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TUKEY MORPHISMS BETWEEN FINITE RELATIONS

RHETT BARTON, SAMUEL COSKEY, AND PAUL ELLIS

ABSTRACT. We investigate Tukey morphisms between binary relations, establishing several funda-

mental lemmas. We then specialize to finite binary relations, using computational methods to classify

all binary relations with at most 6 points in the domain and codomain up to bimorphism. Finally we

give a construction of finite binary relations with arbitrary dominating number and dual dominating

number.

§1. INTRODUCTION

A binary relation is a triple A = (A−, A+, A), where A± are arbitrary sets and A ⊆ A− × A+.

Given binary relations A, B, a Tukey morphism or simply morphism from A to B is a pair of functions

φ = (φ−, φ+) where

φ− : B− → A−

φ+ : A+ → B+,

and for all b ∈ B− and a ∈ A+,

(1) φ−(b) A a =⇒ b B φ+(a).

As a mnemonic for the condition (1), we draw the generalized commuting diagram shown

below, where the wavy lines represent relations rather than functions.

A+ B+

φ+

A−

A

B−

B

φ−

We use the notation φ : A → B to express that φ is a morphism from A to B, and the notation

A → B to express that there exists a morphism from A to B. We say that A and B are bimorphic if

A → B and B → A.

Observe that Tukey morphisms may be composed, which justifies the use of the category the-

oretic term. Indeed, if φ : A → B and ψ : B → C, then letting ψ ◦ φ = (φ− ◦ ψ−, ψ+ ◦ φ+) we
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have ψ ◦ φ : A → C. As a conseqence, morphisms define a quasi-order (reflexive and transitive)

on binary relations, and bimorphism defines an equivalence relation on binary relations.

Tukey morphisms and several close relatives of Tukey morphisms arise in many areas of math-

ematics. They were introduced in the context of topology and filterbases, where they are closely

related to cofinal mappings, see [10]. Many other applications of Tukey morphisms have since

emerged in topology and measure theory, see for instance [9, 8]. In algebra, Tukey morphisms ap-

pear in the context of generalized Galois connections [6]. In set theory, Tukey morphisms appear

in the context of ultrafilters [5], as well as in the study of cardinal characteristics of the continuum

[3]. In this context, [3] began to study Tukey morphisms for their own sake. He later introduced

the notion of definable Tukey morphism, see for instance [2, 7, 4].

In this article we study Tukey morphisms in their own right, and explore some of their funda-

mental properties. We furthermore begin to investigate the combinatorics of Tukey morphisms

between finite binary relations.

Before summarizing the results in the rest of the paper, we recall some background material

concerning the notion of dominating families, dominating numbers, and dual relations.

Definition 1.1. Let A be a binary relation. A subset Y ⊆ A+ is called an A-dominating family if for

every a ∈ A− there exists α ∈ Y such that a A α. The dominating number δ(A) of A is the minimum

size of an A-dominating family. If there is no A-dominating family, we set δ(A) = ∞.

It is clear that a dominating family of minimum size is also minimal, in the sense that it con-

tains no proper subsets which are dominating families. We remark that there may be minimal

dominating families which are not of minimum size, such as the example in Figure 1.

A

A−

A+

FIGURE 1. The red circle denotes a minimal dominating family, the blue circle
denotes a dominating family of minimum size.

The dominating number is a key invariant of a binary relation. The following result states that

Tukey morphisms respect the dominating number order.

Proposition 1.2 (Blass [3]).

◦ Let φ be a morphism from A to B. If F is an A-dominating family, then φ+(F ) is a B-dominating

family.

◦ If A → B then δ(A) ≥ δ(B).
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The first item is a consequence of the implication (1), and the second item is an immediate

consequence of the first item.

Binary relations together with Tukey morphisms admit a natural notion of duality.

Definition 1.3. Given a binary relation A = (A−, A+, A), the dual of A is the binary relation

A⊥ = (A+, A−,¬Ǎ), where ¬Ǎ denotes the complement of the converse of A, that is, x ¬Ǎ y if

and only if y 6A x. We call δ(A⊥) the dual dominating number of A.

We observe that (A⊥)⊥ = A. The next result states that Tukey morphisms interact with duals

in the usual way.

Proposition 1.4 (Blass [3]).

◦ If (φ−, φ+) is a morphism from A to B, then (φ+, φ−) is a morphism from B⊥ to A⊥.

◦ We have A → B if and only if B
⊥ → A

⊥.

