a differential
character which is natural, and such that

(11) δ1(P̂k(E,∇)) = Pk(E,∇), δ2(P̂k(E,∇)) = Pk(E).

Notice that the classes P̂k(E,∇) depend on the connection ∇. If ∇0 and ∇1 are two
connections on E, we have

δ2(P̂k(E,∇1)− P̂k(E,∇0)) = δ2(P̂k(E,∇1))− δ2(P̂k(E,∇0)) = 0,

thus, by (9) the difference of the characters must be the reduction of a differential
form TPk(∇1,∇0) ∈ Ωk−1(M) modulo Λ. Such form can be computed using the
Chern-Simons construction [14]. Let ∇t be a smooth curve of connections joining

∇0 and ∇1 (e. g., ∇t = t∇1 + (1 − t)∇0). Then ∇t defines a connection ∇̃ on the

bundle E × I. Let Θ̃ be the curvature of ∇̃. We can construct the characteristic
form Pk(E × I, ∇̃) = Pk(Θ̃) ∈ Ω2k(M × I) and the secondary Chern-Simons form

(12) TPk(∇1,∇0) = π∗(Pk(E × I, ∇̃)) ∈ Ω2k−1(M),
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where π : M×I →M is the projection and π∗ : Ω
2k(M×I) → Ω2k−1(M) is integration

along the fibres (see [21, Remark 19-1.8]). Hence

(
P̂k(E,∇1)− P̂k(E,∇0)

)
(a) =

∫

a

TPk(∇1,∇0) mod Λ, a ∈ Zk−1(M ;Z).

Since TPk(∇1,∇0) is closed we get a class [TPk(∇1,∇0)] ∈ H2k−1(M ;C) which is
independent of the choice of path of connections ∇t. If both connections ∇0 and ∇1

are flat, by (8) P̂k(E,∇0), P̂k(E,∇1) ∈ H2k−1(M ;C/Λ) and in this case we have

(13) P̂k(E,∇1)− P̂k(E,∇0) = pΛ
(
[TPk(∇1,∇0)]

)
,

where pΛ : H
2k−1(M ;C) → H2k−1(M ;C/Λ) is the natural homomorphism.

Taking Pk to be the polynomials Ck defined by (4) we get the Chern differential

characters ĉk(E,∇) ∈ Ĥ2k(M ;C/Z). On the other hand, using the power series

given in (7) we get the differential character ĉh(E,∇) ∈ Ĥeven(M ;C/Q) which can
be written in terms of ĉk(E,∇) (we drop (E,∇) from the formula), see [12, (4.10)]

ĉh(E,∇) = n+ ĉ1 +
1

2

(
ĉ1 ∗ ĉ1 − 2ĉ2

)
+

1

6

(
ĉ1 ∗ ĉ1 ∗ ĉ1 − 3ĉ1 ∗ ĉ2 + 3ĉ3

)
+ · · · ,

where ∗ is the product in Ĥ•(M ;C/Q). We denote by ĉhk(E) the component of

ĉh(E) of degree 2k, hence we have

ĉh0(E,∇) = n, ĉh1(E,∇) = ĉ1(E,∇),

ĉh2(E,∇) =
1

2

(
ĉ1(E,∇) ∗ ĉ1(E,∇)− 2ĉ2(E,∇)

)
, . . .(14)

2.4. Cheeger-Chern-Simons classes of a representation. Consider a represen-
tation ρ : π1(M) → GL(n,C). Associated to ρ we get the flat GL(n,C)-bundle

Vρ = M̃ ×ρ C
n → M , where M̃ is the universal cover of M and M̃ ×ρ C

n is the

quotient of M̃×Cn by the action of π1(M). Since Vρ admits a flat connection ∇ρ, we
have that ck(Vρ,∇ρ) = 0 and cdRk (Vρ) = 0, which imply that the Chern class ck(Vρ)
is in the image of the homomorphism from q : H2k−1(M ;C/Z) → H2k(M ;Z) in (5).
Also by (11) and (8) we have that

(15) ĉk(Vρ,∇ρ) ∈ H2k−1(M ;C/Z),

and it is a functorial lifting of the Chern class ck(Vρ) by q. We define, respectively,
the Chern and Cheeger-Chern-Simons classes of the representation ρ by

cρ,k = ck(Vρ) ∈ H2k(M ;Z), ĉρ,k = ĉk(Vρ,∇ρ) ∈ H2k−1(M ;C/Z).

We set ĉρ = 1 + ĉρ,1 + · · ·+ ĉρ,n ∈ Ĥeven(M ;C/Z). If ρ : π1(M) → GL(n,C) and
τ : π1(M) → GL(m,C) are two representations, we have that [12, Theorem 4.6]

(16) ĉρ⊕τ = ĉρ ∗ ĉτ .
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Remark 2.4. Let Ĉk ∈ Ĥ2k(BGL(n,C);C/Z) be the k-th universal Chern differ-
ential character. Since the pull-back (γnd ,BGL(n,C)d,∇d

univ) of the universal bun-
dle with universal connection (γn,BGL(n,C),∇univ) by the map ι : BGL(n,C)d →
BGL(n,C) is flat (see Remark 2.2), we have that

ĉk = ι∗(Ĉk) ∈ H2k−1(BGL(n,C)d;C/Z).

Since the vector bundle Vρ → M has a flat connection, its classifying map with
connection f̄ : M → GL(n,C) factorizes as in (2), i. e., f̄ = ι ◦ f , with f : M →
GL(n,C)d. Hence, the k-th Cheeger-Chern-Simons class of the representation ρ is
given by

ĉρ,k = f ∗(ĉk).

The class ĉk ∈ H2k−1(BGL(n,C)d;C/Z) is called the universal k-th Cheeger-Chern-
Simons class for flat bundles

Remark 2.5. The Chern classes ck(ρ) of a representation ρ : Γ = π1(M) → GL(n,C)
defined in Subsection 2.2 are cohomology classes of the classifying space BΓ, while
the Chern classes cρ,k defined in this subsection are cohomology classes of M . They
are related in the following way. Since π1(M) = Γ there is a map φ : M → BΓ. Then
cρ,k = φ∗(ck(ρ)).

Remark 2.6. One can also define the Cheeger-Chern-Simons classes of a repre-
sentation ρ : Γ → GL(n,C) as cohomology classes of the classifying space BΓ. Let
ĉk ∈ H2k−1(BGL(n,C)d;C/Z) be the k-th universal Cheeger-Chern-Simons class (see
Remark 2.4). Let Bρ : BΓ → BGL(n,C)d be the map induced between classifying
spaces by ρ. The k-th Cheeger-Chern-Simons class of ρ is the pullback

(17) ĉk(ρ) = Bρ∗(ĉk) ∈ H2k−1(BΓ;C/Z).

Let M be a smooth manifold with fundamental group π1(M) = Γ and consider the
map φ : M → BΓ. Then ĉρ,k = φ∗(ĉk(ρ)).

Let Γ be a discrete group. Let ρ : Γ → GL(n,C) be a representation. By (17) we
have that ĉk(ρ) ∈ H2k−1(BΓ;C/Z). By the Universal Coefficient Theorem and using
that C/Z is divisible (equivalently, injective [9, Corollary 4.2]) we have

(18) H2k−1(BΓ;C/Z) ∼= Hom (H2k−1(BΓ;Z),C/Z).

Thus, the Chern-Cheeger-Simons classes ĉk(ρ) of ρ can be identified as morphisms

ĉk(ρ) : H2k−1(BΓ;Z) → C/Z,

Definition 2.7. Let κ be a homology class in H2k−1(BΓ;Z), we call the image

ĉk(ρ)(κ) ∈ C/Z,

the k-th Cheeger-Chern-Simons-number (CCS-number) of ρ with respect to κ.
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A representation ρ : π1(M) → GL(n,C) is said to be topologically trivial if the
vector bundle Vρ → M is topologically trivial, i. e., it is isomorphic as a topological
vector bundle to the product bundle M × Cn → M .

3. CCS-numbers of compact oriented 3-manifolds

In this section, we restrict to the case when the manifold is a compact oriented 3-
manifold L. We define the first and second CCS-numbers of a representation ρ : Γ =
π1(L) → GL(n,C) and we prove that the second CCS-number for topologically trivial
representations ρ agrees with the topological index of the Dirac operator on L with
respect to the flat complex vector bundle associated to ρ, defined by Atiyah, Patodi
and Singer in [5, p. 87]. For the case when L is a rational homology 3-sphere, using
the Index Theorem for flat bundles, we give a formula for the second CCS-number
of any representation.

3.1. CCS-numbers of representations. Let L be a compact oriented 3-manifold
and consider a representation ρ : Γ = π1(L) → GL(n,C). By (15) we have that
ĉρ,k ∈ H2k−1(M ;C/Z). By the same argument of (18) there is an isomorphism
H2k−1(L;C/Z) ∼= Hom(H2k−1(L;Z),C/Z).

Definition 3.1. Let ν be a homology class in H1(L;Z), we call the image

ĉρ,1(ν) ∈ C/Z,

the first CCS-number of ρ with respect to ν. Let [L] ∈ H3(L;Z) be the fundamental
class. We define the second CCS-number of ρ by

ĉρ,2([L]) ∈ C/Z.

Notice that the second CCS-number of ρ with respect to another class in H3(L;Z)
is a multiple of ĉρ,2([L]). The relation with Definition 2.7 is the following. Since
π1(L) = Γ there is a map φ : L → BΓ. Let ν ∈ H2k−1(L;Z), with k = 1, 2. Then we
have

(19) ĉρ,k(ν) = φ∗(ĉk(α))(ν) = ĉk(ρ)(φ∗(ν)).

