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Abstract: By applying the holographic principle that comes from black hole physics 

and information entropy (𝑆𝑖𝑒𝑛𝑡) introduced by Claude Shannon in 1948, we derive the 

mechanism of how similar patterns or tendencies observed from evolution processes of 

different systems are formed, such as maximum entropy principle, power law and 

lognormal distributions, self-preserving and self-organization. Taking a system of 

atmospheric particles as an example, we prove both self-preserving of the geometric 

standard deviation (GSD) and lognormal distribution appearing on the system patterns 

is caused by maximum information entropy principle (MIEP); By deducing 

thermodynamic entropy (𝑆𝑡𝑒𝑛𝑡) is a form of 𝑆𝑖𝑒𝑛𝑡, and building up a particle system 

approaching a part of the holographic screen, we found the information probability 

statistics of particle number size distribution are realized on the holographic screen, 

resulting in the presence of information entropic force (𝐹𝑖𝑒𝑛𝑡). 𝐹𝑖𝑒𝑛𝑡 drives the system 

to evolve in the direction of MIEP. Owing to the initial state, the evolution can undergo 

an increasing 𝑆𝑖𝑒𝑛𝑡 and enhanced discretization, or a decreasing 𝑆𝑖𝑒𝑛𝑡 and weakened 

discretization. The latter process corresponds to the system evolution tendency of self-

organization; by introducing 𝐹𝑖𝑒𝑛𝑡 into the flow field, we construct the unification field 

for fluid system evolution, including  𝐹𝑖𝑒𝑛𝑡 , 𝑆𝑖𝑒𝑛𝑡 , the eewton potential (∅ ), the 

diffusion process, and eavier–Stokes equations, which are important for airborne 

particle motion, indicating that the atmospheric particle dynamics could be driven by 

𝐹𝑖𝑒𝑛𝑡 . By numerical simulations of particle collisions and coagulation based on the 

classic theory of integral–differential Smoluchowski equation, we prove the above 
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conclusions that the evolution of the particle system is indeed information distributing, 

inherited from the initial state, measured by information probability, evaluated by 𝑆𝑖𝑒𝑛𝑡, 

and driven by 𝐹𝑖𝑒𝑛𝑡 . We further prove for quantum mechanism, wave function also 

satisfies MIEP. The findings of this study indicate that based on holographic principle, 

it may be possible to guide the evolution of a given system towards certain desirable 

patterns and outcomes across many scientific disciplines. 

Keyword: Holographic principle, system evolution, maximum entropy, self-organizing, 

self-preserving, lognormal distribution 

1. Background.  

Similar patterns or tendencies are observed from various systems evolution, such as 

lognormal distributions, power law distribution, self-preserving and self-organizing. 

Lognormal distributions are continuous probability distributions of a random variable, 

the logarithm of which displays a normal distribution. As a statistical methodology, it 

has been successfully applied in representing system states across sciences 1. From the 

perspective of statistics, self-preserving distribution is evaluated using the standard 

deviation, which represents the discretization degree of a system. It can be the result of 

either strengthening or weakening of discretization, as the final state has nothing to do 

with the initial state 2. eamely, self-preserving can be the result of individual 

components developing into order or disorder, while self-organization (self-assembly) 

occurs when a spontaneous increase in order is produced from the cumulative 

interactions of individual components of disordered systems 3. These concepts have 
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been observed and proven useful for displaying states in diverse systems. However, 

each system is highly dynamic with individual components proceeding in random 

motions, it is challenging to find a universal mechanism driving evolutions of so many 

disciplines exhibiting identical patterns or tendencies. Limpert summarized 61 

categories of lognormal distributions from disciplines including geology and mining, 

human medicine, environment, atmospheric sciences, and aerobiology, phytomedicine 

and microbiology, plant physiology, ecology, food technology, linguistics, social 

sciences, and economics He came up a question: what the underlying principles of 

permeability that cause lognormal variability?4 

 

A framework for maximum information entropy principle (MIEP) proposed by 

Shannon and supplemented by Jaynes 5-7 sheds light on exploring probability 

distributions for individual components in a dynamic system 8-14. For example, tree-like 

networks defined by the absence of loops, are characteristic of tributary river networks 

and found abundantly in nature across different systems and scales (e.g., botanical trees, 

veins of leaves, blood vessels, lightning, and river networks). Tejedora et al. (2017) 

proved tree-like networks can be interpreted using MIEP15. The basic idea is that the 

shape of the least biased distribution consistent with knowledge of the prior constraints 

of a given system can be inferred by MIEP. The recent growth of the number of 

publications related to the MIEP and the obtained interesting results in different areas 
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of science, from physics to biology, are the best proof that the MEPP is scientific and 

is important. 

 

In addition to MIEP, Martyushev reviewed the main areas of research that laid the 

foundations for the maximum entropy production principle (MEPP)16. This principle 

implies that the value of entropy production not only remains positive but is also 

maximized during the evolution of a nonequilibrium system. The review discussed its 

applications and limitations in the areas of theoretical physics, geophysics, and 

hydrodynamics, nonequilibrium crystallization, biology, material science, astrophysics, 

brain science and neuroscience. The review concluded that the MEPP is a universal and 

very fruitful approach in many branches of science, and suggests us to view the world 

from a common standpoint without dividing it into the living and nonliving. At the 

deepest levels of this world, some ‘primitive’ physicochemical processes occur, which 

obey the MEPP. 

 

Although there are still controversial opinions on the link between MIEP and MEPP, 

the reason why MIEP produces the least biased predictions of distribution shapes and 

why MEPP can be found from different areas of science, and under what circumstances 

they can be applied, have not been elucidated.  
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Considering above gaps in knowledge: i) this study proves that lognormal distributions 

and power law distributions are indeed the distribution arising from MIEP for individual 

components in systems, and ii) self-preserving is a direct reflection of the state of MIEP. 

iii) Given that maximum entropy-driven phenomena or maximum entropy-stabilized 

reactions are reported across a variety of disciplines including biology, chemistry and 

materials 17-26 27-30, and self-organizing systems can be found practically everywhere, 

some studies have employed the concepts of entropy and information31 in order to 

understand them, we wonder whether there is an existing force driving diverse systems, 

to evolve along the same direction of maximum entropy via interactions among 

individual components to induce statistical regularities and reconstruct information 

distributions. The strongest supporting evidence for the holographic principle comes 

from black hole physics 32, 33. So next, based on thermodynamic entropy being as a form 

of information entropy and building up a holographic screen, we derive a potential 

information entropy force (𝐹𝑖𝑒𝑛𝑡) driving the system evolution either by an increasing 

information entropy (𝑆𝑖𝑒𝑛𝑡) and enhanced discretization, or by a decreasing information 

entropy and weakened discretization. And iv) found the latter process corresponds to 

self-organization. v) Then we constructed the unification field for fluid system 

evolution by introducing 𝐹𝑖𝑒𝑛𝑡. vi) And further proved above findings by numerical 

simulations of particle collisions and coagulation based on the classic theory of 

integral–differential Smoluchowski equation. vii) We also prove MIEP is applicable to 

the solution of Schrödinger equation in quantum mechanics. viii) We proposed three 
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equations to describe the evolution state of any system. And the relevant promising 

directions were discussed. Overall, we found based on the holographic principle, the 

system evolution is indeed information distributing, inherited from the its initial state, 

measured by information probability, evaluated by 𝑆𝑖𝑒𝑛𝑡, and driven by 𝐹𝑖𝑒𝑛𝑡. 

