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Extending the famous Model B for the time evolution of a liquid mixture, we derive an approximate expression for

the mobility matrix that couples the different mixture components. This approach is based on a single component

fluid with particles that are artificially grouped into separate species labelled by “colors”. The resulting mobility

matrix depends on a single dimensionless parameter, which can be determined efficiently from experimental data or

numerical simulations, and includes existing standard forms as special cases. We identify two distinct mobility regimes,

corresponding to collective motion and interdiffusion, respectively, and show how they emerge from the microscopic

properties of the fluid. As a test scenario, we study the dynamics after a thermal quench, providing a number of general

relations and analytical insights from a Gaussian theory. Specifically, for systems with two or three components,

analytical results for the time evolution of the equal time correlation function compare well to results of Monte Carlo

simulations of a lattice gas. A rich behavior is observed, including the possibility of transient fractionation.

I. INTRODUCTION

A general description of the static properties of fluids is one

of the successes of statistical physics in general and density

functional theory in particular1–4. In contrast, the prediction

of dynamical timescales as a direct result of the underlying

kinetics remains a challenge, in spite of significant advances

in the past decades5–10. These timescales depend not just

on thermodynamic driving but also on transport coefficients,

which can be highly non-trivial, for example at high densities

where crowding effects may slow down the system resulting

in glassy behavior11,12.

Transport coefficients appear generally in linear response

relations13 between thermodynamic driving forces and the

response of the system2,14,15. The Green-Kubo relation13,16

between such transport coefficients and equilibrium time-

dependent correlation functions is a celebrated result in this

context. The time-dependent correlations can be obtained,

e.g. via the many-body Smoluchowski equation17,18, though

this usually requires approximate treatments like expansions

around the low density limit17. Conversely, at high densi-

ties, when crowding effects are relevant, Mode Coupling The-

ory11,12 yields good approximations.

The time evolution of the density field for fluids with a con-

served number of particles is described by the famous model

B19–21, which combines linear response theory with mass con-

servation and involves the mass transport coefficient as the key

kinetic quantity. Due to the conserved field such fluids exhibit

long-ranged fluctuations in non-equilibrium scenarios22–25

and show non-equilibrium fluctuation-induced forces when

quenched26,27 or exposed to temperature gradients28,29. Here,

a firm understanding of the transport coefficients becomes of

great importance, as possible crowding effects can interfere

and dictate the timescales on which these (non-equilibrium)

fluctuations propagate in the system.

Given its importance for the kinetic description of fluids the

mass transport coefficient, also so-called mobility L, has been

investigated from several perspectives. The Dean-Kawasaki

equation5,30, for example, predicts a linear dependence of the

mobility on density, but this is done within a formal time evo-

lution equation for the exact particle number density, which

consists of a sum of delta-functions.

Earlier, extensive work by Batchelor on hard spheres and

hard sphere mixtures31,32 had provided expressions for the

mobility as a function of particle sizes as well as density.

However, these are obtained by an expansion in particle den-

sity and can hardly be used to study crowding effects. To over-

come this problem, a number of models have been developed

where crowding effects are added phenomenologically by in-

cluding a critical density for which the mobility vanishes33–35.

A comprehensive microscopic understanding of crowding ef-

fects on the mobility is therefore still lacking.

The challenges around our understanding of the mobility

multiply when moving from single component fluids to multi-

component systems due to the larger number of conserved

fields, one for each component density. Already the equilib-

rium phase behaviour is more complex here due to the pos-

sibility of fractionation36–38, where different mixture compo-

nents interdiffuse and thus demix. For a given initial distri-

bution of components, fractionation leads to the formation of

daughter phases with in general different composition, whose

coexistence at equilibrium at fixed total density and temper-

ature can be established using the double tangent construc-

tion37. The kinetics also become substantially more complex.

According to the so-called Warren scenario39, one has to dis-

tinguish here relaxation of the local composition or equiva-

lently of the relevant moment-densities37,39,40 on the one hand,

and relaxation of the total density on the other. Following

Warren, the latter can be achieved relatively easily by collec-

tive motion of particles, while the former occurs on typically

longer timescales by interdiffusion of particles from different

mixture components. Crowding primarily affects interdiffu-

sion so this separation of timescales can become pronounced

at high densities, leading for example to two-stage relaxation

processes40–42. More broadly, both theory40,43,44 and simu-

lations44–47 show a fascinating range of behavior in multi-

http://arxiv.org/abs/2302.02775v1


2

component mixtures. This is of particular interest also in bio-

physics48,49, where phase separation plays a crucial role in the

formation of intracellular structures50,51.

For multi-component systems, the model B description of

the time evolution of the density fields becomes a set of partial

differential equations that are coupled both by thermodynamic

effects and by the mobility, which is now a matrix L. Often

this matrix is approximated as diagonal52, i.e. Lij ∝ ρiδij , or

to follow the form for an ideal mixture with only volume ex-

clusion53 Lij ∝ ρi(1 − ρj), as obtained e.g. in polymer mix-

tures54 or in the multi-component symmetric exclusion pro-

cess55. These expressions are valid either in specific regimes

in parameter space, e.g. low densities, or rely strongly on the

underlying model. Similarly to the single fluid case, a general

description of the mobility matrix in multi-component mix-

tures is still lacking in the literature.

Keeping in mind the richness of behavior and the inter-

play between thermodynamic and kinetic effects in fluids with

many components, we aim to obtain in this work a coarse-

grained description of the mobility matrix L resulting from

microscopic properties of the system. This is based on a

model of a single component fluid that we transform into a

mixture by painting particles with different “colors” without

changing their physical properties. This model yields a gen-

eral expression for L that exhibits two competing modes of

motion: collective and interdiffusion. We show how previous

models for mobilities are recovered in specific limits, which

are reached by imposing certain kinetic constraints on the sys-

tem, and how they favor one mode of motion or the other.

In order to test our results in a non-equilibrium fluid mix-

ture scenario, we consider (mild) quenches from a higher to

a lower temperature. We obtain a closed form expression for

the time evolution of the correlation matrix, which as a dy-

namical quantity involves the mobility matrix. We then com-

pare our theoretical predictions with numerical simulations of

a multi-component lattice gas and confirm our main hypoth-

esis by showing that our form of the mobility matrix yields

very good approximations to the simulated time evolution of

the correlation matrix for nontrivial mixtures.

The present work is structured as follows. The main equa-

tions of motion and thermodynamic quantities are introduced

in Sec. II. We introduce the painted particle model and explore

its consequences in Sec. III. The result is an explicit expres-

sion for the mobility matrix. Sec. IV investigates the dynam-

ics after a quench using the mobility obtained in the previous

section, and discusses a simple paradigmatic case that empha-

sises the mobility effects in this scenario. Finally, in Sec. V

we describe our lattice gas simulations and compare the sim-

ulation results for correlations after a quench with our theo-

retical predictions. We summarize and give a brief outlook in

Sec. VI.

