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FLUCTUATIONS OF SCHENSTED ROW INSERTION

MIKOŁAJ MARCINIAK AND PIOTR ŚNIADY

ABSTRACT. We investigate several asymptotic probabilistic questions

related to random Young tableaux and the Schensted row insertion which

is the key component of the Robinson–Schensted–Knuth algorithm (RSK).

For example, for a random tableau T with a specified shape λ we inves-

tigate the relationship between (i) the position of the new box created

in the row insertion T ← z when a new entry z is inserted into the

tableau T , and, (ii) the value of the new entry z being inserted. Since the

tableau T is random, the aforementioned relationship is random as well;

we investigate its fluctuations around the mean value, in the limit as the

number of boxes of the Young diagram λ tends to infinity. Our results

can be also used to prove the asymptotic Gaussianity of the last entry of

the first row in a uniformly random standard Young tableau with some

prescribed large shape.

1. TEASER: NEW CONJECTURES RELATED TO RSK ALGORITHM

APPLIED TO RANDOM INPUT

This paper is quite long; in order to motivate the reader we start with

a teaser: two new conjectures (Conjecture 1.5 and Conjecture 1.7) which

concern RSK algorithm applied to a random input.

1.1. Basic definitions. We start by recalling some basic combinatorial no-

tions. For a more detailed treatment of the topic, we refer to [Ful97].

1.1.1. Young diagrams, tableaux. A Young diagram is a finite collection of

boxes on the positive quarterplane, aligned to the left and to the bottom, see

Figure 1a. This way of drawing Young diagrams is called the French con-

vention. To a Young diagram with ℓ rows we associate the integer partition

λ = (λ1, . . . , λℓ), where λj denotes the number of the boxes in the j-th row

(we count the rows from bottom to top). We identify a Young diagram with

the corresponding partition λ and denote by |λ| = λ1+ · · ·+λℓ the number

of its boxes.
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Figure 1. The Young diagram (4, 3, 1) shown in (a) the

French convention, and (b) the Russian convention. The

solid red line represents the profile of the Young diagram.

The coordinates system (u, v) corresponding to the Russian

convention and the coordinate system (x, y) corresponding

to the French convention are shown.

A tableau is a filling of the boxes of a Young diagram with numbers; we

require that the entries should be weakly increasing in each row (from left

to right) and strictly increasing in each column (from bottom to top). An

example is given in Figure 2a. We say that a tableau T of shape λ is a stan-

dard Young tableau if it contains only entries from the set {1, 2, . . . , |λ|}
and each element is used exactly once.

1.1.2. Schensted insertion. The Schensted row insertion is an algorithm

which takes as an input a tableau T and some number z. The number z
is inserted into the first row (i.e., the bottom row) of T in the leftmost box

which contains an entry which is strictly bigger than z.

In the case when the row contains no entries which are bigger than z,

the number z is inserted into the leftmost empty box in this row and the

algorithm terminates.

If, however, the number z was inserted into a box which was not empty,

the previous content z′ of the box is bumped into the second row. This

means that the algorithm is iterated but this time the number z′ is inserted

into the second row in the leftmost box which contains a number bigger

than z′; if necessary this is repeated until some number is inserted into a

previously empty box. This process is illustrated in Figures 2b and 2c. The

outcome of Schensted insertion is defined as the new resulting tableau; it

will be denoted by T ← z.
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Figure 2. (a) The original tableau T . (b) The highlighted

boxes form the bumping route which corresponds to a Schen-

sted insertion T ← 18. The numbers next to the arrows in-

dicate the bumping entries. (c) The output T ← 18 of the

Schensted insertion.

The bumping route consists of the boxes whose the content has changed

by the action of Schensted insertion, see Figures 2b and 2c.

1.1.3. Robinson–Schensted–Knuth algorithm. For the purposes of this ar-

ticle we consider a simplified version of Robinson–Schensted–Knuth al-

gorithm; for this reason we should rather call it Robinson–Schensted al-

gorithm. Nevertheless, we use the first name because of its well-known

acronym RSK. The RSK algorithm associates to a finite sequence w =
(w1, . . . , wn) a pair of tableaux: the insertion tableau P (w) and the record-

ing tableau Q(w).
The insertion tableau

(1.1) P (w) =
((

(∅ ← w1)← w2

)
← · · ·

)

← wn

is defined as the result of iterative Schensted insertion applied to the entries

of w, starting from the empty tableau ∅.
The recording tableau Q(w) is defined as the standard Young tableau

of the same shape as P (w) in which each entry is equal to the number of

the iteration of (1.1) in which the given box stopped being empty; in other

words the entries of Q(w) give the order in which the entries of the insertion

tableau were filled.

Tableaux P (w) and Q(w) have the same shape; we will denote this com-

mon shape by RSK(w) and call it the RSK shape associated to w.

The RSK algorithm is an important tool of algebraic combinatorics and

representation theory, especially in the context of the Littlewood–Richardson

coefficients, see [Ful97; Sta99].
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1.2. Context and motivations. A fruitful area of research is to investigate

the RSK algorithm applied to a random input. We shall review below some

selected highlights of this area.

1.2.1. Plancherel measure. The simplest example concerns the case when

w = (w1, . . . , wn) is a uniformly random permutation in n letters. Since the

recording tableau depends only on the relative order of the entries which

form the input, the probability distribution of the recording tableau Q(w)
would not change if we replace the above probability distribution and take

w = (w1, . . . , wn) to be a sequence of independent, identically distributed

random variables with the uniform distribution U(0, 1) on the unit inter-

val [0, 1]. The corresponding probability distribution of RSK(w) is the cel-

ebrated Plancherel measure Pln on the set of Young diagrams with n boxes

which appears naturally in the context of decomposition of the left regu-

lar representation of the symmetric group Sn into irreducible components.

This measure associates to a Young diagram λ (such that |λ| = n) the prob-

ability

Pln(λ) =

(
fλ
)2

n!
,

where fλ denotes the number of standard Young tableaux of shape λ.

The most spectacular highlight related to the probability distribution of

RSK(w) is the solution of the Ulam–Hammersley problem [BDJ99; Oko00]

which shows a surprising link with the Tracy–Widom distribution which

arises in random matrix theory. For a pedagogical introduction to this topic

we recommend the book [Rom15].

1.2.2. Extremal characters of S∞. If w1, w2, . . . is a sequence of indepen-

dent, identically distributed random variables (possibly with a more compli-

cated probability distribution which might have some atoms), and

(1.2) λ(n) = RSK(w1, . . . , wn)

denotes the RSK shape corresponding to a prefix of size n, we may regard

the growing sequence of Young diagrams

(1.3) ∅ = λ(0) ր λ(1) ր · · ·
as a Markov random walk in the Young graph which is a directed graph

having the Young diagrams as the vertices and directed edges connecting

pairs of diagrams which differ by exactly one box. This random walk (1.3)

has some additional convenient properties which are out of scope of the cur-

rent paper. Vershik and Kerov [VK81; KV86] proved that a classification

of the random walks with such additional properties (which is a problem on

the boundary between probability theory, harmonic analysis on the Young

graph, and ergodic theory) is equivalent to finding the extremal characters
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of the infinite symmetric group S∞. In this way Vershik and Kerov found

a new, truly conceptual proof of Thoma’s classification of such characters

[Tho64]. As a byproduct, there is a convenient bijection between the ex-

tremal characters of S∞ and the probability laws of the random variables

(wn), and RSK provides a convenient, explicit way of generating the corre-

sponding random walk (1.3).

1.2.3. The key motivation: is RSK an isomorphism of dynamical systems?

The recording tableau

Q∞(w1, w2, . . . ) := lim
n→∞

Q(w1, . . . , wn)

corresponding to an infinite sequence w1, w2, . . . is an infinite standard

tableau, i.e., a filling of the boxes in (a subset of) the upper-right quar-

terplane such that each natural number appears exactly once. Just like its

finite counterpart from Section 1.1.3, each entry of the infinite recording

tableau Q∞(w1, w2, . . . ) is equal to the number of the iteration of an infi-

nite sequence of row insertions
(
(∅ ← w1)← w2

)
← · · ·

in which the given box stopped being empty. This infinite recording tableau

is another way of encoding the the infinite path (1.3) in the Young graph.

The aforementioned link between RSK and the Plancherel measure can

be rephrased in a more abstract way as follows: Q∞ is a homomorphism

between the following two probability spaces:

• the infinite Cartesian power [0, 1]∞ of the unit interval, equipped

with the product of the Lebesgue measure (which clearly corresponds

to a sequence w1, w2, . . . of independent, identically distributed ran-

dom variables with the uniform distribution on the unit interval),

and

• the set of infinite standard Young tableaux equipped with the Plan-

cherel measure (which in light of the aforementioned results of Ver-

shik and Kerov is fundamental for harmonic analysis on the infinite

symmetric group S∞).

In fact, each of these two probability spaces can be equipped with a natural

measure-preserving transformation (respectively, the one-sided shift and the

jeu de taquin transformation) in such a way that Q∞ becomes a homomor-

phism between two measure-preserving dynamical systems. It is natural to

ask the following question.

Problem 1.1 (The key motivation). Is it true that Q∞ is, in fact, an isomor-

phism of dynamical systems? If yes, how to construct the inverse map?
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The answer is not immediately obvious because in the finite case, when

RSK is applied to a finite sequence w, in order to recover w we need in-

formation about the recording tableau Q(w), as well as about the insertion

tableau P (w); the latter is not available in the infinite case. An affirmative

answer to Problem 1.1 would shed light on some questions related to the

harmonic analysis on S∞, for example whether jeu de taquin is ergodic.

These motivations were the starting point for the work of Romik and the

second named author [RŚ15]; we present their findings in the following.

Spoiler alert: Problem 1.1 has an affirmative answer.

1.3. The main problem: position of the new box. For asymptotic prob-

lems it is convenient to draw the Young diagrams in the Russian convention,

see Figure 1b, which corresponds to the coordinate system (u, v) which is

related to the usual (French) Cartesian coordinates by

u = x− y, v = x+ y.

For a finite sequence w = (w1, . . . , wn+1) we denote by

Ins(w1, . . . , wn; wn+1) = (xn, yn)

the coordinates of the last box which was inserted to the Young diagram

by the RSK algorithm applied to the sequence w. In other words, it is the

box containing the biggest number in the recording tableau Q(w). Above,

(xn, yn) refer to the Cartesian coordinates of this box in the French conven-

tion, i.e., xn is the number of the column and yn is the number of the row.

By

u-Ins(w1, . . . , wn; wn+1) = xn − yn

we denote the u-coordinate of the aforementioned box.

For later use, given a tableau T and a real number z we denote by Ins(T ; z)
the coordinates of the new box which was created by the Schensted row in-

sertion T ← z; in other words it is the unique box of the skew diagram

shape
(
T ← z

)
\ shapeT ;

the quantity u-Ins(T ; z) is defined in an analogous way as the u-coordinate

of Ins(T ; z).

In the current paper we concentrate on the aforementioned fundamental

case when w1, w2, . . . is a sequence of independent, identically distributed

random variables with the uniform distribution U(0, 1) on the unit inter-

val [0, 1]. Romik and the second named author [RŚ15] noticed that the

construction of the inverse map to Q∞ (and, in consequence, a positive an-

swer to Problem 1.1) requires a solution to the following somewhat vague

question about the usual (finite) version of RSK applied to such a random

input.



FLUCTUATIONS OF SCHENSTED ROW INSERTION 7

1

2

3

4

5

7

9

6

108

11y x

(a)

14

59

75

91

58

48

86

41

797

63y x

(b)

Figure 3. (a) The recording tableau Qxy = Q(w) (drawn in

the Russian convention) which corresponds to the sequence

w = (14, 59, 75, 91, 58, 41, 48, 7, 86, 79, 63) which was se-

lected from the interval J = [0, 100]. (b) The responsi-

bility matrix
(
wQxy

)
obtained by replacing each entry of

the recording tableau by the corresponding entry of the se-

quence w. The following layer tinting was used: the four col-

ors of the background correspond to the values of the respon-

sibility matrix in the four quarters of the interval J , namely,

[0, 25] (almost white), (25, 50] (beige), (50, 75] (blue), and

(75, 100] (dark blue).

Problem 1.2 (The main problem). Let w = (w1, w2, . . . ) be a sequence

of independent, identically distributed random variables with the uniform

distribution U(0, 1) on the unit interval.

What is the relationship between

• the value of the new entry wn+1, and

• the position of the corresponding newly created box

(1.4) (xn, yn) = Ins(w1, . . . , wn; wn+1)?

We are interested in this probabilistic question in the limit as n→∞.

This problem can be visualized by replacing the number in any box

� = (x, y) of the recording tableau (Qxy) = Q(w) by the entry of the

sequence w = (w1, . . . , wn) which was responsible for the creation of �.

The resulting matrix
(
wQxy

)
will be called the responsibility matrix, see

Figure 3b for an example. In order to improve legibility and avoid writing

real numbers, the entries of the sequence w in the example in Figure 3 are

integers sampled from the interval J = [0, 100].
Following the ideas of Pittel and Romik [PR07, Section 1.1], the respon-

sibility matrix can be depicted geometrically as a three-dimensional stack

of cuboids over the plane R2 × {0}, where wQxy
is the height of the cuboid
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u
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−2 −1 1 2
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0

0.25
0.5
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1

xy

1
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1

2

Figure 4. An analogue of Figure 3b for a sequence

w = (w1, . . . , w1000) of n = 1000 independent, identically

distributed random variables with the uniform distribution

U(0, 1) on the unit interval I = [0, 1]. The layer tint-

ing indicates the values of the responsibility matrix
(
wQxy

)
:

the four colors correspond to the values in the four inter-

vals
[
0, 1/4

]
(almost white),

(
1/4, 1/2

]
,
(
1/2, 3/4

]
,
(
3/4, 1

]
(dark

blue). The red solid line is the Logan–Shepp–Vershik–Kerov

limit curve Ω∗. The five black dots indicate its natural

parametrization; they divide the area between the curve and

the Oxy axes into four curvilinear triangles of equal areas.

which has the unit square [x − 1, x] × [y − 1, y] × {0} as the base. Alter-

natively, the function (x, y) 7→ wQxy
can be thought of as the graph of the

(non-continuous) surface of the upper envelope of this stack. By rescaling

the unit squares on the plane R2×{0} to be squares of side length 1√
n

(recall

that n is the length of the sequence w), the total base area of the cuboids

becomes equal to 1, see Figure 4 for an example. In Figures 3b and 4 the el-

evation (i.e., the values of the responsibility matrix) was indicated by layer

tinting.

Monte Carlo simulations such as the one from Figure 4 suggest that the

value of the new entry wn+1 in Problem 1.2 determines the ray (a halfline

starting in the origin of the coordinate system) on which the coordinates

Ins(w1, . . . , wn; wn+1) will approximately appear (with high probability,
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asymptotically, as n→∞). Small values of the new entry (i.e., wn+1 ≈ 0)

seem to correspond to the rays closer to the Oy axis (the almost white area

in Figure 4) while large values (wn+1 ≈ 1) seem to correspond to the rays

closer to the Ox axis (the dark blue area in Figure 4).

1.4. The limit shape and its parametrization. The first step towards un-

derstanding Problem 1.2 is the simple observation that the newly created

box Ins(w1, . . . , wn; wn+1) must be located in one of the concave corners

of the Young diagram λ(n) = RSK(w1, . . . , wn). For this reason, for our

purposes it is beneficial to understand the asymptotic behavior of the ran-

dom Young diagram λ(n). Fortunately, the probability distribution of such

a RSK shape is simply the Plancherel measure on Young diagrams with n
boxes for which the limit shape is well-known; we will review it in the fol-

lowing. For a pedagogical introduction to this topic we refer to [Rom15,

Chapter 1].

1.4.1. Scaling of Young diagrams. The boundary of a Young diagram λ is

called its profile, see Figure 1a. In the Russian coordinate system the profile

can be seen as the plot of the function ωλ : R→ R+, see Figure 1b.

If c > 0 is a positive number, the output cλ ⊂ R2
+ of a homogeneous

dilation with scale c applied to the Young diagram λ might no longer be a

Young diagram. Nevertheless, its profile is still well defined as

ωcλ(u) = c ωλ

(
u

c

)

.

