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We study the critical phenomena of viable clusters in multiplex two-dimensional lattices using
numerical simulations. We identify viable sites on multiplex lattices using two cascading algorithms:
the cascade of activations (CA) and deactivations (CD). We found that the giant viable clusters
identified by CA and CD processes exhibit different critical behaviors. Specifically, the critical phe-
nomena of CA processes are consistent with the ordinary bond percolation on a single layer but CD
processes exhibit the critical behaviors consistent with mutual percolation on multiplex lattices. In
addition, we computed the susceptibility of cascading dynamics by using the concept of ghost field.
Our results suggest that the CA and CD processes generate viable clusters in different ways.

I. INTRODUCTION

The elements of a complex system often function prop-
erly only if multiple resources are provided through mul-
tiple layers of networks [1–4]. For example, computer-
controlled systems function properly only when the Inter-
net and power grids are supplied interdependently [2, 3]
In addition, for a city to function properly, resources
such as water, gas, and electricity must be supplied by
separate channels [1, 4, 5]. For this reason, the mu-
tual connectivity of multiple layers of networks has re-
ceived much attention for several years [3, 4, 6–10]. A
mutually-connected component, which is a central con-
cept in mutual percolation, is defined as a set of nodes
that every node pair in the component has at least one
path, composed of nodes within the same cluster, in each
and every layer of networks [3, 7]. Pioneering works on
the mutual percolation have studied the robustness of
interdependent networks by using the notion of a mu-
tually connected giant component and showed that an
abrupt transition can appear between percolating and
non-percolating phases [3, 6, 7, 11]. These studies imply
that a small perturbation can cause an abrupt collapse
of the entire system, posing a potentially catastrophe to
complex systems [3, 4, 6, 12–15]

Since many real-world systems are embedded in low
dimensions, percolation problems on multi-layered two-
dimensional lattices have been also of interest [16–18].
Unlike multiplex networks, the mutually connected giant
cluster on two-dimensional lattices emerges continuously
as the probability of bond occupation increases [16, 17].
However, the studies on the critical behaviors of the mu-
tual percolation on two-dimensional lattices yielded con-
flicting results [16, 19–21]. Son et al. demonstrated that
the percolation transition for interdependent diluted lat-
tices belongs to a different universality class with a larger
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order parameter exponent than that of ordinary percola-
tion [16, 20, 21]. However, another study reported that
the mutual percolation on two-dimensional lattices be-
longs to the same universality class of ordinary percola-
tion [19]. In addition to mutual percolation, several per-
colation problems in multi-layer lattices have been also
studied such as history dependent percolation [22–24],
and percolation in porous media [25, 26].

From a perspective different from topological aspect,
there have been studies on the viability of nodes as a
consequence of cascading dynamics following the itera-
tive activations or deactivations of nodes [4, 5, 14]. A
model for the viability deals with systems that demand
more than one type of vital resource to be produced and
distributed by source nodes in multiplex networks [4]. Vi-
able nodes in this model are identified by using two dif-
ferent dynamical processes: cascade of activations (CA)
and deactivations (CD). The CA process starts with all
the sites in the deactivated state, and finds mutually-
connected clusters through the diffusion of activations
from the source nodes; in contrast, the CD process finds
mutually-connected clusters by iteratively removing any
sites that are not mutually-connected. On multiplex net-
works, these processes can produce two different final
configurations of viable nodes, corresponding to different
stable solutions of a single mean-field equation [4, 14].
Viability is strongly related to mutual percolation on
multiplex networks because the dynamical consequence
of CD becomes identical to mutual percolation in the
limit when the fraction of initial source nodes goes to be
zero. While cascading dynamics on multiplex networks
has been studied [4, 5], it has not been explored on low-
dimensional systems, especially the critical behaviors of
cascading dynamics.

