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The quantum spin hall (QSH) phase, also known as the 2D topological insulator, is characterized
by protected helical edge modes arising from time reversal symmetry. While initially proposed for
band insulators, this phase can also manifest in strongly-correlated systems where conventional band
theory fails. To overcome the challenge of simulating this phase in realistic correlated models, we
propose a novel framework utilizing fermionic tensor network states. Our approach involves con-
structing a tensor representation of the fixed-point wavefunction based on an exact solvable model,
enabling us to derive a set of tensor equations governing the transformation rules of local tensors un-
der symmetry operations. These tensor equations lead to the anomalous edge theory, which provides
a comprehensive description of the QSH phase. By solving these tensor equations, we obtain varia-
tional ansatz for the QSH phase, which we subsequently verify through numerical calculations. This
method serves as an initial step towards employing tensor algorithms to simulate the QSH phase in
strongly-correlated systems, opening new avenues for investigating and understanding topological
phenomena in complex materials.

Introduction.– The discovery of the quantum spin
Hall (QSH) phase[1] has sparked research interest in
studying the interplay between symmetry and topology
in quantum materials[2, 3]. Initially proposed as a topo-
logical band insulator, the QSH phase is characterized by
stable properties such as anomalous helical edge modes
and topological response to electromagnetic fields[4]. It
has been found that the QSH phase can also be realized
as a Mott insulator in strongly-correlated systems, rep-
resenting an example of interacting fermionic symmetry-
protected topological (SPT) phases[5–18]. Solvable mod-
els based on commuting-projector Hamiltonians have
been used to construct various interacting fermionic SPT
phases, including the QSH phase[19–24]. However, these
models only provide fixed-point wavefunctions and are
hardly useful for numerical simulations.

To construct generic variational wavefunctions beyond
the fixed point, we turn to fermionic tensor networks[25–
33]. Our strategy is presented as following. Motivated by
the interacting edge theory, we introduce the fixed-point
wavefunction proposed in Ref. [24], and then translate it
to the tensor network state. With such tensor represen-
tation, we extract a set of tensor equations for symmetry
actions on tensors. From tensor equations, we obtain al-
gebraic data characterizing the anomalous edge theory of
the QSH phase. Finally, we apply our method to a spin-
1/2 fermionic system on honeycomb and square lattice:
by listing and solving tensor equations, we get variational
ansatz for the QSH phase on such systems. We further
calculate topological invariants[34, 35] of the variational
wavefunction based on our ansatz to show a parameter
region of QSH phase which can be used for numerical
simulations.

Interacting edge theory.– The QSH phase hosts charge
conservation symmetry generated by nf and time rever-
sal symmetry T , where

T 2 = exp[iπnf ] ≡ F , T · nf · T −1 = nf . (1)

Here, F is the fermion parity operator.
To get intuition about the interacting bulk wavefunc-

tion, we start from its anomalous edge states, which is
described by massless helical Dirac fermions:

Hedge =

∫
dx (− i vF )

[
ψ†
R(x)∂xψR(x)− ψ†

L(x)∂xψL(x)
]
,

where ψL/R is the left/right moving fermion mode, and
vF the fermion velocity. T acts as ψR/L → ± iψL/R,
forbidding mass terms opening a gap.
The interacting edge theory can be analyzed by the

bosonization method[36]. Conjugate fields ϕ(x) and
θ(x) are introduced, both with periodicity 2π, where
[∂xθ(x), ϕ(x

′)] = 2π i δ(x − x′). With these hydrody-
namic variables, ψR/L(x) ∼ exp[−(iϕ(x) ± i θ(x)/2)],
charge density δρ(x) = −∂xθ(x)/2π, and current den-
sity j(x) = ∂tθ(x)/2π. Symmetry actions on θ and ϕ are
derived from its action on ψR/L, where

U(φ) : ϕ→ ϕ+ φ , θ → θ ;

T : ϕ→ −ϕ , θ → θ + π , i → − i . (2)

Lagrangian density for the interacting edge theory is[37,
38]

Ledge =
1

2π
∂xθ∂tϕ− vF

4π

(
1

K
(∂xθ)

2 +K(∂xϕ)
2

)