 

2. Lognormal distribution and power law distribution obey MIEP.  

The information entropy (𝑆𝑖𝑒𝑛𝑡) for a given system with random variable x {x1, x2…xn} 

(n ≥ 1) is shown as equation (2-1):  

                                                      𝑆𝑖𝑒𝑛𝑡 = −𝑟∑𝑝𝑖 ∗ ln(𝑝𝑖)

𝑛

𝑖=1

                                        (2 − 1) 

And the constraints are shown as equation (2-2): 

                                 ∑ 𝑝𝑖
𝑛
𝑖=1 = 1                                              (2 − 2) 

where r equals 
1

𝑙𝑛2
, the probability of each variable is p {p1, p2,…pn},(0≤𝑝𝑖≤1, i=1, 2,…, 

n). The typical mathematical expression of the characteristics, 𝑓𝑘 , namely, the 

probability of normalized constraints is shown as equation (2-3): 

                                            𝑓𝑘 =∑𝑝𝑖 ∗ 𝑓𝑖
 𝑘

𝑛

𝑖=1

(𝑘 = 1,2,3,4… ,𝑚)                                (2 − 3) 

where k is the serial number for the typical characteristics, k = 1, 2, 3……m; and 𝑓𝑖
 𝑘 

is the kth typical characteristic of the ith subsystem.  

 

For an airborne particle system, its size distribution ranges over several orders of 

magnitude, hence logarithmic coordinate (ln𝑑𝑝𝑖) is always adopted to characterize the 



8 

 

particle size distribution34. pi is the probability of particles belonging to the ith size bin, 

𝑓𝑖
𝑘  is equal to (ln (𝑑𝑝))𝑘 , and 𝑓𝑘  is the mean of (ln (𝑑𝑝))𝑘 . Lagrange multiplier 

methodology is always adopted to obtain solutions for extreme problems with 

constraint conditions. Hence the Lagrange function for obtaining MIEP of equation (2-

1) is built up via the left side of the kth formula in equation (2-2) is multiplied by 𝜆𝑘 −

1, and the right side of equation (3) is multiplied by 𝜆𝑘, as given by equation (2-4): 

      L(𝜆𝑘, 𝜆, 𝑝𝑖) = −∑𝑝𝑖 ∗ 𝑙𝑛(𝑝𝑖)

𝑛

𝑖=1

−∑𝜆𝑘∑𝑝𝑖 ∗ 𝑓𝑖
(𝑘)

𝑛

𝑖=1

− (λ − 1)∑𝑝𝑖         (2 − 4)

𝑛

𝑖=1

𝑚

𝑘=1

 

The partial derivative of equation (2-4) is shown as equation (2-5): 

𝜕𝐿

𝜕𝑝𝑖
= −1 − 𝑙𝑛𝑝𝑖 −∑𝜆𝑘𝑓𝑖

(𝑘) − (𝜆 − 1)                                 

𝑚

𝑘=1

(2 − 5) 

Setting equation (2-5) equal to 0 and replace 𝑓𝑖
 𝑘 with (ln (𝑑𝑝))𝑘, the MIEP equation 

for airborne particle systems is obtained, as given by (2-6): 

                    𝑝𝑖 = exp(−∑𝜆𝑘

𝑚

𝑘=0

(l𝑛𝑑𝑝𝑖)
𝑘)                    (2 − 6) 

(l𝑛𝑑𝑝𝑖)
𝑘is the kth origin moment, k = 1,2…., m; 𝜆𝑘 is the Lagrange multiplier and can 

be obtained by the regress function. Accordingly, the information entropy for a given 

system with random variable x {x1, x2,…xn}, (n≥1) can be determined from its typical 

characteristics, as shown in Table 1.  
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Table 1 parameters for kth moments for particle number size distribution 

m Model Parameters 

1 𝑝𝑖 = exp (−𝜆0 − 𝜆1𝑙𝑛𝑑𝑝𝑖)   𝜆0，𝜆1 

2 𝑝𝑖 = exp (−𝜆0 − 𝜆1𝑙𝑛𝑑𝑝𝑖 − 𝜆2(𝑙𝑛𝑑𝑝𝑖)
2) 𝜆0，𝜆1，𝜆2 

3 𝑝𝑖 = exp (−𝜆0 − 𝜆1𝑙𝑛𝑑𝑝𝑖 − 𝜆2(𝑙𝑛𝑑𝑝𝑖)
2 − 𝜆3(𝑙𝑛𝑑𝑝𝑖)

3) 𝜆0，𝜆1，𝜆2，𝜆3 

4 𝑝𝑖 = exp (−𝜆0 − 𝜆1𝑙𝑛𝑑𝑝𝑖 − 𝜆2(𝑙𝑛𝑑𝑝𝑖)
2 − 𝜆3(𝑙𝑛𝑑𝑝𝑖)

3 −

𝜆4(𝑙𝑛𝑑𝑝𝑖)
4) 

𝜆0，𝜆1，𝜆2，𝜆3，𝜆4 

5 

 

…  

𝑝𝑖 = exp (−𝜆0 − 𝜆1(𝑙𝑛𝑑𝑝𝑖) − 𝜆2(𝑙𝑛𝑑𝑝𝑖)
2 −

𝜆3(𝑙𝑛𝑑𝑝𝑖)
3 − 𝜆4(𝑙𝑛𝑑𝑝𝑖)

4 − 𝜆5(𝑙𝑛𝑑𝑝𝑖)
5) 

… 

𝜆0，𝜆1，𝜆2，𝜆3，𝜆4，

𝜆5 

… 

It is noted when taking x as a characteristic quantity instead of ln𝑑𝑝𝑖 in table 1, the 

power law and normal distributions are realized by the first (m = 1) and second moment 

(m = 2) of MIEP, respectively. That is, the common patterns including normal, 

lognormal, and power law distributions arising across broad disciplines, are indeed 

subsets of MIEP distributions. When m takes on smaller values, the number of 

constraint equations is less, and the process of finding a solution is simple, and vice 

versa for m with greater values. As power law distributions and lognormal distributions 

are obtained widely from different scientific areas, MIEP is not only a mathematical 

procedure, it is also approved by amount of experiments. 
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3. Self-preserving obeys MIEP for lognormal and power law distributions. 

Lognormal distributions. 

The geometric standard deviation (GSD, 𝜎𝑔) is a parameter for lognormal distributions, 

as given in equation (3-1): 

                                                         𝑓(𝑙𝑛𝑥) =
1

√2𝜋𝑙𝑛𝜎𝑔
𝑒
−
(𝑙𝑛𝑥−𝑙𝑛𝜇)2

2∗(𝐿𝑛𝜎𝑔)
2

                           (3 − 1) 

We derive the relationship between the MIEP and 𝜎𝑔 for the lognormal distribution 

based on equation (2-1), as shown by equation (3-2): 

                 𝑆𝑖𝑒𝑛𝑡 = −𝑟∫𝑝(𝑥) × 𝑙𝑛𝑝(𝑥) 𝑑𝑥                                 (3 − 2) 

For an airborne particle system with a lognormal probability density function, equation 

(3-3) is obtained: 

                                          𝑝(𝑙𝑛𝑑𝑝𝑖) =
1

√2𝜋𝑙𝑛𝜎𝑔
× 𝑒

−
(𝑙𝑛𝑑𝑝𝑖−𝑙𝑛𝜇)

2

2×(𝑙𝑛𝜎𝑔)
2

                              (3 − 3) 

Equation (3-3) is substituted into equation (3-2) to yield equation (3-4): 