II. KINETICS OF MULTICOMPONENT MIXTURES

We start by defining a mixture of total particle number N
in a volume V with Ni particles of species i = 1 . . .M . The

density fluctuation field of species i, at position x and time t,

is given by2

φi(x, t) =

Ni
∑

k=1

δ(x− xk(t)) −
Ni

V
. (1)

where xk is the position of particle k, one of the particles

of species i. Due to conservation of particle number of each

species in the system (we exclude chemical reactions), the dy-

namics of a multi-component mixture is described by a conti-

nuity equation of the form

φ̇i(x, t) = ∇·





∫

dx′

∫ t

0

dt′
M
∑

j=1

Lij (x− x′, t− t′)×

∇′ δH

δφj(x′, t′)

]

+
√
2T ∇ · ηi(x, t).

(2)

Compared to the standard model B19–21, we allow here for

non-local effects in space and time by considering convolu-

tions of the mobility matrix L and the thermodynamic driv-

ing force ∇δH/δφ, which can be understood as the gradi-

ent of the chemical potential of the corresponding species.

Therefore, Lij (x− x′, t− t′) dictates how the density field

of species i at position x and time t responds to a gradi-

ent in the chemical potential of species j at position x′ and

time t′. Due to thermal fluctuations at temperature T , the

fluctuation-dissipation theorem requires the noise correlations

to be 〈ηiµ(x, t)ηjν(x′, t′)〉 = Lij(x−x′, t− t′)δµν , where µ,

ν are spatial directions; the Kronecker δµν results from spatial

isotropy and we have set the Boltzmann constant kB = 1. As

the kernel L is a noise correlator, it is positive semi-definite

and symmetric, with the latter property being an example of

Onsager’s reciprocity relations56.

Considering small deviations from homogeneous densities

for all species, we expand the Hamiltonian (sometimes also

referred to as the free energy) H up to quadratic terms in

φ14,15,19

H =
1

2

∑

ij

∫

dx

∫

dx′φi(x)αij(x− x′)φj(x
′). (3)

H in principle can be found from an expansion of the free

energy around the fixed overall species densities Ni/V
48.

This form includes entropic and energetic effects both from

the bulk thermodynamics as well as from interfaces: the

former are represented by terms such as φiφj , while inter-

faces between different phases may be accounted for by terms

∇φi∇φj (which can be generated from derivative terms57 in

pα). Spatial homogeneity is encoded in the translational in-

variance of pα. Off-diagonal entries of pα couple the different

components.

Thermodynamic stability requires the kernel pα, which we

refer to as the effective interaction, to be positive definite14,37.

This may also be understood from the fact that pα is the (func-

tional) Hessian of the free energy58 of the mixture. Closely

related to this is the fact that, at equilibrium, pα−1 ∼ 〈φφT〉,
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the equilibrium (equal time) correlator15, i.e. pα−1 is a correla-

tion kernel.

Using the quadratic form of H in Eq. (2) yields a closed

relation for the mobility L in terms of time dependent corre-

lation functions. To derive this result, one writes Eq. (2) in

terms of Fourier density modes

φi(q, t) =

∫

dx e−iq·xφi(x, t) =

Ni
∑

k=1

e−iq·xk(t) (4)

as

φ̇i(q, t) = −q2
∫ t

0

dt′
∑

jk

Lij(q, t− t′)αjk(q)φk(q, t
′)

+
√
2T iq · ηi(q, t) (5)

where Lij(q, . . .), αjk(q), ηi(q, t) are the Fourier transforms

of the corresponding quantities in Eq. (2). From this expres-

sion one finds directly the equation of motion for the equi-

librium structure factor in Fourier space, which is defined as

S(q, t) = N−1〈φ(q, t)φT(−q, 0)〉. After Laplace transform-

ing in time, this equation becomes in matrix form2

zŜ − S0 = −q2L̂ pαŜ (6)

where z is the Laplace variable conjugate to t and S0 ≡
S(q, t = 0) is the static (equilibrium, equal-time) structure

factor. Using then that15 T pα−1/ρ = S0 with ρ = N/V the

total density, which incidentally means that pα−1 can be in-

terpreted as a (matrix) thermodynamic compressibility, one

can solve for the mobility matrix to obtain in Fourier-Laplace

space

L̂ =
ρ

T q2
(S0Ŝ

−1
S0 − zS0). (7)

On the left hand side the mobility is the Fourier-Laplace trans-

form L̂ ≡ L̂(q, z), similarly on the right for the dynamical

structure factor Ŝ ≡ Ŝ(q, z). In the following we will focus

almost exclusively on the so-called hydrodynamic behavior of

the mobility matrix, which is obtained from taking the limits

of z → 0 and then q → 0 in Eq. (7). Equivalently, this ap-

proximates the mobility matrix as local in time and space. For

a single component fluid, evaluating the above expression for

the mobility is in principle a relatively simple scalar problem,

however, doing this quantitatively for e.g. systems with slow

dynamics remains a challenge59,60. In a mixture with several

components, extracting predictions for the full matrix struc-

ture is substantially more challenging.

Eq. (7) contains, as such, no fundamentally new informa-

tion, as it essentially just shifts the problem of determining L

to that of finding the time dependent structure factor S(q, t)

and from it S0 and the Laplace transform Ŝ(q, z). We will

demonstrate in the next subsection, however, that it can still

yield insights into the structure of the mobility matrix. In par-

ticular, we will introduce the so-called painted particle model

and use this to extract an approximate expression for the full

matrix structure of the mobility that is parameterized by a sin-

gle dimensionless quantity.

III. PAINTED PARTICLE MODEL

A. The model

In this section we propose a simple model that will allow us

to determine the matrix structure of the mobility in mixtures.

In this model, a single-component (or: monodisperse) system

is considered, which is then artificially divided into different

species. This division can be visualized by coloring particles

according to their component affiliation, without modifying

their physical properties. We thus introduce M colors, with

Ni the number of particles from species i, or equivalently

with color i. For the resulting “painted particle model” the

mobility matrix L(q, z) in Eq. (7) can be expressed in terms

of the structure factor of a single-component fluid, thereby

yielding key insights into the structure and functional form

of L(q, z). The derivation starts from the multi-component

time-dependent structure factor for the colored fluid,

Sij(q, t) = N−1
∑

k∈{i}

∑

l∈{j}

〈e−iq·[xk(t)−xl(0)]〉

= ciS
s(q, t)δij + cicj [S(q, t)− Ss(q, t)].

(8)

Here Ss(q, t) = 〈e−iq·[x1(t)−x1(0)]〉 is the self structure fac-

tor of the original single-component fluid, and S(q, t) is its

coherent counterpart; ci = Ni/N denotes the concentration

of species i. The sums over k and l are restricted to parti-

cles from the respective species. Eq. (8) makes use of the fact

that 〈e−iq·[xk(t)−xl(0)]〉 takes the same value for any pair of

particles, as they are all physically identical.

Eq. (8) can be stated more compactly in matrix notation,

using the concentration vector c = (c1, . . . , cM )T and the di-

agonal matrix X with components Xij = ciδij :

S(q, t) = XSs(q, t) + ccT[S(q, t)− Ss(q, t)]. (9)

where ccT is the outer product of c with itself. For t = 0, this

simplifies to

S0(q) = X + ccT[S0(q)− 1] (10)

with S0(q) ≡ S(q, t = 0). As a side result for later, we give

the effective interaction pα for this model, which follows by

inverting Eq. (10):

pαpp =
T

ρ
S
−1
0 (q) =

T

ρ

[(

1

S0(q)
− 1

)

uuT + X
−1

]

. (11)

Here u = (1, . . . , 1)T is the uniform vector and we have

added a subscript to indicate that Eq. (11) holds within the

painted particle model. The first term in Eq. (11) is due to

interactions and vanishes for an ideal gas2, while the second

term, the ideal gas contribution, results purely from entropy.