+ α cos(2θ − 2θ0) (3)

where K is the Luttinger parameter, and for the non-
interacting case K = 2. Due to Eq. (2), the most rel-
evant symmetric scattering term is α cos(2θ − 2θ0) with
scaling dimension 2K. It becomes relevant when K < 1,
driving edge to a gapped phase. For the classical limit
where α≪ 0, ground states are doubly degenerate, char-
acterized by ⟨θ⟩ = θ0 and ⟨θ⟩ = θ0+π respectively. Note
that these two states are exchanged under T , and thus
spontaneously break T symmetry.
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Topological defects of such edge symmetry breaking
phase host anomalous properties. We consider a time
reversal domain wall at x0, with domains ⟨θ(x < x0 −
ϵ)⟩ = θ0 and ⟨θ(x > x0+ ϵ)⟩ = θ0+π, as shown in Fig. 1.
For region (x0 − ϵ, x0 + ϵ), θ rotate clockwise/counter-
clockwise. Such domain wall carries ±1/2 charge[39], as

∫ x0+ϵ

x0−ϵ

dx δρ(x) =

∫ x0+ϵ

x0−ϵ

dx

(
−∂xθ(x)

2π

)
= ±1

2
. (4)

The fixed-point wavefunction.- We now extend θ-field
to bulk. The clockwise/counter-clockwise domain wall at
edge is identified as ±1/2 vortex, as shown in Fig. 1. The
half-charge edge domain wall motivates a decorated vor-
tex picture[40, 41]: each vortex core carries fermions with
nf = nv, where nv is the winding number. Note that T
symmetry can be recovered by proliferating vortices, and
nf is conserved during this process due to conservation
of total vorticity.

n
f
= 1

nv = 1
n

f
= −1

nv = −1

n
f
= 1

2 n
f
= − 1

2

x

FIG. 1. Edge domain walls and bulk vortex of θ-field with
fermion decoration.

With the decorated vortex picture, we introduce the
fixed-point wavefunction[24]. As in Fig. 2, we consider
a system with spin-1/2 fermions fσ’s at a honeycomb
lattice, and Ising spins |τ⟩’s at the dual triangular lattice,
where σ, τ =↑ / ↓. T flips both spins:

T : |↑⟩ ↔ |↓⟩ , fσ → σy
σσ′fσ′ , i → − i . (5)

↑ ↑ ↓ ↓

↑ ↑ ↓
−v

+
u

FIG. 2. Configuration of the QSH phase’s fixed-point wave-
function. fσ occupy the honeycomb lattice, while |τ⟩ on the
dual lattice. Crossing an Ising domain wall along/against ori-
ented bonds of the dual lattice introduces a ±π phase shift.
Spins of fermions adhere to the majority rule.

Here, Ising spins represent θ-field, which rotate ±π
when crossing an Ising domain wall along/against the
arrow on the bond. For arrows in Fig. 2, an Ising do-
main wall going through site (r, u/v) leads to nv = ±1
at this site. To match nv, fermions at site (r, u/v) are
holes/electrons:

[nf , frs,σ] = −(−1)sfrs,σ , (6)

where (−1)s = ±1 for s = u/v. The fermion spin is
enforced to follow the majority Ising spins at adjacent
plaquettes, as shown in Fig. 2. With such majority rule,
one can check that for each domain wall loop, number of
f↑ differs from number of f↓ by ±6. Let c be an Ising
spin configuration and |ψc⟩ the corresponding decorated
fermion state, we have

T |ψc⟩ = (−1)Ndw(c)|ψT c⟩ , (7)

where Ndw is the number of domain wall loops in c. The
fixed-point wavefunction is expressed as[24]

|Ψ⟩ =
∑

c

Ψ(c)|c⟩ ⊗ |ψc⟩ , (8)

where Ψ(c) = ±1 satisfies Ψ(c) = (−1)Ndw(c)Ψ(T c)[42].
Tensor network representation.- Constructing varia-

tional wavefunctions beyond Eq. (8) is highly desirable
for practical purposes. In the following, we present a
comprehensive framework based on fermionic projected
entangled-pair states (fPEPS). FPEPS are constructed
using fermionic tensors, which are quantum states re-
siding in the fermionic tensor product (⊗f ) of physical
and internal legs. The legs with inward/outward arrows
correspond to fermionic Hilbert spaces of ket/bra states,
respectively. Fermionic tensor contraction fTr are imple-
mented by connecting outward and inward internal legs,
defined as

fTr[⟨i| ⊗f |j⟩] = (−)|i||j|fTr[|j⟩ ⊗f ⟨i|] = δij (9)

