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Abstract

Grammatical forms are said to evolve via two main mechanisms. These are, respectively, the
‘descent’ mechanism, where current forms can be seen to have descended (albeit with occa-
sional modifications) from their roots in ancient languages, and the ‘contact’ mechanism, where
evolution in a given language occurs via borrowing from other languages with which it is in
contact. We use ideas and concepts from statistical physics to formulate a series of static and
dynamical models which illustrate these issues in general terms. The static models emphasise the
relative numbers of rules and exceptions, while the dynamical models focus on the emergence
of exceptional forms. These unlikely survivors among various competing grammatical forms are
winners against the odds. Our analysis suggests that they emerge when the influence of neigh-
bouring languages exceeds the generic tendency towards regularisation within individual languages.

1 Introduction

Historical linguistics is the study of language
change over time [1]. It is principally centred on
how linguistic forms evolve in world languages, be
these to do with phonology, morphology, seman-
tics, syntax or core lexicons. The evolution of lan-
guages proceeds in two essentially different ways.
The first route, referred to as phylogeny, describes
the ‘vertical’ descent with modification from more
ancient, possibly extinct languages, leading to the
representation of families of languages as branch-
ing phylogenetic trees. The second comprises the
‘horizontal’ borrowing and diffusion between con-
temporary languages, brought about via contact
between their speakers; this has given rise to the
field of contact linguistics [2, 3].

The mechanisms involved during language
contact will be of special importance in this paper,
so we introduce them here. Winford [3] has classi-
fied contact between different linguistic communi-
ties under three different heads: he describes, first,
relatively homogeneous communities of monolin-
guals, most of whom have little or no contact with
speakers of other languages. In these, the only way
that borrowing occurs is via the media, or individ-
ual travellers, or indeed foreign language teaching;
the example of Japanese or Russian speakers bor-
rowing from English is cited as an example. The
so-called ‘middle spectrum’ concerns communities
which include bilingual or multilingual speakers,
an example of which might be the contact between
linguistic minorities and a dominant host group;
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the prevalence of French and Flemish in Brus-
sels is cited as an example. Finally, there are
highly heterogeneous communities where individ-
ual multilingualism is high and social and linguis-
tic boundaries are fluid; an example of this occurs
in Northwest New Britain in Papua New Guinea.
The nature of the mutual influence between dif-
ferent languages depends critically on the extent
of contact [3]: slight lexical borrowing is about all
that happens under conditions of casual contact,
while structural borrowing needs the concerned
linguistic communities to undergo sustained and
intimate contact. In particular this implies that
while the borrowing of content morphemes like
nouns or verbs is common, the borrowing of
grammatical features is relatively rare.

There has been relatively little work done
so far from the viewpoint of statistical physics
in modelling linguistic evolution,1 although sev-
eral quantitative approaches [5–11] exist. In this
work, we apply statistical physics methodologies
to explore the evolution of morphological features
in general, and rules governing verb conjugation
in particular. Our initial motivation for this was
a question raised by Ringe and Yang [12] con-
cerning the evolution of past participles of verbs
in English, via the ‘tolerance principle’ [13]; this
states that that there is a maximum number of
exceptions that a rule can tolerate in order to be
productive. More precisely, a rule applied to N
items obeys the tolerance principle if the num-
ber E of exceptions (i.e., of items to which it does
not apply) is smaller than the threshold

EN =
N

HN
≈ N

lnN
(1)

(HN is the Nth harmonic number). From the
viewpoint of statistical physics, this threshold EN

is enormously high, since it grows nearly exten-
sively with the total number N of items. Our own
evaluations of a threshold demarcating rules and
exceptions (Section 2) result in smaller and more
realistic values, to which we will draw attention as
they occur.

Ringe and Yang claimed that the tolerance
principle was able to explain the prevalence of reg-
ular past participles ending in ‘-ed’, but not some

1In contrast, such concepts have been used in other areas
of language dynamics, such as the coexistence of two or more
languages in a given geographical area [4].

more unlikely irregular forms ending in ‘-uck’, such
as ‘stuck’ or ‘struck’ [12]. Our models of competi-
tive dynamics are able to resolve this issue, while
also putting the emergence of unlikely winners in
a more general context.

The very formulation of the tolerance principle
gives a prominent role to exceptions. Grammatical
rules are an essential feature of linguistic structure
and provide an efficient way of classifying exist-
ing forms; there are, however, always exceptions
to these. For instance, the conjugation of the verbs
‘to be’ or ‘to have’ is rather irregular in most world
languages, so that these verbs constitute marked
exceptions to general grammatical rules.

The occurrence of rules and exceptions is not
unique to languages. In mathematics, for exam-
ple, the classification of semisimple Lie algebras
involves 4 rules (the infinite series An, Bn, Cn,
and Dn) and 5 exceptions (E6, E7, E8, F4

and G2). Also, the classification of finite sim-
ple groups involves 18 rules (infinite families of
groups) and 26 exceptions (the sporadic groups)
(see [14]). Note also that the numbers of rules and
exceptions (4 vs. 5 and 18 vs. 26) are compara-
ble in the two cases. Rules and exceptions also
occur naturally in data clustering, in the context
of computer science and data analysis, where they
are termed clusters and outliers respectively (see
e.g. [15, 16]). Clearly, in all of the above, rules con-
cern either large or infinite series of objects, while
exceptions are isolated.

The plan of this paper is as follows. We
begin with a purely static approach to the
interplay between grammar rules and exceptions
(Section 2), which in particular results in sensi-
ble values for the threshold that divides them.
In the following sections, we build increasingly
sophisticated models of the dynamical evolution
of grammar rules. Successive levels of modelling
include the initial growth of the structured lexicon
in a single language (Section 3), the competi-
tion between growth and conversions, e.g. from
irregular to regular forms, in a mature language
(Section 4), and finally a network representa-
tion of the comparative evolution of grammar
rules in a situation of prolonged language contact
(Section 5). Finally, we summarise and collate our
insights in the Discussion section (Section 6).
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2 Rules and exceptions:
a static approach

This section provides a first approach to the inter-
play between grammar rules and exceptions. The
arguments used come from a purely static per-
spective, being based on optimality: no dynamical
evolution is invoked.

We focus here on morphology, and in particu-
lar on rules governing verb conjugation. Consider
a language having a total of N verbs, which are
divided into K groups. Each group follows a dis-
tinct pattern of conjugation, and is labelled by
an integer a = 1, 2, . . . ,K. Group a contains Na

verbs, so that

N =

K
∑

a=1

Na. (2)

Groups are assumed to be ranked in order of
decreasing size (N1 ≥ N2 ≥ N3 . . . ).