                𝑆𝑖𝑒𝑛𝑡 = 𝑟∫
1

√2𝜋𝑙𝑛𝜎𝑔
× 𝑒

−
(𝑙𝑛𝑑𝑝𝑖−𝑙𝑛𝜇)

2

2×(𝑙𝑛𝜎𝑔)
2

× {
(𝑙𝑛𝑑𝑝𝑖 − 𝑙𝑛𝜇)

2

2 × (𝑙𝑛𝜎𝑔)2
+ 𝑙𝑛(√2𝜋𝑙𝑛𝜎𝑔)} 𝑑(𝑙𝑛𝑑𝑝𝑖)                             (3 − 4) 

According to the definition of variance, equation (3-5) is obtained： 

   ∫
1

√2𝜋𝐿𝑛𝜎𝑔
× 𝑒

−
(𝐿𝑛𝑑𝑝𝑖−𝐿𝑛𝜇)

2

2×(𝐿𝑛𝜎𝑔)
2

× {(𝑙𝑛𝑑𝑝𝑖 − 𝑙𝑛𝜇)
2}𝑑(𝑙𝑛𝑑𝑝𝑖) = (𝑙𝑛𝜎𝑔)

2     (3 − 5) 

Therefore, equation (3-6) is derived:  
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𝑆𝑖𝑒𝑛𝑡 =
1

2
𝑟 + 𝑟∫𝑝(𝑙𝑛𝑑𝑝𝑖) × 𝑙𝑛(√2𝜋𝑙𝑛𝜎𝑔) 𝑑(𝑙𝑛𝑑𝑝𝑖)

=
1

2
𝑟 + 𝑟𝑙 𝑛(√2𝜋 × 𝑙𝑛𝜎𝑔)                                                                (3 − 6) 

As r equals to 
1

𝑙𝑛2
, equation (3-6) indicates that 𝜎𝑔 of a system could remain constant 

when the system attains the steady state; that is, achieving its MIEP. Hence, 𝜎𝑔 is an 

intrinsic property of a specific system, being limited by environmental constraints but 

not affected by initial conditions. Identification of 𝜎𝑔 provides valuable insights for 

guiding the system development, and is applicable to a number of scientific disciplines. 

When the information of a steady state system is destroyed, its 𝑆𝑖𝑒𝑛𝑡 evolves in the 

direction of entropy changing, resulting in self-preserving distribution disappearing, so 

that 𝜎𝑔  starts to vary. When the constraints are set for a specific system, 𝜎𝑔  is 

quantified, the mobility of all characteristic quantities can be assessed. That is, the 

system structure and variance components are obtained.  

Power law distribution.  

When taking x as a characteristic quantity instead of ln(x), the power law is realized 

with the first (m=1) moment of MIEP. For a power law distribution, the deduction steps 

are equations (3-7)-(3-13). The exponential function is represented by equation (3-7): 

             𝑦 = 𝜆𝑒−𝜆𝑥                                     (3 − 7) 

According to the definition of information entropy, the information entropy of an 

exponential function is described according to equation (S2), and is transformed into 

equations (S3)-(S7): 

        𝑆𝑖𝑒𝑛𝑡 = 𝑟∫ 𝜆
+∞

0

𝑒−𝜆𝑥𝑙𝑛(𝜆𝑒−𝜆𝑥)𝑑𝑥                          (3 − 8) 
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       𝑆𝑖𝑒𝑛𝑡 = 𝑟∫ 𝜆
+∞

0

𝑒−𝜆𝑥(𝑙𝑛𝜆 − 𝜆𝑥)𝑑𝑥                          (3 − 9) 

                     𝑆𝑖𝑒𝑛𝑡 = 𝑟 ∫ 𝜆
+∞

0
𝑙𝑛𝜆𝑒−𝜆𝑥𝑑𝑥 − 𝑟 ∫ 𝜆2𝑥

+∞

0
𝑒−𝜆𝑥𝑑𝑥                              (3 − 10)                      

  𝑆𝑖𝑒𝑛𝑡 = −𝑟𝑙𝑛𝜆𝑒−𝜆𝑥|0
+∞ + 𝑟𝜆𝑥𝑒−𝜆𝑥|0

+∞ +  𝑟 ∫ 𝜆
+∞

0

𝑒−𝜆𝑥𝑑𝑥               (3 − 11) 

           𝑆𝑖𝑒𝑛𝑡 = 𝑟𝑙𝑛𝜆 + 0 − 0 − 𝑟𝑒−𝜆𝑥|0
+∞                        (3 − 12) 

  𝑆𝑖𝑒𝑛𝑡 = 𝑟𝑙𝑛𝜆 + 𝑟                                (3 − 13) 

 

Equation (3-13) is for all 𝑆𝑖𝑒𝑛𝑡, such that it is also applicable to 𝑆𝑖𝑒𝑛𝑡𝑚𝑎𝑥, as given by 

equation (3-14): 

𝑆𝑖𝑒𝑛𝑡𝑚𝑎𝑥 = 𝑟𝑙𝑛𝜆 + 𝑟                              (3 − 14) 

According to the property of exponential distribution, the relationship between its 

variance and 𝜆 is given as equation (3-15): 

  𝐷(𝑋) =
1

𝜆2
= 𝜎2                               (3 − 15) 

From equations (3-13) and (3-15), equation (3-16) is obtained, indicating 𝜎 takes on 

a certain value when the particle system reaches its maximum 𝑆𝑖𝑒𝑛𝑡. 

𝑆𝑖𝑒𝑛𝑡𝑚𝑎𝑥 = −
1

2
r𝑙𝑛(σ2) + 𝑟                         (3 − 16) 

Above all, self-preserving obeys MIEP for lognormal and power law distributions. 

Inspired by these findings that MIEP causes common patterns and tendencies to arise 

in different system states, we speculate that MIEP assumes the role of a force direction. 
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4. Quantification of information entropic force (𝑭𝒊𝒆𝒏𝒕).  

Therefore, we assume the information associated with a part of space obeys the 

holographic principle 35, 36. Based on the holographic principle and the equipartition 

rule, Verlinde 37 proposed a thermodynamic entropic force. Being inspired by his 

methodology, we quantify a more general entropic force, 𝐹𝑖𝑒𝑛𝑡. Firstly, the relationship 

between 𝑆𝑖𝑒𝑛𝑡 and thermodynamic entropy (𝑆𝑡𝑒𝑛𝑡) is given as equation (4-1):  

𝑆𝑖𝑒𝑛𝑡 = −𝑟∑𝑝𝑖 ∗ 𝑙𝑛(𝑝𝑖) = −𝑟∑
1

Ω
∗ 𝑙𝑛 (

1

Ω
) = 𝑟

𝑛

𝑖=1

𝑙𝑛Ω →

𝑛

𝑖=1

𝑆𝑡𝑒𝑛𝑡 = 𝑘𝐵𝑙𝑛Ω  (4 − 1) 

where 𝑘𝐵 is Boltzman’s constant. The equal probability hypothesis of the equilibrium 

state for an isolated system is considered as 𝑝𝑖 = 1/Ω, and 𝛺 is the total number of 

microscopic states. Hence, equation (4-2) is obtained: 

𝑆𝑖𝑒𝑛𝑡 =
𝑟

𝑘𝐵
∙ 𝑆𝑡𝑒𝑛𝑡                                                            (4 − 2) 

Equation (4-2) shows 𝑆𝑡𝑒𝑛𝑡  can be obtained from 𝑆𝑖𝑒𝑛𝑡 , but irreversible, indicating 

𝑆𝑖𝑒𝑛𝑡 is a more inclusive entropy. eamely, the principles of 𝑆𝑡𝑒𝑛𝑡 can be applied to 

𝑆𝑖𝑒𝑛𝑡  when considering thermodynamic information. We consider 𝑆𝑖𝑒𝑛𝑡  includes 

𝑆𝑡𝑒𝑛𝑡 and the nonthermodynamic entropy(𝑆𝑛𝑡𝑒𝑛𝑡), which represents the information 

entropy of thermodynamic and nonthermodynamic systems, respectively.  