3.2. The index theorem for flat bundles. Let A be a self-adjoint elliptic operator
acting on the space of sections C∞(M,E) of a vector bundle E →M over a compact
manifold M . Then A has a discrete spectrum with real eigenvalues {λ}. In [3]
Atiyah, Patodi and Singer define a complex valued function η(s;A), of the complex
variable s, called the η-series of A by

η(s;A) =
∑

λ6=0

(signλ)|λ|−s,
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where the sum is taken over the non-zero eigenvalues of A. This series converges
when the real part ℜ(s) of s is sufficiently large and by results of Seeley [46] extends
by analytic continuation to a meromorphic function on the whole s-plane and it is
finite at s = 0. The number η(A) = η(0;A) is called the η-invariant of A and it is a
spectral invariant which measures the asymmetry of the spectrum of A. They also
define a refinement of the η-series which takes into account the zero eigenvalues of

A by setting ξ(s;A) = h+η(s;A)
2

, where h is the dimension of the kernel of A.
Consider a unitary representation ρ : π1(M) → U(n) and the flat vector bundle Vρ

given by ρ. One can couple the operator A to Vρ to get an operator Aρ acting on
C∞(M,E ⊗ Vρ) which is again self-adjoint. The reduced η and ξ-series are given by

(20) η̃ρ(s;A) = η(s;Aρ)− nη(s;A), ξ̃ρ(s;A) = ξ(s;Aρ)− nξ(s;A),

where n is the dimension of the representation ρ. Following [5, Section 2] the func-
tions (20) are finite at s = 0 and reducing modulo Z then

η̃ρ(A) = η̃ρ(0;A) ∈ R/Z, ξ̃ρ(A) = ξ̃ρ(0;A) ∈ R/Z,

are homotopy invariants of A.
If the representation ρ : π1(M) → GL(n,C) is not unitary the twisted operador

Aρ is not self-adjoint, but it has a self-adjoint symbol and this is enough to define
η(s;Aρ). To define ξ(s;Aρ) one takes h to be the dimension arising from the spectrum

on the imaginary axis and now ξ̃ρ(0;A) is a complex number modulo integers, that

is ξ̃ρ(A) ∈ C/Z.
If A is a self-adjoint elliptic operator of order m acting on the space of sections

C∞(M,E) of a vector bundle E → M over M , its homotopy class depends only
on the homotopy class of its leading symbol σm(A). Denote by T ∗M the cotangent
bundle of M . By [5, Proposition 3.1] there is a one-to-one correspondence between
the stable classes of self-adjoint symbols on M and the elements of K1(T ∗M).

Fixing a representation ρ : π1(M) → GL(n,C), the map A 7→ ξ̃ρ(A) induces a
homomorphism [5, p. 87]

indρ : K
1(T ∗M) → C/Z

σm(A) 7→ ξ̃ρ(A)

called the analytical index of A (or of the symbol class of A) with respect to the flat
bundle given by ρ.

On the other hand, the representation ρ : π1(M) → GL(n,C) defines an element
[ρ] ∈ K−1(M,C/Z) in K-theory with coefficients in C/Z, see [5, p. 90]. There is a
pairing

K−1(M,C/Z)⊗K1(T ∗M) → K0(T ∗M,C/Z),
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and a homomorphism
Ind: K0(T ∗M,C/Z) → C/Z,

which extends the usual topological index of [6]. For each representation ρ there is
a topologically defined homomorphism

Indρ : K
1(T ∗M) → C/Z

σm(A) 7→ − Ind([ρ] · σm(A))

called the the topological index with respect to the flat bundle given by ρ.
The Index Theorem for flat bundles [5, (5.3)]) states that ifM is odd dimensional,

then indρ coincides with Indρ.

Remark 3.2. If ρ : π1(M) → U(n) is a unitary representation then both indices indρ
and Indρ have values in R/Z.

3.3. The second CCS-number of ρ. Let L be a compact oriented 3-manifold,
then it is a spin-manifold [29, Chapter VII, Theorem 1] and it has a Dirac operator
D, which is a first order, self-adjoint, elliptic operator, acting on sections of the
spinor bundle (see [25, § 3.4] or [35, Example 5.9]).

Theorem 3.3. Let L be a compact oriented 3-manifold. Let D be the Dirac operator
on L and let σ = [σ1(D)] be the symbol class of D in K1(T ∗L). Let ρ : π1(L) →
GL(n,C) be a topologically trivial representation. Then, the second CCS-number of
ρ and the topological index of D with respect to ρ, coincide, that is,

ĉρ,2([L]) = Indρ σ.

Proof. The proof consists in to identify Indρ σ for the particular case when σ is the
symbol class of the Dirac operator and ρ is a topologically trivial representation of
the fundamental group of a compact oriented 3-manifold, following the proof of the
Index Theorem for flat bundles. In [5, pp. 88] K1(L,C/Z) is defined as the cokernel
of the following natural map

K−1(L,Q) → K−1(L,Q/Z)⊕K−1(L,C).

Thus, given a representation ρ : π1(L) → GL(n,C), the element [ρ] ∈ K−1(L,C/Z)
is given by two elements

aρ ∈ K−1(L,Q/Z) and bρ ∈ K−1(L,C).

In terms of these elements, the topological index can be writen as (see [5, p. 98])

(21) Indρ σ = − IndC(bρσ) + IndZ/kZ(σaρ) mod Z,

where IndC is induced from the topological index K(T ∗L) → Z by tensoring with
C and IndZ/kZ is the topological index for Z/kZ-coefficients (see [5, Proposition 6.2
and (8.4)]).
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Let us recall the construction of the elements aρ and bρ when ρ : π1(L) → GL(n,C)
is a topologically trivial representation and s : Vρ ∼= L×Cn is a trivialization. In this
case we have that aρ = 0 (see [5, p. 89, (i), (ii)]). The element bρ is constructed as
follows. The bundle Vρ has two different flat connections, its canonical flat connection
∇ρ and a connection ∇triv coming from the trivial connection on L × Cn by the
isomorphism s. Applying the Chern-Simons construction to the bundle Vρ, using
the curve of connections ∇t = t∇triv + (1 − t)∇ρ and the invariant formal power
series ch(A) given in (7) for the Chern character, we get the Chern-Simons form
Tch(∇triv,∇ρ) ∈ Ωodd(L) as in (12) and a mixed odd-dimensional cohomology class
β = [Tch(∇triv,∇ρ)] ∈ Hodd(L;C). We have that (see [5, p. 89, (iii)])

(22) bρ = ch−1(β)

where ch : K−1(L,C) → Hodd(L;C) is the Chern character.
By Karoubi [27, 28], there is an exact sequence as follows

(23) · · · → K−1(L) → K−1(L,C) → K−1(L;C/Z) → K0(L) → . . .

By changing the trivialization of Vρ we obtain a different element in K−1(L,C).
However, changing the trivialization is equivalent to take an element in K−1(L).
Therefore by the exact sequence (23), it is clear that the class of bρ in K

−1(L;C/Z)
does not depend on the choice of trivialization (compare with [5, p. 89, (iv)]). Thus,
when ρ is topologically trivial (21) becomes

(24) Indρ σ = − IndC(bρσ) mod Z.

Since σ is the symbol class of the Dirac operador, (24) coincides with the direct
image homomorphism K−1(L,C/Z) → C/Z (see [5, p. 82 (2)]), which is given coho-
mologically by

Indρ σ =
{
ch(bρ) · I (L)

}
[L] mod Z,

=
{
β · I (L)

}
[L] mod Z, by (22)

where I (L) is the index class of L (see [7, p. 556]). Since L is a compact 3-manifold,
it is parallelizable and I (L) = 1. Thus,

Indρ σ =
{
β
}
[L] mod Z,

=
{
[Tch(∇triv,∇ρ)]

}
[L] mod Z,(25)

We have that β = [Tch(∇triv,∇ρ)] ∈ Hodd(L;C), let us denote the component of
degree 3 of the Chern-Simons form Tch(∇triv,∇ρ) by Tch(∇triv,∇ρ)3, so we have
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[Tch(∇triv,∇ρ)3] ∈ H3(L;C). Now consider the commutative diagram

H3(L;C)
pZ

//

pQ

''❖
❖
❖
❖
❖
❖
❖
❖
❖
❖
❖

H3(L;C/Z)

p

��

H3(L;C/Q).

By construction we have that

ĉ1(Vρ,∇ρ)∗ĉ1(Vρ,∇ρ), ĉ2(Vρ,∇ρ), ĉ1(Vρ,∇triv)∗ĉ1(Vρ,∇triv), ĉ2(Vρ,∇triv) ∈ H3(L;C/Z).

By (13) we have that

pQ
(
[Tch(∇triv,∇ρ)3]

)
= ĉh2(Vρ,∇triv)− ĉh2(Vρ,∇ρ) ∈ H3(L;C/Q),

since the component of degree 3 of ĉh(Vρ,∇) is ĉh2(Vρ,∇). By (14) we can decompose
Tch(∇triv,∇ρ)3 as follows

Tch(∇triv,∇ρ)3 =
1

2
T (C1 · C1)(∇triv,∇ρ)− TC2(∇triv,∇ρ),

where C1 · C1 is the product in the algebra of invariant polynomials I(GL(n,C)).
Set ω1 = T (C1 · C1)(∇triv,∇ρ) and ω2 = TC2(∇triv,∇ρ). By (13) we get

pZ([ω1]) = ĉ1(Vρ,∇triv) ∗ ĉ1(Vρ,∇triv)− ĉ1(Vρ,∇ρ) ∗ ĉ1(Vρ,∇ρ),

pZ([ω2]) = ĉ2(Vρ,∇triv)− ĉ2(Vρ,∇ρ),

pQ

(1
2
[ω1]
)
=

1

2
p
(
ĉ1(Vρ,∇triv) ∗ ĉ1(Vρ,∇triv)− ĉ1(Vρ,∇ρ) ∗ ĉ1(Vρ,∇ρ)

)
,

pQ([ω2]) = p
(
ĉ2(Vρ,∇triv)

)
− p
(
ĉ2(Vρ,∇ρ)

)
.

In order to finish the proof we only need to prove that [ω1] = 0. Indeed, if we assume
that [ω1] = 0, then

pZ
(
[Tch(∇triv,∇ρ)3]

)
= pZ

(
1

2
[ω1]− [ω2]

)
= pZ

(
−[ω2]

)
= −ĉ2(Vρ,∇triv)+ĉ2(Vρ,∇ρ).

By [12, Proposition 2.10] we have that ĉ2(Vρ,∇triv) = 0. Hence,

pZ
(
[Tch(∇triv,∇ρ)3]

)
= ĉ2(Vρ,∇ρ) ∈ H3(L;C/Z),

and together with (25) we get

Indρ σ = pZ
(
[Tch(∇triv,∇ρ)3]

)
[L] = ĉ2(Vρ,∇ρ)[L] = ĉρ,2[L] ∈ C/Z.