It is clearly most efficient to remember the con-
jugations of the N1 verbs in the largest group by
means of a single rule. On the other hand, if the
smallest groups (a nearK) haveNa = 1, it is most
efficient to think of them as exceptions (e.g. verbs
such as ‘to be’ or ‘to have’ in most languages).
How, then, can a demarcation line between rules
and exceptions be operationally defined? A nat-
ural way of proceeding consists of minimising
the total memorization effort and memory size I
needed to learn and store the conjugations of all
verbs comprising both rules and exceptions, or, in
Chomsky’s [17] words, ‘the grammar’ and ‘the lex-
icon’. If the conjugation in question has R rules,
the latter correspond to the R largest groups. The
remaining K − R groups comprise a total of E
exceptions, with

E =

K
∑

a=R+1

Na. (3)

We estimate the requested memory size as

I = CR+ E, (4)

where C is the only free parameter of the model.
It obeys the inequality C > 1, expressing our
expectation that it takes more effort and mem-
ory size to remember a full rule than to remember
an exception. In particular, the above inequality

ensures that single verbs, belonging to groups with
Na = 1, are automatically considered as excep-
tions. Minimising I with respect to R should yield
the optimal number of rules.

2.1 Exponential size distribution

Consider first the situation where group sizes have
an exponential asymptotic decay of the form

Na ≈ ANe−µa, (5)

for some constants A and µ. Since group sizes
are obviously integers, we need to take the inte-
ger part of the right-hand side of (5). However,
neglecting this subtlety, we get accurate asymp-
totic estimates for the quantities of interest in the
realistic situation where the total number N of
verbs is large, whereas the parameter µ is small.
Setting NK = 1 yields an estimate for the total
number of groups,

K ≈ 1

µ
lnAN. (6)

For a given number R of rules, (3) yields

E ≈ AN

eµ − 1
e−µR. (7)

The total memory size I is minimal for

R ≈ 1

µ
ln

µAN

C(eµ − 1)
. (8)

This approach predicts that the number of
rules grows logarithmically with the total number
of verbs. Considering the relatively small number
of conjugation rules in most world languages, this
slow growth of the number of rules makes very
good sense. Our approach also predicts that the
number E of exceptions saturates to the finite
limit

E ≈ C

µ
. (9)

The actual integer value of E oscillates around
the above limit, which, we note, is much smaller
than the threshold (1) predicted by the tolerance
principle.
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2.2 Power-law size distribution

If group sizes have a power-law decay, namely

Na ≈ BN

aθ+1
, (10)

with an arbitrary positive exponent θ, we have

K ≈ (BN)1/(θ+1). (11)

For a given number R of rules, (3) yields

E ≈ BN

θRθ
. (12)

The memory size I is minimal for

R ≈
(

BN

C

)1/(θ+1)

. (13)

We have then

E ≈ C

θ
R. (14)

In this case, the numbers R of rules and E
of exceptions grow proportionally to each other.
Their common growth law is subextensive in the
total number N of verbs, and characterised by
the growth exponent 1/(θ + 1). This prediction
for E is again much smaller than the threshold (1)
predicted by the tolerance principle.

3 A dynamical model with
growth

This section contains the first of several dynamical
approaches to the evolution of grammar rules and
exceptions. We adopt a chronological viewpoint
which assumes that new verbs are added sequen-
tially to the lexicon. Each new verb typically joins
an existing group and follows its conjugation rules,
whereas it rarely, if ever, forms a new group.

This model is freely inspired from the theory
of growing networks by preferential attachment,
proposed by Barabasi and Albert [18, 19]. Among
various extensions of the model [20, 21], Bianconi
and Barabasi [22, 23] have shown that the addition
of a fitness or attractiveness parameter character-
ising each node greatly enriches the model; among
other things, it may induce a condensation phase
transition.

Thus, new verbs enter the lexicon sequentially
as new nodes in growing networks. At any given
instant, there are K verb groups, indexed a =
1, . . . ,K. Group a contains Na verbs subject to
specific grammar rules governing their conjuga-
tion. The total number of verbs then reads2

N =

K
∑

a=1

Na. (15)

In this approach, exceptions are not consid-
ered explicitly, so that the number K of groups is
identical to the number R of rules.

The new verb number (N + 1) joins group a
with probability

pa =
ηa(Na + c)

Z(N)
, (16)

where:

• The first factor ηa is the intrinsic attractiveness
(or fitness) parameter of group a. It is fixed once
and for all at the birth of group a, and embodies
the Darwinian fit-get-richer effect.

• The second factor (Na + c) is dynamical, in
the sense that it grows in the course of time.
It embodies the rich-get-richer, or Matthew,
effect. The constant c is the initial attractive-
ness of an empty group [20, 21].

• The denominator

Z(N) =
∑

a

ηa(Na + c) (17)

ensures the normalisation of the attachment
probabilities pa at all times.

3.1 Evolution of number of groups

A new verb group is born, i.e., K is changed to
K + 1, whenever the new verb starts it, instead
of joining an existing one. The geometric picture
behind this is the growth of a forest of K trees,
where the joining of a new verb to an existing
group a corresponds to the growth of the ath
tree, whereas a newborn tree appears whenever
the incoming verb itself starts a new group.

2This number will be used as an effective measure of ‘time’.
In this work, we never directly compare real (i.e., historical)
time to the effective time variables parametrising the evolution
in all our models.
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The birth of a new group takes place with
probability cηK+1/Z(N). In the late stages of
the dynamics, when group sizes are large, the
following deterministic growth law emerges

dK

dN
≈ c

N
, (18)

yielding
K ≈ c lnN. (19)

The logarithmic growth laws (8) and (19) substan-
tiate our intuition that the birth of a new grammar
rule is a rare event.

3.2 Evolution of group sizes

Consider again the late stages, where group sizes
are typically large. For a given draw of the attrac-
tiveness parameters ηa of the groups, the stochas-
tic rules defining our growth model reduce asymp-
totically to the deterministic growth equations

dNa

dN
≈ ηaNa

Z(N)
, (20)

with
Z(N) ≈

∑

a

ηaNa. (21)

Discarding the rare events where a new verb
group is born, so that the number K of groups
remains constant, we rank verb groups according
to decreasing attractiveness (η1 > η2 > · · · > ηK).
The size of the most attractive group grows as
N1 ≈ N . We have therefore Z(N) ≈ η1N , so
that the sizes of the other groups (a = 2, . . . ,K)
asymptotically obey

dNa

dN
≈ ηaNa

η1N
, (22)

and hence
Na ∼ Nβa , (23)

with
βa =

ηa
η1

. (24)

Our prediction is that, apart from the most
favoured one, group sizes grow with a subextensive
power-law, the growth exponents βa < 1 being
given by attractiveness ratios. A similar power-
law growth scenario with variable exponents holds
in the Bianconi and Barabasi model of a growing
network [22, 23].

