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Abstract

Let M ◦N denote the Schur product of two matrices M and N . A graph X with
adjacency matrix A is walk regular if Ak ◦ I is a constant times I for each k ≥ 0,
and X is 1-walk-regular if it is walk regular and Ak ◦ A is a constant times A
for each k ≥ 0. Assume X is 1-walk regular. Here we show that by deleting an
edge in X , or deleting edges of a graph inside a clique of X , we obtain families
of graphs that are not necessarily isomorphic, but are cospectral with respect
to four types of matrices: the adjacency matrix, Laplacian matrix, unsigned
Laplacian matrix, and normalized Laplacian matrix. Furthermore, we show
that removing edges of Laplacian cospectral graphs in cliques of a 1-walk reg-
ular graph results in Laplacian cospectral graphs; removing edges of unsigned
Laplacian cospectral graphs whose complements are also cospectral with re-
spect to the unsigned Laplacian in cliques of a 1-walk regular graph results in
unsigned Laplacian cospectral graphs.
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1 Introduction

There are a number of useful matrices we can associate with a graph X . We
have, of course, the adjacency matrix A = A(X ). If D is the diagonal matrix
with Di ,i equal to the valency of the vertex i , we also have the Laplacian L(X ) =
D − A, the unsigned Laplacian (also called signless Laplacian) S(X ) = D + A,
and the normalized Laplacian N (X ) = D−1/2LD−1/2 (assume for now that X
has no isolated vertices). It has long been known that, although it is a useful
invariant, the spectrum of A(X ) does not determine X . In this paper we provide
new constructions of families of graphs X and Y that are not distinguished by
the spectrum of any of the four matrices just given.

One of our main results implies the following.

1.1 Theorem. If X is a strongly regular graph. Then for any two edges e and f of
X , the graphs X \e and X \ f are cospectral with respect to the adjacency matrix,
the Laplacian matrix, the unsigned Laplacian and the normalized Laplacian.

For a concrete example, by use of a strongly regular graph with parameters
(25,12,5,6), we obtain a family of 150 graphs which are pairwise non-isomorphic,
such that any two graphs are cospectral with cospectral complements with re-
spect to A, L, S and N .

We discuss some related earlier results. In [6], Godsil and McKay gave sev-
eral constructions for adjacency cospectral graphs. Dutta constructed unsigned
Laplacian cospectral graphs in [4] and Butler [1] constructs graphs that are
cospectral with respect to adjacency matrix and normalized Laplacian matrix.
In [2, Corollary 1.1], Butler et al. construct graphs that are cospectral with re-
spect to adjacency matrix, Laplacian, unsigned and normalized Laplacian ma-
trices. In [11, Theorem 4.1], Wang et al. give a construction of pairs of graphs
cospectral for all four matrices.

Let ∆(X ) denote the distance matrix of that graph X , and let X denote the
complement of X . In 1977, McKay [9] constructed pairs of non-isomorphic
trees that are not distinguished by the spectrum of A(T ), A(T ), L(T ), S(T ) and
∆(T ). (His full list of matrices is longer.) Osborne [10, Theorem 3.3.2] constructs
pairs of trees that are not distinguished by the spectrum of A(T ), A(T ), L(T ),
S(T ), and N (T ).

The graphs we construct are related by edge-deletion. For vertex deletion,
we have the following. Let X be a graph with adjacency matrix A. For any sub-
set R of V (X ), denote the induced subgraph of X on V (X )\R by X \R, and the
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characteristic polynomial of X with respect to the adjacency matrix as φ(X , t ).
Jacobi’s Theorem [5, Chapter 4] connects characteristic polynomials of graphs
and determinant of a principal submatrix of the inverse of a matrix:

det
(
(t I − A)−1

R,R

)= φ(X \R, t )

φ(X , t )
.

This implies that if X is a strongly regular graph, and Y1, Y2 are induced sub-
graphs of X that are cospectral with cospectral complements, then so are X \Y1

and X \Y2.
Moreover, if we use strongly regular graphs in our construction, we obtain

families of graphs such that graphs in the same family are pairwise cospectral
with respect to the four matrices, and so are their complements.

We also show that with Laplacian cospectral graphs of small size, we can
construct Laplacian cospectral graphs of larger size by removing the edges of
the smaller cospectral pair from cliques of a 1-walk regular graph; similarly,
with a pair of unsigned Laplacian cospectral graphs of small size whose comple-
ments are also unsigned Laplacian cospectral, we can obtain unsigned Lapla-
cian cospectral graphs of larger size.

This work is motivated by quantum state transfer on graphs. Let X be a
graph. Let Y1 and Y2 be two spanning subgraphs of X . If there is a time t such
that e i tL(X )L(Y1)e−i tL(X ) = L(Y2), then we say there is subgraph transfer from Y1

to Y2. If subgraph transfer occurs between Y1 and Y2, then in addition to Y1

and Y2 being similar, L(X )−L(Y1) and L(X )−L(Y2) are also similar. That is, the
edge-deleted subgraphs are cospectral.

2 1-walk regular graphs

A graph is walk-regular, if for any positive integer k, the number of closed walks
of length k is the same at all vertices. If further, the number of walks from vertex
u to v of length k is the same for all adjacent vertex pairs u, v , then we say X is
1-walk regular. Let A and B be two matrices of the same size, say m ×n, then
their Schur product A ◦B is a matrix of the same size such that

(A ◦B) j ,k = A j ,k B j ,k .