1.4.2. The Logan–Shepp–Vershik–Kerov limit shape. Independently Logan

and Shepp [LS77] as well as Vershik and Kerov [VK77] proved that a law

of large numbers for the shapes holds true: as the number of boxes n →
∞ tends to infinity, the scaled down profile of the random Young diagram

converges in probability to some explicit limit curve, see Figure 4 for an

illustration.

Define the function Ω∗ : R→ [0,∞) by

(1.5) Ω∗(u) =







2
π

[

u sin−1
(
u
2

)
+
√
4− u2

]

if − 2 ≤ u ≤ 2,

|u| otherwise.

Theorem 1.3 (The limit shape of Plancherel-distributed Young diagrams

[LS77; VK77]). Let λ(n) be a random Young diagram distributed according

to the Plancherel measure on Young diagrams with n boxes. Then we have

a convergence in the supremum norm in probability

sup
u∈R

∣
∣
∣ω 1√

n
λ(n) (u)− Ω∗(u)

∣
∣
∣

P−−−→
n→∞

0.
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In fact, the rate of convergence is quite fast and there are some quite

precise results about the magnitude of the local fluctuations [BS07].

1.4.3. Location of a box with a specified entry. In the context of Prob-

lem 1.2, suppose for a moment that we do not know the value of the new

entry wn+1. Then the complete answer to Problem 1.2 would be the prob-

ability distribution of the new box (1.4). This probability distribution coin-

cides with the distribution of the box containing the entry n + 1 in a large

Plancherel-distributed random standard Young tableau. An analogous prob-

lem was studied by Pittel and Romik [PR07, Section 1.2] for a different

class of random tableaux.

Not very surprisingly, the probability distribution of this vector (after

rescaling, and in the Russian coordinates)

(un, vn) =

(
xn − yn√

n
,
xn + yn√

n

)

converges, as n → ∞, to a certain probability measure µ∗ which is sup-

ported on the limit curve Ω∗. In order to specify this measure uniquely it

is enough to find the limit distribution for the u-coordinates, i.e., for the

random variables (un). It turns out that the sequence (un) converges in dis-

tribution to the semicircle measure on the interval [−2, 2], see [Ker93] and

[RŚ15, Theorem 3.2]. The density of this measure is given by

fSC(u) =
1

2π

√
4− z2 for u ∈ [−2, 2].

We denote by FSC : [−2, 2]→ [0, 1] the cumulative distribution function of

this semicircle law, given by

FSC(u) =
1

2π

∫ u

−2

√
4− z2 dz for u ∈ [−2, 2].

1.4.4. The natural parametrization of the limit curve. The following two

RSK-trigonometric functions

RSKcos z = F−1
SC (z),

RSKsin z = Ω∗
(
F−1
SC (z)

)

are defined for z ∈ [0, 1]. The map

(1.6) [0, 1] ∋ z 7→ (RSKcos z,RSKsin z) ∈ R2

is a a two-dimensional analogue of the quantile function (the inverse of

the cumulative distribution function) in the context of the limit measure µ∗.
This map provides a convenient parametrization of the limit curve Ω∗, see
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the five black dots in Figure 4. It is a natural analogue of the parametrization

of the unit circle by the angle

z 7→ (cos z, sin z)

as well as the parametrization of the hyperbole by the hyperbolic angle

z 7→ (cosh z, sinh z)

since in all three cases the area of the curvilinear triangle between the the

ray, the curve, and the y-axis (respectively, x-axis) is proportional to the

value of the parameter z.

1.5. The first main conjecture: the fluctuations of Schensted row in-

sertion. The most convenient way to state an answer to Problem 1.2 is by

conditioning, i.e., assuming that the random variable wn+1 takes some fixed

value z ∈ [0, 1]. The following result of Romik and the second named

author provides a first order asymptotics.

Theorem 1.4 ([RŚ15, Theorem 5.1]). Let z ∈ [0, 1] be fixed; we denote by

(u0, v0) = (RSKcos z,RSKsin z)

the corresponding point on the limit curve Ω∗ via (1.6).

Let w1, w2, . . . be a sequence of independent, identically distributed ran-

dom variables with the uniform distribution U(0, 1) on the unit interval; we

denote

(xn, yn) = Ins(w1, . . . , wn; z).

Then we have the following convergence in probability:

(1.7)

(
xn − yn√

n
,
xn + yn√

n

)

P−−−→
n→∞

(u0, v0).

This relationship between the value of the new entry being inserted and

the location of the corresponding new box was visualized in Figure 4 by the

layer tinting. Theorem 1.4 was illustrated by a Monte Carlo simulation in

Figure 5.

We conjecture that the ultimate answer to Problem 1.2 is as follows.

Conjecture 1.5 (The first main conjecture). We keep the notation from The-

orem 1.4.

Then the scaled sequence of random points

(1.8) 4
√
n

[(
xn − yn√

n
,
xn + yn√

n

)

− (u0, v0)

]

=

(
xn − yn

4
√
n
− 4
√
n u0,

xn + yn
4
√
n
− 4
√
n v0

)

∈ R2
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Figure 5. Grey circles indicate simulated (rescaled) posi-

tions of the new box Ins(w1, . . . , wn; z) for the initial se-

quence w1, . . . , wn of i.i.d. U(0, 1) random variables of

length n = 100 and the new entry z = 0.8. The uv co-

ordinates of the circles are the quantities which appear in

the law of large numbers (Theorem 1.4). The grid indicates

the actual size of the boxes. The solid red curve is the

Logan–Shepp–Vershik–Kerov limit shape; the red dashed

line is tangent to this curve at the point which in the natu-

ral parametrization corresponds to z. The coordinates of the

circles in the blue (u, v) coordinate system correspond to the

quantities in Conjecture 1.5.

converges in distribution to a centered, degenerate Gaussian distribution

on the plane which is supported on the line

(1.9)
{
(u, v) : v = Ω′

∗(u0) u
}

which is parallel to the tangent line to the limit curve Ω∗ in u0.

This Gaussian distribution is uniquely determined by the limit measure

for the u-coordinates, which is as follows:

4
√
n

[
xn − yn√

n
− u0

]

d−−−→
n→∞

N
(
0, σ2

u0

)
.

It converges, as n→∞, in distribution to the centered normal distribution

with the variance

(1.10) σ2
u0

=
π

3

√

4− u2
0.
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−1−2−3

−2
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1

2

Figure 6. An analogue of Figure 5 for the length of the se-

quence n = 104 and z = 0.8. The picture was zoomed to

focus on the (u, v) coordinate system. In order to improve

visibility the grid with the actual size of the boxes was not

shown.

This conjecture is visualized by Monte Carlo simulations in Figures 5

and 6. The blue coordinate system (u, v)

(u, v) = 4
√
n

[(
u√
n
,
v√
n

)

− (u0, v0)

]

corresponds to the quantities which appear in the n-th random point (1.8).

The reader may wonder about some conceptual interpretation of the some-

what mysterious formula for the variance (1.10). We hope this a good moti-

vation for continuing reading because Conjecture 1.5 seems to be a special

case of a more general result (Theorem 2.3).

Remark 1.6. It would be interesting to compare Conjecture 1.5 to the re-

sults of some Monte Carlo experiments by Vassiliev, Duzhin, and Kuzmin

[VDK19]. Note, however, that some of their results seem to be based on

corrupted data. For example, the plots on [VDK19, Figure 8] fail to have

the axial symmetry with respect to the axis W = 0, respectively the central

symmetry around W = 0 and µ = 1
2
. These symmetries should be present

because (with the notations of Conjecture 1.5) they correspond to replacing

the numbers z, w1, w2, . . . by 1− z, 1−w1, 1−w2, . . . ; such a replacement

changes the shape of the corresponding RSK diagram to its transpose.
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Figure 7. A part of an infinite Young tableau drawn in the

Russian coordinate system. The highlighted boxes form the

beginning of the jeu de taquin path.

1.6. Jeu de taquin trajectories. Given an infinite Young tableau T we

view it in the Russian coordinate system, see Figure 7. We define an infi-

nite lattice path as follows: one starts from the corner box of the tableau

and keeps traveling in unit steps north-south or north-east, at each step

choosing the direction among the two in which the entry in the tableau is

smaller. We refer to the path defined in this way as the jeu de taquin path

of the tableau T . This is illustrated in Figure 7. For an integer n ≥ 1 let

jn = jn(T ) = (un, vn) ∈ Z2 be the last box in the jeu de taquin path of T
which contains a number ≤ n. We refer to the sequence (jn) as the jeu de

taquin path in the lazy parametrization (in the Russian coordinate system).

We conjecture that the following analogue of Donsker’s functional cen-

tral limit theorem holds true for jeu de taquin paths. This claim is a refine-

ment of [RŚ15, Theorem 5.2].

Conjecture 1.7 (The second main conjecture). Let z ∈ [0, 1] be fixed and

let w1, w2, . . . be a sequence of independent, identically distributed random

variables with the uniform distribution U(0, 1) on the unit interval. Let

T = Q∞(1−z, w1, w2, . . . ) be the corresponding random infinite recording

tableau. and let j1, j2, . . . be the corresponding jeu de taquin path in the

tableau T in the lazy parametrization.

As c→∞, the random function

(1.11) R+ ∋ t 7→ 4
√
c

[
1√
c
j⌈ct2⌉ − (tu0, tv0)

]

∈ R2

converges in distribution to the two-dimensional Brownian motion (Ut, Vt)
which is supported on the line (1.9) and for which the covariance of the
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u
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Figure 8. Several simulated paths of jeu de taquin and

(dashed lines) their asymptotes. Figure excerpted from

[RŚ15].

u-coordinates is given by

EUtUs = min(t, s)σ2
u0
,

where the constant σu0 is given by (1.10).

A special case of Conjecture 1.5 for z = 1
2

was conjectured by Wojtyniak

[Woj19] (with a slightly different form of the variance (1.10)) based on

extensive Monte Carlo simulations.

Conjecture 1.7 would imply Conjecture 1.5; indeed, one of the conse-

quences of Conjecture 1.7 is the information about the limit distribution of

the random function (1.11) evaluated at the fixed time t = 1. Fairly stan-

dard methods allow to relate this probability distribution to the one from

Conjecture 1.5, see [RŚ15, Section 5.2].

1.7. Second class particles. With the notations of Conjecture 1.7, if z is as-

sumed to be random, with the uniform distribution U(0, 1) then the record-

ing tableau T is a Plancherel-distributed infinite standard Young tableau

which, thanks to Rost’s map [Ros81], can be seen as Plancherel-TASEP

interacting particle system [RŚ15, Section 7]. In this language, the u-

coordinate un of the jeu de taquin box jn can be seen as the position of

the second class particle in this interacting particle system at time n. In this

way a part of Conjecture 1.7 can be reformulated as follows.

Conjecture 1.8. Consider Plancherel-TASEP interacting particle system

and let jn be the position of the second class particle after n steps. There
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exists a random variable V with the semicircle distribution µSC on the in-

terval [−2, 2] such that the random function

R+ ∋ t 7→
4
√
c

σV

[
u⌊ct2⌋√

c
− V t

]

converges in distribution to the standard Brownian motion B(t) as c→∞.

For the random variable V = F−1
SC (z) one can take the appropriate quan-

tile of the semicircle distribution.

Heuristically, this conjecture says that asymptotically the second class

particles follows a drift with the random velocity V plus a (rescaled) Brow-

nian motion and the approximate equality

u⌊t2⌋ ≈ V t+ σV B(t)

holds true for t → ∞; in particular the fluctuations are of order t
1
2 . It

would be interesting to explore the links of this conjecture with analogous

results which are available for the usual TASEP model and the competition

interface [FMP09; RV21]. It seems that the corresponding fluctuations are

superdiffusive, of order t
2
3 , however we are not aware of a definitive, rigor-

ous treatment of this topic in the literature.

1.8. Overview of the paper. The setup considered in Conjecture 1.5 is

probably the most natural concrete incarnation of the general problem of un-

derstanding the position of the new box when a deterministic number z is in-

serted into a random tableau T ; in this setup the tableau T = P (w1, . . . , wn)
is the insertion tableau corresponding to a sequence of i.i.d. random vari-

ables. Regretfully, the complete proof of this conjecture is currently beyond

our reach.

In Section 2 we will consider another setup in which a deterministic num-

ber z is inserted into a random tableau of fixed shape (see Section 2.3 for

the details). Our main result is Theorem 2.3 which can be regarded as an

analogue of Conjecture 1.5. The remaining part of the paper is a preparation

for the proof of Theorem 2.3.

In Section 3 we introduce our main tool: the cumulative function u 7→
FT (u) which for a given tableau T gives, roughly speaking, the relationship

between the location of the new box (encoded by the real number u) and

the value of the inserted number. Our main technical tool is Theorem 3.2

which gives a convenient explicit combinatorial formula for the cumulants

of the random variable FT (u0) if T is a uniformly random tableau with a

given shape. The proof of Theorem 3.2 is postponed to Sections 6 to 9.

In Section 4 we explore the easiest consequences of the aforementioned

formula for the cumulants of the cumulative function. The key observa-

tion is that in many asymptotic setups it implies an upper bound for the
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u
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Figure 9. Concave corners (empty) and convex corners

(filled) of a Young diagram (4, 2, 2, 2) and their u-

coordinates.

cumulants; as a consequence the random variable FT (u0) can be well ap-

proximated by a normal distribution. Since for some special choice of

u0 the random variable FT (u0) has a very direct interpretation as the last

(i.e., rightmost) box in the bottom row of the tableau T , the latter converges

in distribution towards a normal distribution, see Corollary 4.1 for the de-

tails.

Basing on these ideas, in Section 5 we complete the proof of Theo-

rem 2.3.

Sections 6 to 9 contain the proof of Theorem 3.2.

2. THE GENERAL FORM OF RSK INSERTION FLUCTUATIONS

2.1. Plancherel growth process. Letw1, w2, . . . be a sequence of i.i.d. ran-

dom variables with the uniform distribution U(0, 1). Let

λ(n) := RSK(w1, . . . , wn);

we say that the random sequence of Young diagrams

(2.1) ∅ = λ(0) ր λ(1) ր · · ·
is the Plancherel growth process [Rom15, Chapter 1.19]. It turns out that

(2.1) is a Markov chain; below we will describe its transition probabilities.

Note that the above construction is a specific case of a more general setup

which we already discussed in Section 1.2.2.

2.2. Transition measure of a Young diagram. For a given Young dia-

gram λ with n boxes we denote by x0 < · · · < xL the u-coordinates of

its concave corners and by y1 < · · · < yL the u-coordinates of its convex
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corners, see Figure 9. The Cauchy transform of λ is defined as the rational

function (see [Ker93] and [Ker03, Chapter 4, Section 1])

(2.2) Gλ(z) =
(z − y1) · · · (z − yL)

(z − x0) · · · (z − xL)
.

The Cauchy transform can be written as a sum of simple fractions:

Gλ(z) =
∑

0≤i≤L

pi
z − xi

with the coefficients p0, . . . , pL > 0 such that p0 + · · ·+ pL = 1. We define

the transition measure of λ as the discrete measure

µλ = p0δx0 + · · ·+ pLδxL;

in this way

Gλ(z) =

∫

R

1

z − x
dµλ(x)

is indeed the Cauchy transform of µλ.

Kerov proved that the transition probabilities of the Markov chain (2.1)

are encoded by the transition measure, see [Ker93] and [Ker03, Chapter 4,

Secton 1]. More specifically, the conditional probability that the new box

will have the u-coordinate equal to xi is given by

(2.3) P

[

u
(

λ(n+1) \ λ(n)
)

= xi

∣
∣
∣
∣
λ(n) = λ

]

= pi = Res
xi
Gλ,

i.e., by the corresponding atom of the transition measure as well as by the

residue of the Cauchy transform.

We denote by

(2.4) Kλ(z) = µλ

(
(−∞, z]

)

the cumulative distribution function of µλ.