This subextensive growth law (23) with con-
tinuously variable exponents βa suggests a smooth
crossover between rules and exceptions, instead
of a sharp line of demarcation dividing the two
(see the static approach of Section 2). Notice once
again that the predicted sizes of all unfavoured
groups are much smaller than the threshold (1)
involved in the tolerance principle.

4 A dynamical model with
growth and conversions

This second dynamical approach describes a later
stage in the evolution of a mature language. Verbs
might spontaneously change groups, converting,
for instance, from an irregular to a regular form.
This conversion mechanism competes with the
growth mechanism introduced in Section 3; it may
result in the enrichment and eventual dominance
of a verb group which is not per se the most attrac-
tive. This is a manifestation of the phenomenon of
winning against the odds, which we have explored
in various contexts [24–26].

Again, we discard the rare events where a
new group of verbs is born, so that the num-
ber K of groups is constant, and the group label a
runs from 1 to K. The total rate of conver-
sions from group b to group a is assumed to
be proportional to the sizes of both groups. It
therefore reads CabNaNb, where the individual
conversion rates Cab are the entries of a constant
skew-symmetric conversion matrix of size K ×K.

In the presence of conversions, the evolution
equations (20) therefore read

dNa

dN
= Na

(

ηa
Z(N)

+
1

N2

∑

b

CabNb

)

, (25)

with

N =
∑

a

Na, Z(N) =
∑

a

ηaNa. (26)

The first and second terms in the parentheses
in (25) respectively describe the competing growth
and conversion mechanisms. The second term has
been rescaled by 1/N2, in order to ensure that the
strengths of both competing mechanisms remain
comparable in the regime of large N , i.e., for very
mature languages. The description of this conver-
sion mechanism is similar to that used in earlier
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work on the coexistence of two or more languages
in competition [27].

The relative sizes of the various verb groups,
defined as the ratios

xa =
Na

N
(a = 1, . . . ,K), (27)

obey the reduced evolution equations

N
dxa

dN
= xa

(

ηa
z

− 1 +
∑

b

Cabxb

)

, (28)

with the sum rules

∑

a

xa = 1,
∑

a

ηaxa = z. (29)

The dynamical system (28) shares a remark-
able property with that encountered in earlier
work [27]. For generic values of the attractive-
ness parameters ηa and the conversion rates Cab,
the coupled evolution equations (28) have a sin-

gle attractor, which consists of an attractive fixed
point x⋆ = {x⋆

a}. In general, some components x⋆
a

are positive, whereas others vanish.

• If x⋆
a > 0, group a is said to be a survivor. Its

size grows asymptotically in proportion to the
total number of verbs, as

Na ≈ Nxa. (30)

• If x⋆
a = 0, group a is said to be extinct. Accord-

ing to the deterministic equations (28), xa

falls off exponentially in N . In the microscopic
stochastic context, this means that the group
concerned goes extinct in a finite time.

The unique attractor of the dynamical sys-
tem (28) defines the pattern of survivors. Its
principal characteristic is the number M of sur-
vivors. Some specific sets of model parameters can
be chosen so as to have either M = 1 (correspond-
ing to the emergence of a grammatical consensus,
in the sense that only one group survives), or
M = K (all groups survive), or an arbitrary num-
ber of groups in the range M = 1, . . . ,K, survive.
We emphasise that in the present setting, the
number M of surviving groups is identical to the
number R of rules.

From here on, we consider the specific situa-
tion where verbs convert from less to more regular

forms. This is motivated by the observed general
tendency for irregular verbs in most languages to
‘regularise’ with time (see e.g. [7]), even when the
former are well established (see, for example, the
gradual regularisation of the past participle ‘wed’
to an increasingly accepted ‘wedded’ [7]).

For simplicity, we now rank verb groups
according to decreasing regularity, a = 1 being
the most regular, and a = K the most irregu-
lar group. The conversion mechanism then takes
the form of a simple descent at some constant
rate g. Within this framework, the entries of the
conversion matrix read

Cab =







+g (a < b),
0 (a = b),
−g (a > b).

(31)

4.1 The case of two verb groups in

competition

We consider first the case of two verb groups with
attractiveness parameters η1 and η2. For K = 2,
the reduced evolution equations (28) read

N
dx1

dN
= x1

(η1
z

− 1 + gx2

)

,

N
dx2

dN
= x2

(η2
z

− 1− gx1

)

, (32)

with

x1 + x2 = 1, η1x1 + η2x2 = z. (33)

The two control parameters are the attractiveness
ratio

q =
η1
η2

(34)

and the conversion rate g.
Figure 1 shows the phase diagram of the model

in the q–g plane. In the absence of conversions
(g = 0), only the most attractive verb group sur-
vives, namely group 1 for q > 1 and group 2 for
q < 1. The presence of conversions triggers sev-
eral novel phenomena. First, both groups survive
simultaneously in an intermediate range

1− q < g <
1− q

q
, (35)
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whose boundaries are respectively shown in blue
and green. In this coexistence range we have

x⋆
1 =

g + q − 1

(1− q)g
, x⋆

2 =
1− q(1 + g)

(1− q)g
. (36)

The first fraction x⋆
1 (resp. the second fraction x⋆

2)
vanishes continuously as the blue (resp. green)
boundary is approached. Second, the competition
between the growth and conversion mechanisms
allows for the emergence of survivors against
the odds; thus, in the domain between the green
curve and the vertical dashed line (labelled in red),
group 1 survives despite being unfavoured.

q

g

1

1 (1+2)

(2)

(1) (1)

Fig. 1 Phase diagram of the model of two verb groups
with growth and conversions in the q–g plane. Blue and
green curves: boundaries of coexistence range. Vertical
dashed line: neutral line where η1 = η2. Numbers between
parentheses: labels of surviving group(s). Red label: sur-
vivor against the odds.

4.2 The general case of K verb

groups

For a higher number K ≥ 3 of competing verb
groups, the determination of the full multidimen-
sional phase diagram of the model is intractable.

We consider instead a statistical ensemble,
where the intrinsic attractiveness parameters ηa
of verb groups are modelled as independent
quenched random variables drawn from some
probability distribution. We choose for definite-
ness the exponential distribution with unit width:

f(η) = e−η. (37)

The main features of the model, including the
logarithmic growth law (39), would remain qual-
itatively unchanged for any bounded or rapidly
decaying attractiveness probability distribution.