In terms of this matrix product, a graph X with adjacency matrix A is 1-walk
regular if and only if, for any positive integer k, there exist scalars ak ,bk such
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that
Ak ◦ I = ak I and Ak ◦ A = bk A.

Distance-regular graphs are 1-walk regular; more generally, any graph in a sym-
metric association scheme [5, Chapter 12] is 1-walk regular.

Let M be a Hermitian matrix. For any eigenvalue θ of M , let Eθ denote the
orthogonal projection matrix onto the eigenspace associated to θ. Assume M
has exactly m distinct eigenvalues θ1, . . . ,θm , then

M =
m∑

r=1
θr Er .

and the above equation is called the spectral decomposition of M . If f (x) is a
function which is defined on each eigenvalue of M , then f (M) =∑

r f (θr )Er . In
particular,

(t I −M)−1 =∑
r

1

t −θr
Er .

Since each of the orthogonal projection matrices E1, . . . ,Em is a polynomial
in M , the matrix algebra 〈M〉 generated by M is the same as the one generated
by {E1, . . . ,Em}. Therefore a graph X with adjacency matrix A = ∑

r θr Er is 1-
walk regular if and only if for each r , there exist scalars αr and βr such that

Er ◦ I =αr I , Er ◦ A =βr A.

We have seen two commonly used characterizations of 1-walk regular graphs:
in terms of powers of adjacency matrix, or in terms of eigenspace projection
matrices. Now we give more characterizations. In particular, 1-walk regularity
is equivalent to cospectrality of certain subgraphs of X .

We denote the adjugate of a matrix M by adj(M). Let X be a graph, and
denote its characteristic polynomial det(t I−A(X )) byφ(X , t ). For any R ⊆V (X ),
let X \R denote the graph obtained from X by deleting vertices in R. When
R = {u}, we use X \u instead.

2.1 Theorem. Let X be a graph on n vertices with adjacency matrix A. Assume
A =∑m

r=1θr Er is the spectral decomposition of A. The following are equivalent.

(a) X is 1-walk regular.

(b) For any positive integer k, there exist scalars ak and bk such that Ak ◦ I =
ak I and Ak ◦ A = bk A.
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(c) For any integer k = 1, . . . ,n − 1, there exist scalars ak and bk such that
Ak ◦ I = ak I and Ak ◦ A = bk A.

(d) For r = 1, . . . ,m, there exist scalars αr and βr such that Er ◦ I = αr I and
Er ◦ A =βr A.

(e) There exist functions a(t ) and b(t ) such that (t I−A)−1◦I = a(t )I and (t I−
A)−1 ◦ A = b(t )A.

(f ) There exist polynomials f (t ) and g (t ) such that adj(t I −A)◦ I = f (t )I and
adj(t I − A)◦ A = g (t )A.

(g) φ(X \u, t ) is the same for all u ∈ V (X ), and φ(X \{u, v}, t ) is the same for
adjacent vertices u, v in X .

Proof. The equivalence between (a), (b) and (d) have been shown. The equiv-
alence of (b) and (c) follows from Cayley-Hamilton Theorem. The equivalence
of (d) and (e) follows from (t I − A)−1 =∑m

r=1
1

t−θr
Er . The equivalence of (e) and

( f ) follows from adj(t I − A) =φ(X , t )(t I − A)−1.
Finally we prove the equivalence of ( f ) and (g ). Note that [adj(t I − A)]u,u =

φ(X \u, t ), the equivalence of φ(X \u, t ) is the same for all u ∈V (X ) and adj(t I −
A) ◦ I = f (t )I for some f (t ) follows. Denote [adj(t I − A)]u,v as φuv (X , t ), it is
known that φuv (X , t ) can be expressed in terms of the characteristic polynomi-
als of subgraphs of X with at most two vertices deleted [5, Chapter 4]. In fact,
for any two vertices u, v of X ,

φu,v (X , t ) =√
φ(X \u, t )φ(X \v, t )−φ(X , t )φ(X \{u, v}, t ). (2.1)

Therefore for a walk-regular graph X , φ(X \{u, v}, t ) is the same for all adjacent
vertex pairs u and v if and only if φu,v (X , t ) is, and hence ( f ) and (g ) are equiv-
alent.

The above theorem implies that if X is 1-walk regular, then for a function
f (x) defined on the eigenvalues of the adjacency matrix A, the matrix f (A) has
constant diagonal, and is constant on the entries corresponding to edges of X .
In fact a similar result hold for the Laplacian, unsigned Laplacian, and normal-
ized Laplacian matrix.

2.2 Lemma. Let X be a 1-walk regular graph. Let M denote the adjacency, Lapla-
cian, unsigned Laplacian, or normalized Laplacian of X . If f (x) is a function
that is defined on all eigenvalues of M , then there exist α f and β f such that

f (M)◦ I =α f I and f (M)◦ A =β f A.
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Proof. The result for adjacency matrix follows from Theorem 2.1. The other
cases follows from the fact a function in M is also a function in A. In fact,
assume X is d-regular. then f (L) = f (d I − A), f (S) = f (d I + A), and f (N ) =
f (I − 1

d A).

3 Constructing graphs cospectral with respect to A,
L, S and N

Let X be a 1-walk regular graph. We know from Theorem 2.1 that, all the graphs
in the set {X \u | u ∈ V (X )} are adjacency cospectral, and so are all graphs in
{X \{u, v} | {u, v} ∈ E(X )}. Now we show that deleting any edge of X results in
adjacency cospectral graphs. The characteristic polynomials of these vertex-
deleted or edge-deleted subgraphs of any graph are closely related. For an edge
e of X , let X \e denote the graph obtained by deleting the edge e from X .

