The Structure of Orthomorphism Graph of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$

Rohitesh Pradhan and Vivek Kumar Jain Central University of South Bihar, Gaya, India Email:rohiteshpradhan@gmail.com, jaijinenedra@gmail.com

Abstract

In this paper, we gave a theoretical proof of the fact that Orthomorphism graph of group $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ has maximal clique 2 , by determining the structure of the graph.

Keywords: Orthomorphism Graph
2020 Mathematical Subject Classification: 05B15

1 Introduction

Let G be a group. A bijection $\theta: G \rightarrow G$ for which map ϕ : $x \mapsto x^{-1} \theta(x)$ is also a bijection of G is called Orthomorphism of G. Two orthomorphisms θ_{1} and θ_{2} of G are called orthogonal, written $\theta_{1} \perp \theta_{2}$, if $x \mapsto \theta_{1}(x)^{-1} \theta_{2}(x)$ is a bijection of G. An orthomorphism of a group which fixes identity element of the group is called normalised orthomorphism. Now onwards by an orthomorphism we mean normalised orthomorphism. We denote the set of orthomorphism of a group G by $\operatorname{Orth}(G)$. A graph in which vertices are orthomorphisms of G and adjacency being synonymous with orthogonality is called orthomorphism graph of G, which is also denoted by $\operatorname{Orth}(G)$. The order of the largest complete subgraph of a graph is called clique number of the graph. Clique number of orthomorphism graph of a group G is denoted by $\omega(G)$. In this paper, we prove that $\omega\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)=2$.

In 1961, Johnson, Dulmage, and Mendelsohn showed that $\left|\operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)\right|=48$ and $\omega\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)=2$, via a computer search. In 1964, through exhaustive hand computation, Chang, Hsiang, and Tai [1] also found that $\omega\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)=2$ and in 1986, via a computer search, Jungnickel and Grams [2] also confirm above fact. In 1992, Evans and Perkel found that $\operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$ consists of 12 disjoint 4 -cycles using Cayley (a forerunner of the computer algebra system Magma) [3] and asked for theoretical
proof of this fact [3, Problem 19]. In 2021, Evans gave a theoretical proof of this in [5]. In this paper we gave another proof of this fact.

An automorphisms A of $\operatorname{Orth}(G)$ is a bijection on $\operatorname{Orth}(G)$ such that $A\left(\theta_{1}\right) \perp A\left(\theta_{2}\right)$ if and only if $\theta_{1} \perp \theta_{2}$ where $\theta_{1}, \theta_{2} \in$ $\operatorname{Orth}(G)$.

For $f \in \operatorname{Aut}(G)$, the group of automorphism of G, the map $H_{f}: \operatorname{Orth}(G) \rightarrow \operatorname{Orth}(G)$ defined as $H_{f}(\theta)=f \theta f^{-1}$ is known as homology of $\operatorname{Orth}(G)$. Homology is an example of automorphism of $\operatorname{Orth}(G)$ [4, Theorem 8.6, p.206]. Any unexplained notation used in the paper is from [4].

2 Basic Results

Suppose $G=\left\{g_{1}=e, g_{2}, \ldots, g_{n}\right\}$ is a finite group. e is identity element of G. Suppose τ denotes the regular left permutation representation of G. Let us identify G with $\tau(G)$. So $G \leqslant$ $\operatorname{Sym}(G)$. Further, let us identify $\operatorname{Sym}(G)$ with $\operatorname{Sym}\{1,2, \ldots, n\}$ (denoted as S_{n}) by identifying g_{i} with i. Clearly, if $\theta \in \operatorname{Orth}(G)$, then $\theta \in \operatorname{Sym}\{2,3, \ldots, \mathrm{n}\}\left(\right.$ denoted as $\left.S_{n-1}\right)$. For $\theta \in \operatorname{Orth}(G)$, the map $\phi_{\theta}: G \rightarrow G$ defined as $\phi_{\theta}(x)=x^{-1} \theta(x)$ is called the complete mapping associated with θ. Clearly $\phi_{\theta} \in S_{n}$. Also note that $\theta(x)=x$ if and only if x is identity element of G.
Remark. For $\theta \in \operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$, take $a, y \in \mathbb{Z}_{2} \times \mathbb{Z}_{4}$ such that $o(a)=4$ and $o(y)=o(\theta(y))=2$. Then $\left\{x \in \mathbb{Z}_{2} \times \mathbb{Z}_{4} \mid o(x)=\right.$ $4\}=\{a, a y, a \theta(y), a y \theta(y)\}$ and $\left\{x \in \mathbb{Z}_{2} \times \mathbb{Z}_{4} \mid o(x)=2\right\}=$ $\{y, \theta(y), y \theta(y)\}$.