Thus, we only have to prove that [ω1] = 0. Let ∇̃ be the connection on Vρ×I defined

by the curve of connections ∇t and let Θ̃ be its curvature. By (12) we get,

ω1 = π∗

(
(C1 · C1)(Θ̃)

)
= π∗

(
C1(Θ̃) ∧ C1(Θ̃)

)
∈ Ω3(L),
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where π∗ is integration along the fibres [21, Remark 19-1.8]. Note that [C1(Θ̃)] ∈
H2(L×I,C). Since ρ : π1(L) → GL(n,C) is topologically trivial, Vρ →M is a trivial

vector bundle and Vρ×I → M×I is also a trivial vector bundle. Hence [C1(Θ̃)] = 0.

Therefore, there exists C ∈ Ω1(L × I) such that dC = C1(Θ̃). Using the form C we
get

C1(Θ̃) ∧ C1(Θ̃) = C1(Θ̃) ∧ dC = −d(C1(Θ̃) ∧ C).

By the Homotopy Formula for fiber integration (see [21, Proposition 19-1.9]), we get

−π∗
(
d(C1(Θ̃) ∧ C)

)
= dπ∗

(
C1(Θ̃) ∧ C

)
− (j1 − j0)

(
C1(Θ̃) ∧ C

)
.

We claim that the last term (j1 − j0)
(
C1(Θ̃) ∧ C

)
= 0. Assuming this, we have

ω1 = π∗

(
C1(Θ̃) ∧ C1(Θ̃)

)
= −π∗

(
d(C1(Θ̃) ∧ C)

)
= dπ∗

(
C1(Θ̃) ∧ C

)
.

Therefore, the form ω1 is exact, [ω1] = 0 ∈ H3(L,C) and we reach the conclusion of
the Theorem.

To prove that (j1 − j0)
(
C1(Θ̃) ∧ C

)
= 0 we proceed as follows. Every differential

form ω ∈ Ωk(L × I) can be decomposed as ω = α + β ∧ dt where α ∈ Ωk(L × I),
β ∈ Ωk−1(L × I) each without any dt factor [21, Remark 19-1.8]. By definition we
have that js : Ω

2k(L× I) → Ω2k−1(L) is given by js(α+ β ∧ dt) = α|t=s with s = 0, 1
[21, Proposition 19-1.9]. Let θtriv and θ be, respectively, the connection forms of the
connections ∇triv and∇ρ on the vector bundle Vρ. Since∇triv is the trivial connection

θtriv = 0. The curvature Θ̃ of the connection ∇̃ given by the curve of connections
∇t = t∇triv + (1− t)∇ρ is given by (see [21, Remark 19-5.1])

(26) Θ̃ = t(1− t)θ2 + θdt.

Since the form C ∈ Ω1(L × I) we can decompose it as C = α′ + β ′ ∧ dt, where
α′ ∈ Ω1(L × I), β ′ ∈ Ω0(L × I) = C∞(L × I) each without any dt factor. The
invariant polynomial C1 ∈ I1(GL(n,C)) is given by C1(A) = Tr(A), thus by (26) we
have

C1(Θ̃) = t(1− t) Tr(θ2) + Tr(θ) ∧ dt.

Therefore

(27) C1(Θ̃) ∧ C = t(1− t) Tr(θ2) ∧ α′ +
(
t(1− t)β ′ Tr(θ2)− Tr(θ) ∧ α′) ∧ dt.

Setting in (27)

(28) α = t(1− t) Tr(θ2) ∧ α′ ∈ Ω3(L× I),

and

β =
(
t(1− t)β ′ Tr(θ2)− Tr(θ) ∧ α′) ∈ Ω2(L× I)
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we have that both of them do not have any dt factor and C1(Θ̃) ∧ C = α + β ∧ dt.
Therefore, evaluating t = 1 and t = 0 in (28) we get

(j1 − j0)
(
C1(Θ̃) ∧ C

)
= α|t=1 − α|t=0 = 0.

This finishes the proof. �

By the Index Theorem for flat bundles we have the following corollary.

Corollary 3.4. With the hypothesis of Theorem 3.3 we have ĉρ,2([L]) = ξ̃ρ(D).

Remark 3.5. If L is an integral homology sphere, then Theorem 3.3 is equivalent
to the result of Jones and Westbury [24, Theorem A], see Section 4.

3.4. CCS-numbers of rational homology 3-spheres. Let L be a rational ho-
mology 3-sphere. Let ρ : π1(L) → GL(n,C) be a representation. By Poincaré duality
we have that H1(L;C) = H2(L;C) = 0, by the cohomology long exact sequence
(5) of L corresponding to the short exact sequence (6) we have a correspondence
between the first Cheeger-Cheern-Simons class and the first Chern class of ρ under
the isomorphism

(29)
H1(L;C/Z) ∼= H2(L;Z)

ĉρ,1 7→ cρ,1.

Lemma 3.6. Let L be a rational homology 3-sphere and ρ : π1(L) → GL(n,C) a
representation of its fundamental group. The following are equivalent:

1. The representation ρ is topologically trivial.
2. cρ,1 = 0.
3. ĉρ,1 = 0.

Proof. The equivalence of 2 and 3 is given by the isomorphism (29). The equiva-
lence of 1 and 2 is given as follows. For n = 1, cρ,1 = 0 if and only if ρ is topologically
trivial since line bundles are classified by its first Chern class. If n ≥ 2, it follows
from [42, Theorem 3.2] since the only possible non-zero Chern class is cρ,1. �

Lemma 3.7. Let L be a rational homology 3-sphere and ρ : π1(L) → GL(n,C) a
representation of its fundamental group. Then the representation ρ⊕ det(ρ∗), where
ρ∗ is the dual representation, is topologically trivial.

Proof. By the Whitney product formula, Remark 2.3 and the fact that cρ∗,1 =
−cρ,1, we have that cρ⊕det(ρ∗),1 = cρ,1+cdet(ρ∗),1 = cρ,1+cρ∗,1 = 0. Thus, by Lemma 3.6
the representation ρ⊕ det(ρ∗) is topologically trivial. �
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Lemma 3.8. Let L be a rational homology 3-sphere. For any representation ρ : π1(L) →
GL(n,C), the first Cheeger-Chern-Simons class satisfies

ĉρ,1 = ĉdet(ρ),1.

Proof.
By Remark 2.3 and Remark 2.5 cρ,1 = cdet(ρ),1 and both ĉρ,1 and ĉdet(ρ),1 are liftings

of cρ,1 = cdet(ρ),1 by the homomorphism q : H1(L;C/Z) → H2(L;Z) in (5), but by
(29) there is only one such lifting, so they coincide. �

If L is a rational homology 3-sphere, using Theorem 3.3 and the Index Theorem
for flat bundles we can give a formula for the second CCS-number of an arbitrary
representation ρ : π1(L) → GL(n,C).

Theorem 3.9. Let L be a rational homology 3-sphere. Let ρ : Γ = π1(L) → GL(n,C)
be a representation. Then,

ĉρ,2([L]) = ξ̃ρ(D)− ξ̃det(ρ)(D).

Proof. Consider the representation ρ ⊕ det(ρ∗), by Lemma 3.7 it is topologi-
cally trivial. Since cdet(ρ∗),1 = −cdet(ρ),1, by (29) we have that ĉdet(ρ∗),1 = −ĉdet(ρ),1.
Applying (16) to det(ρ)⊕ det(ρ∗) we get

ĉdet(ρ)⊕det(ρ∗),1 = ĉdet(ρ),1 + ĉdet(ρ∗),1 = 0

ĉdet(ρ)⊕det(ρ∗),2 = ĉdet(ρ),1 ∗ ĉdet(ρ∗),1.

Hence, by Lemma 3.6 det(ρ)⊕det(ρ∗) is topologically trivial. Applying Corollary 3.4
we have:

ξ̃ρ(D) + ξ̃det(ρ∗)(D) = ξ̃ρ⊕det(ρ∗)(D) = ĉρ⊕det(ρ∗),2([L])

= ĉρ,1 ∗ ĉdet(ρ∗),1([L]) + ĉρ,2([L])

= ĉdet(ρ),1 ∗ ĉdet(ρ∗),1([L]) + ĉρ,2([L])

= ĉdet(ρ)⊕det(ρ∗),2([L]) + ĉρ,2([L])

= ξ̃det(ρ)⊕det(ρ∗)(D) + ĉρ,2([L])

= ξ̃det(ρ)(D) + ξ̃det(ρ∗)(D) + ĉρ,2([L]).

From this the theorem follows. �

4. Elements in K3(C) via topologically trivial representations

In this section, given a topologically trivial representation of the fundamental
group of a compact oriented 3-manifold we construct an element in K3(C), the 3rd
algebraic K-theory group of the complex numbers. With this construction we prove
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that Theorem 3.3 is a generalization of a result by Jones and Westbury [24, Theo-
rem A]. Firstly we have the following lemma.

Lemma 4.1. Let L be a compact oriented 3-manifold. A representation ρ : π1(L) →
GL(n,C) factors through SL(n,C) if and only if it is topologically trivial.

Proof. Notice that ρ factors through SL(n,C) if and only if det(ρ) : Γ → GL(1,C)
is the trivial representation. By (3) the trivial representation corresponds to the
trivial (flat) bundle, thus, cdet(ρ),1 = 0. By Remark 2.3 cρ,1 = cdet(ρ),1 = 0 and by [42,
Theorem 3.2] this is equivalent to ρ being topologically trivial. �

Let L be a compact oriented 3-manifold. Let ρ : π1(L) → GL(n,C) be a topolog-
ically trivial representation. By Lemma 4.1 ρ has image in SL(n,C)d, that is, we
have ρ : π1(L) → SL(n,C)d. Let Vρ → L be its associated flat vector bundle. Its
classifying map with connection f̄n : L→ BGL(n,C)d factorizes as

BSL(n,C)d

ι
��

L
f̄n

//

fn
::

BGL(n,C)d.