The first item amounts to taking the contrapositive of the implication condition (1). The second

item is an immediate consequence of the first item.

Corollary 1.5. If A → B then δ(A) ≥ δ(B) and δ(B⊥) ≥ δ(A⊥)

It is natural to ask whether the converse of this result holds, that is, if δ(A) ≥ δ(B) and δ(B
⊥) ≥

δ(A⊥), does it follow that A → B? In [11], Yiparaki gives counterexamples using infinite binary

relations. In Section 5, we find counterexamples using finite binary relations.

The rest of this paper is organized as follows. In Sections 2 and 3, we develop elementary

results and explore general properties of binary relations and morphisms. In Section 4, we de-

velop an algorithm which produces, from a finite binary relation, a somewhat canonical relation

bimorphic to it, called its skeleton. In Section 5, we use a computer to calculate the skeletons of

all binary relations A such that |A±| ≤ 6, and to classify the binary relations such that |A±| ≤ 6

up to bimorphism. In Section 6, we briefly consider the structure of the morphism quasi-order

on binary relations. In particular, we use insights from our classification to develop a method for

constructing binary relations A with any given finite values of δ(A) and δ(A⊥).

Acknowledgement. Many of the results in this paper were initially obtained by Rhett Barton

while a graduate student at Boise State University, and appear in his master’s thesis [1].

§2. SOME FUNDAMENTAL MORPHISMS

As a warm-up, we begin by addressing trivial cases when the dominating number is 1 or ∞.

Proposition 2.1. ◦ If δ(B) = 1 and A is any binary relation, then A → B.

◦ If δ(A) = ∞ and B is any binary relation, then A → B.
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For the first item, if δ(B) = 1 then there is some y0 ∈ B+ satisfying xBy0 for all x ∈ B−. If A is

any other relation, the map φ+(a) = y0 will always define a morphism from A to B. The second

item follows from the first item, the fact that δ(A) = 1 ⇐⇒ δ(A⊥) = ∞, and Proposition 1.4. The

second item, together with Proposition 1.2, explains why a relation without a dominating family

is defined to have dominating number infinity.

From now on, unless otherwise specified, we will work only with binary relations A satisfying

1 < δ(A) < ∞ (and thus 1 < δ(A⊥) < ∞ as well).

In later analysis, we will have special use for the following key binary relations.

Definition 2.2. A binary relation A = (A−, A+, A) is called an n-ladder if |A−| = |A+| = n ≥ 1

and A is (the graph of) a bijective function from A− to A+.

If A is an n-ladder then δ(A) = n; if additionally n ≥ 2 then δ(A
⊥) = 2.

Lemma 2.3. Let A be an n-ladder. If δ(B) ≤ n, then A → B.

Proof. Let b1, . . . , bk ∈ B+ be a B-dominating family with k ≤ n. Let φ+ : A+ → B+ be function

which is surjective onto {b1, . . . , bk}. Now consider d ∈ B−. Suppose d B bi and φ+(a) = bi where

a ∈ A+. Then there is a unique c ∈ A− such that c A a. Define φ−(d) = c. Since a is the unique

element of A+ satisfying c A a, the definition of morphism is satisfied. �

Corollary 2.4. If A is an n-ladder, B is a k-ladder, and k ≤ n, then A → B.

Observe that the 2-ladder is isomorphic to its own dual. This allows us to achieve the following

result.

Corollary 2.5. If δ(A) = δ(A
⊥) = 2, then A is bimorphic with the 2-ladder.

Proof. Suppose δ(A) = δ(A⊥) = 2, and let B be a 2-ladder. By Lemma 2.3, B → A. Since B⊥ is

also a 2-ladder, we have B⊥ → A⊥. So by Proposition 1.4, A → B. �

Corollary 2.6. If δ(A) = δ(A⊥) = 2, then A and A⊥ are bimorphic.

§3. BUILDING MORPHISMS

In this section we explore several situations where a morphism can be constructed from one

binary relation to another. In the following lemma, a homomorphism from A to B is a function

ψ : A− ∪ A+ → B− ∪ B+ with the property that and ψ(A−) ⊆ B0, ψ(A+) ⊆ B+, and a A a′ ⇐⇒

ψ(a) B ψ(a′).

Lemma 3.1. Suppose ψ is a homomorphism from A to B with the property that ψ|A− is surjective onto

B−. Then A → B.

Proof. Select a function g : B− → A− such that ψ|A− ◦ g = idB− . Then it is not difficult to check

that (g, ψ|A+) is a morphism from A to B. �
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We next examine some natural cases where making a small change to a binary relation results

in a new binary relation such that there exists a morphism from the old to the new.