 

eext, a small piece of a holographic screen is constructed in the information field. The 

change of information amount (dD) at a point near to the screen can be obtained by the 
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information entropy change (𝑑𝑆𝑖𝑒𝑛𝑡) and the information potential (∅𝑖𝑒𝑛𝑡) at that point, 

as given by equation (4-3): 

                             𝑑𝐷 = ∅𝑖𝑒𝑛𝑡 ∙ 𝑑𝑆𝑖𝑒𝑛𝑡                      (4-3) 

For thermodynamic systems, dD is heat transfer, ∅𝑖𝑒𝑛𝑡is thermodynamic temperature, 

and 𝑑𝑆𝑖𝑒𝑛𝑡  is thermodynamic entropy change ( 𝑑𝑆𝑡𝑒𝑛𝑡 ). While in the 

nonthermodynamic  field, 𝐹𝑖𝑒𝑛𝑡 describes the change of information amount caused 

by the interactions among information, as given by equation (4-4): 

                             𝐹𝑖𝑒𝑛𝑡 ∙ 𝑑𝑥 = ∅𝑖𝑒𝑛𝑡 ∙ 𝑑𝑆𝑖𝑒𝑛𝑡                 (4-4) 

Similarly, for a system of particles with different sizes, we assume the particle system 

with total mass of m approaching a holographic screen, as shown in Figure 1. 

 

Figure 1 A system of particles with different sizes approaching a part of the 

holographic screen 
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The particles receive the change of information on the screen 32. Motivated by 

Verlinde’s argument based on Bekenstein, equation (4-5) is obtained: 

                                                              
𝑘𝐵
𝑟
∆𝑆𝑖𝑒𝑛𝑡 = 2𝜋𝑘𝐵

𝑚𝑐

ℎ
∆𝑥                                  (4 − 5) 

where m is the mass of the particles, c is the speed of light, and h is the Planck constant. 

𝑆𝑖𝑒𝑛𝑡 of a system depends on the distance ∆𝑥 to the screen, 𝐹𝑖𝑒𝑛𝑡 could arise in an 

analogous biophysical system, as given by equation (4-6): 

                             T
𝑘𝐵

𝑟
Δ𝑆𝑖𝑒𝑛𝑡 = 𝐹𝑖𝑒𝑛𝑡Δ𝑥                                     (4 − 6) 

where T is the temperature of the holographic screen. Equation (4-6) indicates when the 

information of a system is realized on the holographic screen, 𝐹𝑖𝑒𝑛𝑡 causes information 

variation, resulting in alteration of the relative distance Δ𝑥 to the screen, followed by 

energy exchange, temperature change, and 𝑆𝑖𝑒𝑛𝑡variation. According to equation (4-5) 

and (4-6), 𝐹𝑖𝑒𝑛𝑡 can be given as equation (4-7): 

                                                   𝐹𝑖𝑒𝑛𝑡 = 2 × π ×m× T ×
𝑘𝐵𝑐

ℎ
                                    (4 − 7) 

 

eext, we assume E is distributed on a spherically shaped holographic screen with radius 

R, and mass M is located at the origin of a coordinate system as the source mass. 

Equipartition rule is introduced to define temperature T 38, the equality of energy and 

mass, and the holographic principle to give the number of states N, as equations (4-8)-

(4-10): 

                                                        𝐸 =
1

2
𝑁𝑘𝐵𝑇                                                               (4 − 8) 

                                                             𝐸 = 𝑀𝑐2                                                                (4 − 9) 
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                                                           𝑁 =
𝐴𝑐3

𝐺ℎ
                                                                (4 − 10) 

The area of the holographic screen is 𝐴 = 4𝜋𝑅2. T can be determined from equations 

(4-8)-(4-10), as shown in equation (4-11): 

                                                            𝑇 =
𝐺𝑀ℎ

2𝜋𝑘𝐵𝑐𝑅2
                                                     (4 − 11) 

Substituting (4-11) into (4-7), 𝐹𝑖𝑒𝑛𝑡 is realized as eewton's law of gravity: 

                                                        𝐹𝑖𝑒𝑛𝑡 =
𝐺𝑚𝑀

𝑅2
                                                          (4 − 12) 

The relationship between acceleration a and temperature has been shown by Unruh (36), 

as given by equation (4-13): 

                                                        𝑇𝑈 =
𝑎

2𝜋𝑘𝐵

ℎ

𝑐
→ 𝑇                                                  (4 − 13) 

where 𝑇𝑈 is the bulk temperature, and T is the boundary surface temperature. Hence, 

equations (4-7) and (4-13) lead to eewton’s second law, as given by equation (4-14): 

                                                             𝐹𝑖𝑒𝑛𝑡 = 𝑚𝑎                                                          (4 − 14) 

Equations (4-12) and (4-14) indicate that gravitational attraction could be the result of 

the information of material objects being organized in space. 𝐹𝑖𝑒𝑛𝑡 causes variations 

of the statistical behaviors associated with versatile degrees of information freedom for 

different systems encoded on the holographic screen, leading all systems to develop in 

the same direction of MIEP.  

 

We also derived the relationship between 𝑆𝑖𝑒𝑛𝑡 and a. Assume a particle with mass m 

near to a holographic screen. Each bit of the screen carries energy of 
1

2
𝑘𝐵𝑇. The total 

number of bits on the screen is n and follow equation (4-15): 
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                           m𝑐2=
1

2
𝑛𝑘𝐵T                          (4-15) 

From equations (4-5), (4-11), and (4-15), equation (4-16) is obtained:  

                          
∆𝑆𝑖𝑒𝑛𝑡

𝑛𝑟
=

𝑎∆𝑥

2𝑐2
                            (4-16) 

Equation (4-16) indicates that the acceleration, a, and the entropy gradient, 
∆𝑆

∆𝑥
 , are 

closely related. When a=0, 𝑆𝑖𝑒𝑛𝑡 reaches up to its greatest value, so that the system 

remains constant. Inertia is a consequence of the fact that a particle in rest will stay in 

rest because there is no entropy gradient. The relationship between a and ∅ can be 

given as equation (4-17): 

                             a=-∇∅                             (4-17) 

Therefore, the relationship between 𝑆𝑖𝑒𝑛𝑡 and ∅ can be given as equation (4-18): 

                            
∆𝑆𝑖𝑒𝑛𝑡

𝑛𝑟
= −

∆∅

2𝑐2
                         (4-18) 

Equation (4-18) shows that ∅  keeps track of the depletion of entropy per bit. The 

holographic direction is given by the gradient ∆∅ . In other words, the holographic 

screen corresponds to an equipotential surface. 