3.1 Lemma. [5, Chapter 4] Let X be a graph and let e = {u, v} be an edge of X .
Then

φ(X , t ) =φ(X \e, t )−φ(X \{u, v}, t ) (3.1)

−2
√
φ(X \u, t )φ(X \v, t )−φ(X \e, t )φ(X \{u, v}, t ).

Now we show delete an edge in a 1-walk regular graph results in adjacency
cospectral graphs.

3.2 Theorem. Let X be a 1-walk regular graph. Then for any two edges e and f
of X , the two graphs X \e and X \ f are adjacency cospectral.

Proof. Assume X has n vertices and e = {u, v}. Solving φu,v (X , t ) from (3.1), we
have

φ(X \e, t ) =φ(X , t )−φ(X \{u, v}, t )±2
√
φ(X \u, t )φ(X \v, t )−φ(X , t )φ(X \{u, v}, t )

=φ(X , t )−φ(X \{u, v}, t )±2φu,v (X , t ) by (2.1).

Recall that for a graph Y on n vertices, the coefficient of xn−2 in φ(Y , t ) is equal
to −|E(Y )|. Now comparing the coefficient of xn−2 on both sides of the above
equation, we know that only the plus sign is valid, that is,

φ(X \e, t ) =φ(X , t )−φ(X \{u, v}, t )+2φu,v (X , t ),

Now the result follows from ( f ) and (g ) in Theorem 2.1 (recallφu,v (X , t ) = [adj(t I−
A)]u,v ).
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3.3 Example. As mentioned in Section 4, there are 15 non-isomorphic strongly
regular graphs with parameters SRG(25,12, 5, 6). By Theorem 3.2, for each of
these graphs, by deleting an edge, we obtain adjacency cospectral graphs. In
particular, two of the 15 strongly regular graphs have the property that deleting
an edge from the graph results in non-isomorphic graphs. They each provides a
family of 150 graphs such that any two graphs in the same family are cospectral
but not isomorphic. These two graphs correspond to X1 and X3 in Table 1, with
graph6-string being, respectively,

’X~zfCqTc{YPT‘fUQidaeNRKxItIMpholosZFKjXHZGnDZDYHwuF’,
’X~zfCqTc{YPR‘jUQidaeNRLXIrIMphoxKsVXKixPZCnD[fBHuQl’.

In fact, as we will see in the following, a more general cospectral property
holds when edges are removed from a 1-walk regular graph.

3.1 Deleting subgraphs in cliques

We have established that by deleting an edge from a 1-walk regular graph, we
get a set of adjacency cospectral graphs. In fact, these graphs are also cospectral
with respect to Laplacian matrix, unsigned Laplacian matrix, and normalized
Laplacian matrix. We show a more general result: deleting edges of a graph
from a clique of 1-walk regular graphs results in graphs cospectral with respect
to A,L,S and N .

We make use of the following result about the inverse of a rank-1 update of
an invertible matrix.

3.4 Theorem (Sherman-Morrison). Suppose B is an n ×n invertible real matrix
and u, v ∈ Rn . Then B +uvT is invertible if and only if 1+ vT B−1u 6= 0. In this
case,

(B +uvT )−1 = B−1 − B−1uvT B−1

1+ vT B−1u
. (3.2)

For two matrices C and D such that C D and DC are both defined, det(I −
C D) and det(I −DC ) are closely related.

3.5 Lemma. [7] Assume C and DT are both matrices of size m ×n, then

det(Im −C D) = det(In −DC ).

In particular, if C = u and D = vT for some real vectors u, v ∈Rn , we have

det(In −uvT ) = (1− vT u). (3.3)
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First we prove a result concerning entries of a matrix related to edges dele-
tion in a clique of a 1-walk regular graph.

3.6 Lemma. Let X be a 1-walk regular graph with adjacency matrix A. Let u1, v1, . . . ,ur , vr

be vertices in the same clique of X . Then for any function f (x) defined on the
eigenvalues of A, the value of

eT
ur

(
t I − f (A)±eu1 eT

v1
±·· ·±eur−1 eT

vr−1

)−1
evr (3.4)

is independent on the choice of the clique and on the ordering of vertices of the
chosen clique.

Proof. The function g (x) = (t − f (x))−1 is defined on all eigenvalues of A. By
Lemma 2.2, there existα(t ),β(t ) such that

(
t I − f (A)

)−1◦I =α(t )I and
(
t I − f (A)

)−1◦
A =β(t )A.