We see that, in the colored fluid, the effective interaction pα
naturally contains off-diagonal terms; these are uniform as ev-

ery species interacts with every other in the same way.

Returning now to Eq. (9), Laplace transforming this and in-

serting it alongside Eq. (10) into Eq. (7) yields for the Fourier-
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Laplace mobility matrix

L̂ =
ρ

T q2

[

(X − ccT)

(

1

Ŝs
− z

)

+

(

S2
0

Ŝ
− zS0

)

ccT
]

.

(12)

As for the structure factor matrices above we have abbreviated

S0 ≡ S0(q) and Ŝs ≡ Ŝs(q, z) here for the scalar, single-

component structure factors. We note that the off-diagonal

terms of this mobility matrix are of second order in species

concentration, which is a necessary condition for preserving

positivity of species concentrations at all times61.

Eq. (12) is an important result for this manuscript and the

main insight from the painted particle model: it allows us to

predict the full mobility matrix from the dynamical structure

factor of a single-component fluid. It is notable that this mo-

bility matrix, which is derived from a single-component fluid

made up of colored particles, nonetheless carries a nontrivial

structure with off-diagonal entries, thus providing a coupling

of particles of different colors via the mobility (in addition to

the thermodynamic coupling from the effective interaction in

Eq. (11).)

As explained above, we will mainly focus on the hydro-

dynamic limit form of the mobility in Eq. (12). Taking first

z → 0, it reduces to

L̂ =
ρ

T q2
1

Ŝs
[X − (1 − r)ccT]. (13)

Apart from an overall prefactor setting the scale, we see that

this mobility matrix depends only on one dimensionless pa-

rameter r = S2
0 Ŝ

s/Ŝ or explicitly

r =
S2
0(q)Ŝ

s(q, z → 0)

Ŝ(q, z → 0)
(14)

This form shows that the matrix structure of the mobility is

fully determined by the concentrations and r. It also allows

to compare our findings to approximations that are typically

used for the mobility in the literature52–55. As summarized in

the introduction, these are L̂ ∝ ρX and L̂ ∝ ρ(X−ρccT), and

so are contained in Eq. (13) as special cases for the choices

r = 1 and r = 1− ρ, respectively.

To obtain further insight into Eq. (13) one can study the

ratio between off-diagonal and diagonal elements of the mo-

bility

Rij =
L̂ij

L̂ii

=
δij − cj (1− r)

1− ci (1− r)
, (15)

For r → 0, Rij approaches Rij = (δij − cj)/(1 − ci). Phys-

ically, this limit can be reached for small S0, i.e. a nearly in-

compressible fluid. Indeed, Rij (for i 6= j) is then negative,

corresponding to the case of interdiffusion, whereby differ-

ent species (colors) diffuse in opposite directions: as the fluid

is overall nearly incompressible, species can only exchange

positions, while keeping the overall density nearly homoge-

neous. Moving away from the limit of small r, the sign of

Rij for i 6= j changes at r = 1, and is positive for r > 1; the

limit of large r can then be interpreted as representing a highly

compressible fluid. Rij > 0 corresponds to the case of collec-

tive motion. Here, different species tend to move in the same

direction so that particles of all species diffuse collectively to

smoothen inhomogeneities in the total density. Physically, this

is possible due to the large compressibility. Fig. 1 illustrates

the different regimes for a two-component mixture.

The behavior discussed above has important implications

for the demixing of multi-component species. It may also

provide a microscopic understanding of the Warren scenario39

outlined above, as the different modes of motion (inter-

diffusion vs collective diffusion) may dominate at different

timescales. We investigate this scenario further in Sec. III D.

FIG. 1. Ratio R between off-diagonal and diagonal terms of the

mobility indicating the two regimes of interdiffusion (R < 0) and

collective motion (R > 0). For r < 1, the fluid can be understood

as nearly incompressible, allowing only for exchange in positions

of different particles. In the opposite case, r > 1, an increasing

compressibility facilitates collective motion.

B. Relating the painted particle model mobility to
physical parameters

To get more physical insight into the mobility predicted by

the painted particle model, we illustrate it for a simple form

of the dynamic structure factor. This is motivated by find-

ings from mode-coupling theory11,12 for glassy systems. For

times large compared to the so-called β relaxation time, one

has there

S(q, t) ≈ fq exp [− (t/τq)
µq ]S0(q). (16)

Here, µq is a stretching exponent, τq is the (α-)relaxation time

and 0 ≤ fq ≤ 1 is the amplitude (or plateau value). The self-

structure factor Ss(q, t) is written similarly but with S0(q)
replaced by unity; we label the remaining parameters with a

superscript s. As explained above we are interested in the

modes with small q and small z, i.e. the regime of large length

and timescales, also called the hydrodynamic limit. Based
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on the results of Ref.62, we assume diffusive processes (see

Ref.63 for a discussion), meaning that in the hydrodynamic

limit τq ≈ λ−2q−2τ0, with a length λ, and we use µq ≈ 1
for the sake of simplicity. With these choices, we find for the

mobility tensor (with f0, τ0 etc. indicating the limiting values

for q → 0)

lim
q→0

lim
z→0

L̂ =
ρλ2

T

[

(X − ccT)
1

τs0
+

S0(q → 0)

f0τ0
ccT

]

.

(17)

To lighten the notation, we use L without a hat in the follow-

ing to denote the mobility in the hydrodynamic limit. From

Eq. (17), the parameter r introduced in Eq. (15) becomes

r = τs0S0(q → 0)/(f0τ0). This illustrates that the transition

between interdiffusion and collective motion can arise from a

change of compressibility (S0(q → 0)), or from changing the

relative values of τ0 and τs0 , i.e. by changing the relaxation

times for collective and self-diffusion, respectively. Small val-

ues of τs0 correspond to rapid, easy self-diffusion and thus fa-

vor interdiffusion, while smaller τ0 lead to a dominance of

collective diffusion. Of course, as material parameters like

density are varied the values of S0, τ0 and τs0 will all change

and these individual effects will combine via the parameter r
to determine the dominance of collective diffusion or interdif-

fusion.

C. Numerical example for mobility: Lattice gas
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FIG. 2. Painted particle mobility matrix as a function of total den-

sity extracted from Monte Carlo simulations of a single component

lattice gas (two colors with concentrations ci = 0.5). (Left) Diago-

nal elements L11 = L22, (right) off-diagonal elements L12 = L21.

Shown are data for two different temperatures expressed as multiples

of the critical temperature Tc ≃ 0.568 obtained from the well-known

mapping between the 2d Ising model and the lattice gas. Empty

(filled) symbols correspond to the kinetic rule with (without) particle-

particle swaps. Averages of the underlying time-dependent structure

factors were taken over 25 runs, with error bars estimated using the

binning analysis64 with 5 blocks.