Lemma 2.1. Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ be a group and θ is a map from G to G. Define $A_{i j} i, j \in\{2,4\}$ as follows

$$
\begin{aligned}
& A_{44}=\{x \in G \mid o(x)=4, o(\theta(x))=4\}, \\
& A_{42}=\{x \in G \mid o(x)=4, o(\theta(x))=2\}, \\
& A_{24}=\{x \in G \mid o(x)=2, o(\theta(x))=4\}, \\
& A_{22}=\{x \in G \mid o(x)=2, o(\theta(x))=2\} .
\end{aligned}
$$

(1) θ is a bijection fixing identity element of G if and only if
(a) $\left\{\theta(x) \mid x \in A_{44}\right\} \sqcup\left\{\theta(x) \mid x \in A_{24}\right\}=\{x \in G \mid o(x)=4\}$, and
(b) $\left\{\theta(x) \mid x \in A_{42}\right\} \sqcup\left\{\theta(x) \mid x \in A_{22}\right\}=\{x \in G \mid o(x)=2\}$.
(2) θ is an orthomorphism if and only if θ is bijection fixing identity and
(a) $\left\{x^{-1} \theta(x) \mid x \in A_{42}\right\} \sqcup\left\{x^{-1} \theta(x) \mid x \in A_{24}\right\}=\{x \in G \mid$ $o(x)=4\}$, and
(b) $\left\{x^{-1} \theta(x) \mid x \in A_{44}\right\} \sqcup\left\{x^{-1} \theta(x) \mid x \in A_{22}\right\}=\{x \in G \mid$ $o(x)=2\}$.

Proof. Follows from the definition of bijection and orthomorphism.

Corollary 2.2. If $\theta \in \operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$, then $\left|A_{44}\right|=\left|A_{42}\right|=\left|A_{24}\right|=$ 2 and $\left|A_{22}\right|=1$.
Corollary 2.3. For $\theta \in \operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$
(i) $\left|A_{44} \cap \theta\left(A_{44}\right)\right|=\left|A_{44} \cap \theta\left(A_{24}\right)\right|=\left|A_{42} \cap \theta\left(A_{44}\right)\right|=\mid A_{42} \cap$ $\theta\left(A_{24}\right) \mid=1$.
(ii) If $A_{22}=\{x\}$, then $\theta\left(A_{42}\right)=\{x, x \theta(x)\}$ and $A_{24}=\{\theta(x)$, $x \theta(x)\}$.
(iii) $\left\{x^{-1} \theta(x) \mid x \in A_{44}\right\}=\{x, \theta(x)\}$.

Proof. (i) From Corollary 2.2 , exactly two element of order 4 will map to order 4 elements. Since $a^{-1}(a y)=(a y)^{-1} a=y$, where y is an element of order 2 and $a \in A_{44}$, so $A_{44} \neq \theta\left(A_{44}\right)$. Suppose $A_{44} \cap \theta\left(A_{44}\right)=\phi$. Then if $\{a, a y\} \in A_{44}$ then $\{a z, a z y\} \in \theta\left(A_{44}\right)$, where $z \neq y$ and z, y are elements of order 2 . Then $a^{-1}(a z)=$ $(a y)^{-1}(a z y)=z$ or $a^{-1}(a z y)=(a y)^{-1}(a z)=z y$ which contradicts the bijectivity of ϕ_{θ}. Hence $\left|A_{44} \cap \theta\left(A_{44}\right)\right|=1$. As $\theta\left(A_{44}\right)$ is in partition with $\theta\left(A_{24}\right)$ so $\left|A_{44} \cap \theta\left(A_{24}\right)\right|=1$, also A_{44} and A_{42} are in partition, therefore $\left|A_{42} \cap \theta\left(A_{44}\right)\right|=\left|A_{42} \cap \theta\left(A_{24}\right)\right|=1$.
(ii) Suppose $A_{22}=\{x\}$. Then $\theta(x) \neq x$. So $\{x, \theta(x), x \theta(x)\}$ is the set of all elements of order 2 in $\mathbb{Z}_{2} \times \mathbb{Z}_{4} . \theta\left(A_{42}\right) \sqcup \theta\left(A_{22}\right)=$ $\{x, \theta(x), x \theta(x)\}$. Clearly, $\theta\left(A_{42}\right)=\{x, x \theta(x)\}$. As $x \notin A_{24}$, so $A_{24}=\{\theta(x), x \theta(x)\}$.
(iii) If θ is an orthomorphism then, $\left\{x^{-1} \theta(x) \mid x \in A_{44}\right\} \sqcup$ $\left\{x^{-1} \theta(x) \mid x \in A_{22}\right\}=\{x, \theta(x), x \theta(x)\}$. Therefore $\left\{x^{-1} \theta(x) \mid\right.$ $\left.x \in A_{44}\right\}=\{x, \theta(x)\}$.

Proposition 2.4. If $\theta \in \operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$ and $x \in A_{22}$, $a \in$ $A_{44} \backslash \theta\left(A_{44}\right)$, then $\theta(a)=a x$. Moreover $A_{44}=\{a, a x\}, \theta\left(A_{44}\right)=$ $\{a x, a x \theta(x)\}$ and $A_{42}=\{a x \theta(x), a \theta(x)\}$.

Proof. Suppose $x \in A_{22}$ and $a \in A_{44} \backslash \theta\left(A_{44}\right)$. By Corollary 2.3 (iii), $a^{-1} \theta(a) \in\{x, \theta(x)\}$. Assume $\theta(a)=a \theta(x)$. By Corollary 2.3 (i), $A_{44}=\{a, a \theta(x)\}$. Then by Corollary 2.3(iii), $\theta(a \theta(x))=$ $\operatorname{ax\theta }(x)$ and $A_{42}=\{a x, a x \theta(x)\}$. By Corollary 2.3 (ii), $\theta\left(A_{42}\right)=$ $\{x, x \theta(x)\}$.
Case(a): If $\theta(a x)=x$ and $\theta(a x \theta(x))=x \theta(x)$, then $\phi_{\theta}(a x)=$ a^{-1} and $\phi_{\theta}(\operatorname{ax\theta }(x))=a^{-1}$, which contradicts the bijectivity of ϕ_{θ}.
Case(b): If $\theta(a x)=x \theta(x)$ and $\theta(a x \theta(x))=x$, then $\phi_{\theta}(a x)=$ $a^{-1} \theta(x)$ and $\phi_{\theta}(a x \theta(x))=a^{-1} \theta(x)$, which again contradicts the bijectivity of ϕ_{θ}.
Thus, $\theta(a)=a x$ and $\theta(a x)=a x \theta(x)$. Hence $A_{44}=\{a, a x\}$, $\theta\left(A_{44}\right)=\{a x, a x \theta(x)\}$ and $A_{42}=\{a x \theta(x), a \theta(x)\}$.