Let ĉ2 ∈ H3(BGL(n,C)d;C/Z) be the second universal Cheeger-Chern-Simons

class (see Remark 2.4). Denote by ̂̂c2 the Cohomology class

̂̂c2 = ι∗(ĉ2) ∈ H3(BSL(n,C)d;C/Z).

Then the second Cheeger-Chern-Simons class of ρ is given by

ĉρ,2 = f ∗
n (̂ĉ2) ∈ H3(L;C/Z).

Hence the second CCS-number of ρ is given by

(30) ĉρ,2([L]) = f ∗
n (̂ĉ2)([L]) =

̂̂c2((fn)∗([L])),

that is, evaluating the class ̂̂c2 on the homology class (fn)∗([L]) ∈ H3(BSL(n,C)
d;Z).

The group SL(n,C)d is perfect and it is the commutator subgroup of GL(n,C)d.
Consider the limits SL(C) = limn SL(n,C)

d and GL(C) = limnGL(n,C)d. Hence
SL(C) is perfect and it is the commutator subgroup of GL(C).

Let Bi : BSL(C) → BGL(C) be the map between classifying spaces induced by
the inclusion homomorphism i : SL(C) → GL(C). Quillen’s plus construction is
funtorial [44, Proposition 5.2.4] and applying it to Bi with respect to SL(C) we get
the universal cover of BGL(C)+ [44, Thorem 5.2.7]

π = (Bi)+ : BSL(C)+ → BGL(C)+.
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Hence, the third algebraic K-Theory group of C is given by

K3(C) = π3(BGL(C)+) = π3(BSL(C)
+).

By [45, Proposition 2.5] the Hurewicz homomorphism

(31) h : K3(C) = π3(BSL(C)
+) → H3(BSL(C)

+;Z) = H3(SL(C);Z)

is an isomorphism. On the other hand, we have the following stability isomorphism
for n ≥ 3 [45, (2.8) and Theorem 4.1 (b)]

H3(SL(n,C)
d;Z) → H3(SL(C);Z).

Hence we have that

K3(C) = H3(SL(n,C)
d;Z), n ≥ 3.

Let L be a compact oriented 3-manifold. Given a topologically trivial representa-
tion ρ : π1(L) → GL(n,C) one can construct an element in K3(C) in the following
way. By Lemma 4.1 we have ρ : π1(L) → SL(n,C)d. Let fn : L → BSL(n,C)d be
the map which induces ρ on the fundamental group and compose it with the natural
map ιn : BSL(n,C)

d → BSL(C) to get

f = ιn ◦ fn : L→ BSL(C).

Consider the homomorphism induced in homology

f∗ : H3(L;Z) → H3(BSL(C);Z) ∼= K3(C).

The image of the fundamental class [L] gives the element 〈L, ρ〉 = f∗([L]) ∈ K3(C).
In the case when L is a rational homology sphere, we can extend the construction

for representations ρ : π1(L) → GL(n,C) that are not topologically trivial taking the
representation ρ⊕det(ρ∗) : π1(L) → SL(n+1,C) which by Lemma 3.7 is topologically
trivial. Then take 〈L, ρ⊕ det(ρ∗)〉 ∈ K3(C).

Let Σ be an integral homology 3-sphere and ρ : π1(Σ) → GL(n,C) a representation.
Since π1(Σ) is perfect, every complex representation must have image in SL(n,C),
that is, the representation ρ is topologically trivial Lemma 4.1. In [24] Jones and
Westbury constructed an element [Σ, ρ] in K3(C) as follows. Consider again the map
f = ιn ◦ fn : Σ → BSL(C).

Applying Quillen plus construction to f we obtain a map

f+ : Σ+ ∼= S3 → BSL(C)+.

Its homotopy class [f+] is an element [Σ, ρ] = [f+] ∈ π3(BSL(C)
+) = K3(C).

In the case of an integral homology sphere Σ one can compare the two constructions
and see that they give the same element.
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The maps f and f+ fit in the following commutative diagram

(32) Σ
f
//

+
��

BSL(C)

+
��

S3 f+
// BSL(C)+.

Diagram (32) induces the following diagram in homology

(33) H3(Σ;Z)
f∗

//

∼=
��

H3(BSL(C);Z)

∼=
��

H3(S
3;Z)

f+∗
// H3(BSL(C)

+;Z)

Therefore,

(34) 〈Σ, ρ〉 = f̃∗([Σ]) = f̃+
∗ ([S

3]) = h([f̃+]) = h([Σ, ρ]),

where h is the Hurewicz isomorphism (31). Thus, we have proved the following

Theorem 4.2. Let Σ be a integral homology 3-sphere and ρ : π1(Σ) → SL(n,C) a
representation. Then 〈Σ, ρ〉 = [Σ, ρ] ∈ K3(C).

In [24, Theorem A] the authors consider a homomorphism e : K3(C) → C/Z and
prove that given a representation ρ : π1(Σ) → SL(n,C) of the fundamental group

of a integral homology 3-sphere Σ one has e([Σ, ρ]) = ξ̃ρ(D), where D is the Dirac
operator on Σ.

On the other hand, expanding diagram (33) we get

(35) H3(Σ;Z)
(fn)∗

//

∼=
��

H3(BSL(n,C)
d;Z)

∼=
��

(ιn)∗

∼=
// H3(BSL(C);Z)

∼=
��

H3(S
3;Z)

(f+n )∗
// H3((BSL(n,C)

d)+;Z)
(ι+n )∗

∼=
// H3(BSL(C)

+;Z)

Which implies that the following diagram commutes

K3(C) = π3(BSL(C)
+)

h
∼=

//

e
**❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

H3(BSL(C)
+;Z)

(ιn)
−1
∗

∼=
// H3(BSL(n,C)

d;Z)

̂̂c2
uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

C/Z

since by (34) and (30) we have

e([Σ, ρ]) = ̂̂c2◦(ιn)−1
∗ ◦h([Σ, ρ]) = ̂̂c2◦(ιn)−1

∗ (〈Σ, ρ〉) = ̂̂c2((fn)∗([Σ])) = ĉρ,2([Σ]) = ξ̃ρ(D).



21

Therefore, Theorem 3.3 is a generalization of [24, Theorem A].

Remark 4.3. When ρ is a 2-dimensional representation (n = 2), in diagram (35)
the homomorphism (ιn)∗ is not longer an isomorphism. We have that

H3(BSL(2,C)
d;Z) ∼= K ind

3 (C) ⊂ K3(C) ∼= H3(BSL(C);Z),

where K ind
3 (C) is the indecomposable part of K3(C), and (ιn)∗ is the inclusion. In

this case we take the composition of f2 : Σ → BSL(2,C) with the map BSL(2,C) →
BSL(n,C) induced by the inclusion SL(2,C) → SL(n,C) with n > 2.

5. CCS-numbers of L = S3/Γ

Consider the compact oriented 3-manifolds of the form L = S3/Γ, where Γ is a
finite subgroup of SU(2). In this section we compute the first and second CCS-
numbers of all irreducible representations α : π1(L) = Γ → GL(n,C). We compare
our results with the ones by C. B. Thomas [48, § 1] on the Chern classes of α.

5.1. The 3-manifolds L = S3/Γ. Let Γ be a finite subgroup of SU(2). As usual, de-
note by [Γ,Γ] the commutator subgroup of Γ, let Ab: Γ → Γ/[Γ,Γ] be the projection,
and denote by Ab(Γ) = Γ/[Γ,Γ], the abelianization of Γ.

Since GL(1,C) is abelian, by the universal property of the abelianization, the map
Ab induces the isomorphism

(36) Hom (Ab(Γ),GL(1,C))
Ab⋆

−−→∼=
Hom (Γ,GL(1,C)),

between one-dimensional representations of Γ and one-dimensional representations
of Ab(Γ). Given ̺ ∈ Hom (Γ,GL(1,C)), we denote by ̺Ab ∈ Hom(Ab(Γ),GL(1,C))
the associated representation via the isomorphism (36).

The group Γ acts on S3 ∼= SU(2) from the left by multiplication. The orbit space
L = S3/Γ is a compact oriented 3-manifold, its fundamental group is π1(L) = Γ and
its homology groups are (see [34, p. 45])

H0(L;Z) ∼= Z, H1(L;Z) ∼= Ab(Γ), H2(L;Z) = 0, and H3(L;Z) ∼= Z.

Thus, L is a rational homology 3-sphere and we can apply the results in Subsec-
tion 3.4. By Lemma 3.8, to compute the first Cheeger-Chern-Simons class ĉρ,1 of
ρ it is equivalent to compute the first Cheeger-Chern-Simons class ĉdet(ρ),1 of the
one-dimensional representation det(ρ) : π1(L) = Γ → GL(1,C). The representation
det(ρ) induces a classifying map (with flat connection) f̄det : L→ BGL(1,C)d. Let

ĉ1 ∈ Ĥ1(BGL(1,C)d;C/Z) ∼= Hom (C∗d,C/Z)

be the universal first Cheeger-Chern-Simons class for flat bundles. We have that
ĉdet(ρ),1 = f̄ ∗

det(ĉ1), hence, given a class ν̄ of H1(L;Z) ∼= Ab(Γ) we have

ĉdet(ρ),1(ν̄) = f̄ ∗
det(ĉ1)(ν̄) = ĉ1((f̄det)∗(ν̄)).
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But the homomorphism induced in homology by the map f̄det

(f̄det)∗ : Ab(Γ) ∼= H1(L;Z) → H1(BGL(1,C)d;Z) ∼= C∗d

is precisely the representation det(ρ)Ab : Ab(Γ) → GL(1,C)d ∼= C∗d. Hence we have
that (see [16, (0.2)])

(37) ĉρ,1(ν̄) = ĉdet(ρ),1(ν̄) = ĉ1(det(ρ)Ab(ν̄)) =
1

2πi
log(det(ρ)Ab(ν̄)).