The survivors thus form a random pattern,
whose statistics depend only on the number K of
groups and the conversion rate g. This pattern can
be easily predicted at small and large g. If g is
either zero or very small, the growth mechanism
dominates and only the most attractive group sur-
vives. If g is very large, the conversion mechanism
wins; now the only survivor is the most regular
group. In the intermediate regime where the con-
version rate g is moderate, so that growth and
conversion are comparable, several survivors may
coexist.

We first focus on the mean number 〈M〉 of
survivors, where the mean value is taken over the
distribution (37) of attractiveness parameters. In
the case of two verb groups (K = 2), the exactly
known phase diagram of the model (see Figure 1)
yields

〈M〉 =















4
4− g2

(g ≤ 1),

g + 3
g + 2 (g ≥ 1).

(38)

This expression goes to unity at small and large g,
as expected. It takes its maximal value, 〈M〉 =
4/3, at g = 1; its first derivative is discontinuous
at this point, as indicated by the cusp in the black
curve in Figure 2. This singularity is due to the
endpoint at (q = 0, g = 1) of the blue line in
Figure 1.

0 1 2 3
g

1

1.2

1.4

1.6

1.8

2

<
M

>

2
3
4
5
6

Fig. 2 Mean number 〈M〉 of survivors against conver-
sion rate g for several numbers K of verb groups (see
legend). Black curve: exact analytical result (38) forK = 2.
Coloured curves: numerical data for K = 3 to 6.
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We have investigated the behaviour of larger
systems (K ≥ 3) by means of numerical simu-
lations, determining the value of the fixed point
x⋆ = {x⋆

a} for many independent draws (107 for
each parameter set) of the attractiveness param-
eters ηa. Figure 2 shows the mean number 〈M〉
of survivors plotted against the conversion rate g
for several K (see legend). The black curve shows
the exact analytical result (38) for K = 2. The
other curves show the outcome of numerical sim-
ulations. The qualitative form of the dependence
of 〈M〉 on g is independent ofK, with 〈M〉 depart-
ing quadratically from unity at small g, reaching
its maximum with a cusp at g = 1, and slowly
converging back to unity at large g.

Figure 3 shows the maximal mean number
〈M〉max of survivors, corresponding to the conver-
sion rate g = 1, plotted against lnK, for K up
to 12. The excellent agreement with the regres-
sion line demonstrates that this quantity grows
logarithmically with the number K of groups, as

〈M〉max ≈ A lnK, (39)

with a prefactor A ≈ 0.5. The appearance of this
logarithmic law again emphasises the conformity
of our model with the general principles laid out
in earlier sections (see (8), (19)). In the present
context, the clear implication of this law is that
only very few verb groups survive from an initial
panoply of possibilities.

0.5 1 1.5 2 2.5 3
ln K

1

1.5

2

2.5

<
M

>
m

ax

Fig. 3 Maximal mean number 〈M〉max of survivors, cor-
responding to g = 1, plotted against lnK, for a number K
of verb groups up to 12. Symbols: numerical data. Circled
symbol: exact value 〈M〉max = 4/3 for K = 2. Full line:
least-square fit with slope 0.498.

In addition to the number M of survivors, the
whole pattern of survivors is also of interest. In the
absence of conversions, only the most attractive
group survives. As the conversion rate g increases,
survivors against the odds [24–26] – i.e., those
which do not belong to the most attractive groups
– gradually become more and more frequent. We
define the variable Ppara, the ‘paradoxical’ prob-
ability that the most attractive group does not

belong to the pattern of survivors, to explore this
issue further.

In the case of two verb groups (K = 2), the
paradoxical probability Ppara is nothing but the
statistical weight of the region lying between the
green curve and the vertical dashed line in the
phase diagram of the model (see Figure 1), which
is evaluated as

Ppara =
g

2g + 4
. (40)

The relevant region does not touch the endpoint
(q = 0, g = 1). Hence, and at variance with the
mean number of survivors, Ppara has a smooth
dependence on g.

Figure 4 shows the paradoxical probabil-
ity Ppara plotted against the conversion rate g for
several values of K (see legend). The black curve
shows the exact analytical result (40) for K = 2.
The other curves show the outcome of numerical
simulations. As expected, Ppara increases steadily
as a function of the conversion rate g, departing
linearly from zero at g = 0, exhibiting a shoulder
for g slightly below unity, and slowly saturating to
the limit value

P∞ =
K − 1

K
(41)

at very large g. For infinitely large g, there is
indeed only one survivor, namely the most regu-
lar group (a = 1), whose probability of also being
the most attractive one is 1/K.

5 Languages in contact

In the previous section, we showed that conver-
sions provided a mechanism for gradual regularisa-
tion of initially irregular grammatical forms. This
occurs with increasing usage within the same lan-
guage [7], i.e. it is an intra-language mechanism.
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0 1 2 3
g

0

0.1

0.2

0.3

0.4

0.5
P

pa
ra

2
3
4
5
6

Fig. 4 Paradoxical probability Ppara against conversion
rate g for several numbers K of verb groups (see leg-
end). Black curve: exact analytical result (40) for K = 2.
Coloured curves: numerical data for K = 3 to 6.

On the other hand, our initial motivation for
this study was the unlikely survival of irregular

past participles such as ‘stuck”, when the favourite
to win at the time was clearly ‘sticked’ [12]. We
suggest that this emergence is due to contact with
other languages, i.e., that it is attributable to an
inter-language mechanism.

As mentioned in the Introduction, the field of
contact linguistics concerns such linguistic influ-
ence. We cite below a couple of instances of
languages in prolonged contact, which have led
to their deep modification [3]. The first con-
cerns the contact of Old English with Norse,
and then that of Middle English with Norman
French, which were the precursors of English in
its present form. The second concerns the Balkan
Sprachbund,3 where speakers of Greek, Romanian,
and various Slavic languages were in contact for
almost a millennium. In both cases, there has
been an appreciable amount of convergence in the
morphology and syntax of the languages in con-
tact, despite the sizeable differences between them
originally.

In the following, we model the effect of such
contact among a given family of languages. We
represent all verb groups of this linguistic family
as the nodes of a graph, and the couplings between
them as bonds connecting these nodes. Bonds

3This term, meaning ‘union of languages’ refers to a situ-
ation where there is prolonged contact across geographically
contiguous language communities [3].

which connect nodes pertaining to the same lan-
guage represent the conversion mechanism intro-
duced in Section 4, whereas those joining nodes
pertaining to different languages represent the
new ingredient of linguistic contact. This descrip-
tion of language contacts is static, in the sense that
the topology of the network does not change over
the course of time. It therefore describes e.g. the
influence of Norse on Old English, or that of
French on Middle English, but not both together.