This can be shown by the Figure 1

Figure 1

3 The Structure of $\operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$

Theorem 3.1. Suppose $\theta \in \operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$, $A_{22}=\{x\}$, $a \in$ $A_{44} \backslash \theta\left(A_{44}\right)$. Then θ has one of the following form
(i) $(a, a x, a x \theta(x), x \theta(x), a \theta(x), x, \theta(x))$, where $x \theta(x)=a^{2}$.
(ii) $(a, a x, a x \theta(x), x \theta(x))(\theta(x), a \theta(x), x)$, where $x \theta(x) \neq a^{2}$.
(iii) $(a, a x, a x \theta(x), x, \theta(x))(a \theta(x), x \theta(x))$, where $x \theta(x) \neq a^{2}$.
(iv) $(a, a x, a x \theta(x), x, \theta(x), a \theta(x), x \theta(x))$, where $x \theta(x)=a^{2}$.
and $|\operatorname{Orth}(G)|=48$.
Proof. Suppose $A_{22}=\{x\}$ and $a \in A_{44} \backslash \theta\left(A_{44}\right)$. Then by Proposition 2.4, $A_{44}=\{a, a x\}, \theta\left(A_{44}\right)=\{a x, a x \theta(x)\}$ and $A_{42}=\{a x \theta(x), a \theta(x)\}$.

Case(i): Assume $\theta(a x \theta(x))=x \theta(x)$. Clearly, $\theta(a \theta(x))=x$. Then $\phi_{\theta}(a x \theta(x))=a^{-1}$ and $\phi_{\theta}(a \theta(x))=a^{-1} x \theta(x)$.

Subcase(a): Assume $\theta(\theta(x))=a$. Then $\theta(x \theta(x))=a \theta(x)$, $\phi_{\theta}(\theta(x))=a \theta(x)$ and $\phi_{\theta}(x \theta(x))=a x$. Bijectivity of ϕ_{θ} implies, $a^{-1} x \theta(x)=a$ or $x \theta(x)=a^{2}$. Thus, if $x \theta(x)=a^{2}$, then θ is an orthomorphism, given by (i). We have 4 choices for a and 2
choices for x as $x \neq a^{2}$. Hence, we have 8 orthomorphisms of this form in $\operatorname{Orth}(G)$.

Subcase(b): Assume $\theta(\theta(x))=a \theta(x)$. Then $\theta(x \theta(x))=a$, $\phi_{\theta}(\theta(x))=a$ and $\phi_{\theta}(x \theta(x))=a x \theta(x)$. Bijectivity of ϕ_{θ} implies $x \theta(x) \neq a^{2}$. Thus, if $x \theta(x) \neq a^{2}$, then θ is an orthomorphism given by ($i i$). Clearly, we have 16 orthomorphisms of this form in $\operatorname{Orth}(G)$.

Case(ii): Assume $\theta(a x \theta(x))=x$. Clearly, $\theta(a \theta(x))=x \theta(x)$. Then $\phi_{\theta}(a x \theta(x))=a^{-1} \theta(x)$ and $\phi_{\theta}(a \theta(x))=a^{-1} x$.

Subcase(a): Assume $\theta(\theta(x))=a$. Then $\theta(x \theta(x))=a \theta(x)$, $\phi_{\theta}(\theta(x))=a \theta(x)$ and $\phi_{\theta}(x \theta(x))=a x$. Bijectivity of ϕ_{θ} implies, $x \theta(x) \neq a^{2}$. Thus, if $x \theta(x) \neq a^{2}$, then θ is an orthomorphism given by (i iii). Clearly, we have 16 orthomorphisms of this form in $\operatorname{Orth}(G)$.

Subcase(b): Assume $\theta(\theta(x))=a \theta(x)$. Then $\theta(x \theta(x))=a$, $\phi_{\theta}(\theta(x))=a$ and $\phi_{\theta}(x \theta(x))=a x \theta(x)$. Bijectivity of ϕ_{θ} implies $x \theta(x)=a^{2}$. Thus, if $x \theta(x)=a^{2}$, then θ is an orthomorphism given by (iv). Clearly, we have 8 orthomorphisms of this form in $\operatorname{Orth}(G)$. Hence, $|\operatorname{Orth}(G)|=48$.

4 Clique in $\operatorname{Orth}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)$

Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ and $A_{i j}, A_{i j}^{\prime}$ denotes the partition of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ with respect to θ_{1}, θ_{2} respectively as defined in Lemma 2.1.