2.3. Random Poissonized tableau of a given shape. By a Poissonized

tableau [GR19] we mean any tableau which has the real numbers from

the unit interval [0, 1] as the entries. The set of Poissonized tableaux with

shape λ will be denoted by T λ. There are two natural ways to equip T λ

with a probability measure, we will discuss them below.

Firstly, let us number the boxes of λ in an arbitrary way; it follows that

each element of T λ can be identified with an element of the unit cube [0, 1]n,

where n is the number of boxes of λ. The requirement that the rows and the

columns are increasing corresponds to a collection of inequalities between

the coordinates of the points in the cube; it follows that T λ can be identified

with a convex polytope contained in [0, 1]n. This polytope has a strictly pos-

itive volume therefore it is possible to equip it with the uniform probability

measure.
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On the other hand, the canonical way of generating a random Poissonized

tableau T with a prescribed number of boxes n is to consider the insertion

tableau P (w), where w = (w1, . . . , wn) is a sequence of i.i.d. random num-

bers with the U(0, 1) distribution. If we condition the random tableau T so

that its shape is equal to λ, it becomes a natural candidate for the notion of

a uniformly random Poissonized tableau of shape λ.

The following lemma shows that the above two approaches give rise to

the same probability distribution.

Lemma 2.1. Let w = (w1, . . . , wn) be a sequence of i.i.d. random variables

with the U(0, 1) distribution and let λ be a Young diagram with n boxes.

The conditional probability distribution of the insertion tableau P (w) un-

der the condition that RSK(w) = λ coincides with the uniform probability

distribution on T λ.

The proof is postponed to Section 6.1.

2.4. Asymptotic determinism of Schensted insertion. We start with the

following generalization of the result of Romik and the second named au-

thor (Theorem 1.4). Recall that Kλ is the cumulative distribution function

of the transition measure µλ, see (2.4).

Theorem 2.2. For each n let λ(n) be a random Young diagram with n boxes.

We assume that there is a probability measure ν on the real line such that for

each u ∈ R for which the cumulative distribution function Fν is continuous,

the limit

Kλ(n)

(√
n u
) P−−−→

n→∞
Fν(u)

holds true in probability.

Assume that 0 < z < 1 is such that the quantile function F−1
ν is continu-

ous in z; we set u0 = F−1
ν (z). Then

1√
n
u-Ins(T (n); z)

P−−−→
n→∞

u0

In particular, Theorem 2.2 combined with Theorem 1.3 provides a con-

ceptually new proof of Theorem 1.4.

The proof of Theorem 2.2 is postponed to Section 5.3.

2.5. The interaction energy. If µ is a probability measure on the real line

and u0 ∈ R we define

(2.5) Eµ(u0) =

∫∫

{(z1,z2): z1<u0<z2}

1

z2 − z1
dµ(z1) dµ(z2)

whenever this double integral is finite. This quantity will play an important

role in the statement of our main result.
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umin umaxu0u−∞

Figure 10. The contour C on the complex plane.

Let us interpret µ as the distribution of the electrostatic charge along a

one-dimensional rod. If we split this rod at the point u0, the two parts will

act on one another with the electrostatic force. The integral (2.5) can be

interpreted as the interaction energy between these two parts.

We now consider an alternative universe in which the space is two-dimensional

so that the electrostatic force decays as the inverse of the distance between

the charges. It follows that the double integral Eµ(u0) is equal to the elec-

trostatic force between the two parts of the rod.

If we separate the two parts of the rod by an additional distance l, the

aforementioned electrostatic force is the derivative of the total energy of the

system with respect to the variable l. It is worth pointing out that in our con-

text the total energy should be understood as the logarithmic energy which

is ubiquitous in random matrix theory, Voiculescu’s free entropy [Voi94], as

well as in asymptotic representation theory. For this reason we suspect that

the interaction energy Eµ(u0) can be found also in the context of random

matrix theory.

Suppose that the support of the measure µ is contained in some interval

[umin, umax]. We choose an arbitrary real number u−∞ such that u−∞ <
umin and consider a contour C on the complex plane shown in Figure 10.

This contour was chosen in such a way that it crosses the real line in two

points, namely, u−∞ and u0.

In the special case when the support of µ is a finite set and u0 does not

belong to the support of µ we may apply Cauchy’s residue theorem and the



FLUCTUATIONS OF SCHENSTED ROW INSERTION 21

interaction energy is equal to the contour integral

(2.6) Eµ(u0) = −
1

4πi

∮

C

[
Gµ(z)

]2
dz,

where

Gµ(z) =

∫

R

1

z − x
dµ(x)

is the Cauchy transform of µ. The formula (2.6) remains true for general

measures µ as long as the Cauchy transform is sufficiently regular in the

neighborhood of u0, however the justification of its validity is more tech-

nically involved. In practical applications the formula (2.6) is more conve-

nient than (2.5).

We define also

G
+
µ (z) =

∫

R

1

|z − x|+ 1
dµ(x)

as a (slightly regularized) version of the Cauchy transform with the abso-

lute value of the original kernel. For a Young diagram λ we will use the

simplified notation

G
+
λ = G

+
µλ
.

2.6. General form of the fluctuations. Recall that Kλ is the cumulative

distribution function of the transition measure µλ, see (2.4).

Theorem 2.3 (The main theorem). Let u0 ∈ R, 0 < z < 1, f > 0, and

E > 0 be fixed. For each integer n ≥ 1 let λ(n) be a random Young diagram.

We assume that

(a) for each c ∈ R

4
√
n






Kλ(n)

[

√
n

(

u0 +
c
4
√
n

)]

−
[

z + f
c
4
√
n

]






P−−−→
n→∞

0,

(b) for each c ∈ R

(2.7)
√
n

∑

x1≤
√
n u+ 4

√
n c,

x2>
√
n u+ 4

√
n c

1

x2 − x1 + 1
µλ(n)(x1) µλ(n)(x2)

P−−−→
n→∞

E ,

(c) for each c ∈ R there exists an exponent α ≥ 3
8

such that

(2.8) nα
G

+
λ(n)

[

√
n

(

u0 +
c
4
√
n

)]

P−−−→
n→∞

0.
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Let T (n) be a uniformly random Poissonized tableau of shape λ(n). Then

(2.9) 4
√
n

[

u-Ins(T (n); z)√
n

− u0

]

dist−−−→
n→∞

N

(

0,
E
f 2

)

.

In a typical application the rescaled shapes of the Young diagrams λ(n)

converge to some limit curve which, roughly speaking, means that the (di-

lated by factor n− 1
2 ) Kerov’s transition measure of λ(n) converges in the

weak topology of probability measures to some probability measure µ on

the real line. In this context the condition (a) can be replaced by the stronger

assumption that the conjunction of the following conditions holds true:

(a1) for each u ∈ R

Kλ(n)

(√
n u

) P−−−→
n→∞

Fµ(u),

where Fµ is the cumulative distribution function of the probability

measure µ;

(a2) there exists an open neighborhood U of u0 such that for each ǫ > 0

sup
u∈U

P

(∣
∣
∣Kλ(n)

(√
n u
)
− Fµ(u)

∣
∣
∣ >

ǫ
4
√
n

)

−−−→
n→∞

0,

(a3) the measure µ in u0 has density equal to

f = F ′
µ(u0).

In the above scenario the (lower) limit of the expression on the left-hand

side is bounded from below by the interaction energy Eµ(u0) of the limit

measure thus E ≥ Eµ(u0). We conjecture that in nice examples (under some

additional technical assumptions?) the above assumptions would imply that

the condition (b) holds true with

E = Eµ(u0).

Note that the left-hand side of (2.7), regarded as a function of c, converges

to c 7→ Eµ(c) in the L1(A,B) norm for any A < B so for a typical value of

c the condition (a2) seems to imply (b).

For any probability measure ν on the real line and any A < B
∫ B

A

G
+
ν

(√
n x
)
dx ≤ 2√

n
log
[
(B −A)

√
n + 1

]

thus the left-hand side of (2.8), viewed as a function of c, converges to zero

in the L1[A,B] norm on the interval [A,B] as long as α < 1. Again, for a

typical value of c we may hope that the condition 2.8 is fulfilled.

The proof of Theorem 2.3 is postponed to Section 5.
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2.7. Example: staircase tableaux. In Theorem 2.3 we will pass to a sub-

sequence defined as

n = nN = 1 + · · ·+N =
N(N + 1)

2
.

We define

(2.10) λ(nN ) = (N,N − 1, . . . , 3, 2, 1)

to be a staircase Young diagram with nN boxes. A straightforward cal-

culation of the residues of the Cauchy transform shows that the transition

measure of λ(n) is supported on the set of even, respectively odd numbers

{−N,−N + 2, . . . , N − 2, N}
with the probabilities

(2.11) µλ(n)(2k −N) =
1

22k

(
2k

k

)(
2N − 2k

N − k

)

for k ∈ {0, . . . , N}. This probability distribution appears naturally in the

context of random walks and the arcsine theorem, see [Fel68, Chapter III].

The limit measure µAS of the the dilated measures D 1√
n
µλ(n) is the arcsine

law supported on the interval I =
[
−
√
2,
√
2
]

with the density

fAS(z) =
1

π
√
2− z2

for z ∈ I.

It is easy to verify (for example, by the Stieltjes inversion formula) that the

Cauchy transform of this measure is given by

GAS(z) =
1√

z2 − 2
for z ∈ C \ I.

The formula (2.6) implies therefore that if −
√
2 < u0 <

√
2 then the value

of (−2)EAS(u0) is equal to the residue of the function z 7→ 1
z2−2

in z =

−
√
2. In this way we get that the interaction energy of the arcsine measure

is given by

(2.12) EAS(u0) =







0 if u0 < −
√
2,

1
4
√
2

if −
√
2 < u0 <

√
2,

0 if u0 >
√
2.

Corollary 2.4. Let 0 < z < 1 be fixed and let u0 = F−1
AS (z) be the cor-

responding quantile of the arcsine distribution. For each n of the form

n = nM let T (n) be a uniformly random Poissonized tableau of the stair-

case shape.
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Then the sequence of random variables

4
√
n

[
1√
n
u-Ins

(

T (n); z
)

− u0

]

dist−→ N
(
0, σ2

AS(u0)
)

converges in distribution to the centered Gaussian measure with the vari-

ance

σ2
AS(u0) =

π2

4
√
2
(2− u2

0).

Proof. It is enough to verify that the assumptions of Theorem 2.3 are ful-

filled. A small refinement of the calculation from [Fel68, Chapter III] gives

more precise asymptotics of the probabilities (2.11); as a consequence we

get that for each ǫ > 0

sup
−
√
2+ǫ<z<

√
2−ǫ

∣
∣
∣Kλ(n)

(√
n z
)
− FSC(z)

∣
∣
∣ = O

(
1√
n

)

≪ O

(
1
4
√
n

)

which implies that the conditions (a1) and (a2) are satisfied; the condition

(a3) is clearly satisfied.

The aforementioned asymptotics of the probabilities (2.11) combined

with elementary calculus imply that condition (b) holds true with E =
ESC(u0) equal to the interaction energy of the semicircle measure. Also,

for each ǫ > 0

sup
−
√
2+ǫ<z<

√
2−ǫ

G
+
λ(n)

(√
n z
)
= O

(
log n√

n

)

which shows that the condition (c) holds true for each α < 1
2
. �

We will revisit this example in Section 5.2.

2.8. Towards Conjecture 1.5. Our strategy towards the proof of Conjec-

ture 1.5 is to apply Theorem 2.3 with a specific choice of the measure

µ = µSC given by the semicircle distribution considered in Section 1.4.3.

It seems that the key difficulty is to verify that some version of the assump-

tion (a) from Theorem 2.3 holds true.

Our Monte Carlo experiments (such as the plots of the red thin curve on

Figures 12 and 13) as well as some educated guesses based on the counter-

parts in the random matrix theory [Gus05] suggest that the following much

stronger result holds true.

Conjecture 2.5. Let λ(n) be a random Young diagram with n boxes dis-

tributed according to the Plancherel measure. For each −2 < u < 2 and

each α < 1
2

nα
[

Kλ(n)

(√
n u
)
− FSC(u)

]
P−−−→

n→∞
0.
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The case α = 0 clearly holds true since it corresponds the usual weak

convergence of probability measures [RŚ15, Theorem 3.2]. It seems even

a quite suboptimal case α = 1
4

(with some locally uniform bounds on the

rate of decay of the probability of a error larger than given ǫ > 0) would

be enough to guarantee that the condition (a) from Theorem 2.3 holds true.

We expect that the proof of Conjecture 2.5, as a side product, would give

some regularity results which guarantee that the remaining assumptions of

Theorem 2.3 are fulfilled as well. Unfortunately, Conjecture 2.5 is currently

beyond our reach.

Proposition 2.6. For the semicircle measure µSC the corresponding inter-

action energy is given by

ESC(u) =







1
12π

(
4− u2

) 3
2 for −2 ≤ u ≤ 2,

0 otherwise.

Proof. The method of the contour integral considered in Section 2.5 is ap-

plicable; we leave the details for the interested reader. In the following we

provide an alternative method.

For ǫ ∈ R we define the regularized version of ESC(u) given by

Eǫ(u) :=
∫∫

−2<z1<u<z2<2

ℜ 1

z2 − z1 + iǫ
fSC(z1) fSC(z2) dz1 dz2;

our goal is to evaluate E0(u) = ESC(u). Note that for real numbers z2 > z1

R+ ∋ ǫ 7→ ℜ 1

z2 − z1 + iǫ
=

z2 − z1
(z2 − z1)2 + ǫ2

is a decreasing, positive, continuous function. By Lebesgue monotone con-

vergence theorem it follows that

F0(u) = lim
ǫ→0

Fǫ(u).

In order to evaluate Fǫ(u) we notice that for ǫ > 0 the derivative of Eǫ is

given by

E ′ǫ(u) =
∫

u<z2<2

ℜ 1

z2 − u+ iǫ
fSC(u) fSC(z2) dz2−

∫

−2<z1<u

ℜ 1

u− z1 + iǫ
fSC(z1) fSC(u) dz1 =

fSC(u) ℜ
∫

−2<z<2

1

z − (u+ iǫ)
fSC(z) dz =

fSC(u) ℜGSC(u+ iǫ);
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above we used the fact that the integral on the right-hand side is the Cauchy

transform of the semicircular distribution

GSC(w) =

∫

−2<z<2

1

z − w
fSC(z) dz =

−w +
√
w2 − 4

2
,

evaluated at w = i+ iǫ, see [MS17, Section 3.1]

For −2 ≤ u ≤ 2 the principal value of the Cauchy integral is given by

GSC(u) = lim
ǫ→0
ℜGSC(u+ iǫ) = −u

2

and the convergence is uniform over the interval [−2, 2]. We proved in this

way that

(2.13) E ′SC(u) = fSC(u) GSC(u).

It follows that

ESC(u) =
∫ u

−2

fSC(w)
−w
2

dw =
1

12π

(
4− u2

) 3
2 for −2 ≤ u ≤ 2.

The above calculation can be generalized to other measures than the semi-

circular law for which the Cauchy transform is sufficiently regular. Be

warned, that for the example of the arc-sine law from Section 2.7 the ana-

logue of (2.13) implies that

E ′AS(u) = 0

which, technically speaking is correct, but not very helpful for finding the

exact form of the formula (2.12). �

Our choice of the variance (1.10) in Conjecture 1.5 is equal to ESC
(fSC)2

and

it was based on the the variance on the right-hand side of (2.9).

3. THE KEY TOOL:

THE CUMULATIVE FUNCTION OF A TABLEAU AND ITS CUMULANTS

3.1. The cumulative function of a tableau. Let T be a Poissonized tableau.

For u0 ∈ R we define

FT (u0) = inf
{
z ∈ [0, 1] : u-Ins(T ; z) ≥ u0

}
;

we recall that the quantity u-Ins(T ; z) was defined in Section 1.3 as the u-

coordinate of the box Ins(T ; z). In the case when the infimum runs over the

empty set, we declare that FT (u0) = 1, see Figure 11 for an example. From

the monotonicity of the Schensted row insertion it follows that

(3.1) FT (u0) ≤ z ⇐⇒ u-Ins(T ; z) ≥ u0

holds true for any u0 ∈ R and z ∈ [0, 1).
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Figure 11. A Poissonized tableau T shown in the Russian

coordinates. The red line depicts its cumulative function FT .