Lemma 3.2. Let A and B be binary relations. Suppose that any of the following conditions holds:

(a) A− = B−, A+ = B+, and A ⊆ B

(b) B is an induced subrelation obtained by deleting points from A−. That is, B = (S, A+, B) where

S ⊆ A− and c B a ⇐⇒ c A a for all c ∈ S, a ∈ A+.

(c) A is an induced subrelation obtained by deleting points from B+. That is, A = (B−, S, A) where

S ⊆ B+ and c A a ⇐⇒ c B a for all c ∈ B−, a ∈ S.

Then A → B.

Proof. In each case the identity (or inclusion) maps (idB− , idA+) together form a morphism. �

In the rest of this section, we define and study the disjoint union of two binary relations.

Definition 3.3. Let A and B be binary relations. Then A ⊕ B = (A− ⊔ B−, A+ ⊔ B+, A ⊕ B), where

c(A ⊕ B)d if and only if c A d or c B d.

The next two result show that morphisms behave reasonably well with respect to disjoint

unions.

Lemma 3.4. Let A, A′, B, B′ be binary relations. If A → B and A′ → B′, then A ⊕ A′ → B ⊕ B′.

Proof. Suppose φ witnesses A → B and φ′ witnesses A′ → B′. Then (φ− ⊔ φ′
−, φ+ ⊔ φ′

+) witnesses

A ⊕ A′ → B ⊕ B′. �

Lemma 3.5. Suppose C, B, B′ are relations whose underlying sets are all disjoint, and C → B ⊕ B′. Then

there exist induced subrelations A, A′ of C such that C− = A− ⊔ A′
−, C+ = A+ ⊔ A′

+, A → B, and

A′ → B′.

Proof. Suppose φ is a morphism from C to B ⊕ B′. Define A− = φ−(B−) and A′
− = C− \ A−. Next

define

A+ = {a ∈ C+ | there exists c ∈ A− such that c C a}

and A′
+ = C+ \ A+.

It is easy to see that (φ−|B− , φ+|A+) is a morphism from A to B.

To construct a morphism ψ from A′ to B′, first set ψ− = φ−|B− . Next consider a ∈ A+. If there

is some c ∈ φ−(B−) with cA′a, then set ψ+(a) = φ+(a). Otherwise assign ψ+(a) to any element of

B′
+. �

In Lemma 3.5, we cannot guarantee C = A ⊕ A′. See Figure 2 for a counterexample.
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C+

C−

C

B+

B−

B

B′
+

B′
−

B′

FIGURE 2. There relations C and B ⊕ B′ are bimorphic, but C is not the disjoint
union of nonempty subrelations.

§4. THE SKELETON OF A RELATION

In this section, we define the skeleton of a finite binary relation A. This will be a binary relation

which is obtainable from A by deleting points, which is bimorphic to A, and which is minimal

with respect to certain deletion operations.

Definition 4.1. Let A be a binary relation, and a ∈ A− ∪ A+. The neighborhood of a, denoted NA(a),

is defined to be the set of all b ∈ A− ∪ A+ such that a A b or b A a.

Observe that if a ∈ A−, then NA(a) ⊆ A+, and vice versa.

Definition 4.2. Let A be a binary relation, and a, b ∈ A− ∪ A+.

(a) We say a is non-maximal if there exists c ∈ A− ∪ A+ such that NA(a) ( NA(c).

(b) We say a is non-minimal if there exists c ∈ A− ∪ A+ so that NA(c) ( NA(a).

(c) We say a and b are twins if NA(a) = NA(b).

Lemma 4.3. Suppose A
′ is obtained from A by deleting either

(a) a non-minimal point from A−, or

(b) a non-maximal point from A+, or

(c) any point from A− ∪ A+ which has a twin.

Then A and A
′ are bimorphic.

Proof. Suppose c ∈ A− is non-minimal or has a twin, and that A′ is obtained from A by deleting

c. By Lemma 3.2(b), A → A′.

Next, choose c′ ∈ A−, c′ 6= c, so that NA(c
′) ⊆ NA(c). Define φ− : A− → A′

− by φ−(c) = c′,

and φ−(x) = x when x 6= c. Then (φ−, idA+) is a morphism from A′ to A.