Lemma 4.1. If θ_{1} and $\theta_{2} \in \operatorname{Orth}(G)$, then $\theta_{1} \perp \theta_{2}$ if and only if
(a) $\left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{44} \cap A_{44}^{\prime}\right\} \sqcup$ $\left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{24} \cap A_{24}^{\prime}\right\} \sqcup$
$\left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{42} \cap A_{42}^{\uparrow}\right\} \sqcup$
$\left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{22} \cap A_{22}^{\prime}\right\}=\{x \in G \mid o(x)=2\}$.
(b)

$$
\begin{aligned}
& \left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{44} \cap A_{42}^{\prime}\right\} \sqcup \\
& \left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{42} \cap A_{44}\right\} \sqcup \\
& \left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{24} \cap A_{22}^{\prime}\right\} \sqcup \\
& \left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{22} \cap A_{24}^{2}\right\}=\{x \in G \mid o(x)=4\} .
\end{aligned}
$$

Proof. Follows from the bijectivity of map $x \mapsto \theta_{1}(x)^{-1} \theta_{2}(x) . \quad \square$
Proposition 4.2. Let $\theta_{1}, \theta_{2} \in \operatorname{Orth}(G)$ such that $\left|A_{44} \cap A_{44}^{\prime}\right|=2$. Then $\theta_{1} \not \perp \theta_{2}$.

Proof. Since $\left|A_{44} \cap A_{44}^{\prime}\right|=2,\left|A_{42} \cap A_{42}^{\prime}\right|=2$.
So, $\left|\left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{44} \cap A_{44}^{\prime}\right\}\right|+\mid\left\{\theta_{1}(x)^{-1} \theta_{2}(x) \mid x \in A_{24} \cap\right.$ $\left.A_{24}^{\prime}\right\}|=4>|\{x \in G \mid o(x)=2\}|$. Therefore, by Lemma 4.1, $\theta_{1} \not \perp \theta_{2}$.
Proposition 4.3. Let $\theta_{1}, \theta_{2} \in \operatorname{Orth}(G)$ such that $\left|A_{44} \cap A_{44}^{\prime}\right|=1$. Then $\theta_{1} \not \perp \theta_{2}$.

Proof. Suppose $A_{44} \cap A_{44}^{\prime}=\{a\}$. Then by Proposition 2.4, $A_{44}=$ $\{a, a x\}$ and $A_{44}^{\prime}=\left\{a, a x^{\prime}\right\}$, where $A_{22}=\{x\}$ and $A_{22}=\left\{x^{\prime}\right\}$. Clearly, $x \neq x^{\prime}$.
Case(1): Assume $a \in A_{44} \cap \theta_{1}\left(A_{24}\right)$ and $a \in A_{44}^{\prime} \cap \theta_{2}\left(A_{24}^{\prime}\right)$. Then $\theta_{1}(a)^{-1} \theta_{2}(a)=(a x)^{-1} a x^{\prime}=x x^{\prime}$.
Subcase(a): Assume $\theta_{1}(x)=\theta_{2}\left(x^{\prime}\right)$. Then $A_{22} \cup A_{24}=\left\{x, x^{\prime}\right.$, $\left.\theta_{1}(x)\right\}$. Also, $\theta_{1}(a)^{-1} \theta_{2}(a)=x x^{\prime}=\theta_{1}(x)$ and $a \theta_{1}(x) \in A_{42} \cap A_{42}^{\prime}$. Clearly, $\theta_{1}\left(A_{42}\right)=\left\{x, x^{\prime}\right\}=\theta_{2}\left(A_{42}^{\prime}\right)$. So, $\theta_{1}\left(a \theta_{1}(x)\right)^{-1} \theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)$ $=e$ or $\theta_{1}(x)$. This is a contradiction to Lemma 4.1. Hence $\theta_{1} \not \perp \theta_{2}$.
Subcase(b): Assume $\theta_{1}(x) \neq \theta_{2}\left(x^{\prime}\right)$. Since $\theta_{2}\left(x^{\prime}\right) \in\left\{x, x^{\prime}, \theta_{1}(x)\right\}$ and $\theta_{2}\left(x^{\prime}\right) \neq x^{\prime}, \theta_{2}\left(x^{\prime}\right)=x$. So, $a \theta_{1}(x)=a x^{\prime} \theta_{2}\left(x^{\prime}\right) \in A_{42} \cap A_{42}^{\prime}$ and $\theta_{1}(x)=x^{\prime} \theta_{2}\left(x^{\prime}\right) \in A_{24} \cap A_{24}^{\prime}$.
(i) If $\theta_{1}\left(a \theta_{1}(x)\right)=x$ and $\theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime}$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1}$ $\theta_{2}\left(a^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x x^{\prime}=\theta_{1}(x)$. By Lemma 4.1, $\theta_{1} \not \perp \theta_{2}$.
(ii) If $\theta_{1}\left(a \theta_{1}(x)\right)=x \theta_{1}(x)$ and $\theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime} \theta_{2}\left(x^{\prime}\right)$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1} \theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x$. Also $\theta_{1}(x)=x^{\prime} \theta_{2}\left(x^{\prime}\right) \in A_{24} \cap$ A_{24}^{\prime}.
If $x \theta_{1}(x)=a^{2}$, then $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$. By Theorem 3.1 (iv) and (ii), $\theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=\left(a \theta_{1}(x)\right)^{-1} a=\theta_{1}(x)$. This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right)=a^{2}$, then by Theorem 3.1 (iii) and $(i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=a^{-1} a \theta_{2}\left(x^{\prime}\right)=\theta_{2}\left(x^{\prime}\right)=x$.