In this work, we study the critical phenomena of cas-
cading dynamics on multiplex two-dimensional lattices
using extensive Monte-Carlo simulations. We found that
two cascading processes, CA and CD, can lead to differ-
ent critical behaviors in viable clusters statistics. While
CD exhibits the same set of critical exponents reported
for mutual percolation on interdependent networks [16],
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FIG. 1. (a) A multiplex lattice consists of double-layered
two-dimensional diluted lattices. (b,c) Examples of the final
configurations of (b) CA and (c) CD processes are depicted.
Viable, non-viable, and source sites are respectively denoted
by black filled circles, black open circles, and grey filled circles.

CA exhibits the critical behaviors akin to the ordinary
percolation on two-dimensional lattices. In addition, we
computed the susceptibility of cascading dynamics by us-
ing the ghost field concept [27, 28] and confirmed that the
hyperscaling relation is satisfied.

II. MODEL

Let us imagine an example for cascading processes on
a multiplex lattice. A site needs two resources, say A and
B, to be viable, e.g., a city requires water and electric-
ity for functioning. Each resource is delivered along the
corresponding layer of the lattice. Initially, the resources
are generated from a few source sites in each layer. The
important point is that only a viable site can convey re-
sources to the neighboring sites along connected bonds.
In this setting, we consider the following two processes for
finding viable sites from the given lattice structures and
initial source configurations. i) Assume that all sites ex-
cept the source sites are initially in the non-viable state.
Sites that satisfy the viable condition change into the vi-
able state. These viable sites are able to convey resources
to their neighbors. There will be sites that change to the
viable state in turn and we call this process the cascade
of activation (CA). ii) On the other hand, one may start
at the beginning when all sites are putatively in a viable
state. In this case, sites that do not satisfy the viable con-
dition must change from the viable to non-viable state it-
eratively until no further deactivation is necessary. This
process is called the cascade of deactivation (CD).

The specific simulation rules are as follows. There are
two layers of two-dimensional lattices, say LA and LB

with N = L×L, where L denotes the size of the lattice.
Each bond in the lattice is occupied with probability p,
and empty with probability 1−p. On top of multiplex di-
luted lattices, resources A and B are distributed at their
source sites. In this study, we assume that the sources
of resources A and B are located at every site on the
boundary of lattices LA and LB , respectively [Fig. 1(a)].
We use cylindrical boundary conditions. Then, each site
on a multiplex lattice is viable only if both resources A
and B are supplied. Moreover, only viable sites can de-
liver resources to their neighbors connected by occupied
bonds. Otherwise a site becomes non-viable and cannot
convey resources further. Note that resources A and B
are respectively supplied only through the chain of vi-
able sites on LA and LB . Using the two processes, CA
and CD, we find viable sites in the steady state. We then
identify the viable clusters as a set of viable sites for every
pair of sites in the cluster has at least one path composed
of viable sites within each and every layer of the lattice.
We also define the fraction of the giant viable cluster as
VCA for CA as shown in Fig. 1(b), and VCD for CD as
shown in Fig. 1(c).

III. RESULTS

We conducted Monte Carlo simulations for CA and CD
processes on multiplex lattices with various sizes L. We
then identify the configuration of the viable clusters and
analyze their critical behaviors at the steady state. The
fractions V of the giant viable cluster for the two pro-
cesses are in general different from each other as shown
in Fig. 2(a), as in the case of multiplex networks [4]. The
giant viable cluster for CD process appears at a smaller
p compared with that for CA. In addition, the fraction
VCD of the giant viable cluster for CD is generally larger
than VCA.