We prove the result by induction. When r = 1, since u1 and v1 are in the
same clique of X ,

eT
u1

(
t I − f (A)

)−1 ev1 = δu1,v1α(t )+ (1−δu1,v1 )β(t ),

which only depends on whether u1 and v1 are the same or not.
Let

Ms = t I − f (A)±eu1 eT
v1
±·· ·±eus eT

vs
, s = 1, . . . ,r. (3.5)

Then (3.4) can be written as eT
ur

M−1
r−1evr . Assume the result holds for r = k, that

is, the value of eT
uk

M−1
k−1evk is independent on the choice of the clique and on

the ordering of vertices of the chosen clique. Now

eT
uk+1

M−1
k evk+1

=eT
uk+1

(
Mk−1 ±euk eT

vk

)−1
evk+1

=eT
uk+1

(
M−1

k−1 ∓
M−1

k−1euk eT
vk

M−1
k−1

1+eT
vk

M−1
k−1euk

)
evk+1 (by (3.2))

=eT
uk+1

M−1
k−1evk+1 ∓

(
euk+1 M−1

k−1euk

)(
eT

vk
M−1

k−1evk+1

)
1+eT

vk
M−1

k−1euk

,

whose value does not depend on which clique the vertices are in, and remains
unchanged if we reorder the vertices insides the clique, since each term satisfies
this condition by the induction hypothesis.
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3.7 Theorem. Let X be a 1-walk regular graph. Assume the clique number of
X is ω. Then for any graph Y on at most ω vertices, removing the edges of Y
in a clique of X results in graphs that are cospectral with respect to adjacency,
Laplacian, unsigned Laplacian, and normalized Laplacian matrices.

Proof. Let Ŷ be the graph obtained from Y by adding |V (X )| − |V (Y )| isolated
vertices; order the vertices of Ŷ so that vertices of Y correspond to a clique in
X . Assume Y has m edges and the edges of Ŷ are ei = {ai ,bi }, i = 1, . . . ,m. We
prove the result for Laplacian matrix. That is

det
(
t I −L+ (ea1 −eb1 )(ea1 −eb1 )T +·· ·+ (eam −ebm )(eam −ebm )T )

does not depend on which clique of X the vertex set of Y correspond to or how
the vertices of Y are ordered. We prove by induction. When m = 1,

det
(
t I −L+ (ea1 −eb1 )(ea1 −eb1 )T )

=det(t I −L)det
(
I + (t I −L)−1(ea1 −eb1 )(ea1 −eb1 )T )

=det(t I −L)
(
1+ (ea1 −eb1 )T (t I −L)−1(ea1 −eb1 )

)
( by (3.3))

=det(t I −L)
(
1+eT

a1
(t I −L)−1ea1 −eT

a1
(t I −L)−1eb1 −eT

b1
(t I −L)−1ea1

+eT
b1

(t I −L)−1eb1

)
,

which is independent on the choice of the edge {a1,b1}, since each summand
in the second factor does not by Lemma 3.6. Again define Ms as in (3.5). With
f (A) = d I − A and some proper choice of ± signs and choice of vertices ui and
vi in (3.5), we have

M4m = t I −L+ (ea1 −eb1 )(ea1 −eb1 )T +·· ·+ (eam −ebm )(eam −ebm )T .

Now the Laplacian characteristic polynomial of the graph obtained from X
by deleting the edges of Ŷ satisfy

det
(
t I −L+ (ea1 −eb1 )(ea1 −eb1 )T +·· ·+ (eam −ebm )(eam −ebm )T )

= det
(
M4(m−1) + (eam −ebm )(eam −ebm )T )

= det(M4(m−1))det
(
I + (

M4(m−1)
)−1(eam −ebm )(eam −ebm )T

)
= det(M4(m−1))

(
1+ (eam −ebm )T M−1

4(m−1)(eam −ebm )
)

( by (3.3))

= det(M4(m−1))
(
1+eT

am
M−1

4(m−1)eam −eT
am

M−1
4(m−1)ebm −eT

bm
M−1

4(m−1)eam

+eT
bm

M−1
4(m−1)ebm

)
.
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Since by induction the first factor, and by Lemma 3.6 each summand in the sec-
ond factor do not depend on the choice of the clique in X nor on the ordering
of vertices of Y , the result follows.

As above, with proper choice of signs and vertices in (3.5), we can prove
the case for adjacency matrix and unsigned Laplacian matrix similarly, where
deleting an edge corresponds to t I −A+eaeT

b +ebeT
a in the adjacency case, and

corresponds to t I −S + (ea +eb)(ea +eb)T in the unsigned Laplacian case.
For normalized Laplacian case, even though the perturbation to N = I − 1

d A
from an edge deletion is not just a sum of simple outer product of basis vectors
ei , but it works similarly. Let X be a connected graph with no vertices of degree

1. Since the normalized Laplacian N (X ) = D− 1
2 LD− 1

2 and D−1L are similar:

D−1L(X ) = D− 1
2 N (X )D

1
2 ,

and D−1L = D−1(D−A) = I −D−1 A, we can prove the claim by showing that the
characteristic polynomial of D(X \e)−1 A(X \e) are all the same when removing
any edge e = {a,b} from X . Note that D(X ) = d I here. Now

det
(
t I −D(X \e)−1 A(X \e)

)
=det

[
t I −D(X )−1 A(X )+ea

(
(

1

d
− 1

d −1
)eT

a A+ 1

d −1
eT

b

)
+eb

(
(

1

d
− 1

d −1
)eT

b A+ 1

d −1
eT

a

)]
=det(t I − 1

d
A)

(
(

1

d
− 1

d −1
)eT

a A(t I − 1

d
A)−1ea + 1

d −1
eT

b (t I − 1

d
A)−1ea

+ (
1

d
− 1

d −1
)eT

b A(t I − 1

d
A)−1eb +

1

d −1
eT

a (t I − 1

d
A)−1eb

)
.

All the difference is the argument is that instead of having the function f (A)
being f (A) = (I − 1

d A)−1 for the base step, we also have a combination of f (A) =
(I − 1

d A)−1 and f (A) = A(I − 1
d A)−1.