This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$, then by Theorem 3.1 (iii) and $(i i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=a^{-1} a=e$. This is a contradiction to Lemma 4.1.
(iii) If $\theta_{1}\left(a \theta_{1}(x)\right)=x$ and $\theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime} \theta_{2}\left(x^{\prime}\right)$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1}$ $\theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime}$.
If $x \theta_{1}(x)=a^{2}$, then $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$. Then by Theorem 3.1 (i) and $(i i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{1}\left(x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=a^{-1} a=e$. This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right)=a^{2}$, then by Theorem 3.1 (ii) and $(i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=\left(a \theta_{1}(x)\right)^{-1} a \theta_{2}\left(x^{\prime}\right)=x^{\prime}$. This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$, then by Theorem 3.1 ($i i$) and $(i i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=\left(a \theta_{1}(x)\right)^{-1} a=\theta_{1}(x)$. This is a contradiction to Lemma 4.1.
(iv) If $\theta_{1}\left(a \theta_{1}(x)\right)=x \theta_{1}(x)$ and $\theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime}$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1}$ $\theta_{2}\left(a x^{\prime} \theta_{2}\left(x^{\prime}\right)\right)=x \theta_{1}(x) x^{\prime}=e$ This is a contradiction to Lemma 4.1. Hence, $\theta_{1} \not \perp \not \theta_{2}$ when $a \in A_{44} \cap \theta_{1}\left(A_{24}\right)$ and $a \in A_{44}^{\prime} \cap$ $\theta_{2}\left(A_{24}^{\prime}\right)$.

Case(2): If $a \in A_{44} \cap \theta_{1}\left(A_{24}\right)$ and $a \in A_{44}^{\prime} \cap \theta_{2}\left(A_{44}^{\prime}\right)$, then $\theta_{1}(a)=$ $a x, \theta_{1}(a x)=a x \theta_{1}(x)$ and $\theta_{2}\left(a x^{\prime}\right)=a, \theta_{2}(a)=a \theta_{2}\left(x^{\prime}\right)$. Clearly, $a \in A_{44} \cap A_{44}^{\prime}$ and $\theta_{1}(a)^{-1} \theta_{2}(a)=(a x)^{-1} a \theta_{2}\left(x^{\prime}\right)=x \theta_{2}\left(x^{\prime}\right)$.
Subcase(a): Assume $\theta_{1}(x)=\theta_{2}\left(x^{\prime}\right)$. Then $A_{22} \cup A_{24}=\left\{x, x^{\prime}\right.$, $\left.\theta_{1}(x)\right\}$ and $\theta_{1}(a)^{-1} \theta_{2}(a)=x^{\prime}$. Clearly, $a \theta_{1}(x)=a \theta_{2}\left(x^{\prime}\right) \in A_{42} \cap$ A_{42}^{\prime} and $\theta_{1}(x)=\theta_{2}\left(x^{\prime}\right) \in A_{24} \cap A_{24}^{\prime}$.
(i) If $\theta_{1}\left(a \theta_{1}(x)\right)=x$ and $\theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime}$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1} \theta_{2}(a$ $\left.\theta_{2}\left(x^{\prime}\right)\right)=x x^{\prime}=\theta_{1}(x)$.
If $x \theta_{1}(x)=a^{2}$, then $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$. By Theorem $3.1(i)$ and (ii), $\theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(\theta_{2}\left(x^{\prime}\right)\right)=a^{-1} a \theta_{1}(x)=\theta_{1}(x)$. This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right)=a^{2}$, then by Theorem 3.1 (ii) and $(i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(\theta_{2}\left(x^{\prime}\right)\right)=\left(a \theta_{1}(x)\right)^{-1} a=\theta_{1}(x)$. This is a contradiction to Lemma 4.1.

If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$, then by Theorem 3.1 (ii) and $(i i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(\theta_{2}\left(x^{\prime}\right)\right)=\left(a \theta_{1}(x)\right)^{-1} a \theta_{2}\left(x^{\prime}\right)=e$. This is a contradiction to Lemma 4.1.
(ii) If $\theta_{1}\left(a \theta_{1}(x)\right)=x \theta_{1}(x)$ and $\theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime} \theta_{2}\left(x^{\prime}\right)$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1}$ $\theta_{2}\left(a \theta_{2}(x)\right)=x \theta_{1}(x) x^{\prime} \theta_{2}\left(x^{\prime}\right)=\theta_{1}(x)$.
If $x \theta_{1}(x)=a^{2}$, then $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$. Then by Theorem 3.1 (iv) and $(i i i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(\theta_{2}\left(x^{\prime}\right)\right)=\left(a \theta_{1}(x)\right)^{-1} a=\theta_{1}(x)$. This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right)=a^{2}$, then by Theorem 3.1 (iii) and $(i v), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(\theta_{2}\left(x^{\prime}\right)\right)=a^{-1} a \theta_{2}\left(x^{\prime}\right)=\theta_{1}(x)$. This is a contradiction to Lemma 4.1.
If $x \theta_{1}(x) \neq a^{2}$ and $x^{\prime} \theta_{2}\left(x^{\prime}\right) \neq a^{2}$, then by Theorem 3.1 (iii) and $(i i i), \theta_{1}\left(\theta_{1}(x)\right)^{-1} \theta_{2}\left(\theta_{2}\left(x^{\prime}\right)\right)=a^{-1} a=e$. This is a contradiction to Lemma 4.1.
(iii) If $\theta_{1}\left(a \theta_{1}(x)\right)=x$ and $\theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime} \theta_{2}\left(x^{\prime}\right)$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1}$ $\theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)=x x^{\prime} \theta_{2}\left(x^{\prime}\right)=e$. This is a contradiction to Lemma 4.1.
(iv) If $\theta_{1}\left(a \theta_{1}(x)\right)=x \theta_{1}(x)$ and $\theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)=x^{\prime}$, then $\theta_{1}\left(a \theta_{1}(x)\right)^{-1}$ $\theta_{2}\left(a \theta_{2}\left(x^{\prime}\right)\right)=x \theta_{1}(x) x^{\prime}=e$. This is a contradiction to Lemma 4.1. Hence, $\theta_{1} \not \perp \theta_{2}$.