where (−1)|i| (|i| = 0/1) is the fermion parity of |i⟩.
Physical wavefunctions are obtained by contracting all
internal legs. Site and bond tensors for fPEPS on hon-
eycomb lattice are drawn in Fig. 3, where all tensors are
set to be parity even in this paper. More details about
fPEPS are represented in Sec. I of Supplemental Mate-
rials (SM)[43].
Let us work out fPEPS representation of Eq. (8). Im-

posing translational symmetry, we focus on tensors in
one unit cell, including site tensors T̂u,v and bond ten-

sors B̂x,y,z, as in Fig. 3. Physical spin- 12 fermions live at
sites, while two physical Ising spins live at two sides of
bond centers. Ising spins within a plaquette are enforced
to be the same, and thus are effectively plaquette spins.
An internal leg (sα) is represented as a triple-line,

pointing from site s to bond α, where the middle line is a
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xy

z

T̂u

τ2

τ0

τ1

f†
u,↑|0⟩ ⊗f c†(uy) |↓↑↑)

T̂v

x

y

z

τ1

τ2

τ0

f†
v,↑|0⟩ ⊗f c†(vy) |↑↑↓)

B̂x

(↑↑| x

B̂y

(↑↓| yc(uy)c(vy)

B̂z

(↓↑| z

FIG. 3. Site tensors T̂u,v and bond tensors B̂x,y,z. Physical
spin-1/2 fermions live at sites, while physical Ising spins live
at bonds. Internal legs are represented by triple-lines. Lines
on two sides are internal Ising spins |τ0τ1), whose order follows
the dashed arcs. The middle line is a spinless fermion c, where
filled/empty circles label filled/empty states.

spinless fermion mode c(sα), while lines at sides are Ising

spins. Basis states are represented as (c†(sα))
n |τ0τ1)(sα),

where vacuum |0)(sα) is omitted for brevity. τ0τ1 are or-

dered counter-clockwise/clockwise around the site u/v,
as indicated by directed dashed arcs in Fig. 3 .

As all spins within a plaquette are the same,
an internal spin state of a site tensor reads
|τ1τ2)(sx) |τ2τ0)(sy) |τ0τ1)(sz), which is succinctly ex-

pressed as |τ0τ1τ2). Site tensors for Eq. (8) are

T̂u = |0⟩ ⊗f

[
|↑↑↑) + |↓↓↓)

]
(10)

+ f†u,↑|0⟩ ⊗f

[
c†(ux) |↑↑↓) + c†(uz) |↑↓↑) + c†(uy) |↓↑↑)

]

+ f†u,↓|0⟩ ⊗f

[
− c†(uy) |↓↓↑) + c†(ux) |↓↑↓)− c†(uz) |↑↓↓)

]

T̂v = |0⟩ ⊗f

[
|↑↑↑) + |↓↓↓)

]
(11)

+ f†v,↑|0⟩ ⊗f

[
c†(vy) |↑↑↓) + c†(vx) |↑↓↑) + c†(vz) |↓↑↑)

]

+ f†v,↓|0⟩ ⊗f

[
c†(vx) |↓↓↑)− c†(vz) |↓↑↓) + c†(vy) |↑↓↓)

]

Similarly, ⟨τ0τ1| is short for a bond spin state ⟨τ0τ1|α ⊗
(τ0τ1|(uα) (τ1τ0|(vα). Bond tensors are expressed as

B̂α = ⟨↑↑|α + ⟨↓↓|α + ⟨↓↑|α − ⟨↑↓|αc(uα)c(vα) (12)

As we show in Sec. II of SM[43], two T -related state from
contracting fPEPS satisfy Eq. (7), so it indeed gives the
fixed-point wavefunction.

Tensor equations.- Here, we extract symmetry action
rules on internal legs for Eq. (11) and (12), which pave the
way for wavefunctions beyond Eq. (8). We assume that
symmetry on physical legs are pushed to gauge transfor-
mation on internal legs[44], see also SM[43].

• To impose charge conservation, we require all ten-
sors to be charge neutral, which can be realized by
assigning c(sα) to carry charge (−1)1−s. Note that
fs,σ carries charge (−1)s, and thus

(
nf ;s +

∑

α=x,y,z

nf ;(sα)

)
· T̂s = B̂α ·

( ∑

s=u,v

nf ;(sα)

)
= 0

• T action on (sα) are set as

W(sα)(T ) = |↑↑)(sα) (↓↓|(sα) + |↓↓)(sα) (↑↑|(sα) (13)

+ i c†(sα) |↑↓)(sα) (↓↑|(sα) + |↓↑)(sα) (↑↓|(sα) c(sα)
which gives the following symmetric condition:

T̂s = Us(T )⊗f W(sx)(T )⊗f W(sy)(T )⊗f W(sz)(T ) · T̂ ∗
s

B̂α = V(α0)(T )⊗f V(α1)(T ) · B̂∗
α ·W−1

(vα)(T )⊗f W
−1
(uα)(T )

Here, U(T ) and V (T ) are T -action on physical legs
defined in Eq. (5). However, asW (T )’s are not par-
ity even, it may not lead to a symmetric wavefunc-
tion. In SM[43] Sec. III, we show that this equation
contains a hidden Kasteleyn orientation[19, 20, 45,
46], which gives a T -symmetric condition, .