The critical behaviors of percolation problems are typ-
ically characterized by the divergence of the average clus-
ter size χ and correlation length ξ at the critical point
pc in the thermodynamic limit L → ∞. Near the criti-
cal point, the order parameter V , susceptibility χ, and
correlation length ξ follow power laws with the critical
exponents β, γ, and ν as follows:

V (p) ∼ (p− pc)β , (1)

χ(p) ∼ |p− pc|−γ , (2)

ξ(p) ∼ |p− pc|−ν . (3)

In order to obtain the critical exponents, we use the con-
ventional scaling ansatz for finite-size systems [29],

V (p, L) = L−β/νfV [(p− pc)L1/ν ], (4)

χ(p, L) = Lγ/νfχ[(p− pc(L))L1/ν ]. (5)

where pc(L) is the location of the peak of susceptibility.
While computing the fraction V of the giant viable

cluster is straightforward, how to measure susceptibility
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FIG. 2. (a) Numerical results of the fraction V for the CA
(red) and CD (blue) processes as a function of the bond oc-
cupation probability p on multiplex lattices with L = 800,
averaged over 100 different realizations are shown. (b) The

relation |pc − pc(L)| ∼ L−1/ν for CA (red) and CD (blue)
is shown. The points represent numerical simulation results
averaged over 400 samples.

χ is far from trivial. For the ordinary percolation, the
susceptibility χ is directly measured by the average size
of the finite clusters. In our model, however, the quan-
tity corresponding to the susceptibility is not readily pro-
vided by the size of the average finite viable clusters. To
obtain the susceptibility in CA and CD, we use the con-
cept of “ghost field” analogous to magnetic susceptibility
[27, 28, 30]. We add one additional ghost site that is con-
nected to each site in the system with a probability H.
By applying a small amount of H corresponding to the
external magnetic field in spin systems, we measure the
change in order parameter V such that χ = ∂V/∂H. In
practice, we choose one site that does not belong to the
giant viable cluster. Next, we assume that this site has
become part of the giant viable cluster through the con-
nection to the ghost site. We then identify a set of sites
that newly entered the giant viable cluster because of the
presence of the ghost site. We call the set of sites as “sus-
ceptible cluster” and measure the size of the susceptible
cluster as susceptibility. In the numerical simulations, we
attempted to select every site that does not belong to the
giant viable cluster and measured the distribution φ(s)
that a site belongs to a susceptible cluster with size s.
The susceptibility χ is obtained as

χ(p, L) =

∑
s sφ(s, p)∑
s φ(s, p)

, (6)

where the sum is over all cluster sizes excluding the giant
viable cluster.

We estimated the viability threshold and critical ex-
ponent ν for both CA and CD using a finite size scaling
ansatz. We first obtained the threshold as pCA

c ' 0.6743
and pCD

c ' 0.5761. As in the case of CA and CD in mul-
tiplex networks [4], the giant viable clusters in CA pro-
cesses emerges at a larger p compared to CD. Next, we
obtained the exponent of the correlation length ν from
the relation |pc(L) − pc| ∼ L−1/ν as shown in Fig. 2(b).
Here, pc(L) is a threshold with size L and is estimated
by the value of p at the maximum value of susceptibility
χ. The fitted values of ν for CA and CD are respectively
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FIG. 3. (a) Log-log plot of VCAL
β/ν at pCA

c with respect to L
for various p. (b) Data collapse of the scaled order parameter

VCAL
β/ν vs. (p−pc)L1/ν with β = 0.137(1) and ν = 1.342(3).

(c) Log-log plot of χCA at pc(L) with respect to L, showing

the relation χ ∼ Lγ/ν . (d) Data collapse of the scaled sus-

ceptibility χCAL
−γ/ν vs. (p − pc)L1/ν with γ = 2.41(1) and

ν = 1.342(3). Numerical results of CA were obtained for var-
ious lattice sizes L from 50 to 800, averaged over 400 realiza-
tions.

1.342(3) and 1.197(7).