Subcase(b): Assume $\theta_{1}(x) \neq \theta_{2}\left(x^{\prime}\right)$. Since $\theta_{2}\left(x^{\prime}\right) \in\left\{x, x^{\prime}, \theta_{1}(x)\right\}$ and $\theta_{2}\left(x^{\prime}\right) \neq x^{\prime}, \theta_{2}\left(x^{\prime}\right)=x$. As $a \in A_{44} \cap A_{44}^{\prime}$, so $\theta_{1}(a)^{-1} \theta_{2}(a)=$ $x \theta_{2}\left(x^{\prime}\right)=e$. This is a contradiction to Lemma 4.1. Thus, $\theta_{1} \not \perp \theta_{2}$ when $a \in A_{44} \cap \theta_{1}\left(A_{24}\right)$ and $a \in A_{44}^{\prime} \cap \theta_{2}\left(A_{44}^{\prime}\right)$.

Proposition 4.4. Let $\theta_{1}, \theta_{2} \in \operatorname{Orth}(G)$ and $\left|A_{44} \cap A_{44}^{\prime}\right|=0$. Then $\theta_{1} \perp \theta_{2}$.

Proof. If $\left|A_{44} \cap A_{44}^{\prime}\right|=0$ then $\left|A_{22} \cap A_{22}^{\prime}\right|=1$ and $\left|A_{24} \cap A_{24}^{\prime}\right|=2$. Also $\left|A_{44} \cap A_{42}^{\prime}\right|=2$ and $\left|A_{42} \cap A_{44}^{\prime}\right|=2$. Consider the orthomorphism of the form $\theta_{1}=\left(a, a x, a x \theta_{1}(x), x \theta_{1}(x), a \theta_{1}(x), x, \theta_{1}(x)\right)$ where $x \theta_{1}(x)=a^{2}$. Here, $A_{22}=\{x\}, A_{44}=\{a, a x\}, A_{42}=$ $\left\{a x \theta_{1}(x), a \theta_{1}(x)\right\}$ and $A_{24}=\left\{\theta_{1}(x), x \theta_{1}(x)\right\}$. If θ_{2} is orthogonal to θ_{1} then, $A_{22}^{\prime}=\{x\}, A_{44}^{\prime}=\left\{a x \theta_{1}(x), a \theta_{1}(x)\right\}, A_{42}^{\prime}=\{a, a x\}$
and $A_{24}^{\prime}=\left\{\theta_{1}(x), x \theta_{1}(x)\right\}$.
Case(1): Assume $a \theta_{1}(x) \in A_{44}^{\prime} \cap \theta_{2}\left(A_{24}^{\prime}\right)$. Then by Proposition 2.4, $\theta_{2}\left(a \theta_{1}(x)\right)=a x \theta_{1}(x)$ and $\theta_{2}\left(a x \theta_{1}(x)\right)=a$ as $\theta_{2}(x)=x \theta_{1}(x)$. Since $\theta_{1}\left(x \theta_{1}(x)\right)=a \theta_{1}(x), \theta_{2}\left(x \theta_{1}(x)\right)=a x$ and $\theta_{2}\left(\theta_{1}(x)\right)=$ $a \theta_{1}(x)$. Then $\phi_{\theta_{2}}\left(a \theta_{1}(x)\right)=x, \phi_{\theta_{2}}\left(a x \theta_{1}(x)\right)=x \theta_{1}(x), \phi_{\theta_{2}}(x)=$ $\theta_{1}(x), \phi_{\theta_{2}}\left(x \theta_{1}(x)\right)=a \theta_{1}(x), \phi_{\theta_{2}}\left(\theta_{1}(x)\right)=a$.
Subcase(a): Assume $\theta_{2}(a)=x$. Then $\theta_{2}(a x)=\theta_{1}(x), \phi_{\theta_{2}}(a)=$ $a^{-1} x$ and $\phi_{\theta_{2}}(a x)=(a x)^{-1} \theta_{1}(x)=a$, which is not an orthomorphism.
Subcase(b): Assume $\theta_{2}(a)=\theta_{1}(x)$. Then $\theta_{2}(a x)=x, \phi_{\theta_{2}}(a)=$ $a^{-1} \theta_{1}(x)=a x$ and $\phi_{\theta_{2}}(a x)=(a x)^{-1} x=a^{-1}$. In this case θ_{2} becomes an orthomorphism given by $\theta_{2}=\left(a \theta_{1}(x), a x \theta_{1}(x), a, \theta_{1}(x)\right)$ $\left(x, x \theta_{1}(x), a x\right)$.
Now,
$\theta_{1}(y)^{-1} \theta_{2}(y)= \begin{cases}\theta_{1}(x) x \theta_{1}(x)=x & y=x \in A_{22} \cap A_{22}^{\prime} \\ a^{-1} a \theta_{1}(x)=\theta_{1}(x) & y=\theta_{1}(x) \in A_{24} \cap A_{24}^{\prime} \\ a^{-1} \theta_{1}(x) a x=x \theta_{1}(x) & y=x \theta_{1}(x) \in A_{24} \cap A_{24}^{\prime} \\ a^{-1} x \theta_{1}(x)=a & y=a \in A_{44} \cap A_{42}^{\prime} \\ a^{-1} x \theta_{1}(x) x=a x & y=a x \in A_{44} \cap A_{42}^{\prime} \\ x a x \theta_{1}(x)=a \theta_{1}(x) & y=a \theta_{1}(x) \in A_{42} \cap A_{44}^{\prime} \\ x \theta_{1}(x) a=a x \theta_{1}(x) & y=a x \theta_{1}(x) \in A_{42} \cap A_{44}^{\prime}\end{cases}$
Clearly, $y \mapsto \theta_{1}(y)^{-1} \theta_{2}(y)$ is a bijective map. Thus, $\theta_{1} \perp \theta_{2}$.
Case(2): Assume $a \theta_{1}(x) \in A_{44}^{\prime} \cap \theta_{2}\left(A_{44}^{\prime}\right)$. Then by Proposition 2.4, $\theta_{2}\left(a \theta_{1}(x)\right)=a x, \theta_{2}\left(a x \theta_{1}(x)\right)=a \theta_{1}(x)$ as $\theta_{2}(x)=x \theta_{1}(x)$. Since $\theta_{1}\left(\theta_{1}(x)\right)=a, \theta_{2}\left(\theta_{1}(x)\right)=a x \theta_{1}(x)$ and $\theta_{2}\left(x \theta_{1}(x)\right)=a$. Then $\phi_{\theta_{2}}\left(a \theta_{1}(x)\right)=x \theta_{1}(x), \phi_{\theta_{2}}\left(a x \theta_{1}(x)\right)=x, \phi_{\theta_{2}}(x)=\theta_{1}(x)$, $\phi_{\theta_{2}}\left(x \theta_{1}(x)\right)=a x \theta_{1}(x)=a^{-1}, \phi_{\theta_{2}}\left(\theta_{1}(x)\right)=a x$.
Subcase(a): Assume $\theta_{2}(a)=\theta_{1}(x)$. Then $\theta_{2}(a x)=x, \phi_{\theta_{2}}(a)=$ $a^{-1} \theta_{1}(x)$ and $\phi_{\theta_{2}}(a x)=(a x)^{-1} x=a^{-1}$ which is not an orthomorphism.
Subcase(b): Assume $\theta_{2}(a)=x$. Then $\theta_{2}(a x)=\theta_{1}(x), \phi_{\theta_{2}}(a)=$ $a^{-1} x$ and $\phi_{\theta_{2}}(a x)=(a x)^{-1} \theta_{1}(x)$. In this case θ_{2} becomes an or-
thomorphism given by $\theta_{2}=\left(a x \theta_{1}(x), a \theta_{1}(x), a x, \theta_{1}(x)\right)\left(x, x \theta_{1}(x), a\right)$. Now,