 

eext, Poisson equation is adopted to describe a general matter distribution. A 

holographic screen is chosen corresponding to an equipotential surface with fixed ∅0 

and a static matter density of ρ(𝑡). Equation (4-19) can be obtained from equations (4-

13) and (4-17): 

                                                                𝑘𝐵𝑇 =
1

2𝜋

ℎ∇∅

𝑘𝑐
                                                         (4-19) 

where k is a fixed coefficient. Equation (4-10) can be generalized into equation (4-20): 
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                             de=
𝑐3

𝐺ℎ
dA                           (4-20) 

Equation (4-8) can be given in its integral form, as shown by equation (4-21): 

                            E=
1

2
𝑘𝐵 ∫𝑇𝑑𝑁                        (4-21) 

Energy E is again expressed in terms of the total enclosed mass M, and Gauss’s law is 

adopted to obtain equation (4-22): 

                            M=
1

4𝜋𝐺
∫∇∅𝑑𝐴                       (4-22) 

The Poisson equation is given as equation (4-23)： 

                                                      ∇2∅(𝑡) = 4𝜋𝐺ρ(𝑡)                       (4-23) 

Then we use the relationship between the arbitrary infinitesimal displacements 𝛿𝑡𝑖⃑⃑⃑ of 

particles and the resulting entropy change to obtain the force acting on the matter 

particles that are located at arbitrary points outside the screen. The change of entropy 

density can be expressed as equation (4-24): 

                                                         δs = 𝑘𝐵
𝛿∅

2𝑐2
𝑑𝑁                            (4-24) 

where 𝛿∅  is the response of ∅  due to the shifts, δ𝑡𝑖⃑⃑⃑ , of the particle positions, as 

shown in Figure 2. 
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Figure 2 Particles are located at arbitrary points and influenced by 𝑭𝒊𝒆𝒏𝒕. 

 

𝛿∅ is calculated by solving the variation of the Poisson equation, as given by equation 

(4-25): 

                                                    ∇2𝛿∅(𝑡) = 4𝜋𝐺∑𝑚𝑖𝛿𝑡1⃑⃑⃑ ⃑ ∙ ∇𝑖𝛿(𝑡 − 𝑡1⃑⃑⃑ ⃑)

𝑖

             (4 − 25) 

𝐹𝑖𝑒𝑛𝑡  on the particle system can be obtained using the local temperature and the 

variation of 𝑆𝑖𝑒𝑛𝑡, as given by equation (4-26): 

                                                          ∑𝐹𝑖𝑒𝑛𝑡𝑖
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ ∙ 𝛿𝑟𝑖⃑⃑⃑ = ∫𝑇𝛿𝑆𝑖𝑒𝑛𝑡

𝑖

                               (4 − 26) 

The variation of ∅ can be obtained from Green’s function for the Laplacian. The basic 

identity that needs to be proved is demonstrated by equation (4-27): 

            ∑ 𝐹𝑖𝑒𝑛𝑡𝑖
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ ∙ 𝛿𝑟𝑖⃑⃑⃑ =

1

4𝜋𝐺
∫(𝛿∅∇∅ − ∅∇𝛿∅)𝑑𝐴                                     (4 − 27)𝑖  

 

Equation (4-27) holds for any location on the screen outside of the mass distribution, 

which indicates by realizing the information probability distribution of a system on a 
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holographic screen, the system state can be described using 𝑆𝑖𝑒𝑛𝑡 and ∅. These two 

parameters are determined by 𝐹𝑖𝑒𝑛𝑡. Evolution of a system is driven via reconstructing 

information probabilities of the individual components that comprise the system. At 

this point, by applying the holographic principle, we could provide an interpretation for 

the large number of maximum entropy-driven phenomena or maximum entropy-

stabilized reactions observed in various disciplines 17-26. 

 

5. Unification of 𝑭𝒊𝒆𝒏𝒕, 𝑺𝒊𝒆𝒏𝒕, and ∅ in the flow field.  

Considering diffusion is the major dynamic process of airborne particles, and the 

motion is associated with flow field. Also motived by the work of Leonard Susskind 35, 

in which he shows that the world can be represented as a hologram, we intend to apply 

𝐹𝑖𝑒𝑛𝑡 , 𝑆𝑖𝑒𝑛𝑡 , and ∅  into flow fields. Firstly, particle diffusion equation is shown in 

equation (5-1): 

𝐽 = 𝑖 ∙ 𝐽𝑥 + 𝑗 ∙ 𝐽𝑦 + 𝑘⃑⃑ ∙ 𝐽𝑧 = −D(𝑖 ∙
𝜕𝑛

𝜕𝑥
+ 𝑗 ∙

𝜕𝑛

𝜕𝑦
+ 𝑘⃑⃑ ∙

𝜕𝑛

𝜕𝑧
)     (5 − 1) 

where J is the diffusion flux, kg/(𝑚2 ∙ 𝑠), n is the particle number concentration at a 

specific point, #/𝑚3, D is the diffusion coefficient. For one-dimensional diffusion, J 

can be given as equation (5-2): 

                            𝐽𝑥 = 𝑛 ∙ 𝑣𝑥                            (5-2) 

where 𝑣𝑥 is the velocity in x direction. Substituting equation (5-2) into equation (5-1) 

and taking the time derivative, equation (5-3) is obtained: 
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𝑖 ∙ (𝑣𝑥
𝜕𝑛

𝜕𝑡
+ 𝑛𝑎𝑥) + 𝑗 ∙ (𝑣𝑦

𝜕𝑛

𝜕𝑡
+ 𝑛𝑎𝑦) + 𝑘⃑⃑ ∙ (𝑣𝑧

𝜕𝑛

𝜕𝑡
+ 𝑛𝑎𝑧) = −(𝑖 ∙

𝜕2𝐷𝑛

𝜕𝑥𝜕𝑡
+ 𝑗 ∙

𝜕2𝐷𝑛

𝜕𝑦𝜕𝑡
+

𝑘⃑⃑ ∙
𝜕2𝐷𝑛

𝜕𝑧𝜕𝑡
)                                                                                                                             (5 − 3)  

Equation (5-4) can be obtained from equations (4-17) and (5-3)： 

𝑖 ∙ (𝑣𝑥
𝜕𝑛

𝜕𝑡
) + 𝑗 ∙ (𝑣𝑦

𝜕𝑛

𝜕𝑡
) + 𝑘⃑⃑ ∙ (𝑣𝑧

𝜕𝑛

𝜕𝑡
) − 𝑛∇∅ = −(𝑖 ∙

𝜕2𝐷𝑛

𝜕𝑥𝜕𝑡
+ 𝑗 ∙

𝜕2𝐷𝑛

𝜕𝑦𝜕𝑡
+ 𝑘⃑⃑ ∙

𝜕2𝐷𝑛

𝜕𝑧𝜕𝑡
)   (5-4) 

Secondly, by analogy with diffusion driven by concentration differences, we consider 

the impact of fluid pressure differences, and apply 𝐹𝑖𝑒𝑛𝑡 into N-S equation. The vector 

form of the N-S equation and the Reynolds number are given as equations (5-5) and (5-

6): 

                                      ρ
𝑑𝑣

𝑑𝑡
= −∇𝑝 + 𝜌𝐹 + 𝜇∆𝑣                        (5-5) 

                              Re =
𝜌𝑣𝑑

𝜇
                                (5-6) 

where ρ is the fluid density, 𝑣 is the fluid velocity, 𝑝 is the fluid pressure, 𝜇 is the 

dynamic viscosity of the fluid, d is the characteristic length of the environment in which 

the fluid is flowing, and F is the external force acting on the fluid. Fluid flow is under 

frictionless resistance, so equation (5-5) is simplified into equation (5-7): 

                                                              ρa = −∇𝑝 + 𝜌𝐹                          (5-7) 

We combine equations (4-17), (5-6), and (5-7), and then take the time derivative, 

equation (5-8) and (5-9) are obtained: 

                           −ρ∇∅ = −∇p + ρF                      (5-8) 

                            
𝑑𝑅𝑒

𝑑𝑡
= −

𝜌𝑑∇∅

𝜇
                            (5-9) 

According to equations (5-8), (5-9) ) and 
∆𝑆𝑖𝑒𝑛𝑡

𝑛𝑟
= −

∆∅

2𝑐2
 ,   fluid flow follows the 

direction of increasing 𝑆𝑖𝑒𝑛𝑡, driven by the resultant forces (𝐹𝑖𝑒𝑛𝑡) of fluid mass. The 
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temporal variation rate of Re is positively correlated with the entropy gradient, but 

negatively correlated with the potential gradient. Above all, under the holographic 

theory framework, 𝑆𝑖𝑒𝑛𝑡, the eewtonian potential field, the flow field, and 𝐹𝑖𝑒𝑛𝑡 are 

unified. 

