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1 Introduction

Let G be a group. A bijection θ: G → G for which map φ:
x 7→ x−1θ(x) is also a bijection of G is called Orthomorphism of
G. Two orthomorphisms θ1 and θ2 of G are called orthogonal,
written θ1 ⊥ θ2, if x 7→ θ1(x)−1θ2(x) is a bijection of G. An
orthomorphism of a group which fixes identity element of the
group is called normalised orthomorphism. Now onwards by
an orthomorphism we mean normalised orthomorphism. We
denote the set of orthomorphism of a group G by Orth(G). A
graph in which vertices are orthomorphisms of G and adjacency
being synonymous with orthogonality is called orthomorphism
graph of G, which is also denoted by Orth(G). The order of the
largest complete subgraph of a graph is called clique number of
the graph. Clique number of orthomorphism graph of a group G
is denoted by ω(G). In this paper, we prove that ω(Z2×Z4) = 2.

In 1961, Johnson, Dulmage, and Mendelsohn showed that
|Orth(Z2 × Z4)| = 48 and ω(Z2 × Z4) = 2, via a computer
search. In 1964, through exhaustive hand computation, Chang,
Hsiang, and Tai [1] also found that ω(Z2×Z4) = 2 and in 1986,
via a computer search, Jungnickel and Grams [2] also confirm
above fact. In 1992, Evans and Perkel found that Orth(Z2×Z4)
consists of 12 disjoint 4-cycles using Cayley (a forerunner of the
computer algebra system Magma)[3] and asked for theoretical
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proof of this fact [3, Problem 19]. In 2021, Evans gave a theo-
retical proof of this in [5]. In this paper we gave another proof
of this fact.

An automorphisms A of Orth(G) is a bijection on Orth(G)
such that A(θ1) ⊥ A(θ2) if and only if θ1 ⊥ θ2 where θ1, θ2 ∈
Orth(G).

For f ∈ Aut(G), the group of automorphism of G, the map
Hf : Orth(G) → Orth(G) defined as Hf(θ) = fθf−1 is known as
homology of Orth(G). Homology is an example of automorphism
of Orth(G) [4, Theorem 8.6, p.206]. Any unexplained notation
used in the paper is from [4].

2 Basic Results

Suppose G = {g1 = e, g2, . . . , gn} is a finite group. e is identity
element of G. Suppose τ denotes the regular left permutation
representation of G. Let us identify G with τ(G). So G 6
Sym(G). Further, let us identify Sym(G) with Sym{1, 2, . . . , n}
(denoted as Sn) by identifying gi with i. Clearly, if θ ∈ Orth(G),
then θ ∈ Sym{2,3,. . .,n}(denoted as Sn−1). For θ ∈ Orth(G),
the map φθ: G → G defined as φθ(x) = x−1θ(x) is called the
complete mapping associated with θ. Clearly φθ ∈ Sn. Also
note that θ(x) = x if and only if x is identity element of G.

Remark. For θ ∈ Orth(Z2 × Z4), take a, y ∈ Z2 × Z4 such that
o(a) = 4 and o(y) = o(θ(y)) = 2. Then {x ∈ Z2 × Z4 | o(x) =
4} = {a, ay, aθ(y), ayθ(y)} and {x ∈ Z2 × Z4 | o(x) = 2} =
{y, θ(y), yθ(y)}.

Lemma 2.1. Let G = Z2 × Z4 be a group and θ is a map from
G to G. Define Aij i, j ∈ {2, 4} as follows

A44 ={x ∈ G | o(x) = 4, o(θ(x)) = 4},
A42 ={x ∈ G | o(x) = 4, o(θ(x)) = 2},
A24 ={x ∈ G | o(x) = 2, o(θ(x)) = 4},
A22 ={x ∈ G | o(x) = 2, o(θ(x)) = 2}.
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(1) θ is a bijection fixing identity element of G if and only if

(a) {θ(x) | x ∈ A44} t {θ(x) | x ∈ A24} = {x ∈ G | o(x) = 4},
and

(b) {θ(x) | x ∈ A42} t {θ(x) | x ∈ A22} = {x ∈ G | o(x) = 2}.