The function FT : R→ [0, 1] will be called the cumulative function of T .

It has analogous properties as any cumulative distribution function of a prob-

ability measure with a finite support. It can be regarded as an inverse of

the insertion function z 7→ u-Ins(T ; z); more precisely the relationship be-

tween FT and u-Ins(T ; ·) is the same as between the cumulative distribution

function of a measure and the quantile function.

This relationship is the key motivation for studying the cumulative func-

tion FT . Indeed, since Conjecture 1.5 and Theorem 2.3 can be seen as limit

statements about the probability distribution of the (random) function

z 7→ u-Ins(T ; z)

for some special choices for the random tableau T , a natural direction for

proving these results is to prove suitable limit results for its inverse func-

tion FT .

3.2. Asymptotics of the cumulative function of random tableaux. Let

us choose somehow (randomly or deterministically) a Young diagram λ,
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Figure 12. The insertion tableau T = P (w1, . . . , wn) with

n = 100 boxes was sampled by applying the RSK algorithm

to a sequence of i.i.d. U(0, 1) random variables. The thin

blue line shows the cumulative distribution function Kλ of

the transition measure of the shape λ of T . The thick red

line shows the cumulative function FT . The smooth black

line is the cumulative distribution function of the semicircle

distribution supported on the interval
[
− 2
√
n, 2
√
n
]
.
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Figure 13. An analogue of Figure 12 for n = 104.

and let T be a random Poissonized tableau of shape λ. It is a very interest-

ing problem to study the asymptotics of the random function u0 7→ FT (u0),
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in the limit as the number of boxes of λ tends to infinity. The main tech-

nical tool of the current paper (Theorem 3.2) is an answer to the following

more modest problem related to the pointwise behavior of the cumulative

function.

Problem 3.1. Let λ be Young diagram and let T be a uniformly random

normalized tableau with shape λ. For a given u0 ∈ R find the probability

distribution of the random variable FT (u0).

A concrete version of this general problem is to take λ to be a Plancherel-

distributed random Young diagram with n boxes. The resulting random

tableau T can be then alternatively generated as the insertion tableau

T = P (w1, . . . , wn) corresponding to a sequence of i.i.d. U(0, 1) random

variables, see Lemma 2.1. The simulations on Figures 12 and 13 show (i)

the cumulative function FT (the thick red line), as well as (ii) the cumula-

tive distribution function Kλ of the transition measure of λ, in relation to

(iii) the cumulative distribution function of the rescaled arc-sine law (the

smooth black line). It is not very surprising that the curves (i) and (ii) be-

come closer and closer to the curve (iii) as the size n → ∞ of the Young

diagram tends to infinity; for the curve (ii) it is a classical result (see [RŚ15,

Theorem 3.2]) and for the curve (i) it is reformulation of Theorem 1.4 as

well as a special case of Theorem 2.2. The surprising feature of these plots

is that the rate of convergence in the case (i) seems to be of order Θ
(

n− 1
4

)

(to some extent this rate of convergence can be justified by the proof of The-

orem 2.3 in Section 5.4) while in the case (ii) the analogous rate of conver-

gence seems to be of much smaller order O
(

n− 1
2
+ǫ
)

, see Conjecture 2.5.

3.3. Cumulants and moments. Let X be a random variable with the se-

quence of moments (mk)
∞
k=1, where mk = EXk. The formal power series

E[etX ] =

∞∑

k=0

mk

k!
tk

is its exponential moment generating function or formal Fourier–Laplace

transform. The coefficients (κk)
∞
k=1 of its formal logarithm

logE[etX ] =
∞∑

k=1

κk

tk

k!

are called the cumulants [LH02] of the random variable X . The first cumu-

lant is the expected value and the second cumulant is the variance:

κ1 = EX,

κ2 = VarX.
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Cumulants are related with the moments via the moment-cumulant for-

mula

(3.2) mk =
∑

π∈Πk

∏

b∈π
κ|b|,

where the sum runs over all set-partitions π of the set {1, . . . , k}, and the

product runs over all blocks of the partition π. For example, for k = 3 there

are 5 set-partitions of the set {1, 2, 3}, namely,
{
{1}, {2}, {3}

}
,
{
{1, 2}, {3}

}
,
{
{1, 3}, {2}

}
,
{
{2, 3}, {1}

}
,
{
{1, 2, 3}

}
.

Therefore

m3 = κ3
1 + κ2κ1 + κ2κ1 + κ2κ1 + κ3 = κ3

1 + 3κ2κ1 + κ3.

3.4. Notation. By a directed graph we mean any graph in which every

edge has been directed. The edge outgoing from the vertex a and incoming

to the vertex b will be denoted by (a, b). The directed graphs we consider do

not have multiple edges, but may have loops, i.e., edges of the form (a, a).
We will always assume that if a 6= b and (a, b) is an edge of a graph then

the opposite edge (b, a) is not an edge.

The graphs we consider will have their vertices colored black, red, or

white. For the convenience of the readers of the non-colored printed version

of this paper, the red vertices will be drawn with an additional ornament as

crossed-out circles, see Figure 25. For a given graph H , we denote the set

of its vertices by VH , the set of its black vertices by BH , the set of its red

vertices by RH , the set of its white vertices by WH , and the set of its edges

by EH .

We say that a graph is a weighted graph if each of its edges is assigned

a number called a weight. For a given edge e, we denote its weight by

w(e) ∈ R.

3.5. Decorations. Let X ⊂ R be a fixed discrete set. Also, let u0 ∈ R be

a fixed real number. The elements of the interval (−∞, u0] will be called

small while the elements of the interval (u0,∞) will be called big.

For a given graphH we say that a function x : VH → X is a u0-decoration

of the graph H if the following two conditions hold true:

x(b) is small for each b ∈ BH ,

x(w) is big for each w ∈ WH .

For simplicity we denote xv = x(v) for v ∈ VH . The set of all u0-

decorations of the graph H will be denoted by DH(u0). When the value

of u0 is clear from the context, we will simply speak about decorations and

write DH = DH(u0).
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1
(a)

1 2
(b)

Figure 14. (a) The unique non-crossing alternating tree with

1 vertex. (b) The unique non-crossing alternating tree with 2
vertices.

1 2 3
(a)

1 2 3
(b)

Figure 15. All non-crossing alternating trees with 3 vertices.

3.6. Non-crossing alternating trees. Let k ≥ 1 be a natural number. We

say that a tree with k vertices numbered 1, . . . , k is a non-crossing alternat-

ing tree if the following conditions hold true:

(a) each vertex is colored either black or white;

(b) if an edge connects the vertices b and w for b < w, then the vertex b
is black and the vertex w is white;

(c) there do not exist four vertices v1 < v2 < v3 < v4 such that v1 is

connected with v3, and v2 is connected with v4,

see [Sta99, Exercise 6.19(p)] and solution to this exercise, as well as [GGP97,

Section 6]. The condition (c) has a natural graphical interpretation: after

drawing the vertices on the real line and the edges as arcs above the real

line, we require that the edges do not cross.

In the exceptional case k = 1 we declare that there is only one non-

crossing alternating tree with 1 vertex: it consists of a single black vertex

(see Figure 14a). With this convention, the condition (b) implies that the col-

oring of the vertices can be uniquely recovered purely from the information

about the edges.

We denote by Tk the set of all non-crossing alternating trees with k ver-

tices. For example, |T3| = 2 (see Figure 15), and |T4| = 5 (see Figure 16).

In the following we will treat any non-crossing alternating tree as a di-

rected graph in which any edge (b, w) is oriented from a black vertex and

towards a white vertex; in other words from the left vertex to the right ver-

tex.
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1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

Figure 16. All non-crossing alternating trees with 4 vertices.

3.7. Closed formula for cumulants. Let λ be a fixed Young diagram. Let

T be a uniformly random Poissonized tableau of shape λ, and FT (u0) be

the cumulative function of T . We will now present a closed formula for

the cumulants of the random variable FT (u0). This formula is convenient

for proving that in a suitable asymptotic setting the random variable FT (u0)
(after shift and rescaling) converges in distribution towards a Gaussian mea-

sure.

Assume that the discrete set X of the decoration values contains the set

of u-coordinates of all concave corners of λ. In other words, we assume that

the support of the transition measure of λ is contained in X. For example,

we may take X = Z to be the set of integers. Note that the set DH(u0)
which is used below depends implicitly on this choice of X.

Theorem 3.2. With the above notations, for each u0 ∈ R the k-th cumulant

of the random variable FT (u0) is given by

(3.3) κk

(
FT (u0)

)
= (k − 1)!

∑

H∈Tk

∑

x∈DH (u0)

(−1)|BH |−1
k∏

j=1

µλ(xj)

∏

(b,w)∈EH

(xw − xb + w − b)
,

where µλ(xj) denotes the probability corresponding to the atom xj of the

transition measure µλ.

The proof is contained in Sections 6 to 9.

Example 3.3. The expected value and the variance of FT (u0) are given by

EFT (u0) =
∑

x1≤u0

µλ(x1),(3.4)

VarFT (u0) =
∑

x1≤u0
x2>u0

1

x2 − x1 + 1
µλ(x1) µλ(x2).(3.5)
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The unique summand on the right-hand side of (3.4) corresponds to the

tree in Figure 14a, and the unique summand on the right-hand side of (3.5)

corresponds to the tree in Figure 14b. The third cumulant of FT (u0) is given

by

k3
(
FT (u0)

)
=

∑

x1≤u0
x2,x3>u0

2

(x2 − x1 + 1)(x3 − x1 + 2)
µλ(x1) µλ(x2) µλ(x3)

−
∑

x1,x2≤u0
x3>u0

2

(x3 − x2 + 1)(x3 − x1 + 2)
µλ(x1) µλ(x2) µλ(x3),

where the first summand on the right-hand side corresponds to the tree in

Figure 15a, and the second summand corresponds to the tree in Figure 15b.

Remark 3.4. The right-hand side of (3.3) can be interpreted as the expected

value of the random variable Z defined in the following way. Let x1, . . . , xk

be a sequence of independent, identically distributed random variables, with

the distribution given by the transition measure µλ. Let Tx

k denote the set of

all trees H ∈ Tk such that x = (x1, . . . , xk) is a u0-decoration of the tree

H , i.e., x ∈ DH . The aforementioned random variable is defined as

Z = (k − 1)!
∑

H∈Tx

k

(−1)|BH |−1

∏

(b,w)∈EH

(xw − xb + w − b)
.

3.8. Towards the proof of Theorem 3.2. Rational functions associated

to a graph. Our proof of Theorem 3.2 is based on algebraic identities ful-

filled by some rational multivariate functions. It turns out that the class of

the rational functions which we consider is naturally indexed by oriented

and weighted graphs, and the aforementioned algebraic identities have a

natural combinatorial interpretation as removal of loops from the graphs.

For an oriented weighted graph H with the vertex set VH = {v1, . . . , vt},
we consider the rational function

fH = fH(xv1 , . . . , xvt) =
1

∏

e=(i,j)∈EH

[xj − xi + w(e)]
∈ Q(xv1 , . . . , xvt)

in the variables corresponding to the vertices of H . In the following we

will usually consider the special case when H has the vertex set VH =
{1, . . . , k} so that

fH = fH(x1, . . . , xk) ∈ Q(x1, . . . , xk).
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For each tree H ∈ Tk, we define the weight of an edge e = (i, j) ∈ EH

(3.6) w(e) = w(i, j) = j − i

as the difference of the endpoints. With this convention (3.3) can be written

as

(3.7) κk

(
FT (u0)

)
=

(k − 1)!
∑

H∈Tk

∑

x∈DH(u0)

(−1)|BH |−1fH(x1, . . . , xk)
k∏

j=1

µλ(xj).

As we already mentioned, the proof of Theorem 3.2 is postponed to Sec-

tions 6 to 9.

4. LOW HANGING FRUITS:

FLUCTUATIONS OF THE LAST BOX IN THE BOTTOM ROW

Let T be a Poissonized tableau of shape λ and let u0 ∈ (λ2 − 1, λ1).
There is only one concave corner with the u-coordinate greater than u0; this

corner corresponds to the end of the first row of λ. Schensted insertion

T ← z creates a new box in this corner if and only if z is greater or equal

to Tλ1,1, i.e., the last entry in the first row of T . It follows immediately that

for this choice of u0 the value of the cumulative function of T

FT (u0) = Tλ1,1

coincides with the last entry in the first row of T .

Thanks to this observation, if T is a uniformly random Poissonized tableau

with fixed shape λ, Theorem 3.2 provides some convenient information

about the probability distribution of Tλ1,1. In many concrete cases we may

get some interesting asymptotic results. We start with the following exam-

ple.

Corollary 4.1 (The corner entry of a rectangular tableau). Let (pl) and (ql)
be sequences of positive integers such that (pl + ql) tends to infinity and the

limit

α = lim
l→∞

ql
pl + ql

exists. We denote by

pl × ql = (ql, . . . , ql
︸ ︷︷ ︸

pl times

)

the rectangular Young diagram with pl rows and ql columns and by nl = plql
the number of its boxes. Let T (l) be a uniformly random Poissonized tableau
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with shape pl × ql. Then the probability distribution of the rightmost box in

the first row of T (l) (after a shift and scaling)

(4.1) Y (l) := 4
√
nl

(

T
(l)
ql,1
− ql

pl + ql

)

dist−−−→
l→∞

N (0, σα)

converges to the centered Gaussian distribution with the variance

σ2
α =

[
α(1− α)

] 3
2 .

This result is due to Marchal [Mar16] who used very different methods.

Below we present a new proof.

Proof. The diagram pl × ql has two concave corners with the u-coordinates

equal to −pl and ql. Kerov’s transition measure is supported in these two

corners; their probabilities are equal to, respectively, ql
pl+ql

and pl
pl+ql

. Let

u0 ∈ (−pl, ql) be between the u-coordinates of these concave corners.

Theorem 3.2 gives the following values for the first two cumulants of the

random variable FT (u0):

EFT (u0) =
ql

pl + ql
,(4.2)

VarFT (u0) =
ql

pl + ql

pl
pl + ql

1

pl + ql + 1
.(4.3)

Due to the shift and the scaling it follows that the expected value of the

random variable Y (l) on the left-hand side of (4.1) is equal to zero while its

variance converges to σ2
α, as l→∞.

Theorem 3.2 implies that

∣
∣
∣κk

(
FT (u0)

)
∣
∣
∣ ≤ |Tk|

(pl + ql + 1)k−1
.

It follows that the k-th cumulant of the random variable on the left-hand

side of (4.1) is of order

κk

(

Y (l)
)

= O
(

(pl + ql)
1− k

2

)

;

in particular it converges to zero for k ≥ 3.

So far we proved that the cumulants of Y (l) converge to their counterparts

for the normal distribution on the right-hand side of (4.1), so the conver-

gence of distributions in (4.1) holds true in moments. However, since the

normal distribution is uniquely determined by its moments, the convergence

in moments implies in this case also convergence in the week topology of

probability measures, as claimed. �
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The above method of proof is also applicable to the case when

λ(k) = (qk,1, . . . , qk,1
︸ ︷︷ ︸

pk,1 times

, qk,2, . . . , qk,2
︸ ︷︷ ︸

pk,2 times

, . . . , qk,i, . . . , qk,i
︸ ︷︷ ︸

pk,i times

)

is a multi-rectangular Young diagram obtained by stacking a fixed number

of rectangles.

It would be interesting to verify if these tools could be used for the case of

the random insertion tableau obtained by applying RSK to a finite sequence

of i.i.d. random variables with the uniform distribution U(0, 1) in order to

reprove the result of Azangulov [Aza20], see also [MMŚ23, Section 1.8]

about the convergence of n
(
1− Tλ1,1

)
to the exponential distribution.

5. THE DOUBLE CUMULATIVE FUNCTION. PROOF OF THEOREM 2.3

5.1. The double cumulative function. Let a Young diagram λ be fixed;

let T be a uniformly random Poissonized tableau of shape λ. We consider

the double cumulative function of λ

Fλ : R× [0, 1]→ [0, 1]

which is defined as

Fλ(u, z) = P
(
u-Ins(T ; z) > u

)
= P

(
FT (u) ≤ z

)
.

