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Abstract. We show that every graph with pathwidth strictly less than a that contains no
path on 2b vertices as a subgraph has treedepth at most 10ab. The bound is best possible up to
a constant factor.

1. Introduction

Treewidth (tw), pathwidth (pw), and treedepth (td) are among the best-known and most
widely studied structural width parameters of graphs. They are related by the inequalities
tw(G) + 1 ⩽ pw(G) + 1 ⩽ td(G) for every graph G. Moreover, trees have treewidth 1 and
arbitrarily large pathwidth, while paths have pathwidth 1 and arbitrarily large treedepth.

Treedepth is approximated by the maximum length of a path1: every graph containing an
ℓ-vertex path has treedepth greater than log2 ℓ, and every graph with no such path has treedepth
less than ℓ [7, Section 6]. Similarly, pathwidth is approximated by the maximum height of a
complete binary tree minor: every graph containing a complete binary tree of height h as a minor
has pathwidth at least ⌊h

2 ⌋ [9], and every graph with no such minor has pathwidth O(2h) [1]. For
both parameters, the exponential gap between the respective lower and upper bounds cannot be
avoided, as witnessed by complete graphs. Treewidth is approximated by the maximum size of a
grid minor, but here the gap is polynomial: while every graph containing a k × k grid as a minor
has treewidth at least k [8], every graph with no such minor has treewidth polynomial in k [2].

Kawarabayashi and Rossman [6] showed that treedepth is approximated with polynomial gap
by the three above-mentioned obstructions together: every graph with no k × k grid minor, no
height k complete binary tree minor, and no 2k-vertex path has treedepth polynomial in k. More
specifically, they proved that every graph of treewidth less than k with no height k complete
binary tree minor and no 2k-vertex path has treedepth O(k5 log2 k). Here are an improvement
of this statement and an analogous result relating pathwidth and treewidth:
Theorem 1 (Czerwiński, Nadara, Pilipczuk [3]2). Every graph of treewidth less than t with no
complete binary tree of height h as a minor and no 2b-vertex path has treedepth O(thb).
Theorem 2 (Groenland, Joret, Nadara, Walczak [5]). Every graph of treewidth less than t with
no complete binary tree of height h as a minor has pathwidth O(th).

We complete the picture by proving an analogous result relating treedepth and pathwidth.
Theorem 3. Every graph of pathwidth less than a containing no 2b-vertex path has treedepth at
most 10ab.
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1In this paper, we are concerned only about non-induced paths.
2In [3], the bound is stated in the special case t = h = b, but the proof works in general.
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Clearly, Theorems 2 and 3 imply Theorem 1. On the other hand, Theorem 1 implies that
every graph of pathwidth less than a containing no 2b-vertex path has treedepth O(a2b). This
is because every graph with pathwidth less than a has treewidth less than a and contains no
complete binary tree of height 2a as a minor. In [5], it was conjectured that the bound on
treedepth can be reduced to O(ab), and Theorem 3 provides a proof of this conjecture.

We remark that the bound in Theorem 3 is sharp up to a constant factor, which can be
seen as follows. Let b and c be integers with b > c ⩾ 1, and let a = 2c. Consider the graph
G obtained from a path on 2b−c vertices by replacing each vertex with a clique on a

2 = 2c−1

vertices and replacing each edge by a complete bipartite graph between the two cliques. Then
pw(G) = a − 1. Also, G has 2b−1 vertices, and thus it has no 2b-vertex path. It can be checked
that G has treedepth at least a

2 (b − c), which is roughly ab/2 when b ≫ c. It is shown in [5] that
the bound in Theorem 2 is also sharp up to a constant factor. Whether the bound in Theorem 1
can be improved remains an open problem.

2. Preliminaries

All graphs in this paper are finite and simple, that is, they have no loops or parallel edges.
All logarithms in this paper are to the base 2.

A rooted tree is a tree with one vertex designated as the root. A rooted forest is a disjoint
union of rooted trees. We define the height of a rooted forest F as the maximum number of
vertices on a path from a root to a leaf in F . A vertex u is an ancestor of a vertex v in a rooted
forest F if u lies on the (unique) path from a root to v in F . A rooted forest F is an elimination
forest of a graph G if V (F ) = V (G) and for every edge uv of G, one of the vertices u and v is
an ancestor of the other in F . The treedepth of a graph G, denoted by td(G), is the minimum
height of an elimination forest of G.