• Besides the above physical symmetry, such local
tensors also host a “gauge symmetry”:

(
nλ;(sα0) + nλ;(sα̃1)

)
· T̂s = 0 ,

B̂α ·
(
nλ;(uαa) + nλ;(vαa)

)
= 0 , (14)

where nλ;(sαa) = (−1)s+a|↓⟩⟨↓| with a = 0/1 la-
belling two side lines of (sα), and α̃ = α − (−1)s.
nλ’s action on all internal legs in a plaquette p im-
poses the same spin constraint within p, and gener-
ates a U(1) symmetry. We thus get [U(1)]Np sym-
metry, where Np is the number of plaquettes. Note
that such symmetry acts trivially on physical legs,
and is called “invariant gauge group” (IGG)[47–
49], which is related to topological properties of
the phase[29, 50, 51] (see also SM[43]).

We now extract group relations between nf ,W (T ) and
nλ, which are coined as tensor equations in this work.
Roughly speaking, IGG gives possible action of the iden-
tity element on internal legs, and then symmetry on inter-
nal legs satisfy Eq. (1) up to some IGG element[47–49].
From Eq. (13), the commutator between nf and T on
internal legs reads

W(sα)(T ) · nf ;(sα) ·W−1
(sα)(T ) = nf ;(sα) + nD;(sα) (15)
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where

nD;(sα) = (−1)s (|↓↑⟩⟨↓↑| − |↑↓⟩⟨↑↓|)
= nλ;(sα0) + nλ;(sα1) (16)

Physically, nD gives U(1) gauge theory, but due to the
decomposition to nλ’s, such gauge theory is killed, lead-
ing to short-range entangled phase[43].

For group relation T 2 = F , a näıve insertion of an IGG
element does not give the correct result. Instead, from
Eq. (13) and (16), we have

exp
[
i
π

2
n2D;(sα)

]
·W(sα)(T ) ·W ∗

(sα)(T ) = F(sα) (17)

In Sec. IV of SM[43], we show that Eq. (17) is indeed
consistent with T 2 = F .
The commutator betweenW (T ) and nλ completes ten-

sor equations:

W(sα)(T ) · n∗λ;(sαa) ·W−1
(sα)(T ) = −nλ;(sαa) + (−)s+a

(18)

Edge theories from tensor equations.- In the following,
we show that edge properties of the QSH phase can be ex-
tracted from tensor equations from Eq. (15) to Eq. (18).
The anomalous edge theory is characterized by fusion of
two T -flux[52]. To see this, we turn to the edge theory in
Eq. (3). By rotating θ(x) by 2π angle counter-clockwise
within region [x0, x1], we get the current density

∫
dt j(x) =

∫
dt
∂tθ

2π
=

{
0 x ≤ x0 or x ≥ x1

1 x0 < x < x1
(19)

So, a unit charge is pumped from x0 to x1[53, 54]. Ac-
cording to Eq. (2), rotating θ by π on [x0, x1] is equivalent
to acting T on this segment, which creates T -flux at two
ends[55]. The unit charge pumping due to 2π rotation of
θ is interpreted as two T -flux fuses to an electron/hole.

We now extract such fusion rule from tensor equations.
As in Fig. 4, to obtain edge theory of system A, we cut
tensors within A from the infinite fPEPS, contract all in-
ternal legs within A, and obtain a large tensor T̂A. T̂A has
L boundary legs labeled by index j ∈ ∂A = {1, 2, . . . , L},
forming Hilbert space H∂A. As shown in Sec. V of
SM[43], the edge Hilbert space Hedge are formed by states
in H∂A that are invariant under IGG action. Let Pedge

be the projector from H∂A to Hedge. In our case, Pedge

identifies Ising spins belonging to the same plaquette:
τj+ 1

4
= τj+ 3

4
, where τj± 1

4
are spins at boundary leg j.