The key motivation to this definition is that for each fixed u0 the double

cumulative function [0, 1] ∋ z 7→ Fλ(u0, z) is the cumulative distribution

function for the random variable FT (u0). In particular, the double cumula-

tive function is weakly increasing with respect to the variable z. It has dis-

continuities along the vertical lines with the values of the variable u equal

to the u-coordinates of the concave corners, see Figure 17 for an example

corresponding to λ = (3, 1). On each (possibly infinite) rectangular seg-

ment between such vertical lines the double cumulative function Fλ(u, z)
depends only on the second variable (in fact, it is given by a complicated

polynomial in z), see Figure 18 for an example.

On the other hand, if we fix the variable z ∈ [0, 1], the tail function

R ∋ u 7→ 1−Fλ(u, z)

is the cumulative distribution function of the random variable u-Ins(T ; z)
which is very convenient in the context of the proof of Theorem 2.3. In

fact, the probability distribution of u-Ins(T ; z) can be seen directly from

the collection of plots such as the ones from Figure 18, as follows. The unit

interval which corresponds to the fixed value of z is divided into a number

of intervals. The lengths of these intervals are the probabilities associated

to specific concave corners.
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Figure 17. The density plot of the double cumulative func-

tion Fλ(u, z) for the Young diagram λ = (3, 1). The bright

yellow indicates the areas where the insertion function takes

values which are close to 0. Dark blue indicates the values

which are close to 1. The plots of the double cumulative

function along the four vertical dashed lines are shown on

Figure 18.

5.2. Examples. The double cumulative function for λ = (3, 1) is visual-

ized on Figure 17 as a density plot. The plots of the cumulative function

along the four vertical lines are shown on Figure 18.

For a staircase diagram the double cumulative function is visualized on

Figure 19 and, for another staircase diagram, on Figure 20.

5.3. Proof of Theorem 2.2.

Lemma 5.1. Let (λ(n)) be a sequence of Young diagrams which fulfills the

assumptions of Theorem 2.2. Let u ∈ R and z ∈ [0, 1].
If z < Fµ(u

−) = limv→u− Fµ(v) then

Fλ(n)

(√
n u, z

) P−−−→
n→∞

0.
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z

F(u, z)
u ≤ −2

−2 ≤ u < 0

0 ≤ u < 3

u ≥ 3
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Figure 18. Continuation of the example from Figure 17.

Plots of the double cumulative function z 7→ Fλ(u, z)
(viewed as a function of the variable z) with λ = (3, 1) for

various choices of u.
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Figure 19. An analogue of Figure 18 for the staircase dia-

gram λ = (6, 5, 4, 3, 2, 1). This diagram has 7 concave cor-

ners; their u-coordinates divide the real line into 8 finite or

infinite intervals. The bright top curve (constantly equal to 1)

corresponds to the leftmost (infinite) interval; the dark bot-

tom curve (constantly equal to 0) corresponds to the right-

most (infinite) interval.
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−20 −15 −10 −5 5 10 15 20

Figure 20. An analogue of Figure 17 for the staircase di-

agram λ = (19, 18, . . . , 1). The crosses show points

(u-Ins(T ; z), z) for random points z sampled with the uni-

form distribution U(0, 1) and T sampled independently ran-

dom Poissonized tableau with the shape λ. The thick red

line is the cumulative distribution function of the (dilated)

arcsine law which is the limit measure of the transition mea-

sures of large staircase tableaux.

If z > Fµ(u) then

Fλ(n)

(√
n u, z

) P−−−→
n→∞

1.

This result is illustrated on Figure 20, where the transition region which

separates the bright area and the dark area is roughly the plot of the cumu-

lative distribution function of the arc-sine distribution (the thick red line).
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Proof. We start with the first part. There exists u′ < u such that Fµ(u
′) > z.

Additionally we may assume that u′ is a point of continuity of Fµ.

The probability of the event Kλ(n)(u′) ≤ z converges to zero; for our

purposes of proving convergence in probability we can ignore this event.

Let us condition for a moment over the event that the diagram λ(n) is fixed

and such that Kλ(n)(u′) > z. As usual, by T (n) we denote the uniformly

random Poissonized tableau with shape λ(n). From the explicit formula

(3.5) it follows that the conditional variance fulfills
∫ √

n u

√
n u′

VarFT (n)(v) dv ≤ 1;

it follows that there exists un ∈ [u′, u] with the property that

VarFT (n)(un) ≤
1

(u− u′)
√
n
.

From the assumption that

EFT (n)(un) = Kλ(n)(un) ≥ Kλ(n)(u′) > z

it follows that the Bienaymé–Chebyshev inequality is applicable and

0 ≤ Fλ(n)(u, z) ≤ Fλ(n)(un, z) = P (FT (n) ≤ z) ≤
VarFT (n)(un)

(
EFT (n)(un)− z

)2 ≤
1

(u− u′)
√
n
(
Kλ(n)(u′)− z

)2

Since the right-hand side converges to zero, this completes the proof of the

first part of the claim.

We can forget now about the conditioning; we proved that

0 ≤ Fλ(n)(u, z) ≤







1

(u−u′)
√
n(K

λ(n)(u′)−z)
2 if Kλ(n)(u′) > z

1 otherwise.

Since the random variable on the right-hand side converges in probability

to zero, this completes the proof.

The second part follows in a fully analogous way. �

Proof of Theorem 2.2. It is a straightforward application of Lemma 5.1. �

5.4. Proof of Theorem 2.3.

Lemma 5.2. Let G be a bipartite tree (with each vertex colored black

or white, and each edge connecting the vertices of opposite colors) with

k ≥ 1 vertices. We assume that G is an oriented graph (with each edge

oriented from the black endpoint to the white endpoint) and weighted (with

the weight of each edge greater or equal to 1).
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Let µ be a discrete probability measure on R, and let u0 ∈ R.

Then

S(G) :=
∑

x

∏

v∈VG
µ(x(v))

∏

e=(i,j)∈EG

(
x(j)− x(i) + w(e)

) ≤
[

G
+
µ (u0)

]n−1

,

where the sum on the left-hand side runs over the u0-decorations of the

vertices of G.

Proof. We use induction over the number of the vertices.

For n = 1 there is nothing to prove.

For n ≥ 2 let w be a leaf of G and let G′ be the tree G after removal

of the vertex w and the adjacent edge. By a straightforward bound on the

factor which corresponds to the unique edge adjacent to G it follows that

S(G) ≤ S(G′) G+
µ (u0)

and the inductive step follows immediately. �

Proof of Theorem 2.3. We start with the special case when each of the dia-

grams λ(n) is deterministic.

Let us fix c ∈ R; we denote

Un =
√
n u0 +

4
√
n c

and we consider the random variable

Xn =
4
√
n√
E

[

FT (n)(Un)−
(

z +
fc
4
√
n

)]

.

By simple algebra and (3.1) it follows that the tail probability for the

random variable in (2.9) is given by

(5.1) P

(

u-Ins(T (n); z)−√n u0

4
√
n

≥ c

)

= Fλ(n)(Un, z) =

P
(
u-Ins(T (n); z) ≥ Un

)
= P

(
FT (n)(Un) ≤ z

)
=

P

(

Xn ≤ −
fc√
E

)

.

We will use Theorem 3.2 in order to calculate the cumulants of the ran-

dom variable Xn which appears on the right-hand side. The first cumulant

EXn tends to zero by the assumption (a). The second cumulant VarXn

converges to 1 by the assumption (b). For k ≥ 3 the absolute value of

the corresponding cumulant can be bounded thanks to Lemma 5.2 and the

assumption (c)

(5.2) κk(Xn) = o
(

n
k
4
−α(k−1)

)
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which tends to zero if α > 3
8
. In this way we proved that the sequence (Xn)

converges in moments to the standard normal distribution N(0, 1); since

the normal distribution is uniquely determined by its moments, the latter

convergence holds true also in the weak topology of probability measures.

This convergence is illustrated on Figure 19, where each of the plots can

be approximated by the cumulative distribution function of some Gaussian

measure.

As a consequence we have the convergence of the right-hand side of (5.1)

thus

(5.3)

P

(

u-Ins(T (n); z)−√n u0

4
√
n

≥ c

)

−−−→
n→∞

Φ

(

− fc√
E

)

= 1− Φ

(
fc√
E

)

,

where

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

denotes the cumulative distribution function of the standard normal distri-

bution. Equation (5.3) gives the asymptotics of the tail probabilities for the

random variables from the statement of the theorem which concludes the

proof in the case when the Young diagrams λ(n) are all deterministic.

We will revisit the above proof in the general case when the Young dia-

grams λ(n) are random.

Firstly, the probabilities which appear in (5.1) and (5.3) should be un-

derstood as conditional probabilities, under the condition that the Young

diagram λ(n) is fixed; such conditional probabilities are random variables,

functions of λ(n). In particular, the convergence in (5.3) should be inter-

preted now as convergence in probability; we will justify its validity below.

Fix ǫ > 0. By a fairly standard argument [RŚ15, Section 4.10] there

exists a δ > 0 and an integer A > 0 with the property that if m is a proba-

bility measure on R such that its moments (up to order A) are δ-close to the

moments of the standard Gaussian measure then

|Fµ(x)− FSC(x)| < ǫ

holds true for x = − fc√
E . This shows that if the conditional moments of Xn

(given the value of λ(n)) converge in probability towards the corresponding

moments of the standard Gaussian measure then the convergence in (5.3)

holds true in probability as well.

We are interested in the unconditional probability

P

(

u-Ins(T (n); z)−√n u0

4
√
n

≥ c

)
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which is equal to the expected value of the left-hand side of (5.3); fortu-

nately applying the expected value to (5.3) can be justified easily. �

Remark 5.3. It seems that the condition (c) in Theorem 2.3 can be weak-

ened, and it is enough to assume that α > 1
4
. In this case the cumulant

κk(Xn) in (5.2) tends to zero if k is big enough. We first choose a sequence

(Cn) with Cn ≥ 1 such that there is a subsequence of the rescaled sequence
1
Cn

Xn which converges in moments and weakly to some limit which is not

supported in {0}. The limit measure has only finitely many non-zero cumu-

lants so by Marcinkiewicz theorem it is a Gaussian measure. This shows

that in fact we can choose Cn = 1. The above reasoning shows that from

each subsequence of (Xn) one can choose a subsequence converging to the

standard Gaussian measure; it follows that (Xn) converges as well. We did

not pursue to make this sketch rigorous.

6. ANTI-PIERI GROWTH PROCESS

We slowly prepare for the proof of Theorem 3.2. The proof will culmi-

nate in Section 9.

The aforementioned results of Romik and the second named author were

proved using the anti-Pieri growth process [RŚ15, Section 4.1]. It should

come as no surprise that we also will use this growth process.

6.1. Proof of Lemma 2.1.

Proof of Lemma 2.1. In the following we consider the unit cube

[0, 1]n = {(w1, . . . , wn) : w1, . . . , wn ∈ [0, 1]}
(equipped with the Lebesgue measure) with all hyperplanes wi − wj = 0
(over 1 ≤ i < j ≤ n) removed. Since the removed hyperplanes have

Lebesgue measure zero, this removal is irrelevant from the viewpoint of

the measure theory. The hyperplanes divide the cube into n! isometric sim-

plices, each with the volume 1
n!

. The simplices are in a bijective correspon-

dence with permutations in Sn; each simplex Sσ consists of the vectors

with a prescribed linear order between the coordinates.

For a given Young diagram λ we denote by T λ the set of Poissonized

tableaux of shape λ, equipped with the Lebesgue measure. For simplicity

we remove from this set all tableaux which have repeated entries; again this

removal is irrelevant from the viewpoint of the measure theory.

With these notations, the Robinson–Schensted correspondence is a bijec-

tion between the aforementioned cube [0, 1]n and the disjoint sum

(6.1)
⊔

λ⊢n
T λ × fλ,



44 M. MARCINIAK AND P. ŚNIADY

where fλ denotes the set of standard Young tableaux of shape λ. The sec-

ond component of this correspondence, the map Q, restricted to the simplex

Sσ is constant, equal to the recording tableau Q(σ). On the other hand, the

first component of this correspondence, the map P , restricted to Sσ acts by

arranging the entries of (w1, . . . , wn) to the boxes of the diagram RSK(σ).
It follows that the Robinson–Schensted correspondence is a piecewise isom-

etry, hence it is a measure-preserving map if we equip fλ with the counting

measure and each summand in (6.1) with the product measure.

Conditioning over the event RSK(w) = λ corresponds therefore to con-

sidering the uniform measure (or, equivalently, the product measure multi-

plied by the scalar factor n!
(fλ)2

) on a specific summand of (6.1), namely

T λ × fλ

which completes the proof. �

6.2. Anti-Pieri growth process. We will use the following notation which

is intended as an analogue of the falling factorial

G
k
λ(x) =







Gλ(x) Gλ(x− 1) · · · Gλ(x− k + 1)
︸ ︷︷ ︸

k factors

if k ≥ 1,

1 if k = 0

for an integer k ≥ 0.

Lemma 6.1. Let λ be a fixed Young diagram with n boxes and k ≥ 1 be an

integer.

Let

λ = ξn ր ξn+1 ր · · · ր ξn+k

be given by the Plancherel growth process starting at λ and let

U = (U1, . . . , Uk) be the sequence of the u-coordinates of the boxes added

in each step, i.e.,

Ui = u(ξn+i \ ξn+i−1)

for i ∈ {1, . . . , k}.
(a) Let T be a random Poissonized tableau of shape λ. Then for any

u0 ∈ R the moment of the random variable FT (u0) fulfills

mk

(
FT (u0)

)
= E

[(
FT (u0)

)k
]

= k! P
(
u0 ≥ U1 > · · · > Uk

)
.

(b) if U1 > · · · > Uk then the tuple U = (U1, . . . , Uk) can be uniquely

written in the form

x
a =

(
x1, x1 − 1, . . . , x1 − a1 + 1
︸ ︷︷ ︸

a1 times

, . . . , xℓ, xℓ − 1, . . . , xℓ − aℓ + 1
︸ ︷︷ ︸

aℓ times

)
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u
x3 x2 x1

Figure 21. Example of the growth of a Young diagram con-

sidered in Lemma 6.1. The orange area is the original Young

diagram λ, the blue boxes are being added in successive

steps, from right to left. The quantities from Lemma 6.1(b)

are as follows: a1 = 2, a2 = 1, a3 = 3.

with x = (x1, . . . , xℓ) and a = (a1, . . . , aℓ), where x1 > · · · > xℓ

are u-coordinates of some concave corners of λ and a1, . . . , aℓ ≥ 1
are integers such that a1 · · ·+ aℓ = k, see Figure 21.

(c) Let x1, . . . , xℓ be the u-coordinates of some concave corners of λ.

Let a1, . . . , aℓ ≥ 1 be integers such that a1 + · · · + aℓ = k. We

assume that the following condition holds true:

(X) for each i ∈ {1, . . . , ℓ} the set

{xi − 1, xi − 2, . . . , xi − ai + 1}
and the set of u-coordinates of the concave corners of λ are

disjoint.

Then

(6.2) P
[
U = x

a

]
= Θ(x1, . . . , xℓ)

∏

1≤i≤ℓ

(−1)ai−1

ai
µλ(xi) G

ai−1

λ (xi − 1),

where

(6.3) Θ(x1, . . . , xℓ) =
∏

1≤i<j≤ℓ

(xi − xj)(xi − xj − ai + aj)

(xi − xj + aj)(xi − xj − ai)
.

Note that the assumption (X) guarantees that on the right-hand side of

(6.2) we do not evaluate the Cauchy transform Gλ or the function Θ in a

singularity.
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Proof. Proof of part (a). Our general strategy is to create a coupling and to

create on a single probability space both a uniformly random Poissonized

tableau with shape λ, as well as a Plancherel growth process starting in λ.

A small additional difficulty is that our model will require some condition-

ing.