A tree decomposition of a graph G is a pair (T, B) such that T is a tree, the vertices of which
are called nodes, and B is a collection {Bt}t∈V (T ) of subsets of V (G), called bags, indexed by the
nodes of T , such that the following conditions are satisfied:

(1) for every edge uv ∈ E(G), there is a bag containing both u and v;
(2) for every vertex v ∈ V (G), the set of nodes t ∈ V (T ) with v ∈ Bt induces a non-empty

subtree of T .

The width of a tree decomposition is the maximum size of a bag minus 1. The treewidth of a
graph G, denoted by tw(G), is the minimum width of a tree decomposition of G. The notions of
path decomposition and pathwidth are defined analogously with the extra condition that the tree
T is a path. The pathwidth of G is denoted by pw(G).

A k-linkage between two subsets A and B of the vertices of a graph G is a subgraph of G that
consists of k vertex-disjoint paths each starting in A and ending in B. (If A and B intersect,
then a path of a k-linkage between A and B may consist of a single vertex in A ∩ B.) A path
decomposition (P, B) of a graph G is linked if for any two nodes t, t′ ∈ V (P ), there is a k-linkage
between Bt and Bt′ where k is the minimum size of a bag Bs for nodes s on the path from t to t′

in P . We use the fact that there is always a path decomposition of minimum width that is linked.

Theorem 4 (Erde [4, Theorem 5.8]). Every graph G has a path decomposition of width pw(G)
that is linked.

3. Proof

We proceed with the proof of Theorem 3, that every graph of pathwidth less than a containing
no 2b-vertex path has treedepth at most 10ab.

Let G be a graph with pw(G) < a and with no path on 2b vertices. If 2b < 2a, then the
statement of the theorem is easily seen to hold by considering a depth-first search forest of G,
which is an elimination forest of G. Its height is less than 2b, which is less than 2a. Hence,
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td(G) < 2a < 10ab. Therefore, we may assume that 2b ⩾ 2a. This inequality will be used at the
very end of the proof.

Fix a linked path decomposition (P, B) of G with B = {Bt}t∈V (P ) and |Bt| ⩽ a for every node
t ∈ V (P ); such a linked path decomposition exists by Theorem 4. We think of the nodes as
being laid out from left to right along P . For a set of nodes X ⊆ V (P ), let

B(X) =
⋃

t∈X

Bt.

We call the node set of any subpath of P an interval. For an interval I, we let
level(I) = min{|Bt| | t ∈ I} and int(I) = B(I) − B(V (P ) − I).

Thus, int(I) (the “interior” of I) is the set of vertices of G that lie only in the bags of nodes in I.
For every k ∈ {1, . . . , a} and every inclusion-maximal interval I∗ with level(I∗) ⩾ k, we fix

some k-linkage between the bags of the leftmost and the rightmost nodes in I∗, and we let L∗
k(I∗)

be the vertex set of that k-linkage. For every k ∈ {1, . . . , a} and every interval I with level(I) ⩾ k,
we let Lk(I) = L∗

k(I∗)∩B(I) where I∗ is the unique inclusion-maximal interval with level(I∗) ⩾ k
containing I. We note the following properties of the sets Lk(I) for further reference:

Lk(I) ⊆ B(I), (1)
Lk(I ′) ⊆ Lk(I) for every interval I ′ ⊆ I, (2)

|Lk(I) ∩ Bt| ⩾ k for every node t ∈ I, (3)
|Lk(I)| < k · 2b. (4)

We describe an iterative process in which we construct a rooted tree T whose vertices are
contained in V (G) except for the root, which is a special vertex r∗ /∈ V (G). The initial tree T
contains only the root r∗. We grow the tree T in rounds, in each round attaching new paths
formed by some vertices of G that are not yet in T . We maintain the invariant that T − r∗ is
an elimination forest of the corresponding induced subgraph of G, that is, for any two vertices
in V (T ) − {r∗} that are adjacent in G, one is an ancestor of the other in T . The process ends
when T contains all vertices of G, so that T − r∗ is an elimination forest of G.

A simple plan for a round would be to find a bag Bt whose removal from G would halve some
measure that is proportional to the logarithm of the maximum path length. Then, after adding
Bt to T (as a path), we could continue growing T independently on each of the two sides of
G − Bt starting from the vertex of Bt that is currently a leaf of T . This is too simple to work,
but it motivates our actual approach.

For a tree T as above and an interval I, we use the following notation. Let ℓ = level(I). For
every k ∈ {1, . . . , ℓ}, we define

xk(I, T ) = |(int(I) ∩ Lk(I)) − V (T )| and wk(I, T ) =
k∑

i=1
log(xi(I, T ) + 1).