(2) θ is an orthomorphism if and only if θ is bijection fixing identity
and

(a) {x−1θ(x) | x ∈ A42} t {x−1θ(x) | x ∈ A24} = {x ∈ G |
o(x) = 4}, and

(b) {x−1θ(x) | x ∈ A44} t {x−1θ(x) | x ∈ A22} = {x ∈ G |
o(x) = 2}.

Proof. Follows from the definition of bijection and orthomor-
phism.

Corollary 2.2. If θ ∈ Orth(Z2×Z4), then |A44|= |A42|= |A24|=
2 and |A22|= 1.

Corollary 2.3. For θ ∈ Orth(Z2 × Z4)

(i) |A44 ∩ θ(A44)| = |A44 ∩ θ(A24)| = |A42 ∩ θ(A44)| = |A42 ∩
θ(A24)| = 1.

(ii) If A22 = {x}, then θ(A42) = {x, xθ(x)} and A24 = {θ(x),
xθ(x)}.

(iii) {x−1θ(x) | x ∈ A44} = {x, θ(x)}.

Proof. (i) From Corollary 2.2, exactly two element of order 4 will
map to order 4 elements. Since a−1(ay) = (ay)−1a = y, where y
is an element of order 2 and a ∈ A44, so A44 6= θ(A44). Suppose
A44∩θ(A44) = φ. Then if {a, ay} ∈ A44 then {az, azy} ∈ θ(A44),
where z 6= y and z, y are elements of order 2. Then a−1(az) =
(ay)−1(azy) = z or a−1(azy) = (ay)−1(az) = zy which contra-
dicts the bijectivity of φθ. Hence |A44∩ θ(A44)|= 1. As θ(A44) is
in partition with θ(A24) so |A44 ∩ θ(A24)|= 1, also A44 and A42

are in partition, therefore |A42 ∩ θ(A44)|= |A42 ∩ θ(A24)|= 1.
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(ii) Suppose A22 = {x}. Then θ(x) 6= x. So {x, θ(x), xθ(x)} is
the set of all elements of order 2 in Z2 × Z4. θ(A42) t θ(A22) =
{x, θ(x), xθ(x)}. Clearly, θ(A42) = {x, xθ(x)}. As x /∈ A24, so
A24 = {θ(x), xθ(x)}.
(iii) If θ is an orthomorphism then, {x−1θ(x) | x ∈ A44} t
{x−1θ(x) | x ∈ A22} = {x, θ(x), xθ(x)}. Therefore {x−1θ(x) |
x ∈ A44} = {x, θ(x)}.

Proposition 2.4. If θ ∈ Orth(Z2 × Z4) and x ∈ A22, a ∈
A44 \ θ(A44), then θ(a) = ax. Moreover A44 = {a, ax}, θ(A44) =
{ax, axθ(x)} and A42 = {axθ(x), aθ(x)}.

Proof. Suppose x ∈ A22 and a ∈ A44 \ θ(A44). By Corollary 2.3
(iii), a−1θ(a) ∈ {x, θ(x)}. Assume θ(a) = aθ(x). By Corollary
2.3 (i), A44 = {a, aθ(x)}. Then by Corollary 2.3 (iii), θ(aθ(x)) =
axθ(x) and A42 = {ax, axθ(x)}. By Corollary 2.3 (ii), θ(A42) =
{x, xθ(x)}.
Case(a): If θ(ax) = x and θ(axθ(x)) = xθ(x), then φθ(ax) =
a−1 and φθ(axθ(x)) = a−1, which contradicts the bijectivity of
φθ.
Case(b): If θ(ax) = xθ(x) and θ(axθ(x)) = x, then φθ(ax) =
a−1θ(x) and φθ(axθ(x)) = a−1θ(x), which again contradicts the
bijectivity of φθ.
Thus, θ(a) = ax and θ(ax) = axθ(x). Hence A44 = {a, ax},
θ(A44) = {ax, axθ(x)} and A42 = {axθ(x), aθ(x)}.

This can be shown by the Figure 1
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Figure 1

3 The Structure of Orth(Z2 × Z4)

Theorem 3.1. Suppose θ ∈ Orth(Z2 × Z4), A22 = {x}, a ∈
A44 \ θ(A44). Then θ has one of the following form

(i) (a, ax, axθ(x), xθ(x), aθ(x), x, θ(x)), where xθ(x) = a2.