For the sake of simplicity, we write the cor-
responding evolution equations in the following
linear form:

dNa

dN
=

ηa
Z(N)

(

Na +
∑

b

gabNb

)

. (42)

These equations present analogies and differ-
ences with the evolution equations (25). In both
cases ηa is the intrinsic attractiveness parame-
ter of group a. Within the present linear setting,
the couplings gab represent the strength of all
conversion and contact effects described above,
whereas in (25) the conversion mechanism involves
a more traditional bilinear form. In general, the
matrix g = {gab} is not symmetric. More impor-
tantly, it is expected to be sparse, as only similar
grammar rules pertaining to different languages
will influence each other. Furthermore, the cou-
plings gab connecting nodes pertaining to different
languages, i.e., representing contact between dis-
tinct languages, must be positive, whereas those
between nodes pertaining to the same language
may take both signs. Finally, the denominator
Z(N) is there to ensure that the sum rule

∑

a

Na = N (43)

holds, where N is the total number of verbs in all
languages of the family under consideration.

Introducing the reduced effective time

s =

∫ N

1

dN ′

Z(N ′)
(44)

brings the evolution equations (42) to the form

dNa

ds
= ηa

(

Na +
∑

b

gabNb

)

. (45)
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These equations are autonomous, in the sense
that they no longer involve any explicit time
dependence. They can be recast in matrix form:

dNa

ds
=
∑

b

MabNb, (46)

with

Mab = ηa(δab + gab), (47)

where δab is the Kronecker symbol.
We are chiefly interested in the late-time

regime of the evolution described by the con-
tact network under consideration. There, all group
sizes grow asymptotically as

Na ≈ Va e
λs, (48)

where λ is the largest eigenvalue of the con-
stant dynamical matrix M = {Mab}, whereas the
amplitudes Va are proportional to the components
of the associated right eigenvector, such that

λVa =
∑

b

MabVb. (49)

The total number of verbs thus grows as

N ≈ V eλs, V =
∑

a

Va. (50)

We expect that λ and the Va are positive in
realistic circumstances, even when the dynamical
matrix M is not symmetric. These expectations
have been confirmed by a range of numerical
explorations.

The relative sizes of the groups in the late-
time regime are therefore dictated by the compo-
nents Va of the leading eigenvector of the dynam-
ical matrix M . The spectral problem at hand
presents a formal analogy with Anderson locali-
sation within the tight-binding formalism [28–30].
More precisely, the dynamical matrix M is analo-
gous to the tight-binding Hamiltonian H describ-
ing the motion of a single electron in a random
potential. The largest eigenvalue λ is analogous
to the ground-state energy E0 of the electron.
Finally, the components Va of the associated right
eigenvector are analogous to the components of
the ground-state wavefunction of this one-body
problem. From a very general viewpoint, the

geometry of the underlying network and the dis-
tribution of the couplings determine the nature
(extended, localised, fractal, etc.) of the wavefunc-
tion. The analogy of our problem with that of
Anderson localisation implies that differing net-
work geometries and model parameters will lead
to a rich diversity of behaviour in the asymptotic
distribution of verb group sizes.

5.1 The linear chain

We first investigate the idealised situation where
nodes form an infinite linear chain, with asymmet-
ric couplings between nearest neighbours. In this
context, (49) reads

λVn = ηn(Vn + gn,n−1Vn−1 + gn,n+1Vn+1), (51)

with obvious notations. For specificity, we consider
the case where the node at the origin is favoured,
in the sense that its attractiveness parameter is
η0 = 1, whereas all other nodes have ηn = q < 1.

Consider the pristine case where all couplings
are the same (gn,n−1 = gn,n+1 = g). In this sim-
ple situation, the analogy with the tight-binding
model is as follows. The favoured node at the
origin acts as an attractive impurity, where the
wavefunction is expected to be largest. It can be
checked that the largest eigenvalue λ corresponds
to a localised impurity state of the form

Vn = z|n|, (52)

which falls off exponentially with the distance |n|
to the origin. The eigenvalue λ and the decay
constant z are determined by the two equations

λ = 1 + 2gz = q

(

1 + g

(

z +
1

z

))

, (53)

hence

z =
2qg

w + 1− q
,

λ = 1 +
4qg2

w + 1− q
, (54)

with the notation

w =
√

(1− q)2 + 4q(2− q)g2. (55)
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In the more general case, where the couplings
gn,n−1 and gn,n+1 are arbitrary and modelled as,
say, quenched random variables, the above picture
of a localised impurity state around the favoured
node, with an exponentially decaying wavefunc-
tion, remains qualitatively correct. To get more
quantitative results, we look at the theory of
fluctuations in one-dimensional Anderson locali-
sation (see [31] and the references therein). The
latter theory predicts that the amplitude Vn is
distributed log-normally in the asymptotic limit.
More precisely, for a large distance n, the logarith-
mic ratio

Ln = − ln
Vn

V0
(56)

is approximately distributed according to the
Gaussian law

f(Ln) ≈
1√

2πγ2n
exp

(

− (Ln − γ1n)
2

2γ2n

)

, (57)

where γ1 and γ2 are the first two Lyapunov expo-
nents of the problem, such that4

〈Ln〉 ≈ γ1n, varLn ≈ γ2n. (58)

The probability of winning against the odds
for a node at a distance n from the favoured one
sitting at the origin is defined as

Pn = Prob(Vn > V0) = Prob(Ln < 0). (59)

Using (57), this becomes

Pn ≈ 1

2
erfc

(

γ1

√

n

2γ2

)

. (60)

This expression falls off exponentially with dis-
tance n, according to

Pn ∼ e−µn, (61)

with

µ =
γ2
1

2γ2
. (62)

In our context, the above analysis suggests
that the probability of finding an unlikely winner
(e.g. an irregular grammatical form) decays expo-
nentially with the graph distance n between that

4The impurity state (52) of the pristine case described above
fits within this scheme, with γ1 = − ln z and γ2 → 0.

form and the closest most regular (or otherwise
favoured) form. The illustration of our formalism
in the idealised geometry of an infinite chain will
serve as a template for the analysis in the next
subsections, where we will formulate our problem
in more realistic settings.

5.2 A two-dimensional ‘toy’ network

We now look for winners against the odds in the
setting of a 3 × 3 network involving three related
languages, denoted A, B and C (see Figure 5).
Individual nodes in a row correspond to verb
groups in a given language; we consider thus a
total of three verb groups in each of the three lan-
guages. This geometry is far more realistic than
the previous one of an infinite linear chain, even
though it is not motivated by a specific exam-
ple. Three is indeed the right order of magnitude
for the number of verb groups, and more gener-
ally for competing grammatical forms. It is also
expected to be a good estimate of the number of
closely related languages with significant borrow-
ing exchanges. One may think of English, Dutch
and German.