3.8 Remark. Let X be a 1-walk regular graph on n vertices with adjacency ma-
trix A. Let f (x) be a function defined on the eigenvalues of A. Let B be a square
matrix of size n, all of whose non-zero entries correspond to a clique of X . By
use of Lemma 3.6, the argument in Theorem 3.7 can in fact be used to prove
that det

(
t I − f (A)−B

)
does not depend on the choice of a clique in X to which

the non-zero entries of B corresponds nor on the ordering of the vertices of X
inside the clique.
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As a special type of 1-walk regular graph, there is more we can say about
strongly regular graphs.

3.9 Corollary. Let X be a strongly regular graph with clique number ω and let
Y be any graph on at most ω vertices. Removing edges of Y from cliques of X
results in cospectral graphs with cospectral complement, with respect to adja-
cency, Laplacian, unsigned Laplacian, and normalized Laplacian matrix.

Proof. For strongly regular graphs, in addition to f (A)◦ I =α f I , f (A)◦ A =β f A,
we also have f (A)◦(J−I −A) = γ f (J−I −A) for some γ f , since a strongly regular
graph SRG(n,k; a,c) with adjacency matrix A satisfies A2 = kI +a A+c(J−I −A).
The same argument in the proof of Theorem 3.7 shows that adding edges of a
graph Z inside a coclique of a strongly regular graph X results in graphs that
are cospectral with respect to A,L,S, N . Now the result follows from the fact
that deleting edges of Z in a clique of X corresponds to adding edges of Z in
the corresponding cocliqe of X̄ and the fact that X̄ is also 1-walk regular.

Hence the graphs we obtained in Example 3.3 are cospectral with cospectral
complement with respect to A,L,S and N .

4 Some examples

There are exactly 15 non-isomorphic strongly regular graphs with parameters
SRG(25,12, 5, 6). Their adjacency matrices can be found at Spence’s website:
http://www.maths.gla.ac.uk/~es/srgraphs.php. In Table 1, we denote
these graphs as Xi for i = 0,1, . . . ,14, in accordance with the order of the ad-
jacency matrices given on the website. Exactly one of these graphs, X14, is edge-
transitive, that is, deleting any edge from the graph, all the resulting graphs are
isomorphic. This is the Latin square graph corresponding to the addition table
of Z5.

All the 15 graphs have clique number 5: with X0, . . . , X12 containing exactly
3 cliques of size 5, and X13 and X14 containing exactly 15 cliques of size 5. In
Table 1, for each of the above 15 strongly regular graphs X , we show the number
of pairwise non-isomorphic graphs that results when we delete the edges of a
small graph from cliques of X (so the graphs are cospectral with respect to A,
L, S, and N ). These small graphs include K2, K3, K4, P3, and two graphs on 5
vertices. For example, removing an edge from X0 gives a family of 81 graphs,
they are pairwise non-isomorphic but cospectral with respect to A, L, S and N .
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Similarly, removing edges of a triangle from X0 gives such a family of graphs of
size 132.

Graphs

Subgraphs
removed from

a clique
of Xi

K2 K3 K4 P3
0

1
2

3

4

2

3
4

1
0

X0 81 132 48 252 17 9
X1 150 250 89 373 30 15
X2 50 86 32 216 10 5
X3 150 250 89 373 30 15
X4 81 134 50 247 17 9
X5 79 132 46 304 16 15
X6 29 50 17 148 6 5
X7 31 50 19 155 7 9
X8 50 86 32 232 10 15
X9 33 52 20 97 8 6
X10 6 10 6 24 2 3
X11 79 134 48 298 19 14
X12 29 49 15 101 6 4
X13 5 10 5 16 5 4
X14 1 2 1 5 1 1

Table 1: The number of pairwise non-isomorphic (cospectral) subgraphs of Xi

obtained by deleting edges of a small graph, K2, K3, K4, P3, ect., respectively, in
cliques of Xi

5 Matrices

In the next section, we provide more general ways to construct Laplacian or
unsigned Laplacian cospectral graphs. In this section, we develop some tools
for that.

12



5.1 Similar matrices

Let M1, M2 be two cospectral Hermitian matrices. We give a characterization of
when their rank one updates M1 − v1v∗

1 and M2 − v2v∗
2 are also cospectral.

5.1 Theorem. Let M1 and M2 be two similar Hermitian matrices of size n. Let
v1 and v2 be two vectors in Cn . Then the following are equivalent:

(a) v1v∗
1 −M1 and v2v∗

2 −M2 are also similar,

(b) v∗
1 (t I −M1)−1v1 = v∗

2 (t I −M2)−1v2,

(c) there exists a unitary matrix U such that

U M1 = M2U , and U v1 = v2.

Furthermore, if M1, M2, v1 and v2 are all real, then the unitary matrix U in
condition [(c)] can be chosen to be orthogonal.

Proof. We first prove that conditions (a) and (b) are equivalent. Let M1 and M2

be two similar Hermitian matrices. For i = 1,2,

det
(
t I − (vi v∗

i −Mi )
)= det(t I +Mi − vi v∗

i )

= det
(
(t I +Mi )

[
I − (t I +Mi )−1vi v∗

i

])
= det(t I +Mi )

(
1− v∗

i (t I +M1)−1vi
)
. (5.1)

Since the matrices involved are Hermitian, we know that v1v∗
1 −M1 and v2v∗

2 −
M2 are similar if and only if det

(
t I −(v1v∗

1 −M1)
)= det

(
t I −(v2v∗

2 −M2)
)
. There-

fore by equation (5.1), for two similar Hermitian matrices M1 and M2, v1v∗
1 −M1

and v2v∗
2 −M2 are similar if and only if v∗

1 (t I −M1)−1v1 = v∗
2 (t I −M2)−1v2.