The following “monotonicity” property is a direct consequence of (2):
if I ′ ⊆ I and V (T ′) ⊇ V (T ), then xk(I ′, T ′) ⩽ xk(I, T ) and wk(I ′, T ′) ⩽ wk(I, T ), (5)

Furthermore, it follows from (4) that xi(I, T ) + 1 ⩽ i · 2b for every i ∈ {1, . . . , ℓ}, which yields

wℓ(I, T ) ⩽
ℓ∑

i=1
log(i · 2b) = bℓ + log(ℓ!), (6)

wℓ(I, T ) − wk(I, T ) ⩽
ℓ∑

i=k+1
log(i · 2b) = b(ℓ − k) + log

(
ℓ!
k!

)
for every k ∈ {1, . . . , ℓ}. (7)

For notational convenience, we also define wi(∅, T ) = 0.
For a vertex v of G that has been added to T at some time in the process, let depth(v) denote

the number of vertices of G on the path from r∗ to v in T (thus disregarding r∗ in the count).
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Since we always augment the tree T by adding new vertices as leaves, depth(v) is determined
when v is added to T and remains unchanged till the end of the process.

During the aforesaid iterative process of constructing the tree T , we maintain
• a set X of nodes of P , and the invariant that B(X) ⊆ V (T );
• the family I of intervals contained in V (P ) − X that are inclusion-maximal;
• a designated vertex vI in T for every interval I ∈ I.

We also maintain the following invariants:
Inv. 1. For every interval I ∈ I, the path from the root r∗ to vI in T contains every vertex of

B(I) ∩ V (T ).
Inv. 2. For every interval I ∈ I and for ℓ = level(I), we have

1
5 depth(vI) + wℓ(I, T ) ⩽ (b + 1)ℓ + log(ℓ!).

The former allows us to maintain the invariant that T − r∗ is an elimination forest of the
corresponding induced subgraph of G, and the latter helps us bound the height of T .

Initially, the tree T contains only the root r∗, the set X is empty, I = {I} where I = V (P ),
and vI = r∗. For this initial setup, Inv. 1 holds by the fact that B(I) ∩ V (T ) = ∅, whereas Inv. 2
holds by (6) and the fact that depth(vI) = 0.

Every round consists in choosing an arbitrary interval I ∈ I and adding one or two nodes of
I to X. As a result, the interval I is replaced in I by at most three of its proper subintervals.

Now, we describe the details of a single round. Pick an interval I ∈ I. Let
ℓ = level(I) and m = max({0} ∪ {i ∈ {1, . . . , ℓ} | Li(I) − V (T ) = ∅}).

It follows that
for every node t ∈ I, at least m vertices of Bt are already in T . (8)

Indeed, this is true if m = 0, and if m > 0, this follows from (3) and the fact that all vertices of
Lm(I) are already in T . For every i ∈ {1, . . . , ℓ}, since every vertex in Li(I) − int(I) belongs to
the bag of a neighbor of I in P , which belongs to X, we have

Li(I) − V (T ) ⊆ Li(I) − B(X) ⊆ int(I). (9)
Let k = ℓ − m. (We may have m = ℓ and k = 0.) For every i ∈ {m + 1, . . . , ℓ}, by (9), we

have xi(I, T ) = |Li(I) − V (T )| ⩾ 1. It follows that

wℓ(I, T ) =
ℓ∑

i=1
log(xi(I, T ) + 1) ⩾

ℓ∑
i=m+1

log(xi(I, T ) + 1) ⩾ ℓ − m = k. (10)

Choose one vertex from the set Li(I) − V (T ) for each i ∈ {m + 1, . . . , ℓ}, and add these at
most k vertices into T as a path with one end attached to vI . That is, the first vertex is added
as a child of vI and every further vertex is added as a child of the previous one. Let v′

I be the
last such vertex (i.e., the other end of the path) if k ⩾ 1, and let v′

I = vI if k = 0. Let T ′ denote
the resulting augmented tree.