We then obtained β/ν and γ/ν using the scalings re-
spectively V ∼ L−β/ν and χ ∼ Lγ/ν . The results of criti-
cal behaviors for CA processes are shown in Fig. 3. Figure
3(a) shows the scaling of V ∼ L−β/ν with various values
of p. The scaling shows the estimates of the exponents
β = 0.137(1) and ν = 1.342(3). Data collapse curves of
V Lβ/ν with respect to (p− pc)L1/ν in Fig. 3(b) confirm
the estimated values of the critical exponents. Figure 3(c)
shows the relationship χ ∼ Lγ/ν with γ/ν = 1.794(6)
which is confirmed by the finite-size-scaled data collapse
of χL−γ/ν with respect to (p − pc)L

1/ν , as shown in
Fig. 3(d). We found that the critical exponents for CA
processes are consistent within error bars for ordinary
bond percolation on two-dimensional lattices.

For CD processes, we also obtain β and γ using scal-
ing V ∼ L−β/ν and χ ∼ Lγ/ν as shown in Fig. 4. The
estimated values of the critical exponents for the CD pro-
cesses are β = 0.163(2) and ν = 1.197(7) [Fig. 4(a)]. In
addition, figure 4(c) exhibits the relationship χ ∼ Lγ/ν

with γ/ν = 1.73(1). We also confirm the critical expo-
nents by using the data collapse of V Lβ/ν with respect
to (p − pc)L1/ν [Fig. 4(b)] and χL−γ/ν with respect to
(p − pc)L1/ν [Fig. 4(d)]. The values of the exponents β,
γ, and ν are distinct from those for CA. In addition, the
critical behaviors of CD are consistent within error bars
of the mutual percolation on two-dimensional lattices re-
ported in [16, 21].

We also obtain the size distribution φ(s) that a site
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FIG. 4. (a) Log-log plot of VCDL
β/ν at pCD

c with respect to L
for various p. (b) Data collapse of the scaled order parameter

VCDL
β/ν vs. (p−pc)L1/ν with β = 0.163(2) and ν = 1.197(7).

(c) Log-log plot of χCD at pc(L) with respect to L, showing

the relation χ ∼ Lγ/ν . (d) Data collapse of the scaled sus-

ceptibility χCDL
−γ/ν vs. (p − pc)L1/ν with γ = 2.07(1) and

ν = 1.197(7). Numerical results of CD were obtained for var-
ious lattice sizes L from 50 to 800, averaged over 400 realiza-
tions.

belongs to susceptible clusters with size s. At pc, the size
distribution follows the power-law form φ(s) ∼ s1−τ in
the thermodynamic limit. We apply a scaling ansatz to
the distribution

φ(s) = s1−τg(s/Ldf ) (7)

where g is a scaling function and df is the fractal dimen-
sion given by df = d− β/ν where d is the spatial dimen-
sion of lattices. Figures 5(a,b) show the power-law decay
of φ(s) at pc for (a) CA and (b) CD, respectively. We
found the estimate of critical exponents as τ = 2.06(3)
for CA and τ = 2.07(1) for CD. We confirm the scaling
ansatz using data collapses, as shown in Figs. 5(c,d).

The obtained values of the threshold and critical ex-
ponents are presented in Table 1. We observed that the
critical exponents for CA and CD are distinct. Moreover,
all critical exponents of CA are consistent within error
bars with ordinary bond percolation on two-dimensional
lattices. However, the critical exponents of CD are con-
sistent with those of the mutual percolation on two-
dimensional lattices, which shows a discrepancy with
CA. In addition, the sets of exponents for both CA and
CD satisfy the hyperscaling relations dν = 2β + γ and
τ = d/df + 1.