 

6. 𝐅𝐢𝐞𝐧𝐭 drives the evolution of airborne particle systems.  

Analogous to the infiltration process, 𝐹𝑖𝑒𝑛𝑡 drives collisions and diffusions of airborne 

particles during their evolution in the unification fluid field after being released from 

an emission source, as shown in Figure 3. 

 

Figure 3 An airborne particle released from the emission source undergoing 

collision and diffusion caused by 𝑭𝒊𝒆𝒏𝒕  
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The holographic screen for airborne particles is taken as an equipotential spherical 

surface, and the process of particles being released to the environment is entropy 

changing. ∅ decreases along the sphere radius, but 𝑆𝑖𝑒𝑛𝑡 increases along the sphere 

radius. All particles affected by their respective resistances at the same time eventually 

evolve into a steady state, namely, MIEP, at which state a balance between the generated 

information entropy within the system (
𝑑𝑖𝑠

𝑑𝑡
) and the change of information entropy 

caused by the external information entropy impacting on the internal system (
𝑑𝑒𝑠

𝑑𝑡
) is 

achieved. The self-preserving phenomenon for the entire system occurs. During this 

process, airborne particles experience uneven collisions from surrounding molecules, 

so that coagulation occurs owning to a spherically symmetric process of collision and 

diffusion. Driven by the unbalanced collision forces, 𝐹𝑖𝑒𝑛𝑡, the particle system evolves 

in the direction of changing entropy.  

 

This section adopts the classical theory based on the concept of eewtonian force to 

calculate particle dynamic processes in a closed system with two different initial 

conditions for GSD. Initial conditions: kb=1.38×10-23 J/K, T=298.15K, μ=1.83245×10-

5pa·s, initial concentration ρ=1000kg/m3, the two scenarios of initial conditions have 

different GSD, 𝑤1 = √𝑙𝑛
4

3
, 𝑤2 = √𝑙𝑛

10

3
, 𝑣𝑔 =

√3

2
, Kb is the Boltzmann constant, T is 

the system thermodynamic temperature, μ is the particle kinetic viscosity, ρ is for 

particle density, w1 and w2 are dimensionless volume geometric standard deviation of 
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particles for the first time simulation and the second time simulation, respectively, vg is 

the dimensionless particle average volume. Here we prove when the airborne particle 

system achieves the state of MIEP, its GSD remains constant, and during this process, 

the information entropy can be either increase or decrease, but the final state is certain 

for the closed system. The simulation is based on Smoluchowski’s groundbreaking 

work for coagulation processes 39, 40 according to integral–differential SE. Particle 

dynamic processes is calculated as equation (6-1): 

𝜕𝑛(𝑣,𝑡)

𝜕𝑡
=

1

2
∫ 𝛽(𝑣1, 𝑣 − 𝑣1)𝑛(𝑣1, 𝑡)𝑛(𝑣 − 𝑣1, 𝑡)𝑑𝑣1 −
𝑣

0

𝑛(𝑣, 𝑡) ∫ 𝛽(𝑣1，𝑣)𝑛(𝑣1, 𝑡)𝑑𝑣1
∞

0
   (6-1) 

in which n (v, t) dv is the number of particles whose volume is between v and v + dv at 

time t, and β(v1, v) is the collision kernel for two particles of volumes v and v'. The 

initial particle number size distribution obeys a lognormal distribution. Equation (38) 

cannot be solved, so it is multiplied by 𝑣𝑘, and by integrating 𝑣, and becomes into 

equation (6-2), which describes how each moment changes over time. This equation 

can be solved. 

𝑑𝑚𝑘

𝑑𝑡
=
1

2
∫ ∫ [(𝑣 + 𝑣1)

𝑘 − 𝑣𝑘 − 𝑣1
𝑘]𝛽(𝑣, 𝑣1)𝑛(𝑣, 𝑡)𝑛(𝑣1, 𝑡)𝑑𝑣𝑑𝑣1

∞

0

∞

0

   (6 − 2) 

Each moment is defined as equation (6-3): 

             𝑚𝑘 = ∫ 𝑣𝑘𝑛(𝑣)𝑑𝑣                                              (6 − 3)

∞

0
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The Taylor-expansion method of moments (TEMOM) is introduced in solving Eq. (6-

2) with the closure model for the kth moment (Yu et al., 2008), as given by equation (6-

4): 

𝑚𝑘 = (
u𝑘−2𝑘2

2
−
u𝑘−2𝑘

2
)𝑚2 + (−u

𝑘−1𝑘2 +  2u𝑘−1𝑘)𝑚1 + (u
𝑘 +

u𝑘𝑘2

2
−

 
3u𝑘𝑘

2
)𝑚0  (6 − 4)          

where u is the Taylor expansion point, defined to be 
𝑚1

𝑚0
. 

Therefore, in the free molecule regime, the collision kernel was derived from the 

kinetic theory of gases, as given by equation (6-5). 

      𝛽(𝑣, 𝑣1) = 𝐵1 (
1

𝑣
+
1

𝑣1
)

1
2
(𝑣

1
3 + 𝑣1

1
3)
2

                 (6 − 5) 

where 𝐵1 = (
3

4𝜋
)

1

6
(
6𝑘𝑏𝑇

𝜌
)

1

2
 . Hence, according to equations (6-3)-(6-5), in the free 

molecule regime, equation (6-1) can be written as equations (6-6)-(6-8) 41: 

𝑑𝑚0

𝑑𝑡
=
√2𝐵1(65𝑚2

2𝑚0
23 6⁄ − 1210𝑚2𝑚1

2𝑚0
17 6⁄ − 9223𝑚1

4𝑚0
11 6⁄ )

5184𝑚1
23 6⁄

  (6 − 6) 

       
𝑑𝑚1

𝑑𝑡
= 0                         (6 − 7) 

            
𝑑𝑚2

𝑑𝑡
= −

√2𝐵1(701𝑚2
2𝑚0

11 6⁄ −4210𝑚2𝑚1
2𝑚0

5 6⁄ −6859𝑚1
4𝑚0

−1 6⁄ )

2592𝑚1
11 6⁄                            (6-8) 

 

Similarly, for the Stokes region, the collision kernel can be expressed as equation (6-

9): 

  𝛽C = 𝐵2 (
1

𝜈1 3⁄
+

1

𝜈1
1 3⁄
) (𝜈1 3⁄ + 𝜈1

1 3⁄ )              (6 − 9) 
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where 𝐵2 =
2𝑘𝑏𝑇