5.2. Finite subgroups of SU(2). Let 〈2, q, r〉 denote the group given by the pre-
sentation

(38) 〈2, q, r〉 = 〈b, c | (bc)2 = bq = cr〉

and let ζl = e
2πi

l be the l-th primitive root of unity. The classification of the finite
subgroups of SU(2) is well known (see [11, 30, 34]). Following, we list them together
with their irreducible representations. We follow the notation of [15], where χj is the
character of the representation αj and ψt is the character of the representation ρt.
Cyclic groups. Cl, l ≥ 2. Order l. We identify Cl with the l-th roots of unity. The
group Cl has l irreducible representations αj , 1 ≤ j ≤ l given by αj(ζl) = ζj−1

l .
Binary dihedral groups. BD2r = 〈2, 2, r〉, r ≥ 2. Order 4r. It has r+3 irreducible
representations. Four one-dimensional representations, denoted by αj , j = 1, . . . , 4
given by:

r even:

α1(b) = α1(c) = 1, α2(b) = −1, α2(c) = 1,

α3(b) = 1, α3(c) = −1, α4(b) = α4(c) = −1.

r odd:

α1(b) = α1(c) = 1, α2(b) = −1, α2(c) = 1,

α3(b) = i, α3(c) = −1, α4(b) = −i, φ4(c) = −1.

And r − 1 two-dimensional representations, denoted by ρt, 1 ≤ t ≤ r − 1, given for
any r by:

ρt(b) =
(

0 1
(−1)t 0

)
, ρt(c) =

(
ζt2r 0

0 ζ−t

2r

)
,

where ρ1 is the natural representation.
Binary tetrahedral group. BT = 〈2, 3, 3〉. Order 24. It has 7 irreducible represen-
tations, denoted by αj, j = 1, . . . , 7. There are three 1-dimensional representations:

α1(b) = α1(c) = 1, α2(b) = ζ3, α2(c) = ζ23 and α3(b) = ζ23 , α3(c) = ζ3.
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There are three 2-dimensional representations:

α4(b) = ( 0 1
−1 1 ) , α4(c) =

(
0 −ζ3
ζ23 1

)
,

α5(b) =
(

−ζ2
3
ζ3

0 −1

)
, α5(c) =

(
−1 0
ζ2
3

−ζ3

)
,

α6(b) =
(

−ζ3 −ζ2
3

0 −1

)
, α6(c) =

(
0 1

−ζ2
3
ζ3

)
.

where α4 is the natural representation. There is one 3-dimensional representation:

α7(b) =
( −1 −1 −1

1 0 0
0 0 1

)
, α7(c) =

( −1 −1 −1
0 1 0
1 0 0

)
.

Binary octahedral group. BO = 〈2, 3, 4〉. Order 48. It has 8 irreducible represen-
tations, denoted by αj, j = 1, . . . , 8. There are two 1-dimensional representations:

α1(b) = α1(c) = 1, α2(b) = 1, α2(c) = −1.

There are three 2-dimensional representations:

α3(b) = ( 0 1
−1 −1 ) , α3(c) = ( −1 −1

0 1 ) ,

α4(b) =
1
2

(
1+

√
2i −i

−i 1−
√
2i

)
, α4(c) =

1
2

(
−
√
2−i −1
1 −

√
2+i

)
,

α5(b) =
(

0 −i
−i 1

)
, α5(c) =

(
i −

√
2i

−1
√
2−i

)
,

where α4 is the natural representation. There are two 3-dimensional representations:

α6(b) =
(

1 0 −1
0 0 1
0 −1 −1

)
, α6(c) =

(
0 1 1
−1 −1 0
0 1 0

)
,

α7(b) =
( −1 0 −1

1 1 0
1 0 0

)
, α7(c) =

(
0 0 −1
1 0 1
0 −1 1

)
.

There is one 4-dimensional representation:

α8(b) =

(
−ζ3 0 0 0
−1 −1 0 0
0 0 −1 −1
0 0 0 −ζ23

)
, α8(c) =

(
0 0 ζ23 ζ23
0 0 0 ζ3
0 −ζ3 0 0
ζ23 −1 0 0

)
.

Binary icosahedral group. BI = 〈2, 3, 5〉. Order 120. It has 9 irreducible repre-
sentations. One 1-dimensional representation α1; two 2-dimensional representations
α2, α3, where α2 is the natural representation; two 3-dimensional representations
α4, α5; two 4-dimensional representations α6, α7; one 5-dimensional representation
α8 and one 6-dimensional representation α9. To save space we do not list them
explicitly, since we will not need them in what follows.
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5.3. First CCS-numbers of irreducible representations of π1(L). Let L =
S3/Γ with Γ = Cl,BD2r,BT,BO,BI. Denote by b̄, c̄ the images in Ab(Γ) of the
generators b, c of Γ in presentation (38). Table 1 shows the abelianizations of Γ (see
[34, II§5-Table 2]).

Γ < SL(2,C) Ab(Γ) Generators

Cl Cl generated by ζl

BD2r (r even) C2 ⊕ C2 generated by b̄ and c̄

BD2r (r odd) C4 generated by b̄ and c̄ = b̄2

BT C3 generated by c̄ and b̄ = c̄−1

BO C2 generated by c̄ and b̄ = 1

BI {1}
Table 1. Abelianizations of Γ

Let ν̄ be a generator of H1(L;Z) = Ab(Γ) (either ζl, b̄ or c̄ according to Γ in
Table 1). Let α : π1(L) = Γ → GL(n,C) be an irreducible representation. By (37)
and the isomorphism (36) we have

ĉα,1(ν̄) = ĉdetα,1(ν̄) =
1

2πi
log(det(α(ν))),

where ν = ζl if ν̄ = ζl; ν = b if ν̄ = b̄; and ν = c if ν̄ = c̄.
Table 2 shows the first CCS-numbers of the irreducible representations α : π1(L) =

Γ → GL(n,C) with respect of the generators of H1(L;Z) = Ab(Γ).
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Cl α1 α2 . . . αl

ĉα,1(ζl) 0 1
l

. . . l−1
l

BD2r, r = 2l even α1 α2 α3 α4 ρ2t−1 ρ2t

ĉα,1(b̄) 0 1
2

0 1
2

0 1
2

ĉα,1(c̄) 0 0 1
2

1
2

0 0

BD2r, r = 2l − 1 odd α1 α2 α3 α4 ρ2t−1 ρ2t

ĉα,1(b̄) 0 1
2

1
4

3
4

0 1
2

ĉα,1(c̄) 0 0 1
2

1
2

0 0

BT α1 α2 α3 α4 α5 α6 α7

ĉα,1(c̄) 0 2
3

1
3

0 1
3

2
3

0

BO α1 α2 α3 α4 α5 α6 α7 α8

ĉα,1(c̄) 0 1
2

1
2

0 0 1
2

0 0

BI α1 α2 α3 α4 α5 α6 α7 α8 α9

ĉα,1(1) 0 0 0 0 0 0 0 0 0

Table 2. First CCS-numbers

5.4. Second CCS-numbers of irreducible representations of π1(L). Let L =
S3/Γ with Γ = Cl,BD2r,BT,BO,BI. To compute the second CCS-number ĉα,2([L]) of
an irreducible representation α : Γ → GL(n,C) we use the results of [15] as follows.

If α is topologically trivial (ĉα,1 = 0 by Lemma 3.6), by Corollary 3.4 we have that

ĉα,2([L]) = ξ̃α(D). If α is not topologically trivial (ĉα,1 6= 0), by Theorem 3.9 we have

ĉα,2([L]) = ξ̃α(D)− ξ̃det(α)(D).

Proposition 5.1. The first CCS-number of one-dimensional irreducible representa-
tions α : Γ → GL(1,C) of a finite subgroup Γ of SU(2) is zero.

Proof. From Table 2 and by Lemma 3.6 the only 1-dimensional irreducible rep-
resentation which is topologically trivial is the trivial representation α1. Thus,
ĉα1,2([L]) = ξ̃α1

(D) which by definition (20) is zero. If α is not topologically trivial,

ĉα,2([L]) = ξ̃α(D)− ξ̃det(α)(D), but since it is 1-dimensional, we have that α = det(α)
and thus ĉα,2([L]) = 0. �

By Proposition 5.1 we only need to consider the irreducible representations of
dimension bigger than 1. In Table 3 we recall the values of ξ̃α(D) computed in [15].
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BT α4 α5 α6 α7 BO α3 α4 α5 α6 α7 α8

ξ̃α(D) 1

24

17
24

17
24

1
6

ξ̃α(D) 7
12

1

48

25
48

5
6

1
12

5
24

BD2r ρ1 BI α2 α3 α4 α5 α6 α7 α8 α9

ξ̃α(D) 1

4r
ξ̃α(D) 1

120

49
120

19
30

1
30

5
6

1
12

1
6

7
24

Table 3. Values of ξ̃α(D) from [15]. The natural representations are
in boldface.

Table 4 shows the second CCS-numbers of the irreducible representations of Γ. For
BD2r we only give the explicit value for the natural representation ρ1, which is the one
we shall use in the sequel. The values for the other 2-dimensional representations ρt,
1 < t < r can be computed using the formulae in [15, Theorem 5.1] and Theorem 3.9.

Cl α1 α2 . . . αl

ĉα,2([L]) 0 0 . . . 0

BD2r, r even α1 α2 α3 α4 ρ1

ĉα,2([L]) 0 0 0 0 1
4r

BD2r, r odd α1 α2 α3 α4 ρ1

ĉα,2([L]) 0 0 0 0 1
4r

BT α1 α2 α3 α4 α5 α6 α7

ĉα,2([L]) 0 0 0 1
24

3
8

3
8

1
6

BO α1 α2 α3 α4 α5 α6 α7 α8

ĉα,2([L]) 0 0 1
3

1
48

25
48

7
12

1
12

5
24

BI α1 α2 α3 α4 α5 α6 α7 α8 α9

ĉα,2([L]) 0 1
120

49
120

19
30

1
30

5
6

1
12

1
6

7
24

Table 4. Second CCS-numbers

5.5. Comparison with the results of C. B. Thomas. The group Γ acts freely
on S3, then Γ has periodic cohomology of period 4 (period 2 if G is cyclic) (see [9,
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Chapter VI § 9]). In Table 5 we summarize all the Tate cohomology groups Ĥj(Γ;Z)
for j ∈ {0, 1, 2, 3}.