We now show that (b) implies (c). Let

M1 =
m∑

r=1
θr Er , M2 =

m∑
r=1

θr Fr

be the spectral decomposition of M1 and M2, respectively. Then

v∗
1 (t I −M1)−1v1 =

m∑
r=1

v∗
1 Er v1

t −θr

13



and condition (b) holds if and only if

v∗
1 Er v1 = v∗

2 Fr v2,∀r (5.2)

Now we construct a unitary matrix U such that U M1 = M2U and U v1 = v2.
Any unitary matrix U ′ that maps an orthonormal basis of each eigenspace of
M1 to an orthonormal basis of the corresponding eigenspace of M2 satisfies
U ′M1 = M2U ′. In choosing a basis for each eigenspace, we can start with any
unit vector in the eigenspace. Choose the first basis vector in the eigenspace as-
sociated to θr to be 1p

v∗
1 Er v1

Er v1 if Er v1 6= 0, and if Er v1 = 0 we don’t put any re-

strictions on the orthonormal basis of the eigenspace associated to θr . Choose
an orthonormal basis for each eigenspace of M2 in the same way. Then the
transition matrix U between the two bases is unitary and satisfies U M1 = M2U .
Furthermore, and for any r such that Er v1 6= 0, we have

U

 1√
v∗

1 Er v1

Er v1

= 1√
v∗

2 Fr v2

Fr v2.

By (5.2), we conclude that for all r , U (Er v1) = Fr v2. Thus

U v1 =U
∑

r
Er v1 =

∑
r

Fr v2 = v2.

Now we prove (c) implies (a). Assume (c) holds, then

U (v1v∗
1 −M1) = v2v∗

1 −U M1 = v2v∗
2 U −M2U = (v2v∗

2 −M2)U ,

therefore v1v∗
1 −M1 and v2v∗

2 −M2 are similar.

When M1 and M2 are adjacency matrices of cospectral graphs, we have the
following result of Johnson and Newman [8], and a similar result for unsigned
Laplacian matrices. Denote the complement of X by X̄ , and denote the all-ones
vector by 1n .

5.2 Corollary. (a) (Johnson and Newman)
If X and Y are adjacency cospectral graphs with cospectral complements,
then there is an orthogonal matrix Q such that

Q A(X )QT = A(Y ), Q A(X̄ )QT = A(Ȳ ), Q1 = 1.

14



(b) If X and Y are unsigned Laplacian cospectral graphs with cospectral com-
plements, then there is an orthogonal matrix Q such that

QS(X )QT = S(Y ), QS(X̄ )QT = S(Ȳ ), Q1 = 1.

(c) If X and Y are Laplacian cospectral graphs, then there is an orthogonal
matrix Q such that

QL(X )QT = L(Y ), QL(X̄ )QT = L(Ȳ ), Q1 = 1.

Proof. Assume X and Y have n vertices. By assumption, A(X ) and A(Y ) are
similar, and J − A(X ) and J − A(Y ) are similar. Let M1 = A(X ), M2 = A(Y ), and
v1 = v2 = 1n . By the equivalence of condition (a) and (c) in Theorem 5.1, there
exists an orthogonal matrix Q such that

Q A(X ) = A(Y )Q, Q1n = 1n .

Therefore

Q A(X̄ )QT =Q(J − I − A(X ))QT = J − I − A(Y ) = A(Ȳ ).

The proof for (b) follows similarly with S(X̄ ) = J + (n −2)I −S(X ). The proof for
(c) follows from the fact if two graphs are Laplacian cospectral then so are their
complement, L(X̄ ) = nI − J −L(X ), and from the above similar argument.

5.3 Remark. Let α,β be fixed real numbers. Let X be a graph and consider
the weighted matrix Aα,β(X ) = αD(X )+βA(X ). We say two graphs are Aα,β-
cospectral if their associated Aα,β matrices have the same characteristic poly-
nomials. Then a similar argument as in the above corollary shows that: if X
and Y are Aα,β-cospectral with cospectral complements, then there is an or-
thogonal matrix Q such that

Q Aα,β(X )QT = Aα,β(Y ), Q Aα,β(X̄ )QT = Aα,β(Ȳ ), Q1 = 1.

The fact the all-ones vector is in the null space of the Laplacian matrix of
any graph, can be used for a different proof of (c) in Corollary 5.2.

5.4 Lemma. Let Y1 and Y2 be Laplacian cospectral graphs. Then there is an
orthogonal matrix Q such that QT L(Y1)Q = L(Y2) and Q1 = 1.
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Proof. Assume Y1 and Y2 are on m vertices. Then 1p
m

1 is a unit eigenvector

associated to eigenvalue 0 of L(Yi ) for i = 1,2. Denote the eigenvalues of Yi

as θ1 = 0, . . . ,θm , and let Λ = diag(θ1 = 0, . . . ,θm). Then there exist orthogonal
matrices Qi of the form Qi = [ 1p

m
1 Q̂i ] such that QT

i L(Yi )Qi =Λ. Let Q =Q1QT
2 ,

then
QT L(Y1)Q =Q2QT

1 L(Y1)Q1QT
2 =Q2ΛQT

2 = L(Y2)

and

Q1 = [
1p
m

1 Q̂1]

[
1p
m

1T

Q̂T
2

]
1 = [

1p
m

1 Q̂1]
p

me1 = 1.