Let w1, . . . , wn+k be a sequence of independent random variables with

the uniform distribution U(0, 1) and let Ξi = RSK(w1, . . . , wi); then

Ξ0 ր · · · ր Ξn+k

is the Plancherel growth process. For i ∈ {1, . . . , k} we denote by

Ui = u(Ξn+i \ Ξn+i−1) the u-coordinate of the place where the growth oc-

curs.

Clearly, the probability distribution of the Plancherel growth process (ξn, . . . , ξn+k)
starting at ξn = λ coincides with the conditional probability distribution

of its counterpart
(
Ξn, . . . ,Ξn+k

)
, under the condition that Ξn = λ. By

Lemma 2.1, the probability distribution of the random Poissonized tableau

T from the statement of the lemma coincides with the conditional proba-

bility distribution of the insertion tableau T := P (w1, . . . , wn), under the

condition Ξn = λ.

These observations imply that it is enough to prove equality between the

conditional expectations

(6.4)

E

[(
FT (u0)

)k
∣
∣
∣ σ
(
Ξn

)]

= k! E
[

1

(
u0 ≥ U1 > · · · > Uk

)
∣
∣
∣ σ
(
Ξn

)]

,

where σ
(
Ξn

)
denotes the σ-algebra generated by the random Young dia-

gram Ξn, and 1{A} denotes the indicator random variable which takes the

value 1 if the condition A holds true, and 0 otherwise.

For a moment let us fix the values in the prefix x1, . . . , xn; the conditional

probability

P
[
FT (u0) > wn+1 > · · · > wn+k

∣
∣ σ(x1, . . . , xn)

]

(6.5)

= E

[

1

{
FT (u0) > wn+1 > · · · > wn+k

}
∣
∣
∣ σ(x1, . . . , xn)

]

= vol
{

(xn+1, . . . , xn+k) ∈ [0, 1]k : FT (u0) > wn+1 > · · · > wn+k

}

=
1

k!

[
FT (u0)

]k

is then directly related to the value of the random variable FT (u0).
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The event which appears on the left hand side of (6.5) can be alternatively

reformulated in the language of the Young diagrams Ξn ր · · · ր Ξn+k as

follows:

(6.6)
{
FT (u0) > wn+1 > · · · > wn+k

}
= {u0 ≥ U1 > · · · > Uk} .

Indeed, the equivalence

FT (u0) > wn+1 ⇐⇒ u0 ≥ U1
is a consequence of the definition of FT (u0) while each of the equivalences

wn+i > wn+i+1 ⇐⇒ Ui > Ui+1

is the content of the Row Bumping Lemma [Ful97, page 9]. Thus, by taking

the appropriate conditional expectation of both sides of (6.5), the desired

equality (6.4) follows immediately.

The part (b) is obvious.

Proof of part (c). We start with the case when the probability on the left-

hand side of (6.2) is non-zero. For an illustration see Figure 21. For integers

j ∈ {1, . . . , ℓ} and m ∈ {0, . . . , aj} we define the Young diagram λ[j,m] as

the diagram λ with additional boxes, the u-coordinates of which form the

following multiset

x1, x1 − 1, . . . , x1 − a1 + 1
︸ ︷︷ ︸

a1 elements

, . . . , xj−1, xj−1 − 1, . . . , xj−1 − aj−1 + 1
︸ ︷︷ ︸

aj−1 elements

,

xj , xj − 1, . . . , xj −m+ 1
︸ ︷︷ ︸

m elements

.

Note that λ[j,aj ] = λ[j+1,0]. With this notation, the event U = x
a holds if

and only if the sequence (ξn, . . . , ξn+k) is equal to

(6.7)
(
λ[1,0], . . . λ[1,a1]

︸ ︷︷ ︸

a1 + 1 elements

, λ[2,1], . . . , λ[2,a2]

︸ ︷︷ ︸

a2 elements

, . . . , λ[ℓ,1], . . . , λ[ℓ,aℓ]

︸ ︷︷ ︸

aℓ elements

)
=

(
λ[1,0], . . . λ[1,a1−1]

︸ ︷︷ ︸

a1 elements

, . . . , λ[ℓ−1,0], . . . , λ[ℓ−1,aℓ−1−1]

︸ ︷︷ ︸

aℓ−1 elements

, λ[ℓ,0], . . . , λ[ℓ,aℓ]

︸ ︷︷ ︸

aℓ + 1 elements

)

It follows that we need to calculate the probability that a Plancherel growth

process starting in λ = λ[1,0] in the first k steps will traverse the diagrams

(6.7). Since it is a Markov process, we need to calculate the probability

of each transition separately and then take the product. We will consider

separately the transitions in which a new box is created in one of the concave

corners of the original diagram λ and the remaining ones.
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Transition from λ[j,0] to λ[j,1]. The diagram λ[j,0] can be obtained from

λ by adding j − 1 rectangles, see Figure 21. The i-th rectangle (with i ∈
{1, . . . , j − 1}) has the following four vertices:

• the bottom and the top vertex, with the u-coordinates equal to, re-

spectively, xi and xi − ai + 1; each of these two vertices is either

responsible for removal of a concave corner of λ or for creation of

a new convex corner; both of these operations correspond to adding

an additional zero to the Cauchy transform, and

• the right and the left vertex, with the u-coordinates equal to, re-

spectively, xi + 1 and xi − aj ; each of these two vertices is either

responsible for removal of a convex corner of λ or for creation of

a new concave corner; both of these operations correspond to an

additional an additional pole to the Cauchy transform.

It follows that

Gλ[j,0](z) = Gλ(z)
∏

i∈{1,...,j−1}

(z − xi)(z − xi + ai − 1)

(z − xi − 1)(z − xi + ai)
.

Thus the transition probability from the diagram λ[j,0] to λ[j,1] is equal to the

residue

(6.8) Resxj
Gλ[j,0](z) =

(
Resxj

Gλ(z)
) ∏

i∈{1,...,j−1}

(xj − xi)(xj − xi + ai − 1)

(xj − xi − 1)(xj − xi + ai)
=

µλ(xj)
∏

i∈{1,...,j−1}

(xj − xi)(xj − xi + ai − 1)

(xj − xi − 1)(xj − xi + ai)
.

Transition from λ[j,m] to λ[j,m+1] for m > 0. The diagram λ[j,m] can be

obtained from λ by adding j rectangles thus

Gλ[j,m](z) = Gλ(z)
∏

i∈{1,...,j−1}

(z − xi)(z − xi + ai − 1)

(z − xi − 1)(z − xi + ai)
×

(z − xj)(z − xj +m− 1)

(z − xj − 1)(z − xj +m)
.
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It follows that the transition probability from the diagram λ[j,m] to λ[j,m+1]

is equal to the residue

(6.9) Resxj−mGλ[j,0](z) = Gλ(xj −m)×
∏

i∈{1,...,j−1}

(xj −m− xi)(xj −m− xi + ai − 1)

(xj −m− xi − 1)(xj −m− xi + ai)
· (−1)m
m+ 1

.

The product. We consider the probability (6.8) multiplied with the prod-

uct of (6.9) over all choices of m ∈ {1, . . . , aj−1}. Due to some telescopic

cancellations this whole product is equal to

µλ(xj) G
aj−1

λ (−1)aj−1 1

aj

∏

i∈{1,...,j−1}

xj − xi

xj − xi − aj
· xj − xi + ai − aj

xj − xi + ai
.

By taking the product over all choices of j ∈ {1, . . . , ℓ} we recover the

right-hand side of (6.2), as required.

We consider now the case when the probability on the left-hand side of

(6.2) is equal to zero. This means that at least one of the diagrams in the

sequence (6.7) is not well-defined. Let λ[j,m] with j ∈ {1, . . . , ℓ} and m ∈
{1, . . . , aj} be the first entry of this sequence which is not well-defined.

This may happen only if xj −m+ 1 is the u-coordinate of a convex corner

of λ hence Gλ(xj −m+ 1) = 0 and m ≥ 2. As a consequence, one of the

factors on the right-hand side of (6.2) is equal to zero, as required. �

7. DECOMPOSITION INTO SIMPLE FRACTIONS

In this section we will decompose the product Θ defined in (6.3) into a

sum of simple fractions.

A spine graph with ℓ ≥ 1 vertices is defined as a connected directed

graph F such that the set of its edges consists of ℓ − 1 elements and is of

the form

EF = {(v1, v2), . . . , (vℓ−1, vℓ)}.
Note that the vertices v1, . . . , vℓ are all different; otherwise, the graph would

not be connected. We denote the set of all spine graphs with the vertex set

V = {1, . . . , ℓ} by Sℓ; obviously |Sℓ| = ℓ!. An example of a spine graph is

shown in Figure 22.

A multi-spine graph is defined as any directed graph such that each com-

ponent is a spine graph. In other words, a multi-spine graph is a forest of

spine graphs. We denote the set of all multi-spine graphs with the vertex

set V = {1, . . . , ℓ} by MSℓ. An example of a multi-spine graph is shown in

Figure 23.
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3 5 1 4 6 2

Figure 22. An example of a spine graph with 6 vertices.

4 7 1 6 2 8 5 9 3

Figure 23. An example of a multi-spine graph with 9 ver-

tices and 4 connected components.

Lemma 7.1. Let (a1, . . . aℓ) be a sequence of numbers which has the prop-

erty that the sum of the entries of any non-empty subsequence is non-zero

(this condition holds, for example, if a1, . . . , aℓ > 0 are all positive).

Then the element Θ ∈ R(x1, . . . , xℓ) of the field of rational functions

defined in (6.3) can be written as the sum

(7.1) Θ(x1, . . . , xℓ) =
∑

F∈MSℓ

βF
∏

(i,j)∈EF

(
xj − xi + ai

) .

Above, for any graph F ∈ MSℓ, the constant βF is defined as

(7.2) βF = (−1)|VF |

ℓ∏

j=1

aj

∏

F ′

[

(−1) · ∑
i∈VF ′

ai

] ,

where the product over F ′ runs over all connected components of the graphF .

Proof. To simplify the notation, we put

zj = xj − aj

for each index j ∈ {1, . . . , ℓ}.
Let

A =

[

1

xi − zj

]

1≤i,j≤ℓ

be the Cauchy matrix [Sch59]. Its determinant, called the Cauchy determi-

nant, is given by the following product formula [Sch59]

detA =

∏

1≤i<j≤ℓ

(xi − xj)(zj − zi)

∏

1≤i,j≤ℓ

(xj − zi)
.
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The denominator of Θ differs from its counterpart in the Cauchy determi-

nant only by the missing diagonal factors xj − zi for i = j. Thus

Θ =





ℓ∏

j=1

(
xj − zj

)



 detA =





ℓ∏

j=1

aj



 detA.

Using the definition of the determinant we express Θ as a sum over per-

mutations

Θ =





ℓ∏

j=1

aj




∑

σ∈Sk

(−1)ℓ−c(σ)

ℓ∏

i=1

(xσ(i) − zi)

,

where c(σ) denotes the number of cycles of the permutation σ. We can treat

each permutation σ ∈ Sn as a directed weighted graph with the vertex set

Vσ = {1, . . . , ℓ} and with the edge set

Eσ =
{(

1, σ(1)
)
, . . . ,

(
ℓ, σ(ℓ)

)}

.

We define the weight of an edge e =
(
i, σ(i)

)
as w(e) = ai. Therefore

(7.3)

Θ =





ℓ∏

j=1

aj




∑

σ∈Sk

(−1)ℓ−c(σ)fσ = (−1)ℓ




ℓ∏

j=1

aj




∑

σ∈Sk

∏

σ′

(−fσ′) ,

where σ′ runs over the connected components of the directed graph σ; note

that each such connected component corresponds to a cycle of the permuta-

tion σ.

Let σ′ be a connected component of the directed graph σ. Using the

identity
∑

i∈Vσ′

ai =
∑

j∈Vσ′

xj −
∑

i∈Vσ′

zi =
∑

(i,j)∈Eσ′

(
xj − zi

)

we obtain

(7.4) fσ′
∑

i∈Vσ′

ai = fσ′
∑

(i,j)∈Eσ′

(xj − zi) =
∑

F ′

fF ′,

where F ′ runs over all spine graphs obtained from the cycle σ′ by removing

exactly one edge.

Equation (7.4) can be written as

fσ′ =
1
∑

i∈Vσ′
ai

∑

F ′

fF ′;

we apply this identity to each cycle σ′ of the permutation σ ∈ Sk on the

right-hand side of (7.3). Note that the above equality holds true also in the
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special case when the cycle σ′ is a fix-point; in this case we remove the

loop from the directed graph σ′, and the unique resulting graph F ′ has one

isolated vertex and no edges.

If we remove one edge from each cycle of every permutation in all pos-

sible ways, we obtain each multi-spine graph on the vertex set {1, . . . , ℓ}
exactly once. In this way we proved that

Θ = (−1)ℓ




ℓ∏

j=1

aj




∑

F∈MSℓ

∏

F ′

−fF ′
∑

i∈VF ′
ai

where F ′ runs over the connected components of the graph F , as required.

�

8. THE MOMENTS OF THE CUMULATIVE FUNCTION

8.1. The first formula for the moments. A composition of a natural num-

ber k is an expression of k as an ordered sum of positive integers k =
a1 + · · ·+ aℓ. The set of all compositions of k will be denoted by Compk.

For a given composition a = (a1, . . . , aℓ) ∈ Compk we denote the number

of its parts by ℓ = ℓ(a).
Using Lemma 6.1 we obtain

(8.1) mk

(
FT (u0)

)
= k!

∑

a∈Compk

∑

x

P
[
U = x

a

]

= k!
∑

a∈Compk

∑

x

Θ(x1, . . . , xℓ)
ℓ∏

i=1

(−1)ai−1

ai
µλ(xi) G

ai−1

λ (xi − 1),

where in each expression the second sum runs over x = (x1, . . . , xℓ) ∈ X
such that

(8.2) u0 ≥ x1 > x2 > · · · > xℓ

and such that the condition (X) from Lemma 6.1 is satisfied.

The aforementioned condition (X) turns out to be quite cumbersome in

applications. For this reason our strategy is to obtain an analogue of the

above formula (8.1) which would involve summation over all x1, . . . , xℓ ∈
X which fulfill (8.2), i.e., to remove the requirement (X). Regretfully, with-

out this additional condition it might happen that one of the factors in the

falling product G
ai−1

λ (xi − 1) is evaluated in a singularity; thus the right-

hand side of (8.1) might involve division by zero.

In order to avoid this difficulty instead of Young diagrams we will con-

sider a more general class of objects, namely interlacing sequences, for



FLUCTUATIONS OF SCHENSTED ROW INSERTION 53

which such a division by zero can be easily avoided. The formulas for the

Young diagram λ can be then obtained by an appropriate limit.

8.2. Interlacing sequences. The following notations are based on the work

of Kerov [Ker93]. We say that

(8.3) Λ = (x0, . . . ,xL; y1, . . . ,yL)

is an interlacing sequence if its entries are real numbers such that

x0 < y1 < x1 < · · · < yL < xL.

Following Figure 9 and Section 2.2, each Young diagram can be regarded

as a specific interlacing sequence. Conversely, each interlacing sequence

can be visualized as the zig-zag curve analogous to the one from Figure 9;

for this reason we will refer to the entries of the sequence x0, . . . ,xL as

concave corners and to the entries of the sequence y1, . . . ,yL as convex

corners.

The Cauchy transformGΛ and the transition measure µΛ of an interlacing

sequence Λ is defined in an analogous way as their counterparts for Young

diagrams in Section 2.2.

8.3. Moments for interlacing sequences. Let an interlacing sequence Λ
be fixed. We assume that the set of concave corners is generic, i.e., if i 6=
j then xi − xj is not an integer. For the set of decoration values X :=
{x0, . . . ,xL} we take the concave corners. Let u0 be a fixed real number.