To understand the differences between the underlying
mechanisms forming susceptible clusters, we examine the
joint probability distribution between the sizes of suscep-
tible clusters s and that of double-bond clusters sdbc, and
that of mutually connected clusters smcc. A double bond
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FIG. 5. Probability distributions φ(s) that a node belongs
to a susceptible cluster with size s for (a) CA and (b) CD.
Data collapses of φ(s)sτ−1 vs. s/Ldf for (c) CA with τ =
2.06(3) and df = 1.8976 and for (d) CD with τ = 2.07(1)
and df = 1.864. The fractal dimension df is estimated by
df = d − β/ν. Monte-carlo simulations were performed at
the critical point p = 0.6743 for CA and p = 0.5761 for CD.
Numerical results were obtained for various lattice sizes L
from 50 to 800, averaged over 400 realizations.

refers to a connection in which a bond between two ad-
jacent sites exists in both layers, and the double-bond
cluster stands for a set of sites that are connected solely
via double bonds. The mutually connected component is
defined as a set of sites that every pair of sites in the
cluster has at least one path within each and every layer
of the lattice.

Figures 6(a,b) show the joint probability distribution
J(s, sdbc) for (a) CA and (b) CD to examine the ef-
fect of double bonds in forming susceptible clusters. The
joint probability distributions are computed at the crit-
ical point, p = 0.6743 for CA and p = 0.5761 for CD.
We found that the size of the double-bond clusters are
strongly correlated to that of the susceptible clusters for

TABLE I. Critical points and exponents

CA
Ordinary

CD
Mutual

Percolation Percolation [21]

pc 0.6743(1) 1/2 0.5761(1) 0.576132(5)

ν 1.342(3) 4/3 1.197(7) 1.200(7)

β 0.137(1) 5/36 0.163(2) 0.163(2)

γ 2.41(1) 43/18 2.07(2) ·
τ 2.06(3) 187/91 2.07(1) ·

1/ν 0.745(2) 3/4 0.836(5) 0.833

β/ν 0.1024(5) 5/48 0.136(1) 0.1358

γ/ν 1.794(6) 43/24 1.73(1) 1.728
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FIG. 6. Joint probability distributions J(s, sdbc) where s is
the size of susceptible clusters and sdbc is that of double-bond
clusters are shown for (a) CA and (b) CD. Joint probability
distributions J(s, smcc) where smcc is the size of mutually con-
nected clusters are shown for (c) CA and (d) CD. Numerical
results are calculated at the critical points p = 0.6743 for CA
and p = 0.5761 for CD with L = 100, averaged over 5000
realizations.

CA. This means that the double bonds play a dominant
role in the CA process. For CD process, however, small
susceptible clusters are formed by double bonds, while
large susceptible clusters are not. We found that large-
sized susceptible clusters in CD are constructed by mu-
tually connected clusters as shown in Fig. 6(d). On the
other hand, for the CA process there is already a mutu-
ally connected giant component near the critical point
as shown in Fig. 6(c). Therefore, mutually connected
clusters cannot contribute crucially the emergence of the
large-sized susceptible clusters in CA process. In conclu-
sion, we found that large-sized susceptible clusters are

mainly constructed by double bonds in the CA process
whereas they are formed by mutual connections in the
CD process.

IV. DISCUSSION

In this work, we study the critical phenomena of cas-
cading dynamics on multiplex lattices considering two
different processes to identify viable clusters. We found
that viable clusters identified by the CA and CD pro-
cesses exhibits different critical behaviors. The CA pro-
cess exhibits critical phenomena consistent to ordinary
bond percolation but the CD process exhibits those to
mutual percolation on multiplex lattices. In addition, we
explicitly calculate susceptibility by using the ghost field.
Our study shows that viability that requires multiple con-
nectivity can be maintained by diverse mechanisms in
a multiplex low-dimensional system. The cascading dy-
namics that we consider here is an example of coopera-
tive couplings between multiple layers. Similar coopera-
tive interactions can be realized in real-world systems in
a variety of ways such as cooperative infections [31, 32],
social contagions [33, 34], and interdependencies in multi-
layered systems [3, 35]. In this regard, our research shows
a glimpse of the complexity generated by cooperative in-
teractions in multiplex low-dimensional systems. Further
studies may be required to examine the cascading dy-
namics on an arbitrary number of layers and partially
coupled layers.
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