By projecting W∂A(T ) ≡ ⊗
f ;j∈∂AWj(T ) to Hedge,

one gets T action on edge:

Uedge(T )K =W∂A(T )K · Pedge (20)

Let M = {2, 3, . . . , l} be a subregion of ∂A. T -flux at
ends ofM are created by a charge-neutral string operator
UM (T )K, where

UM (T )K = Pedge · wl+1 · w1 ·WM (T )K · Pedge (21)

∂A

L
1 j

j + 1

T̂A

∣∣∣τ 3
4
, τ 5

4

) ∣∣∣τ 7
4
, τ 9

4

) ∣∣∣τl− 1
4
, τl+ 1

4

)

· · ·p = 3
2 p = l + 1

2

j = 1 j = 2 j = l

FIG. 4. Left: Tensor T̂A cutting from the infinite fPEPS,
whose boundary legs are numbered from 1 to L. Right: De-
tails of boundary legs of T̂A. Leg j is a triple-line, representing
two Ising spins (thick blue line) τj− 1

4
and τj+ 1

4
, and one spin-

less fermion cj (thin orange line). Plaquette between j and
j + 1 are labeled as p = j + 1

2
.

Here, w1/(l+1) are local operators on leg 1/(l + 1). The
charge-neutral requirement for UM (T )K puts the follow-
ing constraint on w1/(l+1)[43]

[w1, nf;1
] = n

(0)

λ, 32
·w1 ; [wl+1, nf;l+1

] = n
(1)

λ;l+ 1
2

·wl+1 , (22)

where n
(0/1)
λ;p are IGG elements acting on

∣∣∣τp∓ 1
4

)
.

Let j = 1 and l + 1 be v site, and then we can solve

w1 =
∑

τ 3
4

c1

∣∣∣τ 3
4
, ↓ 5

4

)(
τ 3

4
, ↑ 5

4

∣∣∣+
∣∣∣τ 3

4
, ↑ 5

4

)(
τ 3

4
, ↓ 5

4

∣∣∣ ;

wl+1 =
∑

τ
l+5

4

c†l+1

∣∣∣↓l+ 3
4
, τl+ 5

4

)(
↑l+ 3

4
, τl+ 5

4

∣∣∣

+
∣∣∣↑l+ 3

4
, τl+ 5

4

)(
↓l+ 3

4
, τl+ 5

4

∣∣∣ . (23)

It is then straightforward to verify

[UM (T )K]2 = Pedge · Ω1 · Ωl+1 ·
l∏

j=2

Fj · Pedge (24)

where Ω1 = c1 exp
[
i π
2 · n(1)

λ; 32

]
is a hole, and Ωl+1 =

c†l+1 exp
[
i π
2 · n(0)

λ;l+ 1
2

]
an electron (see details in SM Sec.

VI[43]). They can be viewed as quasi-particles from fus-
ing two T -flux. We thus recover the anomalous edge the-
ory, which suggests that any fPEPS that satisfies tensor
equations belongs to the QSH phase[56].
Variational tensor wavefunctions.- The fixed-point

wavefunction in Eq. (8) is quite artificial, as one needs
additional plaquette Ising spins. In the following, let
us try to construct variational wavefunctions for spin-12
fermions on a honeycomb lattice by solving tensor equa-
tions. We will further demonstrate these wavefunctions
give the desired many-body topological invariants in the
next part.
We start from fPEPS with two types of site ten-

sors. Each site tensor has one physical and three
internal legs, which can be expressed as T̂s =
(Ts)ijk,p |i)(s1) |j)(s2) |k)(s3) |p⟩s, with s = u/v label-
ing the sublattices, and subindices 1 to 3 ordering in-
ternal legs clockwise. Physical spin- 12 fermions fsσ’s
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carry opposite charges on site u and v. For simplic-
ity, we choose basis states of an internal leg (sα) to be{
|↑↑)(sα) , c

†
(sα) |↑↓)(sα) , |↓↑)(sα) , |↓↓)(sα)

}
.

Action of T on physical legs follows Eq. (5). Symme-
tries impose constraints on site tensor T̂s as

3⊗

α=1

f W(sα)(T )⊗f Us(T ) · T̂ ∗
s = T̂s

[ 3∑

α=1

nf ;(sα) + nf ;s

]
· T̂s = 0 . (25)

In addition, site tensors should also be invariant under
plaquette IGG nλ’s, as in Eq. (14). W (T ), nf and nλ
satisfy tensor equations from Eq. (15) to (18), and can
simply take the same form as in the honeycomb exam-
ple. By solving these tensor constraints, we obtain 7 lin-
early independent solutions for T̂u/v, as listed in SM Sec.
VIII[43]. Bond tensors are set to be Eq. (12), which sat-
isfy all tensor equations[43].We also calculated the vari-
ational ansatz for system in square lattice, see SM[43].