As a numerical example, we perform Monte Carlo simula-

tions of a two species painted particle lattice gas (i.e., a single

component fluid with particles of two different colors) with

equal concentrations (see Sec. V for details of the simula-

tion), and extract Ŝs, Ŝ and S0 (for z = 0 and the smallest

reasonable q ≃ 0.16 given our finite system size) for dif-

ferent densities and temperatures. The mobility matrix L is

then obtained via Eq. (12). We used two kinetic rules in or-

der to mimic different types of crowding effects, and to in-

vestigate their impact on the mobilities. In the first rule, only

swaps between particles and vacancies are allowed (wpv = 1),

while swaps between particles are forbidden (wpp = 0). This

rule enhances crowding effects: in high density regions, par-

ticles are jammed and cannot diffuse when no vacancies are

nearby. The second approach lifts this restriction and allows

for particle-particle swaps at the same rate as particle-vacancy

swaps (wpp = wpv = 1).

Figure 2 shows the resulting mobilities as functions of the

total particle density ρ, i.e. the ratio of total number of par-

ticles and number of lattice sites. We first note that the mo-

bilities are only weakly dependent on temperature for the two

temperatures investigated. As one changes the density, the

two kinetic rules result in very different behaviors. The case

with wpp = 0 (no swaps) produces similar behavior for the di-

agonal and off-diagonal entries of the mobility: both Lii and

Lij approach zero in the limits of low and high densities, with

a maximum at ρ ≈ 1/2. Moreover, since the ratio Lij/Lii is

positive for all densities, then according to Fig. 1 the kinetics

without particle swaps favours collective motion, and collec-

tive density fluctuations will dominate the dynamics. This is

consistent with the Warren scenario39, where stronger crowd-

ing is expected to suppress the relative importance of inter-

diffusion. On the other hand, the rule with wpp = 1 (swaps

allowed) shows a completely different behavior. Both the ab-

solute values of the diagonal and off-diagonal mobilities in-

crease monotonically with density, and the off-diagonals are

now negative. The ratio Lij/Lii is then also negative and

the mobilities tell us that interdiffusion of particles of differ-

ent species is dominant. This is again physically reasonable,

given that particle swaps enhance interdiffusion. Finally, for

both kinetic scenarios considered, the off-diagonal elements

of the mobility matrix are of comparable magnitude to the di-

agonal ones, emphasizing the need for a full matrix expression

for the mobility rather than a diagonal approximation.

We summarize these results in Fig. 3 by showing the param-

eter r = S2
0 Ŝ

s/Ŝ of Eq. (15) as a function of density for both

kinetic rules. We observe that the kinetic rule that disallows

particle-particle swaps – and hence has strong crowding ef-

fects – produces a mobility that is not well described by either

of the two standard forms of the mobility, r = 1 or r = 1− ρ.

The case of allowed particle swaps, on the other hand, is quite

well approximated by r = 1 − ρ. This highlights once more

the impact of the absence or presence of particle swaps, and

more generally of the details of the dynamics, on the mobility

matrix. Any successful approximation for L must then be able

to take those details into account.

We expect the mobility we have obtained from the painted

particle model to be useful because it is capable of taking

into account precisely such system-dependent details of the

dynamics, going beyond existing approximations in the liter-

ature based on the strength of crowding effects.
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FIG. 3. Parameter r = S2

0 Ŝ
s/Ŝ as a function of total density ρ,

extracted from the same data as used for Fig. 2. Filled and empty

symbols have the same meaning as there. The dotted and dashed

lines show common approximations for the mobility used in the lit-

erature52–55, namely L ∝ ρX (dashed) and L ∝ ρ(X−ρccT) (dotted).

D. Relaxation times

Eq. (5) shows that in Fourier space, and neglecting non-

locality in time of the mobility, the matrix Γ(q) = q2L(q) pα(q)
yields the timescales of the system. More precisely, the relax-

ation times are the inverse eigenvalues of Γ(q). Using the

mobility in Eq. (13), and the painted particle pα(q) in Eq. (11),

we obtain for Γ the form

Γpp =
1

Ŝs

[

I − cuT

(

1− r

S0

)]

. (18)

This matrix has two eigenvalues, γ1 = 1/Ŝs(q, z = 0) and

γ2 = S0/Ŝ(q, z = 0), which correspond to the relaxation

rates of the incoherent and coherent correlations, respectively.

The ratio between them is γ2/γ1 = r/S0 = S0Ŝ
s/Ŝ. Fig. 4

shows this quantity as extracted from Monte Carlo simula-

tions, again for the numerically estimated limit q → 0. Here,

a clear competition between thermodynamics, represented by

pα, and kinetics arises. While the mobility L in Fig. 2 predicts

only collective motion for wpp = 0, i.e. r > 1, interdiffusion

has the shorter timescale 1/γ1 = Ŝs at intermediate densi-

ties, as can be seen from γ2/γ1 < 1, and therefore dominates

the relaxation. This is a direct consequence of the interplay

of the thermodynamic pα and the purely kinetic L. In spite of

the mobility driving towards collective motion, the tendency

in pα to create interdiffusion due to entropy prevails at short

times. At high densities, crowding effects introduced by for-

bidding particle-particle swaps strongly suppress interdiffu-

sion as compared to collective motion as can be seen by the

filled symbols in Fig. 2 crossing the dashed line at γ2/γ1 = 1.

This behavior is directly connected to the Warren scenario39 as

we discussed previously. Overall, the painted particle model,

as introduced above, not only provides a mobility that can rep-

resent both collective motion and interdiffusion, but also ac-

FIG. 4. Ratio of relaxation timescales for the painted particle model

as a function of ρ for two different temperatures, extracted from the

same data as used for Fig. 2. Filled and empty symbols have the same

meaning as there. For ratios larger than one (dashed line), collective

diffusion is faster while self-diffusion dominates otherwise.

counts for the interesting interplay between this mobility and

thermodynamic effects.

E. (Approximate) determination of the mobility matrix in
simulations or experiments

(a)

y

x

V
(r
)

r r r

(b)

y

x

V
(r
)

r r r

FIG. 5. The mobilities of a multicomponent mixture with (a) distin-

guishable interactions can be approximated by (b) a painted particle

model with indistinguishable interactions, which is equivalent to (in-

set) a single component fluid.

How can the mobility matrix be found in a true multi-

component system? In principle, the mobility in Eq. (7) can

be determined in simulations or experiments from the full dy-

namical structure factor matrix. This, however, will typically

be impractical, especially once many components are present

in the mixture. We thus provide two levels of approximation,

using Eq. (12) (see also Fig. 5).
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The painted particle approximation relies on the assump-

tion that Eq. (12) remains valid in systems with physically

different species. Using it, the scalars Ŝ, Ŝs and S0 may be

evaluated in different ways.

In a first method, one measures the scalars Ŝ, Ŝs and S0

by summing over all species components, hence ignoring the

fact that they are fundamentally different. This approach al-

lows for the structure factors to contain information on typ-

ical timescales resulting from the distinguishable (species-

dependent) interactions, while assuming such timescales to be

common to all species.

A second method measures the scalars Ŝ, Ŝs and S0 in a

single component fluid that is close to the mixture under con-

sideration, see Fig. 5. This then in turn requires finding a suit-

able single-component fluid that closely resembles the mix-

ture. Methods for this will be discussed in detail in Sec. V

below.