5.2 Gram matrices

Given a graph X , if we assign a direction to each edge we obtain an oriented
graph X̃ . Further, given arc (a,b), we call a its tail and b its head. The incidence
matrix of an oriented graph X̃ is the (0,±1)-matrix with rows indexed by the
vertices and columns indexed by the arcs, such that the ae-entry is equal to 1
if vertex a is the head of the arc e, −1 if a is the tail of e, and 0 otherwise. This
incidence matrix is called an oriented incidence matrix of X .

Different orientations of X result in different oriented incidence matrices of
X , but for any oriented incidence matrix B of X , we have BB T = L(X ). Further-
more, different oriented incidence matrices of the same graph are related by an
orthogonal matrix.

5.5 Theorem. Let B and C be m ×n matrices. Then there is a unitary matrix Q
such that QB =C if and only if B∗B =C∗C .
If B and C are real, then there is an orthogonal matrix Q such that QB =C if and
only if B T B =C T C .

Proof. 1, SVD: We prove the result for real matrix case. Since B T B = C T C is a
real symmetric matrix, it is orthogonally diagonalizable, say by U = [u1 . . . un]
to Λ = diag(λ1, . . . ,λn) with λ1 ≥ λ2 ≥ ·· · ≥ λn . That is, U T B T BU = Λ. Assume
rk(B) = r , then λ1 ≥ ·· · ≥λr > 0, and λr+1 = ·· · =λn = 0.

Let

vi = 1√
λi

Bui , i = 1, . . . ,r (5.3)

and let
vr+1, . . . , vm
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be an orthonormal basis of the null space of B T . Then

V = [v1 . . . vm]

is an orthogonal matrix, and

BU = [Bu1 · · · Bur Bur+1 · · · Bum]

= [
√
λ1v1 · · ·

√
λr vr 0 · · · 0] by (5.3)

=VΣ,

where Σ is the m ×n matrix with Σi ,i =
√
λi for i = 1, . . . ,r and zero elsewhere.

That is,
B =VΣU T (5.4)

is a singular value decomposition of B . Similarly, let wi = 1p
λi

Cui , i = 1, . . . ,r ,

and let wr+1, . . . , wm be an orthonormal basis of the null space of C T . Then for
W = [w1, . . . , wm],

C =WΣU T (5.5)

is a singular value decomposition of C . From (5.4) and (5.5) we have

C =WΣU T =W (V T BU )U T = (W V T )B.

Therefore Q =W V T is an orthogonal matrix satisfies QB =C .

Proof. 2, reflection induction: We prove the result for real matrix case. Let
the columns of B and C be respectively b1, . . . ,bn and c1, . . . ,cn . Assume that
rk(B) = r and that b1, . . . ,br is a basis for the column space of B . Then c1, . . . ,cr

is a basis for the column space of C .
Since b1 and c1 have the same length, the matrix Q1 representing reflection

in the hyperplane (b1 − c1)⊥ is an orthogonal matrix swapping b1 and c1 and

(Q1B)T Q1B = B T B =C T C ;

we obtain a matrix Q1B that share the same first column as C and is equivalent
to C (since (Q1B)T Q1B =C T C ). We denote Q1B as B .

Now assume inductively that bi = ci for i = 1, . . . ,k, with 1 ≤ k ≤ r . If y and z
are two vectors such that 〈y, y〉 = 〈z, z〉 and

〈ci , y〉 = 〈ci , z〉, (i = 1, . . . ,k)

17



then y − z is orthogonal to c1, . . . ,ck and the reflection in (y − z)⊥ fixes c1, . . . ,ck

and swaps y and z. If k < r , take y = Ber+1 and z = Cer+1, and the above im-
plies that there is an orthogonal matrix Qk+1 such that the first k+1 columns of
Qk+1B and C are equal.

To complete the proof, we observe that if the first r columns of B is a basis
of col(B) and are equal to the first r columns of C , then B T B = C T C implies
B =C . The theorem follows.

6 More (unsigned) Laplacian cospectral graphs

In Section 3, we constructed graphs cospectral with respect to A,L,S and N by
removing edges of the same graph from cliques of a 1-walk regular graph. In
fact, there is more we can say about the Laplacian and unsigned Laplacian case.
Removing edges of Laplacian cospectral graphs from cliques of a 1-walk reg-
ular graph results in Laplacian cospectral graphs; removing edges of unsigned
Laplacian cospectral graphs that have cospectral complements (with respect to
unsigned Laplacian) from cliques of a 1-walk regular graph results in unsigned
Laplacian cospectral graphs.

6.1 Theorem. Let X be a 1-walk regular graph with clique number ω.

(a) If Y1 and Y2 are two Laplacian cospectral graphs on at most ω vertices,
then removing edges of Y1 and Y2, respectively, from a clique of X result
in Laplacian cospectral graphs.

(b) If Y1 and Y2 are two unsigned Laplacian cospectral graphs with cospectral
complement on at most ω vertices, then removing edges of Y1 and of Y2,
respectively, from a clique of X results in unsigned Laplacian cospectral
graphs.

Proof. (a) Assume |V (X )| = n and |V (Y1)| = |V (Y2)| = m. We just need to prove
the result for the case where edges of Y1 and Y2 are removed from the same
clique of size m in X , the general case follows from this and Theorem 3.7.