We define the k-th moment for the interlacing sequence Λ as

(8.4) Mk = Mk(Λ, u0) =

k!
∑

a∈Cn

∑

x

Θ(x1, . . . , xℓ)
ℓ∏

i=1

(−1)ai−1

ai
µΛ(xi) G

ai−1

Λ (xi − 1),

where the sum over x runs over x1, . . . , xℓ ∈ X such that (8.2) holds true,

and ℓ = ℓ(a) denotes the length of the composition a as before. The assump-

tion that the set of concave corners is generic guarantees that the right-hand

side is well-defined. One can ask if the quantity Mk(Λ, u0) has a probabilis-

tic interpretation as a moment of some natural random variable associated

to the interlacing sequence Λ; we expect that the answer for this question

is negative. We will use Mk purely as an auxiliary tool for studying the

moments of the random variable FT (u0), see below.

The right-hand side of (8.4) is very similar to its counterpart (8.1); the

only difference is that the second sum on the right-hand side of (8.1) runs

over certain sequences x which additionally fulfill the condition (X) from

Lemma 6.1(c).
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Let us fix an integer s ∈ {0, . . . ,L + 1} and consider the set Ws,L of

interlacing sequences Λ of the form (8.3) with the property that

x0,x1, . . . ,xs−1 ≤ u0 are all small and xs, . . . ,xL > u0 are all big; in

other words s is the cardinality of small entries of the set X. Thanks to

the aforementioned removal of the condition (X), the restriction of the func-

tion Λ 7→ Mk(Λ, u0) to the set Ws,L is a rational function in the variables

x0, . . . ,xL,y1, . . . ,yL. Our general strategy is to investigate this rational

function Mk.

The price we have to pay for the aforementioned omission of the condi-

tion (X) is that the rational function Mk is singular in (some subset of) the

set of non-generic interlacing sequences, in particular it is not clear how

to evaluate Mk(Λ, u0) in the special case when the interlacing sequence Λ
corresponds to a Young diagram λ (which is clearly non-generic). On the

bright side, Lemma 8.1 below shows that there is a special way of taking

the limit value of Mk at the singularity which provides a bridge with our

main subject of investigations, the moment mk

(
FT (u0)

)
. In fact, from the

proof of Theorem 3.2 it will follow that the aforementioned singularity is

removable and thus an analogue of Lemma 8.1 holds true for any way of

taking the limit Λ→ λ.

8.4. Regularization. Let a Young diagram λ be fixed and let Λ be the cor-

responding interlacing sequence. For ǫ > 0 we define the interlacing se-

quence

Λǫ = (xǫ
0, . . . ,x

ǫ
L; y

ǫ
1, . . . ,y

ǫ
L)

given by

x

ǫ
j = xj + jǫ, y

ǫ
j = yj + jǫ.

Note that if ǫ is small enough, the set of concave corners of Λǫ is generic so

that Mk(Λ
ǫ, u0) is well-defined.

The distance

(8.5) x

ǫ
j − yǫ

j = xj − yj

between any convex corner yǫ
j and the next concave corner to the right xǫ

j

does not depend on the value of ǫ, and is a positive integer which has a

natural interpretation for the original Young diagram λ, cf. Figure 9.

Lemma 8.1. We suppose that u0 is not an integer number. With the above

notations, the moment mk is equal to the limit of the moment Mk, when ǫ
tends to zero:

mk

(
FT (u0)

)
= lim

ǫ→0
Mk(Λ

ǫ, u0).

Proof. Let s ∈ {0, . . . ,L + 1} be the cardinality of the small concave cor-

ners of λ; with the notations of Section 8.3 this means that Λǫ ∈ Ws,L if |ǫ|
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is small enough. By writing xi = x

ǫ
ri

we may write (8.4) as

(8.6) Mk(Λ
ǫ, u0) =

k!
∑

a∈Cn

∑

s≥r1>···>rℓ≥1

Θ(xǫ
r1
, . . . ,xǫ

rℓ
)

ℓ∏

i=1

(−1)ai−1

ai
µΛ(x

ǫ
ri
)G

ai−1

Λǫ (xǫ
ri
−1).

Similarly (8.1) can be written as

(8.7) mk

(
FT (u0)

)
=

k!
∑

a∈Cn

∑

Θ(xr1, . . . ,xrℓ)
ℓ∏

i=1

(−1)ai−1

ai
µΛ(xri) G

ai−1

Λ (xri − 1);

the consequence of the condition (X) from Lemma 6.1 is that the second

sum runs over s ≥ r1 > · · · > rℓ ≥ 1 which additionally fulfill

(8.8) xri − yri ≥ ai for i ∈ {1, . . . , ℓ};
in the special case when ri = 0 and y0 is not defined the above condition is

fulfilled by convention.

Let us consider a summand of (8.6) which corresponds to a ∈ Cn and a

tuple (r1, . . . , rℓ) for which (8.8) is not satisfied thus 1 ≤ xri−yri ≤ ai−1

for some choice of the index i. One of the factors in G
ai−1

Λǫ (xǫ
ri
−1) is equal

to

GΛǫ

(
x

ǫ
ri
− (xri − yri)

)
= GΛǫ

(
x

ǫ
ri
− (xǫ

ri
− yǫ

ri

)
= GΛǫ

(
y

ǫ
ri

)
= 0

by the very definition of the Cauchy transform; as a consequence the whole

corresponding summand of (8.6) vanishes as well.

On the other hand, any summand in (8.6) for which (8.8) is satisfied is

continuous at ǫ = 0 and clearly converges as ǫ → 0 to its counterpart in

(8.7) which completes the proof. �

8.5. Cumulants for interlacing sequences. For a given interlacing sequence

Λ and u0 we consider the corresponding sequence of moments M1,M2, . . .
with Mk = Mk(Λ, u0) given by (8.4). We revisit Section 3.3 and con-

sider the corresponding sequence of formal cumulants K1, K2, . . . with

Kk = Kk(Λ, u0) given by the expansion

log

∞∑

k=0

Mk

k!
tk =

∞∑

k=1

Kk

tk

k!
.

Since each cumulant Kk can be expressed as a polynomial in the mo-

ments M1, . . . ,Mk, Lemma 8.1 implies the following result.
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Lemma 8.2. Suppose that u0 is not an integer number. With the above

notations, the cumulants of the random variable FT (u0) are given by

κk

(
FT (u0)

)
= lim

ǫ→0
Kk(Λ

ǫ, u0).

9. PROOF OF THEOREM 3.2

9.1. The graph expansion for the moments. Using Lemma 7.1 and the

fact that for any integer r ≥ 1

(9.1) GΛ(xi − r) = −
∑

xi,r

µΛ(xi,r)

xi,r − xi + r
,

we may rewrite the formula (8.4) as follows.

Corollary 9.1. If the interlacing sequence Λ is generic then the moment

Mk is given by

(9.2) Mk(Λ, u0) = k!
∑

a∈Compk

∑

xℓ<···<x1≤u0

ℓ∏

i=1

µΛ(xi)

ai
×

ai−1∏

r=1

∑

xi,r

µΛ(xi,r)

xi,r − xi + r
×
∑

F∈MSℓ

βF
∏

(i,j)∈EF

(
xj − xi + ai

) ,

where ℓ = ℓ(a) is the length of the composition a. Recall that the constant

βF was defined in (7.2). The above sums run over xi, xi,r ∈ {x1, . . . ,xL}.
In the following we denote

xi,0 := xi.

Now we will define multi-caterpillar graphs and with them we will sim-

plify Corollary 9.1.

9.2. Multi-caterpillar graphs. By applying the distributive law to the right-

hand side of (9.2) we obtain a sum of a lot of terms; to each of them we shall

associate a certain directed weighted graph G. Each term is a product of

• the numerical factor

k! βF

ℓ∏

i=1

1

ai

∏

r∈{0,...,ai−1}
µΛ(xi,r)

for some multi-spine graph F , and

• the reciprocal of the product of the polynomials of the form

(xi,r − xi,0 + r) or (xj,0 − xi,0 + aj).
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The latter product of polynomials is in our focus.

We create a multi-caterpillar graph G with k vertices as follows. We

create ℓ black vertices and k− ℓ red vertices. The black vertices correspond

to the variables x1,0, . . . , xℓ,0. For each j ∈ {1, . . . , ℓ} there are aj − 1
red vertices connected with the black vertex xj,0; they correspond to the

variables xj,1, . . . , xj,aj−1. We tag the vertices in such a way that the vertex

which corresponds to the variable xi,j is tagged by the pair (i, j). Each

factor (xi2,j2 − xi1,j1 + a) corresponds to the oriented edge with the weight

a from the vertex tagged (i1, j1) to the vertex tagged (i2, j2).

Example 9.2. The graph shown in Figure 24 was obtained from the term

1

(x5,1 − x5 + 1)(x5,2 − x5 + 2)(x3,1 − x3 + 1)(x2,1 − x2 + 1)
×

1

(x5 − x1 + 1)(x4 − x5 + 3)(x3 − x4 + 1)

which is one of the summands in Corollary 9.1 which corresponds to a = (1, 2, 2, 1, 3).
Figure 25 shows the same graph without the Young diagram.

9.3. Multi-caterpillar graphs, the formal approach. More formally, a

multi-caterpillar graph G with tagged vertices is a directed, weighted graph

with black and red vertices, for which there exists a tuple of integers a1, . . . , aℓ ≥
1 which fulfills the following properties.

Firstly, the subgraph composed of all black vertices and the edges be-

tween them forms a multi-spine graph with ℓ ≥ 1 vertices tagged (1, 0), . . . , (ℓ, 0).
For each j ∈ {1, . . . , ℓ} the black vertex tagged (j, 0) has at most one outgo-

ing edge to another black vertex; if such an edge exists, its weight is equal

to aj .
Secondly, if we remove the edges between the black vertices, each con-

nected component of the resulting graph consists of a single black vertex

(j, 0) for some value of j ∈ {1, . . . , ℓ}, and aj − 1 red vertices tagged

(j, 1), . . . , (j, aj − 1). There are no connections between the red vertices;

for each k ∈ {1, . . . , aj−1} there is an oriented edge from the black vertex

(j, 0) to the red vertex (j, k); this edge carries the weight k.

By MCtag
k we denote the set of all multi-caterpillar graphs with k tagged

vertices.

9.4. Three systems of naming the vertices. In the following, we will have

twice to use the technique of double counting. For this reason we will use

the following three systems of naming the vertices in an oriented weighted

graph with k vertices:
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u
−11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

(1, 0)

(2, 0)(3, 0)

(4, 0)
(5, 0) (2, 1)(3, 1)

(5, 1)

(5, 2)

Figure 24. The multi-caterpillar graph considered in Exam-

ple 9.2. The composition a = (1, 2, 2, 1, 3) was visualized

as a configuration of white boxes which could occur in the

anti-Pieri growth. The vertices of the multi-caterpillar graph

(black vertices • and red vertices⊗) correspond to the boxes

of the Young diagram where the Plancherel growth occurred.

In order to improve visibility the weights of the edges were

not shown.

(1, 0) (5, 0) (4, 0) (3, 0) (2, 0)

(2, 1)(3, 1)(5, 1) (5, 2)

1 2 11

1 3 1

Figure 25. The multi-caterpillar graph from Figure 24 with

the weights of the edges shown.
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• the elements of the set N × N0 will be called tags; the naming of

the vertices with tags (or, shortly, tagging) was used in Sections 9.2

and 9.3. An example of a graph with tagged vertices is shown in

Figure 26a;

• the elements of the set {1, . . . , k} will be called labels; we will

consider only labelings with the property that if a pair of vertices

v1, v2 ∈ {1, . . . , k} is connected by an oriented edge e = (v1, v2),
its weight

(9.3) w(e) = w(v1, v2) = v2 − v1

is equal to the difference of the vertex labels, see (3.6).

• by marks we understand the elements of an arbitrary fixed set which

consists of k elements; in order to avoid confusion between marks

and labels we may declare that the set of marks

(9.4) {1, 2, . . . , k}

consists of k underlined integers. An example of a graph with

marked vertices is shown in Figure 26b;

9.5. Black-decreasing decorations. Let G be a multi-caterpillar graph with

tagged vertices. The decoration x ∈ DG is called black-decreasing if for

any pair of black vertices (p, 0) and (q, 0) with p < q the corresponding

values of the decoration fulfill xp,0 > xq,0. The set of all black-decreasing

decorations of a multi-caterpillar graph G will be denoted by D>
G.

Using Corollary 9.1 we can write the moment Mk(Λ, u0) as a sum over

multi-caterpillar graphs, as follows. We replace the double sum in (9.2) over

compositions and over multi-spine graphs by the sum over multi-caterpillar

graphs G ∈ MCtag
k . In addition, we replace the sum over the variables (xi)

and (xi,r) by the sum over black-decreasing decorations. It follows that

(9.5) Mk = k!
∑

G∈MCtag
k

∑

x∈D>
G

αGfG,

where the constant αG is defined as

(9.6) αG = (−1)|BG|




∏

(i,j)∈VG

µΛ(xi,j)








∏

G′

−1
|VG′|



 ,

where G′ runs over all connected components of the graph G. Note that αG

depends also on the choice of the decoration x; in order to keep the notation

lightweight we will make this dependence implicit.
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(1, 0) (2, 0)

(1, 1) (2, 1)

1

2

1

(a)

4 1

2 3

1

2

1

(b)

(1, 0) (2, 0)

4 1

2 3

(1, 1) (2, 1)

1

2

1

(c)

Figure 26. Examples of multi-caterpillar graphs: (a) with

tagged vertices; the tags are printed black and belong to the

set
{
(1, 0), (1, 1), (2, 0), (2, 1)

}
, (b) with marked vertices;

the marks are printed blue and belong to the set {1, 2, 3, 4},
(c) with tagged and marked vertices.

9.6. Double counting. Let MCmark
k denote the set of multi-caterpillar graphs

with k marked vertices, i.e., the set of weighted and oriented graphs G with

the vertex set {1, . . . , k} such that there exists a way to tag the vertices in

such a way that G becomes a multi-caterpillar graph with k tagged ver-

tices in the sense considered in Section 9.3. Let MCtm
k denote the set of

multi-caterpillar graphs with k vertices which are simultaneously tagged

and marked. Examples of such graphs are shown in Figure 26.

For any graph G ∈ MCtag
k we have k! ways to mark its k vertices by the

elements of (9.4).
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Let G be a graph. Its decoration x ∈ DG is called black-injective if

xi 6= xj for all pairs of black vertices i, j ∈ BG such that i 6= j. We

denote the set of all black-injective decorations of G by D 6=
G, and the set of

non-black-injective decorations of G by D=
G = DG \D 6=

G.

Moreover, for each black-injective decoration x of G ∈ MCmark
k we can

tag the vertices of G in a canonical way as follows. We tag the black ver-

tices by (1, 0), (2, 0), . . . in the opposite order to the one given by the deco-

ration x. Next, for each black vertex b with the tag (j, 0) we tag the white

vertices connected with b by (j, 1), (j, 2), . . . according to the increasing

order of their corresponding weight of edges. In this way G becomes a

caterpillar graph with tagged vertices, and x becomes a decreasing decora-

tion.

Using these two observations and (9.5), we obtain

Mk = k!
∑

G∈MCtag
k

∑

x∈D>
G

αGfG(9.7)

=
∑

G∈MCtm
k

∑

x∈D>
G

αGfG

=
∑

G∈MCmark
k

∑

x∈D 6=
G

αGfG.

The constant αG was defined in (9.6).

9.7. Sum over all decorations.

Proposition 9.3. The following double sum over multi-caterpillar graphs

and their decorations remains the same when we restrict the sum to black-

injective decorations, i.e., for each integer k ≥ 1,

(9.8)
∑

G∈MCmark
k

∑

x∈DG

αGfG =
∑

G∈MCmark
k

∑

x∈D 6=
G

αGfG.

Proof. We consider the difference of the left-hand side and the right-hand

side of (9.8)

(9.9) ∆ =
∑

G∈MCmark
k

∑

x∈D=
G

αGfG.

Our goal is to prove that ∆ = 0.
Let k be a fixed natural number, and let B = {b1, . . . , bl} ⊆ {1, . . . , k}

be a fixed set. Let MS(B) denote the set of all multi-spine graphs F with

the vertex set VF = B. In particular MS
(
{1, . . . , k}

)
= MSk. Let GMC

k (B)

denote the set of all multi-caterpillar graphs G∅ ∈ MCmark
k with k marked

vertices 1, . . . , k such that
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• the set of black vertices of G∅ is given by BG∅ = B, and

• there is no edge in G∅ connecting two black vertices.