IV. DYNAMICS AFTER A QUENCH

As an application of the mobility matrix we have derived

from the painted particle model, we will analyze in this sec-

tion the spatial correlations after a temperature quench, within

a linear (Gaussian) theory. This will make contact with pre-

vious work26, and will give analytical insights into the impact

of the mobility matrix for quenched mixtures. The results will

be compared to simulations in Sec. V.

A. General case with time-local mobility

The mobility (12) encodes the kinetics of a mixture of M
components in equilibrium. In our discussion of the quench

scenario we assume that these expressions also hold out of

equilibrium. We expect this to be the case for mild quenches,

where the imposed temperature change is small and no phase

coexistence boundaries are crossed.

We further employ the approximation that the mobility is

local in time. This will allows us to derive the explicit time de-

pendence of the correlations. We start from the Fourier mode

time evolution (5) and write this as

φ̇i(q, t) = −
∑

j

Γij(q)φj(q, t) +
√
2T η̃i(q, t). (19)

We have used (as before) Γ(q) = q2L(q) pα(q) and intro-

duce the noise η̃i = ∇ · ηi, with 〈η̃iµ(q, t)η̃jν (q′, t′)〉 =
q2V Lij(q)δµνδ(t − t′)δq,−q′ . The solution to this equation

reads, now using vector notation for the field vector φ,

φ(q, t) = e−Γtφ(q, 0) +
√
2T

∫ t

0

dτ e−Γ(t−τ)η̃(q, τ).

(20)

Eq. (20) is valid for any initial condition, with the other pa-

rameters in the solution then reflecting the situation after the

quench at t = 0. We now consider a quench from an ini-

tial temperature Ti to a final temperature T 57 and compute the

time evolution of the correlation matrix in Fourier space, de-

fined as C(q, t) = V −1〈φ(q, t)φT(−q, t)〉. The difference

between the correlations at time t and the initial correlations,

∆C ≡ C(q, t)− C(q, t = 0) is then found to be

∆C = −∆ + e−Γt
∆e−Γ

Tt, (21)

where we have set ∆ = Ti pα
−1
i − T pα−1 with the shorthand

pαi ≡ pα(Ti). We have also used the fact that before the quench

the system is – by assumption – equilibrated at temperatureTi,

which gives V −1〈φ(q, t = 0)φT(−q, t = 0)〉 = Ti pα
−1
i .

B. Locality in time and space: hydrodynamic Limit

Eq. (21) is valid for any q-dependent pα and L. Performing

the inverse Fourier transform, however, to extract real-space

information depends on the functional form of these matrices.

A further simplification can be made if we assume that pα does

not depend on q, which corresponds to a local interaction in

the Hamiltonian (3). We will also assume that L is approxi-

mately independent of q. Performing an eigen-expansion of

the matrices in (21), the inverse Fourier transform can then be

carried out and we obtain the correlation matrix in real space

∆C(X, t) =
∑

ik

e
− X2

4(γi+γk)t

[2t(γi + γk)]
d
2

lTi ∆lkrir
T

k (22)

in terms of the left and right eigenvectors li and ri of Γ, re-

spectively; the γi are the corresponding eigenvalues65. The

spatial distance of points in the correlator is X , and d is the

spatial dimension.

The double sum over eigenvalues in the last expression il-

lustrates the richness of behaviors in multi-component mix-

tures: there are in general M(M + 1)/2 distinct γi + γk and

hence distinct exponentials in (22). As the time t since the

quench varies, different timescales will dominate until, finally,

the correlation decays as a power law in time, t−d/2, as is the

case for the single component fluid26.

C. Analytical example: Ideal gas with mobility matrix

In this subsection, we aim to provide more analytical in-

sights into the dynamics after quench, and to highlight the

role of the matrix structure of the mobility. We assume that

pα = α(T )I is the identity with prefactor α, a function of tem-

perature. This may represent a gas of ideal particles with each

species having equal density ci, so that X is proportional to

the identity matrix; from Eq. (11), pα = α(T )I then follows

in the absence of interactions66. In contrast, we let L be an

arbitrary (symmetric and positive) matrix. This allows us to

obtain an explicit expression for the time evolution of the cor-

relation matrix in real space after taking the inverse Fourier

transform, and to make a connection to earlier studies on sin-

gle component fluids15.

With the above choices, Γ = q2L pα is symmetric and ∆ is

a multiple of the identity matrix, so that the second term in
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Eq. (21) simplifies to57

e−Γt
∆e−Γ

Tt = ∆e−2Γt. (23)

This yields the correlation matrix (change)

∆C(q, t) =

(

Ti

αi
− T

α

)

(

e−2q2αLt − I

)

(24)

where αi and α are the scalar prefactors α(T ) at the initial

and final temperatures, respectively. Focusing on the case of

d = 2 spatial dimensions (as in our simulations in Sec. V) we

take the inverse Fourier transform to obtain

∆C(X, t) =

(

Ti

αi
− T

α

)

1

8παt
L
−1e−

X2
L
−1

8αt . (25)

where we have ignored the δ function at the origin resulting

from the last term in Eq. (24). Recalling that L is symmet-

ric and positive definite, we may again invoke an expansion

in terms of normalized eigenvectors li and eigenvalues Li to

obtain

∆C(X, t) =

(

Ti

αi
− T

α

)

1

8παt

∑

i

1

Li
e
− X2

8αtLi lil
T

i . (26)

For the specific case of a two-component mixture, M = 2,

L has two eigenvalues L1 and L2 and the eigenvector outer

products lil
T

i can be written in the form

lil
T

i =
1

a2i + 1

(

a2i ai
ai 1

)

. (27)

As both diagonal entries of this matrix are non-negative, the

sign of the diagonal entries of ∆C is independent of time and

given by the sign of
(

Ti

αi
− T

α

)

. In contrast, one can easily

show that a1 and a2 have opposite signs, so that the off diag-

onal elements of ∆C can be either positive or negative, and

change sign as a function of time t. Using a1/(a
2
1 + 1) +

a2/(a
2
2 + 1) = 0, which follows from orthogonality of the

eigenvectors, we may write the single off-diagonal element as

∆C12(X, t) =

(

Ti

αi
− T

α

)

a2
8παt(a22 + 1)

×




e
− X2

8αL2t

L2
− e

− X2

8αL1t

L1



 . (28)

We can assume without loss of generality that L2 > L1.

Thus, for sufficiently short times (see below for details on the

timescale), where the exponential functions rapidly go to zero,

e−
X2

8αL2t

L2
>

e−
X2

8αL1t

L1
. (29)

For large times, on the other hand, the exponential functions

approach unity and

e−
X2

8αL2t

L2
<

e−
X2

8αL1t

L1
. (30)

The off-diagonal element ∆C12 thus shows a change of sign

at some ts where the two terms are equal, given explicitly by

ts =
X2(L2 − L1)

8αL1L2 ln
L2

L1

. (31)

Overall, depending on the sign of a2

(

Ti

αi
− T

α

)

, the off-

diagonal elements of the correlator change sign in time from

positive to negative or vice versa.

Fig. 6 shows an example case with L11/L2 = L22/L2 =
5/8 and L12/L2 = ±3/8. The diagonal elements of ∆C are

identical, and independent of the sign of L12. The sign of

the off-diagonal part depends on the sign of L12: positive L12

(black curve in Fig. 6) yields positive a2 and negative L12

gives negative a2 (blue curve). For the figure we have intro-

duced a dimensionless time, t∗ = αL2t/X
2, to write Eq. (28)

as

∆C12(X, t)X2

Ti

αi
− T

α

=
a2

8π(a22 + 1)t∗
e−

1
8t∗

[

1− L2

L1
e
−

(L2−L1)

8L1t∗

]

,

(32)

and similarly for the diagonal elements. The right hand side

of Eq. (32) is the curve shown in Fig. 6.