𝜇
, and 𝜇 is the viscosity for ambient air. Equations (6-5) and (6-9) also 

indicate that the higher the temperatures are, the greater the collision frequencies will 

be, a prediction that is consistent with the conclusion of temperature being in direct 

proportion to Fient. By inputting equation (6-9) into equation (6-2), equations (6-10)-(6-

12) are obtained:  

𝑑𝑚0

𝑑𝑡
=
𝐵2(−151𝑚1

4 + 2𝑚2
2𝑚0

2 − 13𝑚2𝑚1
2𝑚0)𝑚0

2

81𝑚1
4          (6 − 10) 

 
𝑑𝑚1

𝑑𝑡
= 0                           (6 − 11) 

𝑑𝑚2

𝑑𝑡
= −

2𝐵2(−151𝑚1
4 + 2𝑚2

2𝑚0
2 − 13𝑚2𝑚1

2𝑚0)

81𝑚1
2           (6 − 12) 

For the entire size range, the methodology given by Otto et al. (1999) is applied 42, 

yielding equation (6-13): 

(
𝑑𝑚𝑘

𝑑𝑡
|𝑒𝑛𝑡𝑖𝑟𝑒) = (

𝑑𝑚𝑘

𝑑𝑡
|𝑐𝑜)

1+𝐾𝑛𝑚𝑘

1+𝑓(𝜎)𝐾𝑛𝑚𝑘+2𝐾𝑛𝑚𝑘
2      (6-13) 

where 𝐾𝑛𝑚𝑘
and f(𝜎𝑔) are given by equations (6-14) and (6-15) 

          𝐾𝑛𝑀𝑘 =
1

2
(
𝑑𝑚𝑘

𝑑𝑡
|𝑐𝑜) (

𝑑𝑚𝑘

𝑑𝑡
|𝑓𝑚)

−1

           (6 − 14) 

       𝑓(𝜎𝑔) = 2 + 0.7𝑙𝑛 (𝜎𝑔)
2 + 0.85𝑙𝑛 (𝜎𝑔)

3                       (6 − 15) 

Therefore, according to equations (6-6)-(6-15), the time-dependent particle number size 

distribution and corresponding GSD are obtained. Furthermore, based on the particle 

number size distribution, the time-dependent information entropy is given. The 

tendencies of GSD and information entropy are identical, as shown in Fig.4. GSD1, S1, 

and GSD2, S2 are geometric standard deviation and information entropy for first time 

and second time simulation, respectively. Equation (6-16) is given by Yu et al. (2009) 

43: 
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                    (𝑙𝑛𝜎𝑔)
2
=
1

9
(
𝑚0𝑚1

𝑚1
2
)                                           (6 − 16) 

By inputting equation (6-16) into equation (3-6), the relationship between MIEP and 

the dynamic process is constructed, as shown in equation (6-17): 

 𝑆𝑖𝑒𝑛𝑡 =
1

2
𝑟 +

𝑟𝑙𝑛

3
(√2𝜋 (

𝑚0𝑚1

𝑚1
2
))                             (6 − 17) 

The time-dependent of 𝑆𝑖𝑒𝑛𝑡 and GSD calculated by simulated particle size spectrums 

are shown in Figure 4.  

 

Figure 4 Time-dependent variation of 𝑺𝒊𝒆𝒏𝒕 based on the particle size spectrum, 

and time-dependent variation of GSD obtained by integral–differential SE 

 

Figure 4 provided two initial conditions with different initial GSD values. It is stressed 

that no matter what the initial conditions, the system with constant temperature will 

attain the same final state. This is consistent with previous discussions on 𝑆𝑖𝑒𝑛𝑡 , 

temperature, and GSD. During the evolution, GSD and 𝑆𝑖𝑒𝑛𝑡 have identical variation 
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tendencies, indicating that the airborne particle system is driven by 𝐹𝑖𝑒𝑛𝑡, evolving in 

the direction of MIEP, and giving rise to a self-preserving size distribution. If the initial 

𝑆𝑖𝑒𝑛𝑡 is larger than the maximum 𝑆𝑖𝑒𝑛𝑡 determined by the environmental constraints, 

𝑆𝑖𝑒𝑛𝑡, or to say GSD, shows a decreasing trend, which is affected by the external force 

of the system, as caused by gaseous molecules surrounding airborne particles, leading 

to the information entropy within the system flowing to the outside of the system. And 

vice versa for the scenario of the initial 𝑆𝑖𝑒𝑛𝑡 is less compared to the maximum 𝑆𝑖𝑒𝑛𝑡, 

in which both 𝑆𝑖𝑒𝑛𝑡 and GSD increase until reach the steady state. This process is self-

organization. GSD is not only a parameter that indicates the current state of system 

development, but also an apparent feature of 𝐹𝑖𝑒𝑛𝑡.  

7. Quantum mechanism 

Quantum mechanics was one of the great discoveries for last century, which was 

proposed by Max Planck in 1900. In 1926, Erwin Schrödinger established the famous 

Schrödinger equation. By solving the equation, wave function is obtained, which has 

been used to describe the properties and motions of electrons in atoms and molecules. 

Therefore, various information of the system can be obtained from the wave function. 

However, the physical meaning of wave function is not clear so far, and wave function 

cannot be observed by experiment. It is difficult to solve the equation with the increase 

of electron number. 
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Maximum information entropy is one of the core concept of information theory, which 

was proposed by Shannon and supplemented by Jaynes 5-7. Maximum information 

entropy explores the knowledge of probability distributions for individual components 

in a dynamic system 8-14. The basic idea is that the shape of the least biased distribution 

consistent with knowledge of prior constraints of a given system can be inferred by 

maximum information entropy.  

 

From the perspective of information theory itself, information entropy has some 

essential connection with the uncertainty relation in quantum mechanics, because 

information itself reflects the uncertainty of the system. Therefore, we prove wave 

equation is indeed the maximum information entropy distribution of Schrödinger 

equation. 

Wave equation obeys maximum information entropy.  

The most important equation of quantum mechanism is Schrodinger equation, as given 

by equation (7-1) for stationary condition: 

                              −
ℏ2

2𝑚
∇2 × 𝜓(𝑥) + 𝑉(𝑥) × 𝜓(𝑥) = 𝐸 × 𝜓(𝑥)                 (7-1) 

For one-dimensional stationary state and infinite square well, solution is odd parity. 

Wave function is given as equation (7-2): 

                                                      ψ(x) = √
2

𝑎
sin

𝑛𝜋𝑥

𝑎
                            (7-2) 

The probability of Schrodinger equation is given as equation (7-3): 

pi(x)=ψ(x)2=
2

𝑎
(sin

𝑛𝜋𝑥

𝑎
)
2
                      (7-3) 
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Only numerical solution is given from the point of mathematics only. There have been 

no mechanism interpretations. The solution is given as equation (7-4): 

                                                  f(x) = ∑𝑎𝑛𝑥
𝑛                            (7-4) 

We notice the format of equation (7-4) is similar to equation (2-3). If we can 

prove ψ(logx) = ln (pi(x)), then we can prove equation (7-4) is indeed the maximum 

information entropy of stationary Schrodinger equation, namely, capable of providing 

an interpretation for quantum mechanism. 