Let k be a fixed natural number. Every multi-caterpillar graph G ∈ MCmark
k

can be decomposed in a unique way into the union of two graphs

G∅ ∈ GMC
k (BG) and F ∈ MS(BG). In other words, the graph F is the graph

composed of all black vertices of the graph G and the edges between them,

and the graph G∅ is the graph composed of all vertices of the graph G and

the remaining edges. Furthermore, for each vertex v ∈ VF of the graph F
we define the number av as the number of vertices in the connected compo-

nent of the graph G∅ which contains the vertex v. With the notations from

Lemma 7.1, the constant βF given by (7.2) is equal to

(9.10) βF = (−1)|VF |

∏

v∈VF

av

∏

G′

[
(−1) |VG′|

] ,

where the product overG′ runs over all connected components of the graph G.

In addition, for each edge e = (i, j) ∈ EF we define its weight as w(e) =
ai.

Now we define the constant γG∅ so that

αG = βF γG∅ .

From (9.6) and (9.10) we obtain that the constant

γG∅ =
αG

βF

=

∏

v∈VG∅

µΛ(xv)

∏

v∈BG∅

av

depends only on the graph G∅ and the decoration x.

In addition, for any set B ⊆ {1, . . . , k} the union of each pair of graphs

G∅ ∈ GMC
k (B) and F ∈ MS(B) as above is a multi-caterpillar graph with

k marked vertices. Therefore, we can replace the sum in (9.9) over all multi-

caterpillar graphs with marked vertices by a triple sum over all possible

sets of black vertices, over multi-caterpillar graphs, and over all multi-spine

graphs. It follows that

∆ =
∑

B⊆{1,...,k}

∑

G∈MCmark
k

BG=B

∑

x∈D=
G

αGfG

=
∑

B⊆{1,...,k}

∑

G∅∈GMC
k

(B)

∑

x∈D=
G∅

γG∅fG∅

∑

F∈MS(B)

βFfF .

Let B = {b1, . . . , bl} ⊆ {1, . . . , k} be a fixed set and xB = (xb1 , . . . , xbl)
be a fixed non-black-injective decoration of B. Using the formula (7.1)
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(e.g., by temporarily renumbering the vertices b1, . . . , bl into 1, . . . , l), we

obtain that the internal sum is equal to
∑

F∈MS(B)

βFfF (xb1 , . . . , xbl) = Θ(xb1 , . . . , xbl) = 0

since at least one of the factors in the numerator of Θ is equal to zero. (Re-

call that the definition of Θ was given in (6.3).) Thus∆ = 0 as required. �

9.8. The first formula for the cumulants. We denote byCmark
k ⊂ MCmark

k

the set of connected multi-caterpillar graphs with k marked vertices. Its el-

ements will be called caterpillar graphs with k marked vertices.

Using Proposition 9.3 we transform the formula (9.7) to

Mk =
∑

G∈MCmark
k

∑

x∈DG

αGfG.

We can look separately at each connected componentG′ of a multi-caterpillar

graph G. The connected components correspond to the blocks of a set-

partition. Thus

Mk =
∑

G∈MCmark
k

∑

x∈DG

αGfG(9.11)

=
∑

G∈MCmark
k

∏

G′

∑

x∈DG′

αG′fG′

=
∑

π

∏

b∈π

∑

G′∈Cmark
b

∑

x∈DG′

αG′fG′

=
∑

π

∏

b∈π
K̃|b|,

where π runs over all set-partitions of the set {1, . . . , k}, and b runs over all

blocks of π. Above K̃j is defined as

K̃j : =
∑

G∈Cmark
j

∑

x∈DG

αGfG(9.12)

=
1

j

∑

G∈Cmark
j

∑

x∈DG




∏

v∈VG

µΛ(xv)



 (−1)|BG|−1fG.

In our setting the moment-cumulant formula (3.2) takes the form

Mk =
∑

π∈Πk

∏

b∈π
K|b|.
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(1, 0) (2, 0)

(1, 1) (1, 2) (2, 1)

1

3

21

(a)

1 4

32 5

1

3

21

(b)

Figure 27. (a) A caterpillar graph with tagged vertices.

(b) The same graph with labeled vertices. The labels belong

to the set {1, 2, 3, 4, 5}.

(Here π still runs over set-partitions, and b runs over all blocks of π.) It can

be viewed as a system of algebraic equations for the unknowns (Kk). This

system of equations has an upper-triangular form in the sense that the k-th

equation allows us to express the cumulant Kk as the sum of the moment

Mk and some complicated polynomial in the variables K1, . . . , Kk−1. Such

a system of equations can be solved recursively and clearly has a unique

equation. Equation (9.11) shows that the sequence (K̃k) is a solution of

this system of equations; since the solution is unique, it follows that the

cumulant

Kk = K̃k

is given by (9.12) after the substitution j = k.

9.9. Caterpillar graphs with labeled vertices. We say that a connected,

weighted, oriented graph G is a caterpillar graph with k labeled vertices if

its vertex set is equal to {1, . . . , k}, the weights of the edges fulfill the con-

vention (9.3), and there exists some way of tagging the vertices of G in such

a way that G becomes an element of MCtag
k , see Section 9.3. An example

of a caterpillar graph with labeled vertices is given in Figure 27b. The set

of caterpillar graphs with k labeled vertices will be denoted by C lab
k . This

definition may sound a bit abstract so we provide an alternative description

below.

Note that for any connected of a graph G ∈ MCtag
k there is a unique way

of labeling the vertices so that the requirement (9.3) is fulfilled, given as

follows. We start by assigning the number 1 to the unique black vertex with

no incoming edges. Then, in the order given by the weights of the edges,
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1 2 3 4 5 6 7

Figure 28. An example of a caterpillar graph with k = 7
labeled vertices. With the notations of (9.13) we have ℓ = 3
black vertices and b1 = 1, b2 = 2, b3 = 4; additionally we

use the convention that b4 = 8. The weights of the edges

were not shown.

we number all endpoints of the edges outgoing from this vertex number 1
by successive natural numbers. We repeat the process at the unique black

endpoint of an edge outgoing from 1, and continue until we visit all black

vertices. In this way for any edge e = (v1, v2) its weight is equal to the

difference of the labels of the endpoints: w(e) = v2 − v1. The outcome is

clearly an element of C lab
k , and each element of C lab

k can be obtained in this

way.

The above procedure shows that the elements of C lab
k can be character-

ized as follows. For each G ∈ C lab
k with the set of black vertices

(9.13) BG = {b1, . . . , bℓ} ⊆ {1, . . . , k}, b1 < · · · < bℓ

we have that ℓ ≥ 1 and b1 = 1. We will use the convention that bℓ+1 = k+1.

The black vertices are connected by a series of oriented edges

(b1, b2), (b2, b3), . . . , (bℓ−1, bℓ).

Additionally, each black vertex bi (with i ∈ {1, . . . , ℓ}) is connected to the

red vertices bi + 1, bi + 2, . . . , bi+1 − 1 which immediate follow it by a

collection of oriented edges

(bi, bi + 1), (bi, bi + 2), . . . , (bi, bi+1 − 1),

see Figure 28 for an example.

In particular, since the structure of a caterpillar graph with labeled ver-

tices is determined by its set of black vertices, it follows that |C lab
k | = 2k−1.

9.10. The second formula for the cumulants. We continue the discussion

from Section 9.8 and revisit the formula (9.12) for the cumulant Kk. As we

already mentioned, the connected graph G ∈ Cmark
k can be labeled in a

unique way so that it becomes an element of C lab
k . On the other hand, for

each graph G ∈ C lab
k , there exist k! ways to mark the vertices so that the
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1

1

2
(a)

1

1

2
(b)

Figure 29. (a) Caterpillar graph with one black and one red

vertices. (b) Caterpillar graph with two black vertices.

outcome is a caterpillar graph with k marked vertices. In this way we proved

the following intermediate result.

Corollary 9.4. Let Λ be an interlacing sequence with a generic set of con-

cave corners. For each u0 ∈ R the n-th formal cumulant considered in

Section 8.5 is given by the following sum over caterpillar graphs with k la-

beled vertices

(9.14) Kk = (k − 1)!
∑

G∈Clab
k

∑

x∈DG

(−1)|BG|−1fG
∏

j∈{1,...,k}
µΛ(xj).

For example, for k = 2 we obtain

K2 =
∑

x1≤u0

∑

x2

µΛ(x1)µΛ(x2)

x2 − x1 + 1
−
∑

x1≤u0

∑

x2≤u0

µΛ(x1)µΛ(x2)

x2 − x1 + 1
.

The first summand corresponds to the caterpillar graph shown of Figure 29a,

and the second summand corresponds to the caterpillar graph shown of Fig-

ure 29b.

9.11. Sum over non-crossing alternating trees.

Proposition 9.5. Let Λ be an interlacing sequence with a generic set of

concave corners. For each u0 ∈ R the n-th formal cumulant considered in

Section 8.5 is given by the following sum over noncrossing alternating trees

(9.15) Kk = (k − 1)!
∑

H∈Tk

∑

x∈DH

(−1)|BH |−1fH
∏

j∈{1,...,k}
µΛ(xj).

Proof. In (9.14) we can reverse the order of the sums and write

Kk = −(k − 1)!
∑

x1,...,xk∈X
Ck(x1, . . . , xk)

∏

j∈{1,...,k}
µΛ(xj),

where

Ck(x1, . . . , xk) :=
∑

G∈Clab
k

(x1,...,xk)∈DG

(−1)|BG|fG(x1, . . . , xk).
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Similarly, the right-hand side of (9.15) can be written as

−(k − 1)!
∑

x1,...,xk∈X
Tk(x1, . . . , xk)

∏

j∈{1,...,k}
µΛ(xj),

where

Tk(x1, . . . , xk) :=
∑

H∈Tk

(x1,...,xk)∈DH

(−1)|BH |fH(x1, . . . , xk).

As a side remark note that Tk(x1, . . . , xk) is a quantity which (up to a scal-

ing factor) is closely related to the random variable Z from Remark 3.4.

The result is a consequence of Lemma 9.6 below. �

Lemma 9.6. With the above notations,

Ck(x1, . . . , xk) = Tk(x1, . . . , xk)

holds true for any k ≥ 1 and any x1, . . . , xk ∈ R for which the left-hand

side of the equality does not involve division by zero.

Proof. In the special case k = 1 we have that the set of graphs C lab
1 = T1

which contributes to C1(x1), respectively to T1(x1), consists of a single

element depicted in Figure 14a. Thus

C1(x1) = T1(x1) =

{

−1 if x1 ≤ u0,

0 if x1 > u0.

Let k ≥ 2. In the case when xk ≤ u0 we obtain that

Tx1,...,xk
= 0

because the rightmost vertex of any non-crossing alternating tree H ∈ Tk is

white thus (x1, . . . , xk) is not a decoration of H and the sum runs over the

empty set.

Let C lab(V ) and T(V ) denote, respectively, the set of caterpillar graphs

and the set of non-crossing alternating trees such that their vertex set is equal

to V . In particular C lab
(
{1, . . . , k}

)
= C lab

k and T
(
{1, . . . , k}

)
= Tk for

any natural number k.

Let H ∈ Tk be a non-crossing alternating tree with k vertices. Obvi-

ously H contains the edge e = (1, k) connecting the leftmost and the right-

most vertex. After removing the edge e from the graph H , the resulting

graph H \ e has two connected components: H1 ∈ Ti−1

(
{1, . . . , i− 1}

)

and H2 ∈ Tk−i

(
{i, . . . , k}

)
for some i ∈ {2, . . . , k}. In the special case

when the graph H2 consists of a single (white) vertex, we change its color

to black. This way, each non-crossing alternating tree with the vertex set
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{1, . . . , k} decomposes uniquely into a sum of the edge e and two non-

crossing alternating trees H1 with the vertex set {1, . . . , i− 1} and H2 with

the vertex set {i, . . . , k}.
If i 6= k then (x1, . . . , xk) is a decoration of H if and only if the prefix

(x1, . . . , xi−1) is a decoration of H1 and the suffix (xi, . . . , xk) is a decora-

tion of H2; the special case when i = k and the tree H2 consists of a single

vertex has to be considered separately. Therefore we obtain the following

recurrence relation:

Tk(x1, . . . , xk) =







0 if xk ≤ u0,

k−1∑

i=2

Ti−1(x1,...,xi−1)Tk−i+1(xi,...,xk)

xk−x1+k−1

+Tk−1(x1,...,xk−1)
xk−x1+k−1

if xk > u0.

We will prove that the sequence of functionsCk satisfies the same recurrence

relation.

If k ≥ 2 and xk ≤ u0 then C(x1, . . . , xk) = 0 because we can pair

caterpillar graphs from C lab
k into pairs that differ only in the color of the

far-right vertex, and the contribution of each pair to the sum is zero.

Let k ≥ 2 be a natural number, let xk > u0 and let G ∈ C lab
k be a

caterpillar graph. There is a unique path (i1, . . . , it) with t ≥ 2 from

the vertex 1 to the vertex k which means that i1 = 1 and it = k, and

(i1, i2), (i2, i3), . . . , (it−1, it) ∈ EG. In the special case when e = (1, k) ∈
EG, we have t = 2 and e1 = e. Using the telescopic sum

xk − x1 + k − 1 =

t−1∑

j=1

(
xij+1

− xij + ij+1 − ij
)

we obtain

fG(x1, . . . , xk) =

t−1∑

j=1

xij+1
− xij + ij+1 − ij

xk − x1 + k − 1
fG(x1, . . . , xk)

=

t−1∑

j=1

fG\ej (x1, . . . , xk)

xk − x1 + k − 1
,

where G \ ej denotes the graph G with the edge ej removed. Therefore,

C(x1, . . . , xk) =
∑

G∈Clab
k

(x1,...,xk)∈DG

(−1)|BG|
t−1∑

j=1

fG\ej (x1, . . . , xk)

xk − x1 + k − 1
.



FLUCTUATIONS OF SCHENSTED ROW INSERTION 69

In addition, every graph G ∈ C lab
k after removing any edge ej splits in a

unique way into the sum of two caterpillar graphs G1 ∈ C lab
i−1

(
{1, . . . , i− 1}

)

and G2 ∈ C lab
k−i+1

(
{i, . . . , k}

)
for some i ∈ {2, . . . , k}. In the special case

when i = k and the graph G2 consists a single (red) vertex, we change

its color to black; this case will require separate analysis. In this way

we can write C(x1, . . . , xk) as a triple sum over all possible choices of the

number i, over all graphs G1 ∈ C lab
i−1

(
{1, . . . , i− 1}

)
and over all graphs

G2 ∈ C lab
k−i+1

(
{i, . . . , k}

)
, i.e.,

C(x1, . . . , xk) =

k−1∑

i=2

∑

G1∈Clab
i−1({1,...,i−1})

(x1,...,xi−1)∈DG1

∑

G2∈Clab
k−i+1({i,...,k})

(xi,...,xk)∈DG2

(−1)|BG1
|+|BG2

|fG1fG2

xk − x1 + k − 1

+
∑

G1∈Clab
i−1({1,...,k−1})
BG1

⊆B

(−1)|BG1
|fG1

xk − x1 + k − 1

=
k−1∑

i=2

Ci−1(x1, . . . , xi−1)Ck−i+1(xi, . . . , xk)

xk − x1 + k − 1
+

Ck−1(x1, . . . , xk−1)

xk − x1 + k − 1

if xk > u0.

The sequences of rational functionsCk andTk satisfy the same recurrence

relation and have the same initial condition, which completes the proof. �

9.12. Proof of Theorem 3.2.

Proof of Theorem 3.2. When the number u0 is not an integer, we apply

Lemma 8.2 and evaluate the cumulant Kk(Λ
ǫ, u0) using Proposition 9.5.

However, when the number u0 is an integer, the theorem is satisfied for

any number u ∈ (u0, u0 + 1), as shown above. Since FT (u0) is a right-

continuous function, then

FT (u0) = lim
u→u0

FT (u),

and Theorem 3.2 also holds for the number u0. �
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