Fig. 7 shows the correlations after a quench as a function

of spatial separation X . Here, we introduce the dimensionless

distance X∗2 = X2/αL2t ≡ 1/t∗ to rewrite Eq. (28) as

∆C12αL2t
Ti

αi
− T

α

=
a2

8π(a22 + 1)
e−

X∗2

8

[

1− L2

L1
e−

X∗2(L2−L1)

8L1

]

,

(33)

with again similar expressions for the diagonal elements.

This example illustrates the importance of the mobility ma-

trix: even though the mixture components are uncoupled ther-

modynamically ( pα is diagonal), the mobility causes correla-

tions between the components at intermediate times. Here,

the case of L12 positive corresponds to R > 0 in Eq. (15),

i.e. collective diffusion. Indeed, for short times, the sign of

∆C12 follows the sign of ∆Cii, indicating collective diffu-

sion. ∆C12 then changes sign as a function of t, and has the

opposite sign compared to ∆Cii at large times. This shows

that the interplay of L and α, as time evolves, can lead to a

more complex behavior than anticipated in Fig. 1, where we

focused only on the dominant (fastest) relaxation process. The

anti-correlation (∆C12 < 0) at large times may be interpreted

as an onset of demixing, an interpretation which may also be

seen in Fig. 7: As a function of distance X , the off-diagonal

elements change sign, indicating a transient structure in the

mixture. This shows that the mobility can have a strong in-

fluence on the dynamics, and possibly intermediate phases.

Using negative L12 reverts this discussion. It corresponds to

R < 0, and here, the short times are dominated by interdiffu-

sion.

For physical insight it is helpful to visualize the above dis-

cussion further. We illustrate the structures after a quench

by showing typical configuration snapshots at different times,

sticking as before to a diagonal form of pα = αI. We sample

the Fourier modes from a normal distribution with covariance
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FIG. 6. Different entries of the rescaled correlation matrix ∆cij =
∆CijX

2/( Ti

αi
−

T

α
) versus dimensionless time t∗ = αL2t/X

2.

Top: Diagonal elements ∆c11 = ∆c22, bottom: off-diagonal ele-

ment ∆c12. Here we cover both cases L11/L2 = L22/L2 = 5/8,

L12/L2 = ±3/8 and pα = αI. As discussed in the text, the diago-

nal terms are positive for all times while the off-diagonals change

from positive to negative (L12/L2 = 3/8, black) or vice-versa

(Lij/L2 = −3/8, blue). The dashed lines show the asymptotic

behavior for large t∗.

FIG. 7. Different entries of the rescaled correlation matrix ∆cij =
∆CijαL2t/(

Ti

αi
−

T

α
) versus dimensionless position X∗2 =

X2/αL2t. Parameters as in Fig. 6. As there, the diagonal terms (top)

are positive while the off-diagonal (bottom) changes from negative

to positive (Lij/L2 = 3/8, black) or vice-versa (Lij/L2 = −3/8,

blue).

matrix given by Eq. (24) and perform the inverse transform to

obtain the contour graphs in Fig. 8.

At early times (top row in Fig. 8), the graphs show fluc-

tuations and correlations at small length scales, as expected

from Figs. 6 and 7. With increasing time (center and bottom

rows) the correlated regions in space grow and the amplitude

of the fluctuations decreases, again both as expected. Notably,

a clear correlation exists between the two species for all times

shown. This is visible from the last column, as well as from a

comparison of the left and middle columns: φ1 is large (small)

in regions where φ2 is small (large). We re-emphasize that

this onset of demixing is driven purely kinetically here as pα
is diagonal. If the mobility matrix were diagonal, a vanishing

spatial average of φ1φ2 would result (not shown).

FIG. 8. Typical configurations in real space obtained by sampling

the Fourier modes according to Eq. (24). The colors represent values

of φ1 (left), φ2 (center) and φ1φ2 (right) in a binary mixture. For

the snapshots shown we chose αi = α = 1, Ti = 4, and T = 2.5.

The box has size Lbox = 100 and the mobility parameters are L11 =
L22 = 5 and L12 = −3.

D. Quench in a colored single component fluid

As a second special case of our general calculations for

correlations after a quench, we consider next a quench from

initial temperature Ti to final temperature T governed by

painted particle dynamics, i.e. by L and pα from Eqs. (12)

and (11), respectively. This will also connect with previous

studies26,27 for single component fluids. From the inverse of

(11), T pα−1
pp (T ) = ρ[X− ccT(S0 − 1)], it follows, due to can-

cellation of the ideal gas term, that ∆ = ρ(S
(i)
0 − S0)cc

T and

∆C(q, t) = −ρ(S
(i)
0 − S0)

[

ccT − e−ΓtccTe−Γ
Tt
]

, (34)

In these expressions,S0 is the static structure factor at the final

temperature as before, while S
(i)
0 is the one at Ti.

Expanding the exponential functions and using that in the

present scenario Γ is given by Eq. (18), terms of the form

cuT . . . cuTccTucT . . .ucT appear, which simplify to ccT

because cTu = uTc = 1. The correlator is thus found as

∆C(q, t) = ρ(S
(i)
0 − S0)

(

1− e−2S0t/Ŝ
)

ccT. (35)
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It is a rank one matrix, as expected from the equivalence of

different colors, and all elements of the correlation matrix

have the same time dependence. The time dependence is

governed by a single timescale, namely Ŝ/S0, again as one

would expect for a single component fluid. Interestingly, the

timescale associated with self-diffusion in the dynamical ma-

trix (18) plays no role in the quench dynamics and is absent

from the final expression.

The single component fluid67 can finally be easily recov-

ered by summing over all elements of ∆C; explicitly one has

uT∆Cu = ρ(S
(i)
0 − S0)(1− e−2S0t/Ŝ) (36)

and this is independent of c as it must be. A useful limiting

case is given by infinite initial temperature and will become

important later when we compare our predictions to numeri-

cal simulations of an interacting lattice gas with volume ex-

clusion. For a fluid with finite energy barriers, one then has

the ideal gas form S
(i)
0 = S0(T → ∞) = 1. In case of a

hard core interaction, on the other hand, as e.g. in a lattice

gas, S
(i)
0 = S0(T → ∞) ≃ 1− ρ.

In order to describe nontrivial physics, we have to go be-

yond a single component fluid. A true multi-component mix-

ture can then be approximately described by using the mobil-

ity of the reference single component fluid together with the

appropriate form of pα, as described above in Sec. III E. The

difference between pα and the painted particle version pαpp then

gives rise to additional timescales, as will be discussed in the

next Section and in the context of the simulations in Sec. V

below.

E. Correction to painted particle model

Writing the thermodynamic and kinetic parameters for a

generic multi-component mixture with the painted particle

model as a baseline, we have pα = pαpp + p̃α and L = Lpp + L̃.