(ii) (a, ax, axθ(x), xθ(x))(θ(x), aθ(x), x), where xθ(x) 6= a2.

(iii) (a, ax, axθ(x), x, θ(x))(aθ(x), xθ(x)), where xθ(x) 6= a2.

(iv) (a, ax, axθ(x), x, θ(x), aθ(x), xθ(x)), where xθ(x) = a2.

and |Orth(G)|= 48.

Proof. Suppose A22 = {x} and a ∈ A44 \ θ(A44). Then by
Proposition 2.4, A44 = {a, ax}, θ(A44) = {ax, axθ(x)} and
A42 = {axθ(x), aθ(x)}.

Case(i): Assume θ(axθ(x)) = xθ(x). Clearly, θ(aθ(x)) = x.
Then φθ(axθ(x)) = a−1 and φθ(aθ(x)) = a−1xθ(x).

Subcase(a): Assume θ(θ(x)) = a. Then θ(xθ(x)) = aθ(x),
φθ(θ(x)) = aθ(x) and φθ(xθ(x)) = ax. Bijectivity of φθ implies,
a−1xθ(x) = a or xθ(x) = a2. Thus, if xθ(x) = a2, then θ is
an orthomorphism, given by (i). We have 4 choices for a and 2

5



choices for x as x 6= a2. Hence, we have 8 orthomorphisms of
this form in Orth(G).

Subcase(b): Assume θ(θ(x)) = aθ(x). Then θ(xθ(x)) = a,
φθ(θ(x)) = a and φθ(xθ(x)) = axθ(x). Bijectivity of φθ implies
xθ(x) 6= a2. Thus, if xθ(x) 6= a2, then θ is an orthomorphism
given by (ii). Clearly, we have 16 orthomorphisms of this form
in Orth(G).

Case(ii): Assume θ(axθ(x)) = x. Clearly, θ(aθ(x)) = xθ(x).
Then φθ(axθ(x)) = a−1θ(x) and φθ (aθ(x)) = a−1x.

Subcase(a): Assume θ(θ(x)) = a. Then θ(xθ(x)) = aθ(x),
φθ(θ(x)) = aθ(x) and φθ(xθ(x)) = ax. Bijectivity of φθ implies,
xθ(x) 6= a2. Thus, if xθ(x) 6= a2, then θ is an orthomorphism
given by (iii). Clearly, we have 16 orthomorphisms of this form
in Orth(G).

Subcase(b): Assume θ(θ(x)) = aθ(x). Then θ(xθ(x)) = a,
φθ(θ(x)) = a and φθ(xθ(x)) = axθ(x). Bijectivity of φθ implies
xθ(x) = a2. Thus, if xθ(x) = a2, then θ is an orthomorphism
given by (iv). Clearly, we have 8 orthomorphisms of this form
in Orth(G). Hence, |Orth(G)|= 48.

4 Clique in Orth(Z2 × Z4)

Let G = Z2 × Z4 and Aij, A
′

ij denotes the partition of Z2 × Z4

with respect to θ1, θ2 respectively as defined in Lemma 2.1.

Lemma 4.1. If θ1 and θ2 ∈ Orth(G), then θ1 ⊥ θ2 if and only
if

(a) {θ1(x)−1θ2(x) | x ∈ A44 ∩ A
′

44} t
{θ1(x)−1θ2(x) | x ∈ A24 ∩ A

′

24} t
{θ1(x)−1θ2(x) | x ∈ A42 ∩ A

′

42} t
{θ1(x)−1θ2(x) | x ∈ A22 ∩ A

′

22} = {x ∈ G | o(x) = 2}.

(b) {θ1(x)−1θ2(x) | x ∈ A44 ∩ A
′

42} t
{θ1(x)−1θ2(x) | x ∈ A42 ∩ A

′

44} t
{θ1(x)−1θ2(x) | x ∈ A24 ∩ A

′

22} t
{θ1(x)−1θ2(x) | x ∈ A22 ∩ A

′

24} = {x ∈ G | o(x) = 4}.
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Proof. Follows from the bijectivity of map x 7→ θ1(x)−1θ2(x).

Proposition 4.2. Let θ1,θ2 ∈ Orth(G) such that |A44∩A
′

44|= 2.
Then θ1 6⊥ θ2.