The proof of the remaining case is similar. We note it may also be established using duality,

since a point in A− is non-minimal if and only if it is non-maximal in A⊥
+. �

Given a relation A, let us call a point deletable if it is a non-minimal point from A− or a non-

maximal point from A+. Deleting these points may create new deleteable points. However, the

next lemma will enable us to describe a coherent deletion algorithm.
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Lemma 4.4. Suppose A′ is obtained from A by deleting a deletable point a. If b 6= a is deletable in A, then

b either remains deletable in A
′, or has a twin in A

′.

Proof. We will show the case where b ∈ A− is non-minimal. Then there exists z ∈ A− such that

NA(z) ( NA(b). Without loss of generality, suppose z is A-minimal.

In the first case, if a ∈ A−, or if a ∈ A+ and b ¬A a, then z ¬A a. Hence N
A
′ (b) = NA(b) and

N
A
′ (z) = NA(z), so b remains non-minimal in A

′

Next suppose that b A a and z A a. Then N
A
′ (z) ( N

A
′ (b) and b remains non-minimal in A

′
.

Finally suppose that b A a and z ¬A a. Then since z is A-minimal, N
A
′ (z) ⊆ N

A
′ (b) and either

b is non-minimal in A
′

or N
A
′ (z) = N

A
′ (b) and b is a twin of z in A

′
. �

Definition 4.5. Let A be a finite binary relation. The skeleton bimorphic form of A is the relation

obtained from the following procedure:

(a) Delete all non-maximal points from A+ and all non-minimal points from A−, if there are

any;

(b) Repeat the previous step until there are no such points to delete;

(c) Delete all but one point from each set of twins.

We call a relation skeletal if it is equal to its skeleton bimorphic form.

Refer to Figure 3 for a sample run of the skeleton procedure.

=⇒

=⇒ =⇒

FIGURE 3. Finding the Skeleton Bimorphic Form of a Relation. Maximal points in
A+ are circled in red. Minimal points in A− are circled in blue.

It is not clear to us whether we needed to delete the deletable points before deleting the extra

twins:

Question 1. Is there a finite binary relation, together with a sequence of deletions of twins and

deletable points, which results in a skeletal relation which is non-isomorphic to the skeleton pro-

duced by our algorithm?
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We have not considered any analog of skeleton for infinite binary relations:

Question 2. Does the skeleton algorithm terminate for infinite binary relations?

§5. CLASSIFICATION OF SMALL BINARY RELATIONS

In this section we discuss the classification of all binary relations with at most 6 vertices in A±.

To facilitate this discussion, let’s say that the order of A is the value of max(|A−|, |A+|). We wrote

a computer program to calculate the skeleton of every binary relation A of order at most 6, and to

further calculate which pairs have a morphism between them.

The first part of the program makes an exhaustive search of all binary relations with |A±| = 6,

in each case applying the algorithm in Definition 4.5 to calculate the skeleton of the relation. The

search included all skeletons of binary relations of order ≤ 6, because the operation of adding a

point which is not adjacent to any of the others produces a bimorphic relation. The program found

394 non-isomorphic skeletal binary relations.

The second part of the program checked for all possible morphisms between the 394 skeletal

binary relations. Here in order for the program to finish it was necessary to use several of the

lemmas from previous sections, which are shortcuts in the search for a morphism. Specifically, the

program is able to use each of the following from this paper: 1.4, 1.5, 2.1, 2.3, 2.4, 2.6, 3.1, 3.5.

Additionally, the program uses the following simple observation which does not appear else-

where in this paper: There exists a morphism A → B if and only if there exists a morphism A′ → B

where A′ is constructed from A by deleting vertices from A− until its size is equal to that of B−.

The proof may be found in [1, Lemma 3.4.8]. Finally, the program makes significant use of the

transitiviy of morphism existence.

The program was coded in the R language. The code and full output are both avilable at

github.com/rhettbarton/tukey-morphisms.

Focusing just on the binary relations of order ≤ 5, there are 32 non-isomorphic skeletal binary

relations. In Table 1 we list these 32 skeletons along with a graph depicting each.

In Figure 4, we plot the Hasse diagram of the morphism quasi-order on the skeletal relations of

order ≤ 5. In the diagram, the skeletal relations are also arranged according to their dominating

number and dual dominating number.

In the diagram, we can immediately observe that there are pairs of skeletal relations with iden-

tical dominating number and dual dominating number, but with no morphism between them,

such as #15 and #20. Thus we found finite counterexamples to the converse of Corollary 1.5, as

promised in the introduction.

The diagram helps visualize some of our results in Sections 1 and 2. It also shows some surpris-

ing structural properties not reflected in our results, leading for instance to the following question.