Γ Ĥ0(Γ;Z) Ĥ1(Γ;Z) Ĥ2(Γ;Z) Ĥ3(Γ;Z)

Cl Z/lZ 0 Z/lZ 0

BD2r, r even Z/4rZ 0 Z2 ⊕ Z2 0

BD2r, r odd Z/4rZ 0 Z/4Z 0

BT Z/24Z 0 Z/3Z 0

BO Z/48Z 0 Z/2Z 0

BI Z/120Z 0 0 0
Table 5. Tate Cohomology Groups of Γ.

To check that our computations are correct, we can compare the resuls on Table 4
with the ones given by C. B. Thomas [48, § 1], where the author expreses the total
Chern classes of the irreducible representations of Γ, a finite subgroup of SU(2), in
terms of generators of the cohomology ring of the classifying space BΓ.

Let L = S3/Γ with Γ = Cl,BD2r,BT,BO,BI. Consider the map φ : L → BΓ
and let ς = φ∗([L]), the image of the fundamental class [L] ∈ H3(L;Z) by the
homomorphism φ∗ : H3(L;Z) → H3(BΓ;Z) induced by φ in homology. By (19), the
second CCS-number of a representation α : Γ → GL(n,C) is given by

(39) ĉα,2([L]) = ĉ2(α)(ς),

where ĉ2(α) ∈ H3(BΓ;C/Z) is the second Cheeger-Chern-Simons class of α. Us-
ing the isomorphism (18) H3(BΓ;C/Z) ∼= Hom (H3(BΓ;Z),C/Z) we can define a
homomorphism

H3(BΓ;C/Z) → C/Z

ν 7→ ν(ς).
(40)

by evaluation in the homology class ς ∈ H3(BΓ;Z). By the Universal Coefficients
Theorem, the fact that C is a divisible abelian group and that the homology groups
Hj(BΓ;Z) are torsion, one can prove that Hj(BΓ;C) = 0 for all positive integer j.
Using this, in the cohomology long exact sequence (5) of BΓ corresponding to the
short exact sequence (6), we get an isomorphism Hj(BΓ;Z) ∼= Hj−1(BΓ;C/Z) for
j ≥ 2, under which, the k-th Chern class ck(α) and the k-th Cheeger-Chern-Simons
class ĉk(α) of α correspond to each other

Hj(BΓ;Z) ∼= Hj−1(BΓ;C/Z)

ck(α) ↔ ĉk(α).
(41)
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Composing isomorphism (41) for j = 4 with homomorphism (40) we get a homo-
morphism

(42) H4(BΓ;Z) ∼= H3(BΓ;C/Z) → C/Z,

which sends the second Chern class c2(α) of a representation α to its second CCS-
number ĉ2(α)(ς). Thus, any relation between cohomology classes in H4(BΓ;Z) will
also be satisfied by the corresponding images in C/Z.

For instance, in the case of the binary tetrahedral group BT, we have [48, § 1]:

(43) H•(BT;Z) = Z8[x] + Z3[y],

with x ∈ H4(BT;Z) and y ∈ H2(BT;Z). The total Chern classes of the irreducible
representations of BT given in Subsection 5.2 are

c(α1) = 1, c(α2) = 1− y,

c(α3) = 1 + y, c(α4) = 1 + x− y2,(44)

c(α5) = 1 + x− y, c(α6) = 1 + x+ y,(45)

c(α7) = 1 + 4x− y2.(46)

Recall that the natural representation is α4, its second Chern class c2(α4) generates
H4(BT;Z) [48, Proposition 2]. Therefore, for any representation α : Γ → GL(n,C),
there exists N ∈ Z such that ĉ2(α) = Nĉ2(α4).

From Table 4 we have

(47) 9 · ĉ2(α4)(ς) = 9 ·
1

24
=

9

24
= ĉ2(α5)(ς) = ĉ2(α6)(ς)

and

(48) 4 · ĉ2(α4)(ς) = 4 ·
1

24
=

4

24
= ĉ2(α7)(ς).

On the other hand, from (44) we have that c2(α4) = x − y2. By (43) and (45) we
have

(49) 9 · c2(α4) = 9(x− y2) = 9x− 9y2 = x = c2(α5) = c2(α6),

and by (46) we have

(50) 4 · c2(α4) = 4(x− y2) = 4x− 4y2 = 4x− y2 = c2(α7).

Hence, relations (49) and (50) correspond, respectively, to relations (47) and (48)
under homomorfism (42). The other cases are analogous.
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6. Applications to singularity theory

In this section, motivated by the results of Section 5, we define new invariants for
surface singularities. The main result of the section recovers the spectrum of rational
double point singularities, from the CCS-numbers of the irreducible representations
of its local fundamental group. Finally, using a result by Atiyah, Patodi and Singer
we show other ways to compute the invariant ξ̃ρ(D) with ρ a representation of the
local fundamental group of a normal surface singularity with link a rational homology
sphere, using a resolution or an smoothing of the singularity.

6.1. Normal surface singularities. We recall basic facts about normal surface
sigularities, for further reference see [39]. Denote by (X, x) either a complex analytic
normal surface germ or the spectrum of a normal complete C-algebra of dimension
2. Let π : X̃ → X , be a resolution of (X, x), i.e., a proper holomorphic map from

a smooth surface X̃ to a given representative of (X, x) such that π is biholomorphic
in the complement of π−1(x). Denote the exceptional divisor by E := π−1(x), with
irreducible components E1, . . . , Es. The resolution is minimal if there is no rational
irreducible exceptional divisor Ei with self intersection E2

i = −1. Fix any resolution
π : X̃ → X . The group of divisors Div(X̃) of X̃ is defined as

Div(X̃) :=
{∑

njDj

∣∣∣Dj is a irreducible curve on X̃ and nj ∈ Z

}
.

The support of a divisor D =
∑
njDj , denoted by |D|, is the union of the irreducible

curves Dj; i.e., |D| =
⋃
Dj.

Definition 6.1. Let D be a divisor. We say that:

(1) D is a cycle if |D| ⊂ E.
(2) D is a rational cycle if D =

∑
rjEj where rj ∈ Q.

An integer or rational cycle is effective, if rj ≥ 0 for all j.

There is a natural ordering of the cycles: Let Z ′ =
∑
n′
jEj and Z =

∑
njEj two

cycles. We say that Z ′ ≤ Z if and only if n′
j ≤ nj for any j. Moreover, there is also

a notion of intersection of cycles given as follows:

Z ′ · Z =
(∑

n′
iEi

)
·
(∑

njEj

)
=
∑

i,j

ninj (Ei ·Ej) .

Denote by

Ztop := {Z 6= 0 effective cycle |Z · Ej ≤ 0 for all j } .

It is well known that Ztop has a unique minimal element Zfund, called the fundamental
cycle (sometimes also called the minimal cycle or Artin’s fundamental cycle). See [38,
Chapter 2] for more details.
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Definition 6.2. The geometric genus pg of X is defined to be the dimension as a

C-vector space of H1(X̃,OX̃). It is independent of the choice of the resolution.
We say that (X, x) has a rational singularity, if the geometric genus of X is zero.

A quotient surface singularity (X, x) is isomorphic to a germ (C2/Γ, 0), where Γ
is a small2 finite subgroup of GL(2,C). If Γ and Γ′ are two small finite subgroups of
GL(2,C), then C2/Γ and C2/Γ′ are analytically isomorphic if Γ and Γ′ are conjugate.
Any quotient surface singularity is a rational normal surface singularity (for more
details see [22, Chapter 7, Section 4]).

Let X be a representative of the germ (X, x), we may assume that X \ {x} is
connected and (X, x) ⊂ (Cn, 0). If ǫ > 0 is small enough, the intersection L =
X ∩ S2n−1

ǫ is called the link of (X, x). Recall that the link does not depend on
ǫ. Moreover, the link L is a smooth, compact, connected and oriented 3-manifold.
In singularity theory is common to denote πloc

1 (X, x) = π1(L) and call it the local
fundamental group. In the case of a normal surface singularity, the local fundamental
group satisfies the following characterization.

Proposition 6.3 ([31]). For a normal surface singularity (X, x),

(1) The group πloc
1 (X, x) is finite if and only if (X, x) is a quotient singularity.

(2) If πloc
1 (X, x) is infinite, then the link L is an Eilenberg–MacLane space of type

K(π1(L), 1). Furthermore, the local fundamental group is torsion free.

Remark 6.4. The link of any normal rational surface singularity is a rational ho-
mology sphere (see [38, Exercise 1.27 and § 3.9]). Moreover, the exceptional divisor
of their minimal resolution is the union of finitely many components Ei isomorphic
to projective lines CP1, where E2

i ≤ −2 (see [38, § 3.9]).

A rational double point singularity (X, x) is a quotient singularity (C2/Γ, 0) where
Γ is a finite subgroup of SL(2,C). Every finite subgroup of SL(2,C) is small and
it is conjugate to a subgroup of SU(2), thus, rational double point singularities are
isomorphic to germs of the form (C2/Γ, 0) with Γ = Cl,BD2r,BT,BO,BI, and their
links are the rational homology 3-spheres L = S3/Γ mentioned in Section 5. Rational
double point singularities are the only quotient surface singularities that embed in
C3. For more details on rational double point singularities see for instance [34].

Remark 6.5. In the case of rational double point singularities, the fundamental cycle
is well known (see [22, Example 7.2.5]). Table 6 contains the coefficients (without any
particular ordering) of the fundamental cycle for rational double point singularities.