Based on equation (7-2) and (7-3), we obtain equation (7-5) and (7-6): 

                          ψ(logx) = √
2

𝑎
sin

𝑛𝜋𝑙𝑜𝑔𝑥

𝑎
                       (7-5) 

                  ln(pi(x))=ln
2

𝑎
(sin

𝑛𝜋𝑥

𝑎
)
2
                        (7-6) 

We conduct series expansion near x = 0 for sin (x), and obtain equation (7-7): 

                            sin(𝑥) = 0 +
𝑥

1!
+
𝑥^3

3!
+
𝑥^5

5!
+⋯                       (7-7) 

Therefore, equation (7-5) is transformed into equation (7-8): 

        ψ(logx) = √
2

𝑎
[0 +

1

1!
∗
𝑛𝜋𝑙𝑜𝑔𝑥

𝑎
+

1

3!
∗ [

𝑛𝜋𝑙𝑜𝑔𝑥

𝑎
]
3

+
1

5!
∗ [

𝑛𝜋𝑙𝑜𝑔𝑥

𝑎
]
5

+⋯]        (7-8) 

As logx=
𝑙𝑛𝑥

𝑙𝑛10
, then equation (7-8) is transformed into equation (7-9): 

ψ(logx) = √
2

𝑎
[0 +

1

1!
∗ [

𝑛𝜋

𝑎
] ∗

𝑙𝑛𝑥

𝑙𝑛10
+

1

3!
∗ [

𝑛𝜋

𝑎
]
3

∗ [
𝑙𝑛𝑥

𝑙𝑛10
]
3

+
1

5!
[
𝑛𝜋

𝑎
]
5

∗ [
𝑙𝑛𝑥

𝑙𝑛10
]
5

+⋯ ]  (7-

9) 

From equation (7-6), we obtain equation (7-10): 

ln(𝑝𝑖(𝑥)) = 2𝑙𝑛√
2

𝑎
[0 + (

𝑛𝜋

𝑎
) ∗ 𝑥 +

1

3!
∗ (

𝑛𝜋

𝑎
)
3

∗ 𝑥3 +
1

5!
∗ (

𝑛𝜋

𝑎
)
5

∗ 𝑥5 +⋯]   (7-10) 

Therefore, we proved ψ(logx) = ln (pi(x)). That is, Quantum mechanism meets up 

MIEP. Based on the maximum information entropy, we prove the solutions of 
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Schrödinger equation in quantum mechanics obeys the maximum entropy of 

information probability. 

 

8. Discussions. 

By considering MEPP is a form of MIEP and building up a holographic screen, we 

derive 𝐹𝑖𝑒𝑛𝑡 either drives the increase of 𝑆𝑖𝑒𝑛𝑡 and enhances discretization, or drives 

the decrease of  𝑆𝑖𝑒𝑛𝑡  (self-organization) and weakens discretization in a system 

evolution, eventually reaching the state of MIEP associated with equilibrium between 

entropy generation inside system and entropy flow into outside system. This is because 

for a fixed system with the steady state, its MIEP is certain. At this point, power law 

and lognormal (normal) distributions, self-preserving and self-organization can be 

attained. To sum up, systems evolution is measured by information probability (𝑝𝑖), 

evaluated by information entropy (Sient) and potential (∅), and ultimately caused by the 

information entropic force (𝐹𝑖𝑒𝑛𝑡), which is counteracted by environmental constraints. 

Take an airborne particle system as an example, environmental constraints include 

temperature, fluid viscosity, particle properties, etc. According to the Stokes resistance 

formula and the resistance formula of molecular thermal motion44, the resistance scales 

are associated with the size of the particles. Here we define these parameters, which are 

capable of describing the evolution state of any system, as equation set (8-1): 
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{
  
 

  
  pi = exp(−∑λk

m

k=0

X(C)(k))

Sient = −r ×∑piLn(pi)

n

i=1

~𝑎 × lnΩ(C)  

Fient⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ ∝ ∇S ∝ −∇∅

            (8 − 1) 

pi is the information probability. 𝑋(𝐶) is the characteristic quantity expressed in its 

new format under constraints C, such as lnX. 𝛺 relates to variables in the system. 𝑎 

is Kb in thermodynamic entropy, and the nonthermodynamic-factor constant in 

nonthermodynamic entropy, which is determined by interactions among objects under 

nonthermodynamic constraints, C. For the nonthermodynamic system, we introduce 

two definitions:  nonthermodynamic development potential and acceleration. Only 

considering the impact of 𝐹𝑖𝑒𝑛𝑡 , nonthermodynamic development also satisfies 

a=−𝛻∅, and is limited by nonthermodynamic environmental constraints. The findings 

of this study indicate that based on holographic principle, it may be possible to guide 

the evolution of a given system towards certain desirable patterns and outcomes across 

many scientific disciplines, which provides the possibility of studying phenomena at 

multiple scales under the same formalism. While the content of this study can be applied 

in the many natural sciences and social sciences, such as: galaxy, climate, rivers and 

mountains, economics, medicine, etc. Author would like to stress the following points:  

Big data and machine learning. 

Big data and machine learning has become ubiquitous and indispensable for solving 

complex problems in most sciences. Machine learning methods are particularly 
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effective in situations where deep and predictive insights need to be uncovered from a 

large set of diverse data. There are number of studies found the prediction accuracy 

have been improved after adopting the principle of maximum entropy (MEPP and 

MIEP). However, the deep mechanism behind for why machine learning can predict 

future and why maximum entropy can improve the accuracy have not been provided. 

Readers cannot help to think MEPP and MIEP maybe just mathematical methodologies. 

While according to the previous sections, if the world can be represented as a hologram 

and the system evolution can be explained by the holographic principle, the information 

of all the system can be projected to a holographic plane. Then the Fient can drive the 

system evolve into the direction of maximum information entropy. If the dataset is large 

and diverse, the information of the system for the past can better describe the system 

itself and the Fient it provided is robust, which can predict the system revolution very 

well. It is noted the conclusion is based on the conditions that the constraints of the 

system are identical as previously. Otherwise, the new changes should be considered.  

Global temperature change and extreme weathers. 

Our earth is with billions of years old. Its evolution is very long time. Therefore, if we 

have recorded the earth data and climate data, their futures and evolutions can be 

predicted. Another point is based on our previous analysis that Sient is associated with 

temperature, and GSD of is an index for Sient in different systems. We can prove predict 

the global temperature changes according to the GSD of airborne particles in 

atmosphere. This is because that although the age of atmosphere is controversial, it 
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maybe even earlier than the earth. Of course, other qualified systems related to surface 

temperature work as well.  

The Brain and consciousness science 

Brain science and neuroscience investigate the architecture of the brain and maps how 

each individual neuron operates. However, advances in brain science are relatively new. 

There is large amount of evidence that adopting entropy for quantification of the brain 

activity has yielded promising results: the (altered) state of consciousness, the ageing 

brain, and the quantification of the brain networks’ information processing. MIEP can 

be a promising measure to study the complexities in brain science. The movie The 

Wandering Earth II was released during Chinese eew Year in 2023. The character 

Hengyu Tu lost his wife and daughter in a car accident. He uploaded the brain data of 

his daughter successively to the computer of 550A and 550W, and gave his daughter a 

full digital life. Based on the findings of this study, his daughter is the real daughter 

who can think, speak, laugh, and cry, but cannot touch. 

9. Conclusion.  

Based on the conclusion of this study, we can rethink some of issues: Is the expanding 

universe the result of entropy increasing? Will the expanding stop? Is the evolution 

theory a result of the development of systems, owing to various constraints appear 

during the system development, so that is it indeed self-organization? This finding 

resonates with the question proposed by Schrödinger in What Is Life? The Physical 
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Aspect of the Living Cell (29): physical laws are based on statistical mechanics, which 

are intimately associated with how systems evolve into disorder. 
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