We remain with the assumption that the painted particle de-

scription is appropriate for the kinetics and so neglect L̃. This

yields Γ = Γpp + Lpp p̃α. Furthermore it is useful to assume

that p̃α is independent of temperature, which is true if it is a

second virial term2. The relaxation timescales are then given

by the inverse of the eigenvalues of

Γ = Γpp +
ρ

T Ŝs

[

X − (1− r)ccT
]

p̃α. (37)

The second term will then yield further timescales, beyond

those found in Sec. IV D. A tractable example that has been

frequently studied41,68 is p̃α = σσT where σ = {σi} is the

vector of a single property σi of species i, e.g. its size or

charge, that distinguishes it from other components. The sec-

ond term in (37) is then of rank one and adds a single new

timescale to the evolution of the system.

For general cases where p̃α is dependent on temperature, the

analog Eq. (37) becomes more complicated. In practical ap-

plications in Sec. V we therefore find pα numerically and use

it directly in Eq. (21).

V. SIMULATIONS

We consider a multi-component lattice gas where each site

on a square lattice is occupied by either a single particle or a

vacancy. The Hamiltonian of a configuration is given by

Hd = −1

2

∑

sk

∑

sl∈∂sk

M
∑

i,j=1

ni(sk)nj(sl)ǫij (38)

where ni(sk) is the occupancy number of site sk by species

i, which is equal to one if site sk is occupied by a particle

of species i and zero otherwise. The sum over sl runs over

nearest neighbors of sk and the energy cost of a bond between

species i and j is given by ǫij . The above Hamiltonian is

the lattice equivalent of Eq. (3) where only nearest neighbors

interactions are considered as indicated by the restriction sl ∈
∂sk.

We evolve the system towards equilibrium using kinetic

Monte Carlo, specifically Kawasaki dynamics with Glauber

acceptance probability w(1 + eβ∆Hd)−1. Here ∆Hd is the

energy change in going from the current to the proposed con-

figuration. The only movements allowed are swaps between

neighboring sites with rate w = wpp if both sites are occu-

pied by particles and with rate w = wpv if one of the sites

is occupied by a vacancy. The two different rates allow us

to control for crowding effects at high densities. This kinetic

approach, although performed with discrete time dynamics,

is known to provide a good approximation to the dynamics

defined directly in continuous time with corresponding transi-

tion rates69.

First, given the general result for the painted particle mobil-

ity in Eq. (12), we extract equilibrium values of Ŝ, Ŝs and S0

for a single-species reference system, averaged over 25 dif-

ferent runs and evaluate L. This is done by discarding the

initial 105 Monte Carlo steps and using the data of the sub-

sequent 105 steps (or until the structure factors decay to zero

for the q of interest). Since we are interested in the hydro-

dynamic limit, we focus on small values of q ≃ 0.16 and

z = 0. Following the discussion in Sec. III E, we need to

define the reference fluid via a typical interaction ǫ that al-

lows us to recover the mobility of a multi-species system with

distinguishable interactions. In the following examples, we

always do this by setting the interaction in the reference fluid

to ǫ = (1/M)2
∑

ij ǫij .

Our mixture of interest will have three species and distin-

guishable, i.e. species-dependent interactions. We perform

simulations of this system for a quench and measure the time

evolution of the correlation matrix until it reaches the steady

state. From the relationship T pα−1 = ρS0 in equilibrium we

extract pα and insert it, together with the mobility L obtained

from the reference fluid, into (21). This approach allows us

to compare our analytical results for the time evolution of the

equal-time correlators with those obtained directly from sim-

ulations.

In Figs. 9 and 10 we show the time evolution of the equal-

time correlation function in Fourier space for different sets

of concentrations, averaged over k = 25 initial conditions.

The almost perfect agreement supports our main hypothesis
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that the transient kinetics of a multi-component mixture can

be described with information extracted solely from an equi-

librium, single-component reference fluid. In particular, since

the same values of Ŝ, S0 and Ŝs were used for different sets

of concentrations, we conclude that our general expression for

the mobility in Eq. (12) correctly expresses the dependency of

L on the species concentrations in the mixture.
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FIG. 9. Time evolution of the 3 × 3 correlation matrix in Fourier

space after a quench from Ti = ∞ to T = 0.9 at density ρ = 0.7
and with uniform concentrations ci = 1/3, from kinetic Monte Carlo

simulations on a square lattice of area N = 1502. Top: diagonal

elements, bottom: off-diagonal elements (see inset for colour code

of entries of C). We used the kinetic rule with wpp = 0 and the

interactions were ǫ11 = 1.4, ǫ12 = 0.8, ǫ13 = 0.6, ǫ22 = 1.0,

ǫ23 = 1.3 and ǫ33 = 1.2. Mobilities L were extracted from a single-

component reference fluid with interaction strength ǫ = 1 while the

effective interaction α was obtained from equilibrium simulations

of the mixture at the final temperature T . The solid lines are the

corresponding analytical predictions for C.
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FIG. 10. Same as Fig. 9 but with c1 = 0.1, c2 = 0.3 and c3 = 0.6.

Finally, to illustrate the importance of the underlying kinet-

ics for the mobility and thus the time evolution of the cor-

relation matrix, we also performed simulations with mixed

kinetic rules, namely wpp = 0.2wpv and compare the mea-

sured C(q, t) with analytical predictions obtained using stan-

dard mobilities found in the literature. As Fig. 11 shows, not

only are the timescales quantitatively shifted when such mo-

bilities are used, but also the qualitative behavior of the cor-

relations is no longer captured. While the simulations show

a nonmonotonic increasing of only one off-diagonal term, the

use of standard mobilities wrongly predicts this behavior for

two of them, at the same time it misses the relative strengths

of the correlation prefactors for the different timescales. In

Fig. 12 we show the same data is perfectly described once

we use the mobilities predicted by our painted particle model.

This again stresses the importance of the underlying kinetic

rules in determining the mobilities which, in turn, have a no-

ticeable effect on the time evolution of correlations.
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FIG. 11. Time evolution of the 3 × 3 correlation matrix in Fourier

space after a quench from Ti = ∞ to T = 0.9 at density ρ = 0.7
and with uniform concentrations ci = 1/3. We used a kinetic rule al-

lowing particle-particle swaps with rate wpp = 0.2wpv . Interactions

were ǫ11 = 1.2, ǫ12 = 0.9, ǫ13 = 0.8, ǫ22 = 1.0, ǫ23 = 1.15 and

ǫ33 = 1.1. Dashed (dotted) lines: analytical predictions with stan-

dard mobility matrices defined by r = 1 (r = 1 − ρ). The quanti-

tative and qualitative mismatch between simulations and theory with

an incorrect mobility shows the importance of correctly determining

the structure of the mobility matrix, especially the value of the pa-

rameter r. For this plot, to enhance statistics, we averaged over 700
initial configurations.

VI. CONCLUSION

In this paper, our aim was to describe the kinetics of multi-

component fluids as encoded in the corresponding mobility

matrix. Using the hypothesis that kinetic properties depend

only mildly on thermodynamic properties such as species-

specific interactions, we introduce a model where all particles

are identical, being distinguishable only by a color. We then

proceed to obtain the mobility for this system and reduce the

original matrix problem of finding O(M2) quantities to the

problem of extracting three scalars from a single-component

fluid, which can be easily done via scattering experiments, by

performing particle-based simulations or by using theoretical
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FIG. 12. Same as Fig. 11 but with the mobility derived in this work,

i.e. Eq. (12). As seen, Eq. (12) yields very accurate results, capturing

correctly the timescales and prefactors of the correlation matrix.

approaches such as Mode Coupling Theory12. Even though

the input into our mobility comes from a single-component

system, it has a non-trivial matrix structure that explicitly re-

flects the mixture composition. This matrix structure is tuned

by a single dimensionless parameter r, and for simple choices

of r retrieves standard mobilities from the literature.