Proof. Since |A44 ∩ A
′

44|= 2, |A42 ∩ A
′

42|= 2.
So, |{θ1(x)−1θ2(x) | x ∈ A44 ∩ A

′

44}|+|{θ1(x)−1θ2(x) | x ∈ A24 ∩
A

′

24}|= 4 > |{x ∈ G | o(x) = 2}|. Therefore, by Lemma 4.1,
θ1 6⊥ θ2.

Proposition 4.3. Let θ1, θ2 ∈ Orth(G) such that |A44∩A
′

44|= 1.
Then θ1 6⊥ θ2.

Proof. Suppose A44∩A
′

44 = {a}. Then by Proposition 2.4, A44 =
{a, ax} and A

′

44 = {a, ax′}, where A22 = {x} and A
′

22 = {x′}.
Clearly, x 6= x′.
Case(1): Assume a ∈ A44 ∩ θ1(A24) and a ∈ A

′

44 ∩ θ2(A
′

24).
Then θ1(a)−1θ2(a) = (ax)−1ax′ = xx′.
Subcase(a): Assume θ1(x) = θ2(x

′). Then A22 ∪ A24 = {x, x′,
θ1(x)}. Also, θ1(a)−1θ2(a) = xx′ = θ1(x) and aθ1(x) ∈ A42∩A

′

42.
Clearly, θ1(A42) = {x, x′} = θ2(A

′

42). So, θ1(aθ1(x))−1θ2(aθ2(x
′))

= e or θ1(x). This is a contradiction to Lemma 4.1. Hence
θ1 6⊥ θ2.
Subcase(b): Assume θ1(x) 6= θ2(x

′). Since θ2(x
′) ∈ {x, x′, θ1(x)}

and θ2(x
′) 6= x′, θ2(x

′) = x. So, aθ1(x) = ax′θ2(x
′) ∈ A42 ∩ A

′

42

and θ1(x) = x′θ2(x
′) ∈ A24 ∩ A

′

24.

(i) If θ1(aθ1(x)) = x and θ2(ax
′θ2(x

′)) = x′, then θ1(aθ1(x))−1

θ2(ax
′θ2(x

′)) = xx′ = θ1(x). By Lemma 4.1, θ1 6⊥ θ2 .

(ii) If θ1(aθ1(x)) = xθ1(x) and θ2(ax
′θ2(x

′)) = x′θ2(x
′), then

θ1(aθ1(x))−1θ2(ax
′θ2(x

′)) = x. Also θ1(x) = x′θ2(x
′) ∈ A24 ∩

A
′

24.
If xθ1(x) = a2, then x′θ2(x

′) 6= a2. By Theorem 3.1 (iv) and
(ii), θ1(θ1(x))−1θ2(x

′θ2(x
′)) = (aθ1(x))−1a = θ1(x). This is a

contradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) = a2, then by Theorem 3.1 (iii)
and (i), θ1(θ1(x))−1θ2(x

′θ2(x
′)) = a−1aθ2(x

′) = θ2(x
′) = x.
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This is a contradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) 6= a2, then by Theorem 3.1 (iii)
and (ii), θ1(θ1(x))−1θ2(x

′θ2(x
′)) = a−1a = e. This is a con-

tradiction to Lemma 4.1.

(iii) If θ1(aθ1(x)) = x and θ2(ax
′θ2(x

′)) = x′θ2(x
′), then θ1(aθ1(x))−1

θ2(ax
′θ2(x

′)) = x′.
If xθ1(x) = a2, then x′θ2(x

′) 6= a2. Then by Theorem 3.1 (i)
and (ii), θ1(θ1(x))−1θ1(x

′θ2(x
′)) = a−1a = e. This is a con-

tradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) = a2, then by Theorem 3.1 (ii) and
(i), θ1(θ1(x))−1θ2(x

′θ2(x
′)) = (aθ1(x))−1aθ2(x

′) = x′. This is
a contradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) 6= a2, then by Theorem 3.1 (ii)
and (ii), θ1(θ1(x))−1 θ2(x

′θ2(x
′)) = (aθ1(x))−1a = θ1(x). This

is a contradiction to Lemma 4.1.