$$
\theta_{1}(y)^{-1} \theta_{2}(y)= \begin{cases}\theta_{1}(x) x \theta_{1}(x)=x & y=x \in A_{22} \cap A_{22}^{\prime} \\ a^{-1} a x \theta_{1}(x)=x \theta_{1}(x) & y=\theta_{1}(x) \in A_{24} \cap A_{24}^{\prime} \\ a^{-1} \theta_{1}(x) a=\theta_{1}(x) & y=x \theta_{1}(x) \in A_{24} \cap A_{24}^{\prime} \\ a^{-1} x x=a x \theta_{1}(x) & y=a \in A_{44} \cap A_{42}^{\prime} \\ a^{-1} x \theta_{1}(x) \theta_{1}(x)=a \theta_{1}(x) & y=a x \in A_{44} \cap A_{42}^{\prime} \\ x a x=a & y=a \theta_{1}(x) \in A_{42} \cap A_{44}^{\prime} \\ x \theta_{1}(x) a \theta_{1}(x)=a x & y=a x \theta_{1}(x) \in A_{42} \cap A_{44}^{\prime}\end{cases}
$$

Clearly, $y \mapsto \theta_{1}(y)^{-1} \theta_{2}(y)$ is a bijective map. Thus, $\theta_{1} \perp \theta_{2}$.
Hence, If $\theta_{1}=\left(a, a x, a x \theta_{1}(x), x \theta_{1}(x), a \theta_{1}(x), x, \theta_{1}(x)\right)$ where $x \theta_{1}(x)=$ a^{2} then θ_{1} is orthogonal to $\theta_{2}=\left(a \theta_{1}(x), a x \theta_{1}(x), a, \theta_{1}(x)\right)\left(x, x \theta_{1}(x), a x\right)$ and $\theta_{3}=\left(a x \theta_{1}(x), a \theta_{1}(x), a x, \theta_{1}(x)\right)\left(x, x \theta_{1}(x), a\right)$.