Question 3. If δ(A) ≥ δ(A⊥), then is it necessarily the case that A → A⊥?

https://github.com/rhettbarton/tukey-morphisms
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

TABLE 1. Skeleton forms of binary relations of order ≤ 5
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A

1

13

6

14

4, 16

15

7

20

21

17 23

3, 9, 11, 12, 19, 22, 25, 28

18 24

26

8

27 31

5, 30

29

10

32

2

δ(A)

∞

5

4

3

2

1

δ(A⊥)

∞

5

4

3

2

1

FIGURE 4. Hasse Diagram of skeleton forms of binary relations of order ≤ 5
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A+

A−

A

FIGURE 5. An example of a binary relation A with δ(A) = δ(A⊥) = 3.

Increasing our search parameter from order at most 5 to order at most 6 increased our comput-

ing time from a few minutes to 30 hours. This larger search uncovered our first binary relation

A such that δ(A), δ(A⊥) ≥ 3, shown in Figure 5. The particular features of this example helped

motivate the constructions in the next section.

§6. STRUCTURE OF THE TUKEY MORPHISM ORDERING

In this section we show how to construct binary relations with given dominating number and

dual dominating number.

To begin, we introduce the following matrix representation of binary relations. Let A be a binary

relation, and let A− = {x1, . . . , xn}, A+ = {y1, . . . , ym}. Then we say A is represented by the n×m

matrix (aij) where aij = 1 if xi A yj and aij = 0 otherwise.

Observe that if we permute the (arbitrary) ordering of the elements of A±, then the rows and

columns of the representing matrix will be permuted accordingly. Conversely, permuting the rows

and columns of a matrix representation of A results in a binary relation isomorphic to A. Because

of this, we will often conflate a binary relation A with a matrix representation of A, and this should

not cause confusion.

We note that the matrix representations of A and A⊥ are related in the following way: a repre-

sentation of A is the transpose of the Boolean negation of a representation of A⊥.

For an example of a matrix representation, an n-ladder may be represented by the n× n identity

matrix. Changing the order of the elements of A±, an n-ladder may also be represented by any

n × n permutation matrix. For another example, the binary relation in Figure 5 is represented by

the matrix shown in Figure 6.

The structure of this matrix helped motivate the proof of the following general construction.

Theorem 6.1. For each n ≥ 2, there is a binary relation Cn with |Cn−| = |Cn+| = n! such that δ(Cn) =

δ(C⊥
n ) = n.

Proof. Let C2 be the 2-ladder. Given Cn, we construct Cn+1 so that it is isomorphic to its dual and

δ(Cn+1) = n + 1. This ensures that δ(C⊥
n+1) = n + 1 as well. In fact, let Cn+1 be the block matrix

shown in Figure 7, where there are n + 1 rows and columns of blocks, each of size n! × n!.
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1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
0 1 1 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1

















FIGURE 6. The matrix representation of the binary relation in Figure 5.

























Jn! On! Cn Cn Cn . . . Cn

Cn Jn! On! Cn Cn . . . Cn

Cn Cn Jn! On! Cn . . . Cn

...

...
Cn Cn Cn . . . Cn Jn! On!

On! Cn Cn Cn . . . Cn Jn!

























FIGURE 7. The recursive construction in the proof of Theorem 6.1.

Here On! is the all-zeros matrix and Jn! is the all-ones matrix. It is easy to see that Cn+1 is

isomorphic to its dual.

To show that δ(Cn+1) = n + 1, let X ⊆ C(n+1)+ where |X| ≤ n. By pigeonhole, there is a

1 ≤ b ≤ n + 1 so that the bth block column does not contain an element of X and the (b + 1)th

(mod n + 1) block column does contain an element of X. This means that the elements of C(n+1)−

represented by the bth block row are covered by fewer than n elements of identical copies of Cn+.

So by induction, not every element in this block row is covered by an element of X. �

Our data shows that this is optimal for n = 2, 3. That is, in order to obtain δ(A) = δ(A⊥) = 2

we need |A±| ≥ 2, and to obtain δ(A) = δ(A⊥) = 3 we need |A±| ≥ 6. We therefore ask the

following.

Question 4. Does there exist a binary relation A such that the order of A is less than n!, and δ(A) =

δ(A⊥) = n?

Our data furthermore shows that this construction is essentially unique for n = 2, 3.

Question 5. Suppose that A is a binary relation of order at most n!, that δ(A) = δ(A⊥) = n, and

that A is isomorphic to A⊥. Does it follow that A is isomorphic to Cn?