The conjugation rules of the verb groups (in
different languages) which are aligned vertically
in a column are assumed to be very similar to
each other. A single verb group is favoured in
each language (large symbols), i.e., its attractive-
ness reads ηa = 1, whereas the other two groups
have ηa = q < 1 (small symbols). The couplings
(blue lines) are limited to nearest neighbours. It
is when the most favoured groups are chosen to
be different in the three languages that non-trivial
behaviour emerges.

We study both symmetric and asymmetric
isotropic random couplings. In the symmetric
case, the couplings gab = gba along the 12 bonds
are independently drawn from the exponential law
of parameter ∆:

f∆(g) =
e−g/∆

∆
. (63)

In the asymmetric case, both gab and gba are
two independent positive random variables drawn
from the above distribution, so that there are
altogether 24 random couplings.

We consider the fates of nodes 1 and 9, which
are furthest from the favoured nodes, and so are
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1 2 3

4 5 6

7 8 9

A:

B:

C:

Fig. 5 Schema of the toy network with 3 languages,
denoted A, B and C, and 3 verb groups in each language.
Large symbols: favoured nodes. Small symbols: unfavoured
nodes. Blue lines: bonds carrying either symmetric or
asymmetric couplings.

least likely to win. For this purpose, we examine
the logarithmic ratio (see (56))

L = − ln
V1

V3
. (64)

The high symmetry of the network implies that
considering the alternative ratios V1/V7, V9/V3

and V9/V7 would yield statistically identical
results. A negative value of L implies that node 1
wins against the odds; in other words, we have
V1 > V3, despite mode 3 being the most attrac-
tive in language A (Note that there is no direct

coupling between nodes 1 and 3). The probability
that node 1 wins against the odds therefore reads

Pwin = Prob(L < 0). (65)

Figure 6 shows plots of the probability dis-
tribution f(L) of the logarithmic ratio L for
symmetric (top) and asymmetric (bottom) cou-
plings, with a fixed small coupling width ∆ =
0.1 and several attractiveness ratios q (see leg-
end). Data have been obtained by numerically
solving the 9 × 9 eigenvalue equation (49) for
many independent draws of the random couplings.
Even though the network size is small, the over-
all shape of the plotted distributions is close to
the asymptotic Gaussian profile (57) obtained on
the infinite chain. The asymmetry of the cou-
plings appears to play a rather minor role, in the
sense that both series of curves are rather simi-
lar to one another. When q = 1 (black curves), so
that the attractiveness is the same throughout the
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Fig. 6 Probability distribution of the logarithmic ratio L
(see (64)), for a fixed small coupling width ∆ = 0.1 and
several attractiveness ratios q (see legend). Vertical dashed
lines: neutral value (L = 0). Upper panel: symmetric
couplings. Lower panel: asymmetric couplings.

network, the distributions are symmetric around
the neutral value L = 0 (vertical dashed lines),
and Pwin = 1/2, as expected. As q is decreased,
the distributions shift progressively to the right,
with 〈L〉 growing steadily with the difference 1−q,
whereas their shapes remain roughly unchanged.
The portion of the curves corresponding to neg-
ative values of L shrinks accordingly, indicating
that winning against the odds becomes increas-
ingly difficult as the attractiveness contrast 1−q is
increased. This observation is made quantitative
in Figure 7, showing that the probability Pwin of
winning against the odds (see (65)) falls off more
rapidly than exponentially with the attractiveness
contrast 1− q.

The present network embedding, with its
explicit depiction of contact with neighbouring
languages, is more apposite than the setting of the
infinite chain for the problem of unlikely winners
among grammatical forms. However, the striking
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Fig. 7 Plot of − ln(2Pwin) against the attractiveness con-
trast 1− q, where Pwin is the probability that node 1 wins
against the odds (see (65)). Symbols: data extracted from
those shown in Figure 6 for symmetric and asymmetric
couplings. Blue curves: quadratic fits suggesting that Pwin

falls off faster than exponentially as a function of the
attractiveness contrast 1− q.

resemblance between the distributions presented
in Figure 6 for our rather small toy network and
the Gaussian profile (57) for the infinite chain
is a strong indicator of the relevance of the the-
ory of one-dimensional Anderson localisation to
the present problem. This analogy enables us to
reduce the problem of finding unlikely winners
in a dynamical system, where many agents are
in simultaneous competition, to one involving the
exponential decay of Pwin with distance from the
nearest favoured node. We will make good use of
this simplification in Section 5.3, when the col-
lective competition intrinsic to our problem is
embedded on complex networks.

5.3 Complex networks

A ‘map’ of linguistic influences can be expected to
have a complex topography, comprising regions of
strong linguistic contact (i.e., high connectivity),
as well as relatively isolated regions with weak or
no linguistic contact. It is the former that are rele-
vant in the context of the question we ask: can the
emergence of irregular grammatical forms which
survive against the odds be attributed to the influ-
ence of ‘neighbouring’ languages? We therefore
home in on what will be the most sophisticated,
as well as the most abstract, version of our model;
here, all grammar rules (governing verb conju-
gation, in this instance) in a family of related

languages are embedded in a complex network (see
e.g. [32, 33]).

We choose for definiteness the geometry of ran-
dom regular graphs (see e.g. [34, 35]). These are
randomly connected networks where each node
has the same prescribed degree k ≥ 3, i.e.,
each node is connected to exactly k other nodes.
The main qualitative features of the model, to
be described below, would remain essentially the
same for other structureless models of complex
networks, where degrees k have mild fluctuations
around the mean degree 〈k〉. Scale-free networks,
where node degrees k obey a broad power-law dis-
tribution, might however give rise to a different
phenomenology.

Some of the connections involve two nodes in
the same language, while others embody contact
with neighbouring languages; as before, the bonds
between nodes in the same language represent con-
version, while those connecting nodes belonging
to different languages represent interlingual con-
tact. We do not – unlike for the toy network of
the previous subsection – specify which is which;
we focus instead only on the nodes which win
against the odds. The distribution of attractive-
ness parameters is again assumed to be bimodal.
Some fraction ρ of the nodes are favoured, and
have attractiveness parameters ηa = 1, whereas all
other nodes have the same smaller attractiveness
ηa = q. The microscopic distribution of couplings
gab entering the dynamical matrix is left unspec-
ified. We indeed rely on the key outcome of the
analysis of the one-dimensional setting, i.e., the
exponential falloff of the probability of winning
against the odds with distance n to the near-
est favoured node (see (61)). For specificity, we
assume a purely exponential decay law of the form

Pn = e−µn. (66)

The parameter µ increases with the attractive-
ness contrast 1 − q, in a way which depends on
the distribution of the couplings gab, as suggested
by (62). The greater the attractiveness contrast,
therefore, the less will be the likelihood of finding
winners against the odds.