(iv) If θ1(aθ1(x)) = xθ1(x) and θ2(ax
′θ2(x

′)) = x′, then θ1(aθ1(x))−1

θ2(ax
′θ2(x

′)) = xθ1(x)x′ = e This is a contradiction to Lemma
4.1. Hence, θ1 6⊥ θ2 when a ∈ A44 ∩ θ1(A24) and a ∈ A′

44 ∩
θ2(A

′

24).

Case(2): If a ∈ A44∩θ1(A24) and a ∈ A′

44∩θ2(A
′

44), then θ1(a) =
ax, θ1(ax) = axθ1(x) and θ2(ax

′) = a, θ2(a) = aθ2(x
′). Clearly,

a ∈ A44 ∩ A
′

44 and θ1(a)−1θ2(a) = (ax)−1aθ2(x
′) = xθ2(x

′).
Subcase(a): Assume θ1(x) = θ2(x

′). Then A22 ∪ A24 = {x, x′,
θ1(x)} and θ1(a)−1θ2(a) = x′. Clearly, aθ1(x) = aθ2(x

′) ∈ A42 ∩
A

′

42 and θ1(x) = θ2(x
′) ∈ A24 ∩ A

′

24.

(i) If θ1(aθ1(x)) = x and θ2(aθ2(x
′)) = x′, then θ1(aθ1(x))−1θ2(a

θ2(x
′)) = xx′ = θ1(x).

If xθ1(x) = a2, then x′θ2(x
′) 6= a2. By Theorem 3.1 (i) and

(ii), θ1(θ1(x))−1θ2(θ2(x
′)) = a−1aθ1(x) = θ1(x). This is a

contradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) = a2, then by Theorem 3.1 (ii)
and (i), θ1(θ1(x))−1θ2(θ2(x

′)) = (aθ1(x))−1a = θ1(x). This is
a contradiction to Lemma 4.1.
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If xθ1(x) 6= a2 and x′θ2(x
′) 6= a2, then by Theorem 3.1 (ii)

and (ii), θ1(θ1(x))−1θ2(θ2(x
′)) = (aθ1(x))−1aθ2(x

′) = e. This
is a contradiction to Lemma 4.1.

(ii) If θ1(aθ1(x)) = xθ1(x) and θ2(aθ2(x
′)) = x′θ2(x

′), then θ1(aθ1(x))−1

θ2(aθ2(x)) = xθ1(x)x′θ2(x
′) = θ1(x).

If xθ1(x) = a2, then x′θ2(x
′) 6= a2. Then by Theorem 3.1 (iv)

and (iii), θ1(θ1(x))−1θ2(θ2(x
′)) = (aθ1(x))−1a = θ1(x). This

is a contradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) = a2, then by Theorem 3.1 (iii)
and (iv), θ1(θ1(x))−1θ2(θ2(x

′)) = a−1aθ2(x
′) = θ1(x). This is

a contradiction to Lemma 4.1.
If xθ1(x) 6= a2 and x′θ2(x

′) 6= a2, then by Theorem 3.1 (iii)
and (iii), θ1(θ1(x))−1θ2(θ2(x

′)) = a−1a = e. This is a contra-
diction to Lemma 4.1.

(iii) If θ1(aθ1(x)) = x and θ2(aθ2(x
′)) = x′θ2(x

′), then θ1(aθ1(x))−1

θ2(aθ2(x
′)) = xx′θ2(x

′) = e. This is a contradiction to Lemma
4.1.

(iv) If θ1(aθ1(x)) = xθ1(x) and θ2(aθ2(x
′)) = x′, then θ1(aθ1(x))−1

θ2(aθ2(x
′)) = xθ1(x)x′ = e. This is a contradiction to Lemma

4.1. Hence, θ1 6⊥ θ2.

Subcase(b): Assume θ1(x) 6= θ2(x
′). Since θ2(x

′
) ∈ {x, x′

, θ1(x)}
and θ2(x

′) 6= x′, θ2(x
′) = x. As a ∈ A44 ∩A

′

44, so θ1(a)−1θ2(a) =
xθ2(x

′) = e. This is a contradiction to Lemma 4.1. Thus, θ1 6⊥ θ2
when a ∈ A44 ∩ θ1(A24) and a ∈ A′

44 ∩ θ2(A
′

44).