By investigating the properties of the mobility we identify

two different regimes, dominated respectively by collective

motion and interdiffusion, corresponding to fluctuations of the

total density or of the local composition. The crossover from

one case to the other depends on the microscopic details of

the mixture as encoded in the parameter r, which folds in on

coherent and incoherent structure factor information.

Within a local-in-time approximation, we then applied this

mobility to the problem of describing the time evolution of

the correlation matrix of a mixture after a quench. We obtain

the corresponding time scales arising from the combination

of thermodynamics and mobility the interactions, which illus-

trate the rich behavior of multi-component mixtures. We com-

pare these predictions with the time evolution of the correla-

tion matrix obtained from a Monte Carlo simulation of a hard

core lattice gas with nearest neighbor interactions and confirm

our kinetic description as well as the validity of our approx-

imation to the mobility. The contrast with predictions from

standard mobilities emphasizes the need for careful mobility

modelling to capture e.g. transient cross-correlations between

particle species.

Given the simplicity and broad applicability of our pro-

posed “painted particle” mobility matrix, we foresee a broad

range of applications in modelling the dynamics of multi-

component mixtures. While we have mainly focused on ap-

proximating the mobility as local in space and time, it should

be emphasized that our approach can in principle retain the

full dependence on wavevector q and Laplace rate z of the

mobility, and the effects of this will also be fruitful to explore.

On the theoretical side, it will be interesting to analyse in fu-

ture work the influence of the mobility matrix for quenches

into thermodynamically unstable regions. It will also be in-

structive to investigate the relation of the approach presented

here to formally exact methods for the dynamics of Brownian

particles5,9,67.
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APPENDIX

A. Eigenexpansion for real-space correlator

Here we show how to obtain the real-space correlator

Eq.(22) in Sec. IV by writing the correlation matrix from

Eq. (21) in terms of the eigenvalues and eigenvectors. This

enables one to take the Fourier transform and find the expres-

sion in real space.

We exploit that both pα and L are symmetric matrices and

expand pα =
∑

i αiαiα
T

i and ∆ =
∑

i δiδiδ
T

i , where ∆ =

Ti pα
−1
i − Tf pα

−1. In general, Γ is not a symmetric matrix

therefore, we need to distinguish between left and right eigen-

vectors. We thus use, Γ =
∑

i γiril
T

i , where we assume that

Γ can be diagonalized, which holds e.g. if the eigenvalues are

non-degenerate. We rewrite the correlation matrix in terms of

eigenfunction expansion:

∆C = −∆ +
∑

ik

e−q2(γi+γk)tlTi ∆lkrir
T

k

Taking the Fourier transform, we have the correlation matrix

in real space

∆C(X, t) =
∑

ik

e
− X2

4(γi+γk)t

[2t(γi + γk)]
d
2

lTi ∆lkrir
T

k
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B. Eigenexpansion coefficients

To show the competition between the different terms in the

eigenexpansion above, we compare here the prefactors of the

exponentials in (22), namely [2(γi+γk)]
− d

2 lTi ∆lkrir
T

k for all

i, k. We choose one diagonal (Fig. 13) and one off-diagonal

(Fig. 14) element of C.

-0.4

 0

 0.4

 0.8

1,1 1�� 1,3 2	
 ��
 3,3

k=1.0

C
(i
,k

)/
C

m
a

x

i,k

-0.4

 0

 0.4

 0.8

1,1 1,2 1,3 2,2 2,3 3,3

k=0.5

C
(i
,k

)/
C

m
a

x

i,k

-0.4

 0

 0.4

 0.8

1,1 1,2 1,3 2,2 2,3 3,3

k=0.25

C
(i
,k

)/
C

m
a

x

i,k

-0.4

 0

 0.4

 0.8

1,1 1,2 1,3 2,2 2,3 3,3

k=0

C
(i
,k

)/
C

m
a

x

i,k

FIG. 13. Six independent coefficients of the expansion (22) for the

correlation element ∆C11. The four different panels correspond to

interactions of the form ǫij = 1 + kχij where k = 1.0, 0.5, 0.25
and 0, from top left to bottom right. Here χ11 = 0.4, χ12 = −0.2,

χ13 = −0.4, χ22 = 0.0, χ23 = 0.3 and χ33 = 0.2.
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FIG. 14. Same as Fig. 13 but for the off-diagonal element ∆C13.

The clear competition between positive and negative coefficients re-

flects the presence of more than one time scale governing the time

evolution of the correlation function.

In the diagonal element, the prefactors are predominantly

positive, except for the painted particle interaction, where all

timescales become equal and so the individual prefactors be-

come irrelevant (only their sum matters). Therefore, one does

not expect a competition between exponentials of different

signs of the type we saw in Sec. IV C. However, in the off-

diagonal element, prefactors of similar magnitude appear, ev-

idencing such a competition. Physically, the kinetics in this

case results from an interplay between interdiffusion and col-

lective motion, each at different time scales.

In Fig. 15 we show the time evolution of the correlation

function for the case of k = 0.5 (see caption of Fig. 13).

Clearly, for the element C13 there is a competition between

two time scales where, compared to the random initial con-

dition, the correlation first increases and later decreases, indi-

cating an initial collective motion followed by interdiffusion.
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FIG. 15. Time evolution of the correlation matrix for interactions as

in Fig. 13 with k = 0.5. The nonmonotonicity in the off-diagonal

elements C12 and C13 at intermediate times indicates a competition

between time scales and physically a transition from collective mo-

tion to interdiffusion.
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15M. KRÜGER and D. S. DEAN, J. Chem. Phys. 146 (2017).
16M. S. GREEN, J. Chem. Phys. 22, 398 (1954).
17J. K. DHONT, An introduction to dynamics of colloids, Elsevier, 1996.
18M. FUCHS and M. E. CATES, Phys. Rev. Lett. 89, 7 (2002).
19P. C. HOHENBERG and B. I. HALPERIN, Rev. Mod. Phys. 49, 435 (1977).
20A. J. BRAY, Advances in Physics 43, 357 (1994).
21A. J. BRAY, Advances in Physics 51, 481 (2002).
22G. GRINSTEIN, D.-H. LEE, and S. SACHDEV, Phys. Rev. Lett. 64, 1927

(1990).
23H. SPOHN, J. Phys. A: Math. Gen. 16, 4275 (1983).



14

24J. DORFMAN, T. KIRKPATRICK, and J. SENGERS, Annu. Rev. Phys. Chem.

45, 213 (1994).
25R. M. L. EVANS, Y. KAFRI, H. KODUVELY, and D. MUKAMEL, Phys.

Rev. Lett. 80, 425 (1998).
26C. M. ROHWER, M. KARDAR, and M. KRÜGER, Phys. Rev. Lett. 118,
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E 97, 32125 (2018).
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