Let O = OCn+1,0 be the ring of germs of holomorphic functions and let f ∈ O
with an isolated critical point at 0. Let µ = µ(f) be the Milnor number of f and

2with no (pseudo)reflexions.
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Singularity Coefficients of Zfund

C2/Cl 1, 1, . . . , 1 (l − 1 times)

C2/BD2r 1, 1, 1 and 2, . . . , 2 (r − 1 times)

C2/BT 1, 1, 2, 2, 2, 3

C2/BO 1, 2, 2, 2, 3, 3, 4

C2/BI 2, 2, 3, 3, 4, 4, 5, 6

Table 6. Coefficients of Zfund of rational double point singularities

let (X, 0) be the germ of the isolated hypersurface singularity defined by f , i. e.,
X = f−1(0). The spectrum sp(X) of (X, 0) is a notion introduced by Steenbrink [47]
using the mixed Hodge structure on the cohomology of the Milnor fibre associated
to a complex hypersurface singularity together with the monodromy. It is a (multi)-
set of µ rational numbers called spectral numbers: sp(X) = {α1 ≤ α2 ≤ α3 ≤
· · · ≤ αµ}. The spectrum is an invariant of a singularity: let f, g ∈ O, X = f−1(0)
and Y = g−1(0); if f and g are right equivalent f ∼ g, then sp(X) = sp(Y ).
In fact, if f ∼ u · g, where u is a unit of O, we say that f and g are contact
equivalent and then sp(X) = sp(Y ). The spectrum has a lot of deeper properties, for
instance: if α ∈ sp(X), then λ := exp(2πiα) is an eigenvalue of the cohomological
monodromy transformation. In other words, the spectral numbers α1, . . . , αµ are
specific logarithms of the monodromy eigenvalues. The spectra of rational doble
point singularities are given in Table 7, where in the pair (s,m), s is the spectral
number and m its multiplicity see [47, p. 165].

Singularity Spectrum

C2/Cl (1
l
, 1), . . . , ( l−1

l
, 1)

C2/BD2r, r = 2l (even) ( 1
2(r+1)

, 1), . . . , ( 2l−1
2(r+1)

, 1), (1
2
, 2), ( 2l+3

2(r+1)
, 1), . . . , ( 2r+1

2(r+1)
, 1)

C2/BD2r, r = 2l − 1 (odd) ( 1
2(r+1)

, 1), . . . , ( 2l−1
2(r+1)

, 1), (1
2
, 1), ( 2l+3

2(r+1)
, 1), . . . , ( 2r+1

2(r+1)
, 1)

C2/BT ( 1
12
, 1), ( 4

12
, 1), ( 5

12
, 1), ( 7

12
, 1), ( 8

12
, 1), (11

12
, 1)

C2/BO ( 1
18
, 1), ( 5

18
, 1), ( 7

18
, 1), ( 9

18
, 1), (11

18
, 1), (13

18
, 1), (17

18
, 1)

C2/BI ( 1
30
, 1), ( 7

30
, 1), (11

30
, 1), (13

30
, 1), (17

30
, 1), (19

30
, 1), (23

30
, 1), (29

30
, 1)

Table 7. Spectrum of rational double point singularities
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6.2. Recovering the spectrum of rational double point singularities from
the CCS-numbers. Let (X, x) be a normal surface singularity. Its link L is a
compact oriented 3-manifold, denote by Γ = π1(L) its fundamental group. Let
ρ : Γ → GL(n,C) be a representation. By (39) the second CCS-number ĉρ,2([L]) of ρ
can be computed as ĉ2(ρ)(ς). By Remark 2.6 the Cheeger-Chern-Simons class ĉ2(ρ)
only depends on the representation ρ, and the homology class ς only depends on L
(see Subsection 5.5). Thus, all the second CCS-numbers ĉρ,2([L]) can be determined
using cohomological information of the classifying space and the homology class ς
coming from L. We would like to obtain an invariant coming from the topology of
L and from the singularity. For this, we introduce a variation of the second CSS-
number ĉρ,2([L]) for normal surface singularities which takes into account information
from a resolution of X .

Definition 6.6. Let (X, x) be a normal surface singularity and L its link. Let
π : X̃ → X be a resolution and Zfund =

∑
niEi its fundamental cycle. Let ρ : π1(L) →

GL(n,C) be a representation. The invariant Ξρ(X, X̃) is given by

Ξρ(X, X̃) :=

(
1 +

∑
n2
i

1 +
∑
ni

)
ĉρ,2([L]).

Remark 6.7. Note that the definition of Ξρ(X, X̃) depends on the resolution.

Our main result in this section is the following Theorem 6.8, which tells us how
to recover the spectrum of a rational double point singularity from the first CCS-
numbers of the irreducible representations of its local fundamental group and the
invariant Ξρ(X, X̃) for the minimal resolution and the natural representation.

Theorem 6.8. Let (X, x) ∼= (C2/Γ, 0) be the germ of a rational double point sur-

face singularity. Let π : X̃min → X be the minimal resolution. Then, the spec-
trum of (X, x) and its multiplicities can be obtained from the non-zero first CCS-
numbers of the irreducible representations of Γ = πloc

1 (X, x) and ΞαNat
(X, X̃min),

where αNat : Γ → SL(2,C) is the natural representation.

Proof. Let π : X̃min → X be the minimal resolution. Denote by Zfund =
∑
niEi its

fundamental cycle. Denote by tΓ =
1+

∑
n2
i

1+
∑
ni

. Let αNat : Γ → SL(2,C) be the natural

representation. In the following table we have computed the rational number tΓ and
the invariant ΞαNat

(X, X̃min) from Table 6 and Table 3 respectively:

BD2r BT BO BI

tΓ
2r
r+1

24
12

= 2 48
18

120
30

= 4

ΞαNat
(X, X̃min)

1
2(r+1)

1
12

1
18

1
30
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We can recover the spectral numbers given in Table 7 as follows:

(1) There are two cases:
Γ = Cl: Each different non-zero first CCS-number of an irreducible rep-
resentation of Cl, with respect to the generator ζl of H1(BCl;Z), is a
spectral number with multiplicity 1.

Γ 6= Cl: Each different non-zero first CCS-number of an irreducible rep-
resentation of Γ, with respect to the class c̄ of H1(BΓ;Z), is a spectral
number with multiplicity 1 (repeated first CCS-numbers are counted just
one time).

(2) If ΞαNat
(X, X̃min) 6= 0, it is of the form 1

m
for some integer m and it is a

spectral number with multiplicity 1.
(3) One needs to consider two cases:

BD2r: The multiples (2i+ 1) ·ΞαNat
(X, X̃min) with i = 1, . . . , r are the rest

of the spectral numbers, each one with multiplicity 1.
BT, BO or BI: The multiples k ·ΞαNat

(X, X̃min) with 1 < k < m such that
k and m are coprime, are the rest of the spectral numbers, each one with
multiplicity 1.

Let us check this case by case.

Case Cl: From Table 4 the first CCS-numbers of non-trivial irreducible repre-
sentations of Cl, with respect to the generator ζl, are

1
l
, . . . , l−1

l
, which are

precisely the spectrum. All of them with multiplicity 1.
Case BD2r: From Table 4 the non-zero first CCS-numbers of the irreducible

representations of BD2r, with respect to c̄, are equal to 1
2
, which we take

with multiplicity 1. Also the number ΞαNat
(X, X̃min) = 1

2(r+1)
is a spectral

number with multiplicity 1. Taking the multiples (2i+1)·ΞαNat
(X, X̃min) with

i = 1, . . . , r we get: 3
2(r+1)

, 5
2(r+1)

, . . . , 2r+1
2(r+1)

which are the rest of the spectral

numbers, all taken with multiplicity 1. Thus, all the spectral numbers have
multiplicity 1, except for the case r even (r = 2l), where the number 1

2
has

multiplicity 2, one coming from the first CSS-numbers, and the other one
from 2l+1

2(r+1)
= r+1

2(r+1)
= 1

2
.

Case BT: From Table 4 the non-zero first CCS-numbers of the irreducible rep-
resentations of BT, with respect to c̄, are 4

12
and 8

12
, which are spectral num-

bers, each one taken with multiplicity 1. Also the number ΞαNat
(X, X̃min) =

1
12

is a spectral number with multiplicity 1. Taking the multiples k · 1
12

such that

1 < k < 12 and k is coprime with 12 we get: 5
12
, 7
12
, 11
12

which are the rest
of the spectral numbers, all taken with multiplicity 1. Thus, all the spectral
numbers have multiplicity 1.
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Case BO: From Table 4 the non-zero first CCS-numbers of the irreducible rep-
resentations of BT, with respect to c̄, are equal to 1

2
= 9

18
which is a spectral

number, which we take with multiplicity 1. Also ΞαNat
(X, X̃min) = 1

18
is a

spectral number with multiplicity 1. Taking the multiples k · 1
18

such that

1 < k < 18 and k is coprime with 18 we get: 5
18
, 7
17
, 11
18
, 13
18
, 17
18

which are the rest
of the spectral numbers, all taken with multiplicity 1. Thus, all the spectral
numbers have multiplicity 1.

Case BI: All the first CCS-numbers are zero. ΞαNat
(X, X̃min) =

1
30

is a spectral

number with multiplicity 1. Taking the multiples k · 1
30

such that 1 < k < 30
and k is coprime with 30 we get: 7

30
, 11
30
, 13
30
, 17
30
, 19
30
, 23
30
, 29
30

which are all the
spectral numbers, taken with multiplicity 1.

This proves the assertion. �

Remark 6.9. Notice that for Γ = BT,BO,BI and Γ = BD2r with r even, the
homology class c̄ is a generator of H1(BΓ;Z) except for the case of Γ = BD2r with r
odd. If in this case we take the first CCS-numbers with respect to the generator b̄,
we get the numbers 1

4
and 3

4
which are not spectral numbers.

Remark 6.10. If (C2/Γ, 0) is a rational double point singularity with link L, from
Table 2 the natural representation αNat : Γ → SL(2,C) is topologically trivial. By

Theorem 3.3 ĉαNat,2([L]) = ξ̃αNat
(D), where D is the Dirac operator of L. Thus

ΞαNat
(X, X̃) =

(
1+

∑
n2
i

1+
∑
ni

)
ξ̃αNat

(D).

A natural question is if one gets interesting invariants replacing in Ξρ(X, X̃) the
Dirac operator by other (self-adjoint) differential operators.

6.3. McKay correspondence. In this section we recall basics on McKay corre-
spondence. We assume basic familiarity with dualizing sheaves, modules and normal
surface singularities, see [10, 38, 22] for more details.

Let X be a normal variety. Let HomOX
(•, •) and Ext

i
OX

(•, •) be the sheaf the-
oretic Hom and Ext functors (see [20]). An OX -module M is indecomposable if it
cannot be written as a direct sum of two non-trivial submodules. The dual of an
OX -module M is denoted by M

∨

:= HomOX
(M,OX). An OX -module M is called

reflexive if the natural homomorphism from M to M
∨∨

is an isomorphism.
Let (X, x) be the germ of a normal surface singularity and π : X̃ → X be a

resolution. Recall the following definition of full sheaves as in [26].