The central question we wish to address con-
cerns the probability Pwin that any given node
(e.g., the origin O) wins against the odds, as a
function of the model parameters ρ and µ. This
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can be written as

Pwin =
∑

n≥1

fnPn, (67)

where fn is the distribution of the distance n of
the origin O to the nearest favoured node. Note
that the term f0 = ρ does not enter the sum
in (67), since this corresponds to the current node
being favoured, and therefore does not contribute
to winners against the odds.

The distribution fn is evaluated as follows.
The number Mn of nodes situated at distance at
most n from the origin O reads

Mn = 1 + k + k(k − 1) + · · ·+ k(k − 1)n−1

=
k(k − 1)n − 2

k − 2
. (68)

This result relies on the property that a random
regular graph is locally treelike, so that cycles
are rare, and therefore negligible. In other words,
local properties of random regular graphs coincide
with those of the infinite Cayley tree of degree k,
also known as the Bethe lattice in the physics lit-
erature. The exponential growth law (68) of the
number of nodes with distance is an expression of
the fact that the fractal dimension of the network
is formally infinite. The diameter n of a large net-
work indeed grows logarithmically with its total
mass M , as

n ≈ lnM

ln(k − 1)
. (69)

This is a manifestation of the so-called small-world

effect [32, 33].
We now use the result (68) to evaluate the

probability Fn that the distance between O and
the nearest favoured node is larger than n. This is
identical to the probability that all the Mn nodes
in the first n shells around O are unfavoured, so
that Fn = (1 − ρ)Mn . The distribution that we
seek to evaluate is then nothing but the difference

fn = Fn−1 − Fn (n ≥ 1), (70)

i.e.,

fn = (1− ρ)Mn−1

(

1− (1 − ρ)k(k−1)n−1
)

. (71)

The probability of winning against the odds is
now readily obtained by inserting (66) and (71)
into (67).

An interesting scaling regime takes place when
the density ρ of favoured nodes is small. There,
the typical distance to the nearest favoured node
is large. The distribution fn is peaked around a
well-defined mean distance, which grows logarith-
mically as

n⋆ ≈ | ln ρ|
ln(k − 1)

, (72)

with a bounded variance around this mean
value. Two distinct regimes emerge, according to
whether the sum entering (67) is dominated by
the first few values of n or by n ≈ n⋆. These
regimes are defined by comparing two inverse
lengths, viz. µ, characterising the exponential
decay law (66) of the winning probability Pn, and
ln(k − 1), characterising the exponential prolifer-
ation (68) of nodes around a given node.

• For µ > ln(k − 1), the distant-dependent prob-
abilities Pn fall off fast enough that the sum
in (67) is dominated by finite values of n, i.e.,
n ≪ n⋆. Winners against the odds are actually
not too far from being likely winners, since the
nearest favoured node is nearby. For small ρ, we
have

fn ≈ k(k − 1)n−1ρ, (73)

and therefore

Pwin ≈
∑

n≥1

k(k − 1)n−1e−µnρ

≈ kρ

eµ − (k − 1)
(74)

starts increasing linearly in ρ.
• For µ < ln(k−1), the distance-dependent prob-
abilities Pn fall off slowly enough that the sum
in (67) is dominated by n ≈ n⋆. Winners in this
case are genuinely against the odds, since the
nearest favoured node is quite distant. We have

Pwin ∼ Pn⋆ ∼ ρα, (75)

where the growth exponent α depends linearly
on µ, according to

α =
µ

ln(k − 1)
. (76)
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• In the borderline case where µ = ln(k − 1), the
summand

fnPn ≈ kρ

k − 1
(77)

is nearly flat up to n⋆. We thus obtain

Pwin ≈ kρ| ln ρ|
(k − 1) ln(k − 1)

. (78)

We pause briefly to consider the significance of
the parameter α (see (76)). A similar ratio charac-
terised survivors in an earlier model of competitive
dynamics on networks [25], where the probabil-
ity of survival of a node depended on the ratio
of its mass to its average degree distribution; the
‘heavier’ the node, and the less connected it was
to others, the better its chances of survival. In the
present case, the role of the mass in [25] is played
by the the attractiveness contrast (1 − q) (recall
that µ ∼ (1 − q)), with the parameter ln(k − 1)
representing the effect of the (constant) degree
distribution. This analogy puts our work into a
more general context: the more attractive a gram-

mar rule is, and the less connected it is to direct

competitors, the more it is likely to persist.5

Figure 8 shows plots of the probability Pwin of
winning against the odds against the density ρ of
favoured nodes, for k = 3 and several values of the
parameter µ (see legend). The initial rise of Pwin

at small ρ is faster than linear for the two upper
curves (µ < ln 2) (see (75)) and linear for the two
lower curves (µ > ln 2) (see (74)). The borderline
case (µ = ln 2) (see (78)) is also shown (thick black
curve). In the other limiting situation (ρ → 1),
only

f1 = (1− ρ)(1 − (1− ρ)k) (79)

scales linearly with the difference 1− ρ, so that

Pwin ≈ e−µ(1− ρ). (80)

For any value of the parameter µ, the prob-
ability Pwin vanishes both for ρ → 0 and for
ρ → 1. This must clearly be the case: the complete
absence of favoured sites will not cause winners
against the odds to be generated at all, while if
nearly all sites are favoured, winners will be very
much with the odds, and not against them. We

5The important difference is that all survivors were consid-
ered in [25], whereas here only the subset of survivors against
the odds is considered. The same reasoning though clearly
applies to both.
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Fig. 8 Probability Pwin of winning against the odds for
a typical node of a random regular graph, against the den-
sity ρ of favoured nodes, for k = 3 and several values of µ
(see legend).

notice also that Pwin is overall larger for µ <
ln(k− 1) than for µ > ln(k− 1). This ties up with
the arguments we were making above: we would
expect that winners would be more numerous
when there are many unfavoured nodes under the
umbrella, so to speak, of a favoured site (see (75))
than in the opposite situation (see (74)).

The plots in Figure 8 also clearly manifest
the presence of an optimal density ρ⋆ of favoured
nodes, where Pwin reaches its maximal value P ⋆

win.
Figure 9 shows a plot of this optimal density
against µ for k = 3. At small µ, ρ⋆ starts grow-
ing linearly. At large µ, we have Pwin ≈ e−µf1
(see (79)), so that ρ⋆ saturates to the limiting
value

ρ∞ = 1− (k + 1)−1/k. (81)

(The precise values of P ⋆
win are however less infor-

mative, as they depend on the assumed exact
exponential form with unit amplitude (66) of Pn.)
The interpretation of these plots is as follows:
when µ is small, one does not need a high density
of favoured sites to achieve P ⋆

win; the unfavoured
sites themselves are close enough to being winners.
When, however, µ is large, we need a far higher
density of favoured sites to have a sphere of influ-
ence strong enough to attain P ⋆

win. The optimal
density ρ⋆ is therefore an increasing function of µ
until it saturates to ρ∞.