Proposition 4.4. Let θ1, θ2 ∈ Orth(G) and |A44 ∩ A
′

44|= 0.
Then θ1 ⊥ θ2.

Proof. If |A44 ∩A
′

44|= 0 then |A22 ∩A
′

22|= 1 and |A24 ∩A
′

24|= 2.
Also |A44 ∩A

′

42|= 2 and |A42 ∩A
′

44|= 2. Consider the orthomor-
phism of the form θ1 = (a, ax, axθ1(x), xθ1(x), aθ1(x), x, θ1(x))
where xθ1(x) = a2. Here, A22 = {x}, A44 = {a, ax} , A42 =
{axθ1(x), aθ1(x)} and A24 = {θ1(x), xθ1(x)}. If θ2 is orthogonal
to θ1 then, A

′

22 = {x}, A′

44 = {axθ1(x), aθ1(x)}, A′

42 = {a, ax}
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and A
′

24 = {θ1(x), xθ1(x)}.
Case(1): Assume aθ1(x) ∈ A′

44 ∩ θ2(A
′

24). Then by Proposition
2.4, θ2(aθ1(x)) = axθ1(x) and θ2(axθ1(x)) = a as θ2(x) = xθ1(x).
Since θ1(xθ1(x)) = aθ1(x), θ2(xθ1(x)) = ax and θ2(θ1(x)) =
aθ1(x). Then φθ2(aθ1(x)) = x, φθ2(axθ1(x)) = xθ1(x), φθ2(x) =
θ1(x), φθ2(xθ1(x)) = aθ1(x), φθ2(θ1(x)) = a.
Subcase(a): Assume θ2(a) = x. Then θ2(ax) = θ1(x), φθ2(a) =
a−1x and φθ2(ax) = (ax)−1θ1(x) = a, which is not an orthomor-
phism.
Subcase(b): Assume θ2(a) = θ1(x). Then θ2(ax) = x, φθ2(a) =
a−1θ1(x) = ax and φθ2(ax) = (ax)−1x = a−1. In this case θ2 be-
comes an orthomorphism given by θ2 = (aθ1(x), axθ1(x), a, θ1(x))
(x, xθ1(x), ax).
Now,

θ1(y)−1θ2(y) =



θ1(x)xθ1(x) = x y = x ∈ A22 ∩ A
′

22

a−1aθ1(x) = θ1(x) y = θ1(x) ∈ A24 ∩ A
′

24

a−1θ1(x)ax = xθ1(x) y = xθ1(x) ∈ A24 ∩ A
′

24

a−1xθ1(x) = a y = a ∈ A44 ∩ A
′

42

a−1xθ1(x)x = ax y = ax ∈ A44 ∩ A
′

42

xaxθ1(x) = aθ1(x) y = aθ1(x) ∈ A42 ∩ A
′

44

xθ1(x)a = axθ1(x) y = axθ1(x) ∈ A42 ∩ A
′

44

Clearly, y 7→ θ1(y)−1θ2(y) is a bijective map. Thus, θ1 ⊥ θ2.
Case(2): Assume aθ1(x) ∈ A′

44 ∩ θ2(A
′

44). Then by Proposition
2.4, θ2(aθ1(x)) = ax, θ2(axθ1(x)) = aθ1(x) as θ2(x) = xθ1(x).
Since θ1(θ1(x)) = a, θ2(θ1(x)) = axθ1(x) and θ2(xθ1(x)) = a.
Then φθ2(aθ1(x)) = xθ1(x), φθ2(axθ1(x)) = x, φθ2(x) = θ1(x),
φθ2(xθ1(x)) = axθ1(x) = a−1, φθ2(θ1(x)) = ax.
Subcase(a): Assume θ2(a) = θ1(x). Then θ2(ax) = x, φθ2(a) =
a−1θ1(x) and φθ2(ax) = (ax)−1x = a−1 which is not an ortho-
morphism.
Subcase(b): Assume θ2(a) = x. Then θ2(ax) = θ1(x), φθ2(a) =
a−1x and φθ2(ax) = (ax)−1θ1(x). In this case θ2 becomes an or-
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thomorphism given by θ2 = (axθ1(x), aθ1(x), ax, θ1(x)) (x, xθ1(x), a).
Now,