For i = 1,2, let Bi be a signed incidence matrix of Yi , that is, Bi B T
i = L(Yi ). By

Lemma 5.4, there exist an orthogonal matrix Q such that QT L(Y1)Q = L(Y2) and
Q1 = 1. Hence QT B1B T

1 Q = B2B T
2 . By Theorem 5.5, there exists an orthogonal

matrix Q0 such that
B2 =QT B1Q0. (6.1)
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Assume without loss of generality that the first m vertices of X form a clique.
Let Ŷi be the graph obtained from Yi by adding n −m isolated vertices so that
Ŷi has the same vertex set as X and the vertices of Yi are labelled 1, . . . ,m. For
i = 1,2, let

B̂i =
[

Bi

0

]
be the matrix obtained from Bi by adding n−m rows of zero. Then B̂i B̂ T

i = L(Ŷi ).
Our goal is to prove that the two graphs obtained by removing edges of Ŷ1 or Ŷ2,
respectively, from X are Laplacian cospectral graphs. That is,

det
(
t I −L(X )+L(Ŷ1)

)= det
(
t I −L(X )+L(Ŷ2)

)
.

Since

det
(
t I −L(X )+L(Ŷ1)

)= det
((

t I −L(X )
)(

I + (t I −L(X ))−1 B̂1B̂ T
1

))
=φL(X , t )det

(
I + B̂ T

1 (t I −L(X )
)−1B̂1

)
( by Lemma 3.5),

it follows that it is equivalent to prove

det
(
B̂ T

1 (t I −L(X )
)−1B̂1

)= det
(
B̂ T

2 (t I −L(X )
)−1B̂2

)
.

Since X is 1-walk regular and the first m vertices form a clique of X , by
Lemma 2.2, there exist scalars α,β such that (t I −L(X ))−1 is of the form

(t I −L(X ))−1 =
[
αI −β(J − I ) M1

M2 M3

]
,

for some matrices M1, M2 and M3, whose value does not matter here. Now

det
(
B̂ T

2 (t I −L(X )
)−1B̂2

)= det
([

B T
2 0

][
αI −β(J − I ) M1

M2 M3

][
B2

0

])
= det

(
B T

2

(
αI −β(J − I )

)
B2

)
= det

(
QT

0 B T
1 Q

(
αI −β(J − I )

)
QT B1Q0

)
by (6.1)

= det
(
B T

1 Q
(
αI −β(J − I )

)
QT B1

)
= det

(
B T

1

(
αI −β(J − I )

)
B1

)
( since Q1 = 1)

= det
(
B̂ T

1 (t I −L(X )
)−1B̂1

)
.

(b) By use of the vertex-edge incidence matrix instead of an oriented inci-
dence matrix of X , and Corollary 5.2 (b), the result for unsigned Laplacian case
follows similarly.
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As in Remark 5.3, we mention a more general result on the weighted ma-
trix Aα,β(X ) = αD(X ) +βA(X ) with α ≥ |β|. In this case, Aα,β(X ) is positive-
semidefinite, and hence there exists a matrix B such that BB T = Aα,β. With a
similar proof as in Theorem 6.1 we have the following. Recall two graphs X and
Y are Aα,β-cospectral if det

(
t I − Aα,β(X )

)= det
(
t I − Aα,β(Y )

)
.

6.2 Remark. Let α,β be real numbers with α ≥ |β|. Let X be a 1-walk regular
graph with clique number w . Let Y1 and Y2 be two graphs on at most w vertices
that are Aα,β-cospectral graphs with cospectral complements. Then removing
edges of Y1 and of Y2, respectively, from a clique of X results in Aα,β cospectral
graphs.

(a) Y1 (b) Y2

Figure 1: A pair of unsigned Laplacian cospectral graphs with cospectral com-
plements

6.3 Example. Let Y1 and Y2 be the two graphs as shown in Figure 1 (also in Ta-
ble 1). They are unsigned Laplacian cospectral with cospectral complements.
By Theorem 6.1, removing edges of Y1 or edges of Y2, respectively, inside a
clique of a 1-walk regular graph gives unsigned Laplacian cospectral graphs,
which are not isomorphic (they have different degree sequences). Therefore,
for each of the strongly regular graphs in Table 1, we can take the union of the
two families of non-isomorphic graphs resulting from deleting edges of Y1 or
Y2, respectively, and get a bigger family of pairwise non-isomorphic but un-
signed Laplacian cospectral graphs. The sizes of the families of non-isomorphic
graphs resulting from deleting edges of Y1 or Y2 from cliques of X correspond to
the last two columns of Table 1. For example, deleting edges of Y1 in a clique of
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X0 gives a family of 17 non-isomorphic but (A,L,S, N ) cospectral graphs, delet-
ing edges of Y2 in a clique of X0 gives such a family of size 9. They together give
a family of 17+9 = 26 nonisomorphic unsigned Laplacian cospectral graphs.

6.4 Example. Note that for unsigned Laplacian case, the condition that the two
small graphs are unsigned Laplacian cospectral with cospectral complement
is important. For example, the two graphs Y3 and Y4 in Figure 2 are unsigned
Laplacian cospectral, but don’t have cospectral complements. Removing their
edges inside a clique of SRG(36,14,7,4) does not always result in unsigned Lapla-
cian cospectral graphs.

(a) Y3 (b) Y4

Figure 2: A pair of unsigned Laplacian cospectral graphs with non-cospectral
complements
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