Similarly, calculating the other cases, the following Table 1 has been constructed:

θ_{1}	θ_{2}, θ_{3}
$\begin{gathered} \left(a, a x, a x \theta_{1}(x), x \theta_{1}(x), a \theta_{1}(x), x, \theta_{1}(x)\right) \\ \text { where } x \theta_{1}(x)=a^{2} \end{gathered}$	$\begin{aligned} & \left(a \theta_{1}(x), a x \theta_{1}(x), a, \theta_{1}(x)\right)\left(x, x \theta_{1}(x), a x\right), \\ & \left(a x \theta_{1}(x), a \theta_{1}(x), a x, \theta_{1}(x)\right)\left(x, x \theta_{1}(x), a\right) . \end{aligned}$
$\begin{gathered} \left(a, a x, a x \theta_{1}(x), x, \theta_{1}(x), a \theta_{1}(x), x \theta_{1}(x)\right) \\ \text { where } x \theta_{1}(x)=a^{2} \end{gathered}$	$\begin{aligned} & \left(a \theta_{1}(x), a x \theta_{1}(x), a, x, x \theta_{1}(x)\right)\left(a x, \theta_{1}(x)\right), \\ & \left(a x \theta_{1}(x), a \theta_{1}(x), a x, x, x \theta_{1}(x)\right)\left(a, \theta_{1}(x)\right) . \end{aligned}$
$\begin{gathered} \left(a, a x, a x \theta_{1}(x), x \theta_{1}(x)\right)\left(\theta_{1}(x), a \theta_{1}(x), x\right) \\ \text { where } x \theta_{1}(x) \neq a^{2} \text { and } x=a^{2} \end{gathered}$	$\begin{aligned} & \left(a \theta_{1}(x), a x \theta_{1}(x), a, x, x \theta_{1}(x)\right)\left(a x, \theta_{1}(x)\right), \\ & \left(a x \theta_{1}(x), a \theta_{1}(x), a x, x, x \theta_{1}(x)\right)\left(a, \theta_{1}(x)\right) . \end{aligned}$
$\begin{gathered} \left(a, a x, a x \theta_{1}(x), x \theta_{1}(x)\right)\left(\theta_{1}(x), a \theta_{1}(x), x\right) \\ \text { where } x \theta_{1}(x) \neq a^{2} \text { and } \theta_{1}(x)=a^{2} \end{gathered}$	$\begin{aligned} & \left(a \theta_{1}(x), a x \theta_{1}(x), a, \theta_{1}(x), a x, x, x \theta_{1}(x)\right), \\ & \left(a x \theta_{1}(x), a \theta_{1}(x), a x, \theta_{1}(x), a, x, x \theta_{1}(x)\right) . \end{aligned}$
$\begin{gathered} \left(a, a x, a x \theta_{1}(x), x, \theta_{1}(x)\right)\left(a \theta_{1}(x), x \theta_{1}(x)\right) \\ \text { where } x \theta_{1}(x) \neq a^{2} \text { and } x=a^{2} \end{gathered}$	$\begin{aligned} & \left(a \theta_{1}(x), a x \theta_{1}(x), a, \theta_{1}(x)\right)\left(a x, x, x \theta_{1}(x)\right), \\ & \left(a x \theta_{1}(x), a \theta_{1}(x), a x, \theta_{1}(x)\right)\left(a, x, x \theta_{1}(x)\right) . \end{aligned}$
$\begin{gathered} \left(a, a x, a x \theta_{1}(x), x, \theta_{1}(x)\right)\left(a \theta_{1}(x), x \theta_{1}(x)\right) \\ \text { where } x \theta_{1}(x) \neq a^{2} \text { and } \theta_{1}(x)=a^{2} \end{gathered}$	$\begin{aligned} & \left(a \theta_{1}(x), a x \theta_{1}(x), a, x, x \theta_{1}(x), a x, \theta_{1}(x)\right), \\ & \left(a x \theta_{1}(x), a \theta_{1}(x), a x, x, x \theta_{1}(x), a, \theta_{1}(x)\right) . \end{aligned}$

Table 1: $\theta_{1} \perp \theta_{2}$ and $\theta_{1} \perp \theta_{3}$

Corollary 4.5. $\omega\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)=2$.
Proof. Clearly, there are two orthomorphism orthogonal to a given orthomorphism and they cannot be orthogonal to each other as their A_{44} are same. Hence, $\omega\left(\mathbb{Z}_{2} \times \mathbb{Z}_{4}\right)=2$.

Corollary 4.6. (i) Two orthomorphism ψ_{1} and ψ_{2} which are orthogonal to θ are conjugate to each other by an element $\alpha=(a, a x)(a x \theta(x), a \theta(x))$ in $\operatorname{Aut}\left(Z_{2} \times Z_{4}\right)$ where $A_{44}=$ $\{a, a x\}$ and $A_{22}=\{x\}$ of θ. Also ψ_{1} and ψ_{2} are also orthogonal to $\alpha \theta \alpha^{-1}=\theta^{\alpha}$.
(ii) $\operatorname{Orth}\left(Z_{2} \times Z_{4}\right)$ consists of 12 disjoint 4-cycles. Each 4-cycle is given by Figure 2.

Figure 2

References

[1] Chang, L.Q., Tai, S.S.: On the orthogonal relations among orthomorphisms of noncommutative groups of small orders. Acta Math. Sinica 14, 471-480 (1964), Chinese: translated as: Chinese Math. Acta 5, 506-515 (1964)
[2] Jungnickel, D., Grams, G.: Maximal difference matrices of order ≤ 10. Discrete Math. 58, 199-203 (1986)
[3] Evans, A.B.: Orthomorphism graphs of groups. Lecture Notes in Mathematics 1535, Springer-Verlag, Berlin (1992)
[4] Evans, A.B.: Orthogonal Latin squares based on groups, Springer, Cham, (2018).
[5] Evans, A. B.: Orthogonal Latin square graphs based on groups of order 8. Australas. J Comb., 80, 116-142,(2021).