Definition 6.11. An OX̃-module M is called full if there is a reflexive OX -module

M such that M ∼= (π∗M)
∨∨

. We call M the full sheaf associated to M .



35

By Artin and Verdier [2], the classical McKay correspondance can be stated as
follows: for rational double point singularities there is a one-to-one correspondence
between,

• non-trivial irreducible representations of πloc
1 (X, x),

• non-trivial indecomposable reflexive OX-modules,
• irreducible components of the exceptional divisor of the minimal resolution
of X .

Remark 6.12. In general, given any (X, x) normal surface singularity and ρ a repre-
sentation of πloc

1 (X, x), by the Riemann-Hilbert correspondence we obtain a reflexive
OX -module. Such a module depends on the representation, therefore we will denote
it by Mρ. The reader may see [19] for more details.

If the singularity is not a rational double point singularity, we need to impose an
additional hypothesis to produce a classification analogous to the McKay correspon-
dence. For rational singularities this property is called speciality, this has been
done by several people: Esnault [17], Wunram[49], Riemenschneider [43], Iyama and
Wemyss [23]. For Gorenstein singularities, it is called cohomological speciality by
Fernández de Bobadilla and Romano-Velázquez [18].

Definition 6.13. Let (X, x) be the germ of a normal surface singularity. Let M be
a reflexive OX -module of rank r. We say that M is

(1) special if Ext 1
OX

(M,OX) = 0,

(2) cohomologically special if for any resolution π : X̃ → X the full sheaf M

associated toM satifies dimC

(
R1π∗

(
M

∨
))

= rpg, where pg is the geometric

genus (Definition 6.2).

For representations of the local fundamental group, we have the following defini-
tion.

Definition 6.14. Let (X, x) be a normal surface singularity and ρ be a representation
of πloc

1 (X, x). LetMρ be the reflexive OX -module given by ρ and the Riemann-Hilbert
correspondence. We say that the representation ρ is

(1) special if Mρ is special.
(2) cohomologically special if Mρ is cohomologically special.

Remark 6.15. By [49], in rational double point singularities any representation
(reflexive module) is a special representation (special reflexive module). Moreover,
by [18] in this case the notions of special and cohomologically special agree.

Let (X, x) be the germ of a rational double point surface singularity and con-
sider the natural representation αNat : π

loc
1 (X, x) → SL(2,C). By Theorem 6.8
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ΞαNat
(X, X̃min) is always a spectral number. Furthermore, for any irredicible rep-

resentation α : πloc
1 (X, x) → GL(n,C) if its first Cheeger-Chern-Simons class ĉ1(α)

is not zero, then the corresponding first CCS-number ĉ1(α)(c̄) is always a spectral
number. We would like to define a new invariant for rational or Gorenstein surface
singularities (X, x) using the Cheeger-Chern-Simons classes ĉi(α) with i = 1, 2 of
the irreducible representations Irr(πloc

1 (X, x)) of πloc
1 (X, x), but in order to define an

invariant of the singularity and not only of the local fundamental group, we will use
only special or cohomologycally special representations (see Example 6.17 below).
The following definition is a natural consequence of this remark.

Definition 6.16. Let (X, x) be the germ of a rational surface singularity and L its
link. The topological spectrum of (X, x) is the following set

TSpf(X) = {0 6= ĉα,1 ∈ H1(L;C/Z) |α ∈ Irr(πloc
1 (X, x)), α is special}.

Moreover, if (X, x) is a quotient singularity, the topological spectrum of (X, x) is the
following set

TSpf(X) = {ĉα,1 ∈ H1(L;C/Z) |α ∈ Irr(πloc
1 (X, x)), α is special and ĉ1(α) 6= 0 }

⋃
{ĉαNat,2 |αNat is the natural representation}.

If (X, x) is a Gorenstein singularity, the topological spectrum of (X, x) is the following
set

TSpf(X) = {0 6= ĉα,1 ∈ H1(L;C/Z) |α ∈ Irr(πloc
1 (X, x)), α is cohomologically special}.

The following example shows that the topological spectrum of a singularity does
depend on the singularity, not only on the local fundamental group.

Example 6.17. Consider the following cyclic subgroups of order 3:

Γ1 =

〈(
ζ3 0
0 ζ3

)〉
⊂ GL(2,C) and Γ2 =

〈(
ζ3 0
0 ζ23

)〉
⊂ SL(2,C).

Denote by

(X1, x1) := (C2/Γ1, 0) and (X2, x2) := (C2/Γ2, 0),

the corresponding quotient singularities. The germ (X2, x2) is a rational double
point singularity. Let Lj be the link of the singularity (Xj, xj) for j = 1, 2. In both
cases, the links are 3-dimensional lens spaces. Moreover, π1(Lj) ∼= C3 for j = 1, 2.
Therefore π1(L1) and π1(L2) have the same irreducible non-trivial representations,
namely α2 and α3. By Artin and Verdier [2] and Wunram [49] we have that:

• for the singularity (X1, x1) there is only one non-trivial special irreducible
representation and,

• for the singularity (X2, x2) both α2 and α3 are special representations.
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Therefore, TSpf(X1) has only one cohomology class but TSpf(X2) has two cohomol-
ogy classes. Hence, even if π1(L1) and π1(L2) have the same representation theory,
the topological spectrums of (X1, x1) and (X2, x2) are indeed different. They depend
on the singularity.

By Theorem 6.8 and Remark 6.15 for rational double point singularities X we can
recover some spectral numbers from the topological spectrum TSpf(X) evaluating in
particular homology classes: ĉα,1(c̄) and ĉαNat,2([L]), and taking appropriate multiples
of the obtained numbers.

Remark 6.18. Let (C2/Γ, 0) be a quotient singularity (Γ ⊂ GL(2,C)). By Wun-
ram [49], the coefficients n1, . . . , ns of the fundamental cycle on the minimal reso-

lution X̃min of X coincide with the dimensions of the non-trivial special irreducible
representations α1, . . . , αs of Γ. Thus, for quotient singularities the multiplicative

factor
1+

∑
n2
i

1+
∑
ni

that appears in Ξρ(X̃min, D) (Definition 6.6) for the minimal resolution

X̃min depends on the group (dimensions of irreducible representations) and on the
singularity (only the special ones).

In the case of a rational double point singularity (X, x) ∼= (C2/Γ, 0) (Γ ⊂ SL(2,C)),
all the non-trivial irreducible representations are special (Remark 6.15) and it is well-
known that the order |Γ| of Γ is given by |Γ| = 1 +

∑s
i=1 rankα

2
i . Therefore,

1 +
∑s

i=1 n
2
i

1 +
∑s

i=1 ni
=

|Γ|

1 +
∑s

i=1 rankαi
.

By Remark 6.10, in this case one has ΞαNat
(X, X̃) =

(
1+

∑
n2
i

1+
∑
ni

)
ξ̃αNat

(D), and by

Table 3 ξ̃αNat
(D) = 1

|Γ| , for Γ = BD2r,BT,BO,BI. Therefore, in these cases one has

ΞαNat
(X, X̃) =

1

1 +
∑s

i=1 rankαi
.

6.4. The invariant ξ̃ρ(D) via the McKay correspondence. In this final section

we show how to compute the invariant ξ̃ρ(D) using the McKay correspondence. The
advantage of this approach is that it is more readily computable.

Let (X, x) be the germ of a normal surface singularity. Denote by L the link.
Suppose that L is a rational homology sphere, e.g., the link of any rational singularity
(see Remark 6.4). Let π : X̃ → X be a resolution such that E is a normal crossing
divisor. Let (L, σcan) be the link equipped with the canonical spinc structure σcan
induced by the resolution (see [40, § 2]). Moreover, the almost complex structure on

X̃ gives a spinc structure σX̃ on X̃ such that its restriction to L is σcan. From now
on, we will use this spinc structure.
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Theorem 6.19. Let (X, x) be the germ of a normal surface singularity. Suppose

that the link L is a rational homology sphere. Let π : X̃ → X be a resolution with
E a normal crossing divisor. Let ρ : π1(L) → GL(n,C) be a representation. Denote
by Mρ the reflexive OX-module given by Riemman-Hilbert correspondence and ρ.
Denote by Mρ the corresponding vector bundle. Then,

(51) ξ̃ρ(D) =

∫

X̃

(chMρ − n) T (X̃),

where ch is the Chern character and T the Todd class. Moreover, if ρ is topologically
trivial, then ĉρ,2([L]) is given by (51).

Proof. The proof follows by [4, pp. 415] and Corollary 3.4. �

Corollary 6.20. Let (X, x) be the germ of a quotient surface singularity. Let
π : X̃ → X be the minimal resolution. Denote by E =

⋃
Ej the exceptional divi-

sor. Then, there exists a well-defined natural map

Ψ: {E1, . . . , En} → Q/Z.

Proof. By [49], there exists a one-to-one correspondence between the irreducible
components of the exceptional divisor and the non-trivial special representations of
the local fundamental group. Thus, the map is given by Theorem 6.19 (recall that
any quotient singularity is a rational singularity). �

We can obtain a similar result if (X, x) has a smoothing with Milnor fiber F . In
the case of a hypersurface one can take F to be the usual Milnor fiber. Then, F
has a spinc structure whose restriction to the link coincides with σcan (see [40, § 2]).
Thus,

Theorem 6.21. Let (X, x) be the germ of a normal surface singularity. Suppose
that the link L is a rational homology sphere. Let π : X̃ → X be a resolution with E
a normal crossing divisor. Suppose that (X, x) has a smoothing with Milnor fiber F .
Let L be the link of (X, x). Let ρ : π1(L) → GL(n,C) be a representation and Vρ its
associated flat vector bundle over L. Suppose that there exist an extension Vρ of Vρ
over F . Then,

(52) ξ̃ρ(D) =

∫

F

(ch(Vρ)− n) T (F ).

Moreover, if ρ is topologically trivial, then ĉρ,2([L]) is given by (52).

Proof. The proof follows by [4, pp. 415] and Corollary 3.4. �
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División de Ingenieŕıas, Campus Guanajuato, Universidad de Guanajuato, Av. Juárez
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