Call a node t ∈ I small if |Bt| ⩽ ℓ + k. By the definition of level(I), at least one node in I is
small. It follows from (8) that

for each small node t ∈ I, at most ℓ + k − m = 2k vertices of Bt are not yet in T ′. (11)
Recall that we think of I as ordered from left to right. For every node t ∈ I, let Lt and Rt denote
the sets of nodes of I to the left and to the right of t, respectively, so that I = Lt ∪ {t} ∪ Rt. If
wℓ(Lt, T ′) ⩽ wℓ(Rt, T ′) for every small node t ∈ I, then let t1 be the rightmost small node in I,
and let L = Lt1 and M = Rt1 . Similarly, if wℓ(Lt, T ′) > wℓ(Rt, T ′) for every small node t ∈ I,
then let t2 be the leftmost small node in I, and let M = Lt2 and R = Rt2 . Otherwise, let t1 be
the rightmost small node in I such that wℓ(Lt1 , T ′) ⩽ wℓ(Rt1 , T ′) and t2 be the leftmost small
node in I such that wℓ(Lt2 , T ′) > wℓ(Rt2 , T ′). In this case, by (5), t1 and t2 occur in this order
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r∗

T

vI

T ′

v′
I

∈
L

m
+

1 (I)−
V

(T )

∈
L

ℓ (I)−
V

(T )

T ′′

v′′
I

Bt1 − V (T ′) Bt2 − V (T ′)

if wℓ(Lt, T ′) ⩽ wℓ(Rt, T ′) for every small node t ∈ I:

∈ X t1 ∈ X

not small

L = Lt1 M = Rt1

if wℓ(Lt, T ′) > wℓ(Rt, T ′) for every small node t ∈ I:

∈ X t2 ∈ X

not small

M = Lt2 R = Rt2

otherwise:

∈ X t1 t2 ∈ X

not small

L = Lt1 M = Lt2 ∩ Rt1 R = Rt2
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from left to right, and there are no small nodes between them. Now, let L = Lt1 , R = Rt2 , and
M = Rt1 ∩ Lt2 (i.e., M is the set of nodes strictly between t1 and t2). See the figure.

Whenever t1 and t2 are defined, we add them to X. We remove I from I, and whenever L,
M , and R are defined and non-empty, we add them as new intervals to I.

Now, we add the vertices of Bt1 − V (T ′) and Bt2 − V (T ′) (whenever t1 or t2 are defined) to
T ′ as one path with one end attached to v′

I . That is, the first such vertex is a child of v′
I , and

every further vertex is a child of the previous. Note that possibly both sets Bt1 − V (T ′) and
Bt2 − V (T ′) are empty; in particular, this happens when k = 0. Let v′′

I be the last vertex added
if at least one vertex was added, and let v′′

I = v′
I otherwise. Let T ′′ denote the new tree. By

(11), we have added at most 4k additional vertices, so
depth(v′′

I ) ⩽ depth(v′
I) + 4k = depth(vI) + 5k. (12)

Whenever L, M , or R is defined and non-empty, we set the corresponding vertex vL, vM , or
vR to be v′′

I . By Inv. 1 for I, it follows that the path from r∗ to v′′
I contains every vertex of

B(I) ∩ V (T ′′), which yields Inv. 1 for L, M , and R (when they are defined and non-empty).
Before verifying Inv. 2, let us capture the key properties of L, M , and R. If L is defined

and non-empty (so that L = Lt1), then let L = Rt1 . If R is defined and non-empty (so that
R = Rt2), then let R = Lt2 . Whenever the respective sets are defined, we have

wℓ(L, T ′) ⩽ wℓ(L, T ′) and wℓ(R, T ′) ⩽ wℓ(R, T ′), (13)
wℓ(M, T ′′) ⩽ wℓ(I, T ), (14)
level(M) ⩾ ℓ + k + 1, (15)

where (14) follows from (5), and (15) follows as there are no small nodes in M .
While a bound analogous to (14) holds also for wℓ(L, T ′′) and wℓ(R, T ′′), we need a stronger

one. First we focus on the interval L, and the argument is symmetric for the interval R. For
i ∈ {1, . . . , ℓ}, we compare xi(I, T ) with xi(L, T ′) and xi(L, T ′). Note that int(L) and int(L) are
vertex-disjoint and are both contained in int(I). For each i ∈ {1, . . . , ℓ}, we have Li(L) ⊆ Li(I)
and Li(L) ⊆ Li(I), by (2). For each i ∈ {m + 1, . . . , ℓ}, we have put one vertex of Li(I) − V (T )
into T ′; this vertex belongs to int(I) by (9). This, the property (1), and the definition of xi

imply that for each i ∈ {1, . . . , ℓ}, we have

xi(I, T ) ⩾
{

xi(L, T ′) + xi(L, T ′) if i ⩽ m,

xi(L, T ′) + xi(L, T ′) + 1 if i > m.