θ1(y)−1θ2(y) =



θ1(x)xθ1(x) = x y = x ∈ A22 ∩ A
′

22

a−1axθ1(x) = xθ1(x) y = θ1(x) ∈ A24 ∩ A
′

24

a−1θ1(x)a = θ1(x) y = xθ1(x) ∈ A24 ∩ A
′

24

a−1xx = axθ1(x) y = a ∈ A44 ∩ A
′

42

a−1xθ1(x)θ1(x) = aθ1(x) y = ax ∈ A44 ∩ A
′

42

xax = a y = aθ1(x) ∈ A42 ∩ A
′

44

xθ1(x)aθ1(x) = ax y = axθ1(x) ∈ A42 ∩ A
′

44

Clearly, y 7→ θ1(y)−1θ2(y) is a bijective map. Thus, θ1 ⊥ θ2.
Hence, If θ1 = (a, ax, axθ1(x), xθ1(x), aθ1(x), x, θ1(x)) where xθ1(x) =
a2 then θ1 is orthogonal to θ2 = (aθ1(x), axθ1(x), a, θ1(x))(x, xθ1(x), ax)
and θ3 = (axθ1(x), aθ1(x), ax, θ1(x))(x, xθ1(x), a).

Similarly, calculating the other cases, the following Table 1
has been constructed:

θ1 θ2, θ3
(a, ax, axθ1(x), xθ1(x), aθ1(x), x, θ1(x))

where xθ1(x) = a2
(aθ1(x), axθ1(x), a, θ1(x))(x, xθ1(x), ax),
(axθ1(x), aθ1(x), ax, θ1(x))(x, xθ1(x), a) .

(a, ax, axθ1(x), x, θ1(x), aθ1(x), xθ1(x))

where xθ1(x) = a2
(aθ1(x), axθ1(x), a, x, xθ1(x))(ax, θ1(x)),
(axθ1(x), aθ1(x), ax, x, xθ1(x))(a, θ1(x)) .

(a, ax, axθ1(x), xθ1(x))(θ1(x), aθ1(x), x)

where xθ1(x) 6= a2 and x = a2
(aθ1(x), axθ1(x), a, x, xθ1(x))(ax, θ1(x)),
(axθ1(x), aθ1(x), ax, x, xθ1(x))(a, θ1(x)).

(a, ax, axθ1(x), xθ1(x))(θ1(x), aθ1(x), x)

where xθ1(x) 6= a2 and θ1(x) = a2
(aθ1(x), axθ1(x), a, θ1(x), ax, x, xθ1(x)),
(axθ1(x), aθ1(x), ax, θ1(x), a, x, xθ1(x)) .

(a, ax, axθ1(x), x, θ1(x))(aθ1(x), xθ1(x))

where xθ1(x) 6= a2 and x = a2
(aθ1(x), axθ1(x), a, θ1(x))(ax, x, xθ1(x)),
(axθ1(x), aθ1(x), ax, θ1(x))(a, x, xθ1(x)) .

(a, ax, axθ1(x), x, θ1(x))(aθ1(x), xθ1(x))

where xθ1(x) 6= a2 and θ1(x) = a2
(aθ1(x), axθ1(x), a, x, xθ1(x), ax, θ1(x)),
(axθ1(x), aθ1(x), ax, x, xθ1(x), a, θ1(x)) .

Table 1: θ1 ⊥ θ2 and θ1 ⊥ θ3
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Corollary 4.5. ω(Z2 × Z4) = 2.

Proof. Clearly, there are two orthomorphism orthogonal to a
given orthomorphism and they cannot be orthogonal to each
other as their A44 are same. Hence, ω(Z2 × Z4) = 2.

Corollary 4.6. (i) Two orthomorphism ψ1 and ψ2 which are
orthogonal to θ are conjugate to each other by an element
α = (a, ax)(axθ(x), aθ(x)) in Aut(Z2 × Z4) where A44 =
{a, ax} and A22 = {x} of θ. Also ψ1 and ψ2 are also or-
thogonal to αθα−1 = θα.

(ii) Orth(Z2×Z4) consists of 12 disjoint 4-cycles. Each 4-cycle
is given by Figure 2.

Figure 2
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