It turns out that the overall dependence of Pwin

on the density ρ of favoured nodes is always rather
accurately represented by the phenomenological
formula

Pwin ≈ ραeff − ρ. (82)
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Fig. 9 Optimal density ρ⋆ of favoured nodes, such that
the probability Pwin is maximal, against the parameter µ
for k = 3. Dashed horizontal line: limiting value ρ∞ =
1− 4−1/3 ≈ 0.370039.

Figure 10 shows a plot of the effective expo-
nent αeff , obtained by means of a nonlinear fit,
against µ for k = 3. This effective exponent
(green curve) interpolates smoothly between the
two exact growth exponents in the low-density
scaling regime (red and blue lines).
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Fig. 10 Green curve: effective exponent αeff entering the
approximate formula (82), against µ for k = 3. Red line:
exact growth exponent (76) for µ < ln 2. Blue horizontal
line: exact unit exponent of the linear law (74) for µ > ln 2.
Vertical dashed line: borderline value µ = ln 2.

We now summarise and interpret the above
results. The linguistic map in a region of strong
linguistic contact, alluded to at the beginning
of this section, is constructed by embedding our
model of competing grammar rules on a sparse

complex network, here chosen to be the Bethe lat-
tice.6 The mechanisms of competition involve both
linguistic contact between different languages and
regularisation within a given language, which act
against each other. Our analysis is based on an
effective description, via analogies with Anderson
localisation, of the eigenvector associated with the
largest eigenvalue λ of the dynamical matrix M

on this lattice, and involves only its exponen-
tial decay with distance from the set of favoured
nodes. We have discovered the existence of a
low-density scaling regime, where irregular forms
vastly outnumber regular ones and two kinds of
unlikely winners emerge: the first correspond to
grammatical forms which are linguistically close
to a favoured regular form, while the second cor-
respond to those which are linguistically rather
distant from it.

These results provide a natural framework
within which the emergence of ‘stuck’ can be
explained. According to Ringe [12], the competing
past participles of the verb ‘stick’ were ‘sticked’,
‘stuck’, ‘stoke’ and ‘stoked’, and the application
of the tolerance principle, which takes a one-body
view of the problem, did not predict the winner.
In our formalism, all these coexisting grammat-

ical forms compete with each other in parallel

in a dynamical model. In the relevant dynami-
cal regime, where irregular forms far outnumber
the only ‘regular’ competitor ‘sticked’ (ρ small),
the scenario of (75) applies, and a deeply irregu-
lar form such as ‘stuck’, linguistically very distant
from the regular form ‘sticked’, emerges as a
winner against the odds.

6 Discussion

We have, in the above, used statistical physics
methodologies to model the evolution of grammat-
ical rules. Starting with a very general approach,
we have provided a useful way of classifying rules
and exceptions in typical situations. A major
result of this static approach is that exceptions are
so called for a good reason: i.e., that they occur

6We mention for completeness that the present work has
only little to do with the theory of Anderson localisation on
the Bethe lattice [36], which plays a major role in recent work
on many-body localisation (see e.g. [37–39]). There, the Bethe
lattice arises as a template for the Fock space of a quantum
many-body problem.
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rarely, their number growing either logarithmi-
cally or as a subextensive power law in the number
of items. Our work quantifies a well-known exam-
ple from linguistics, viz. the paucity of verb groups
in most world languages, by demonstrating that
the birth of a new grammatical rule (or a new verb
group) is a very rare event (see the logarithmic
laws (8), (19), (39)). All of the above is in stark
contrast to the high threshold predicted by the
tolerance principle, which has a nearly extensive
(i.e., nearly maximal) growth law for the number
of allowed exceptions.

The dynamical models we have presented later
in the paper have corroborated these insights; we
have there focused on morphological issues in verb
conjugation, and their evolution. The two main
mechanisms we have included in our models are
first, the conversion of forms from irregular to
regular within a given language, and second, the
influence of ‘neighbouring’ languages with which
it is in prolonged contact. We have built up our
models progressively, adding these ingredients one
at a time to observe their full consequences. Our
first dynamical model of Section 3 involves only
the growth of the lexicon and of grammar rules
in a single language in the first stage of its evo-
lution. In Section 4, we have added a conversion
mechanism, which describes the rather univer-
sal tendency towards regularisation observed by
linguists [7]. Finally, in Section 5, we have com-
pleted the picture by adding linguistic change via
prolonged contact between similar languages, and
argued that this mechanism might well be respon-
sible for the introduction of novel irregular forms
into a given language.

We have strongly emphasised the appearance
and persistence of winners or survivors against
the odds in all our dynamical models of linguistic
evolution; these unlikely winners are precisely the
irregular linguistic forms which persist in the face
of several competitors, irregular as well as regular.
All the models we present include this essential
ingredient of collective and simultaneous compe-
tition. In Sections 4 and 5, we have quantified the
probability of occurrence of these winners against
the odds, as a function of model parameters in a
variety of situations. Finally, we have constructed
a model linguistic map in Section 5.3 incorporat-
ing both intra-language regularisation and inter-
language contact, and shown that forms which are
linguistically very far from favoured can indeed

emerge, and persist; in particular, this scenario
allows us to explain the unlikely persistence of
the deeply irregular grammatical forms mentioned
in [12]. It seems very likely that such persistence
occurs when the influence of interlingual contact
exceeds that of intralingual regularisation.

The quantitative proof of the above contention
would entail the formulation by quantitative lin-
guists of realistic network models of language
neighbourhoods. These would require a full knowl-
edge of linguistically appropriate distributions of
conversion and contact interactions for closely
linked language groups (see Section 5.3). Such
distributions might, for example, be obtained
from numerical experiments on the phylogenesis
of selected grammatical forms (past participles in
our case) in the languages concerned. It would be
most interesting to see if our model predictions are
verified, i.e., if, in the case where contact exceeds
conversion, unlikely irregular forms survive.

In summary, the main conclusions of our work
are as follows. First, attractive grammar rules
survive best in the absence of strong competi-
tors within or outside the language concerned;
second, there is an optimal density of favoured
rules which maximises the probability of less
attractive rules winning against the odds; third,
this optimal density decreases in proportion to
the difference in attractiveness between favoured
and unfavoured rules; and finally, despite over-
all tendencies towards regularisation, irregular
forms may persist in a given language because of
their strong similarities with sufficiently attractive
forms in other, closely related, languages.
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