Since xi(L, T ′) and xi(L, T ′) are non-negative, the above implies

xi(I, T ) + 1 ⩾

{
xi(L, T ′) + xi(L, T ′) + 1 ⩾ 1

2(xi(L, T ′) + xi(L, T ′) + 2) if i ⩽ m,

xi(L, T ′) + xi(L, T ′) + 2 if i > m.
(16)

Recalling that k = ℓ − m, we calculate

wℓ(I, T ) =
ℓ∑

i=1
log(xi(I, T ) + 1)

⩾
ℓ∑

i=1
log(xi(L, T ′) + xi(L, T ′) + 2) − m by (16)

⩾
ℓ∑

i=1

log(xi(L, T ′) + 1) + log(xi(L, T ′) + 1)
2 + ℓ − m (∗)

= 1
2(wℓ(L, T ′) + wℓ(L, T ′)) + k

⩾ wℓ(L, T ′) + k by (13)
⩾ wℓ(L, T ′′) + k by (5),
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where in (∗), we use the inequality log(x + y) = log x+y
2 + 1 ⩾ 1

2(log x + log y) + 1 that follows
from the concavity of log. From this and the analogous argument for R, we conclude that

wℓ(L, T ′′) + k ⩽ wℓ(I, T ) and wℓ(R, T ′′) + k ⩽ wℓ(I, T ). (17)

Now, we are set to verify Inv. 2 for the intervals L, R, and M (when they are defined and
non-empty). We have

1
5 depth(vL) + wlevel(L)(L, T ′′)

⩽ 1
5 depth(vI) + k + wℓ(L, T ′′) + b(level(L) − ℓ) + log

( level(L)!
ℓ!

)
by (12) and (7)

⩽ 1
5 depth(vI) + wℓ(I, T ) + b(level(L) − ℓ) + log

( level(L)!
ℓ!

)
by (17)

⩽ (b + 1)ℓ + log(ℓ!) + b(level(L) − ℓ) + log
( level(L)!

ℓ!

)
by Inv. 2 for I

⩽ (b + 1) level(L) + log(level(L)!).

The exact same bounds hold with L replaced by R. Finally, for M , we have
1
5 depth(vM ) + wlevel(M)(M, T ′′)

⩽ 1
5 depth(vI) + k + wℓ(M, T ′′) + b(level(M) − ℓ) + log

( level(M)!
ℓ!

)
by (12) and (7)

⩽ 1
5 depth(vI) + k + wℓ(I, T ) + b(level(M) − ℓ) + log

( level(M)!
ℓ!

)
by (14)

⩽ (b + 1)ℓ + log(ℓ!) + k + b(level(M) − ℓ) + log
( level(M)!

ℓ!

)
by Inv. 2 for I

⩽ (b + 1)ℓ + level(M) − ℓ + b(level(M) − ℓ) + log(level(M)!) by (15)
= (b + 1) level(M) + log(level(M)!).

This completes the round of our process for the interval I, with T ′′ becoming the new tree T .
We have shown that both invariants, Inv. 1 and Inv. 2, are preserved.

The process ends when all vertices of G have been added to T . It remains to show that T − r∗

is an elimination forest of G with height at most 10ab. To see that it is an elimination forest,
observe that whenever a vertex v ∈ int(I) is added to T when considering an interval I, Inv. 1
guarantees that all neighbors of v in G that are already in T lie on the path from r∗ to v in T ,
as the neighbors of v in G belong to B(I) by the definition of path decomposition.

The height of the forest T − r∗ is equal to max{depth(v) | v ∈ V (G)}. Let v be a vertex of
G. Consider the moment in the process when v has been added to T . Say, it happened when
processing an interval I with level(I) = ℓ. Let m and k be the values fixed when processing I.
Clearly, we have depth(v) ⩽ depth(v′′

I ) and ℓ ⩽ a. Therefore,

depth(v) ⩽ depth(v′′
I )

⩽ depth(vI) + 5k by (12)
⩽ depth(vI) + 5wℓ(I, T ) by (10)
⩽ 5(b + 1)ℓ + 5 log(ℓ!) by Inv. 2
⩽ 5(b + 1)a + 5 log(a!)
⩽ 5ab + 5a log a + 5a.

Recall that 2b ⩾ 2a and thus b ⩾ log(2a) = log a + 1. It follows that

depth(v) ⩽ 5ab + 5a log a + 5a ⩽ 10ab.

We conclude that T − r∗ is an elimination forest of G with height at most 10ab, as desired.
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