We next show how to obtain arbitrary dominating numbers and dual dominating numbers.

Lemma 6.2. For each 2 ≤ k ≤ n, there is a relation Cnk = (Cnk−, Cnk+, Cnk) so that δ(Cnk) = n and

δ(C⊥

nk
) = k.
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Proof. Fix n ≥ 2 and let Cn2 be the n-ladder. Given k < n and Cnk, we let Cn(k+1) be the following

block matrix, where there are n rows and columns of blocks, each of size |Cnk−| × |Cnk+|.






























J O Cnk Cnk Cnk . . . Cnk

Cnk J O Cnk Cnk . . . Cnk

Cnk Cnk J O Cnk . . . Cnk

...

...

Cnk Cnk Cnk . . . Cnk J O

O Cnk Cnk Cnk . . . Cnk J































By taking one element from each block column, we obtain δ(Cn(k+1)) ≤ n. Essentially the same

argument from the previous proof then shows that δ(Cn(k+1)) ≥ n.

Next consider C⊥

n(k+1), which is isomorphic to the relation represented by the following block

matrix.






























J O C⊥

nk
C⊥

nk
C⊥

nk
. . . C⊥

nk

C
⊥

nk
J O C

⊥

nk
C
⊥

nk
. . . C

⊥

nk

C⊥

nk
C⊥

nk
J O C⊥

nk
. . . C⊥

nk

...

...

C⊥

nk
C⊥

nk
C⊥

nk
. . . C⊥

nk
J O

O C⊥

nk
C⊥

nk
C⊥

nk
. . . C⊥

nk
J































To show δ(C⊥

n(k+1)
) ≤ k + 1, consider a set of k elements from the second block column which

together cover all of (C⊥

nk
)− together with any element of the first block column. In order to show

δ(C⊥

n(k+1)) ≥ k + 1, let X be a set of k elements of (C⊥

n(k+1))+. By pigeonhole, there is a 1 ≤ b ≤ n

so that the bth block column does not contain an element of X and the (b + 1)th (mod n) block

column does contain an element of X. This means that the elements of (C⊥

n(k+1))− represented by

the bth block row are covered by fewer than k elements of identical copies of C
⊥

nk
. �

We observe that the construction above produced very large binary relations. Specifically, to

obtain a δ(A) = n and δ(A⊥) = k with k ≤ n, we needed A± to each have at least nk−1 elements.

In particular, if n = k, then this is much bigger than the n! points we used in Lemma 6.1. We

therefore ask the following.

Question 6. What is the smallest possible order of a relation A for which δ(A) = n and δ(A⊥) = k?

The construction above helps answer some of the most basic questions about the structure of

the morphism quasi-order on the finite binary relations.
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Corollary 6.3. The morphism quasi-order on the finite binary relations contains infinite ascending chains,

infinite descending chains, and infinite antichains.

Question 7. What else can one show about the structure of the Tukey morphism quasi-order?

REFERENCES

[1] Rhett Barton. Turkey morphisms between finite binary relations. Master’s thesis, Boise State University, 2021.

[2] Andreas Blass. Reductions between cardinal characteristics of the continuum. In Set theory (Boise, ID, 1992–1994),

volume 192 of Contemp. Math., pages 31–49. Amer. Math. Soc., Providence, RI, 1996.

[3] Andreas Blass. Combinatorial Cardinal Characteristics of the Continuum. In: Foreman M., Kanamori A. (eds). Handbook of

Set Theory. Springer, Dordrecht., 2010.
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[9] Stevo Todorčević. Directed sets and cofinal types. Trans. Amer. Math. Soc., 290(2):711–723, 1985.

[10] John W. Tukey. Convergence and Uniformity in Topology. (AM-2). Princeton University Press, 1940.

[11] Olga Yiparaki. On some tree partitions. ProQuest LLC, Ann Arbor, MI, 1994. Thesis (Ph.D.)–University of Michigan.

RHETT BARTON, BOISE STATE UNIVERSITY AND BLUE CROSS OF IDAHO

Email address: rhett.bart@gmail.com

SAMUEL COSKEY, BOISE STATE UNIVERSITY

Email address: scoskey@gmail.com

PAUL ELLIS, RUTGERS UNIVERSITY

Email address: paulellis@paulellis.org


	1. Introduction
	2. Some fundamental morphisms
	3. Building morphisms
	4. The skeleton of a relation
	5. Classification of small binary relations
	6. Structure of the Tukey morphism ordering
	References