Many-body topological invariants.- One can also diag-
nose the interacting QSH wavefunction by calculating
the many-body topological invariant proposed in Ref. 35.
The system is put on a cylinder periodic in y−direction
and open in x−direction, which is divided as follows

R1 R2 R3

The topological invariant is given by

Z = Tr
[
ρ+R1∪R3

CR1

T (ρ−R1∪R3
)T1 [CR1

T ]†
]

(26)

with

ρ±R1∪R3
= TrR1∪R3

[
exp

±2πiy
∑

r∈R2
n(r)

Ly
|Φ⟩⟨Φ|

]

Here, T1 is the fermionic partial transpose of region R1,
and CR1

T is defined by CR1

T cj∈R1
(CR1

T )† = c†k∈R1
U(T )kj .

The phase of Z equals 0/π when |Φ⟩ is in triv-
ial/topological phase. Such quantity can be calculated
using numerics, where we present some in Fig. 5. Note
that the appearance of sgn(Z) = 1 may be due to various
reasons, e.g. the finite size effect, see details in SM[43].

Discussion.- In this work, from the fPEPS representa-
tion of the fixed-point wavefunction of the QSH phase, we
extract tensor equations from Eq. (15) to (18) character-
izing symmetry rules on local tensors. By solving these
equations, we can obtain general forms for symmetry ac-
tions on internal legs. Variational ansatz for the QSH
phase are solved by imposing such symmetry constraints
on local tensors.

This work leaves several interesting future directions.
Firstly, to express variational ansatz for topological

1 1.5 2 2.5 3 3.5

-1

0

1

FIG. 5. Calculation of sgn(Z) with respect to cu, where cu
labels some tensor entry, see Supplemental Material for more
details. sgn(Z) = −1 is a signature of topologically nontrivial
phase, see Ref. 35. Sizes of R1,2,3 are set to be equal, with
length in x-direction to be LR, and in y-direction to be 2.

phases in half-filled spin-1/2 electronic models, it is nec-
essary to generalize our framework to include tensors
with odd parity. Additionally, developing variational
numerical algorithms for symmetric fPEPS wavefunc-
tions obtained in this study would be desirable to sim-
ulate the QSH phase in strongly correlated models. On
the analytical side, we aim to explore other fermionic
topological phases, such as topological superconductors
and topologically ordered phases. Of particular inter-
est is the investigation of chiral phases, such as the
p + i p topological superconductor [57–59]. The ques-
tion of whether fPEPS can accurately represent these
chiral phases with a finite bulk gap remains an in-
triguing puzzle [60–62]. Furthermore, tensor networks
readily incorporate spatial symmetries [48], enabling
the construction of variational tensor wavefunctions for
gapped electronic liquid phases and high-order topolog-
ical insulators/superconductors[63–65]. Exploring these
possibilities holds significant potential for advancing our
understanding of exotic topological phases.
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In this supplemental material, we provide a brief review of fermionic tensor network states (Sec. I), detailed in-
formation for the fixed-point tensor network wavefunction of QSH phase (Sec. II), Kasteleyn orientation (Sec. III),
detailed derivation of T 2 = F on internal legs (Sec. IV), edge theory from infinite PEPS (Sec. V), derivation of fusion
of T -flux (Sec. VI), the variational ansatz for the QSH phase on a square system (Sec.VII), and numerical calculation
of many-body topological invariant(Sec.VIII).

I. SYMMETRIC FERMIONIC TENSOR NETWORK STATES

In this section, we review the fundamentals of fermionic tensor network states[27, 30, 31], and fix our notations
used in the main text.

A. Fermionic tensors and tensor contraction

Building blocks of fermionic tensor network states are fermionic tensors, which live in fermionic tensor product (la-
beled as ⊗f ) of legs. Legs with inward/outward arrows are local fermion Hilbert spaces for ket/bra states, where the
parity of state |i⟩/⟨i| is (−1)|i| with |i| ∈ {0, 1}. Exchanging states of two legs gives −1 if these two states are both
parity odd:

|i⟩a ⊗f |j⟩b = (−1)|i||j||j⟩b ⊗f |i⟩a (S1)

As an example of fermionic tensors, let us consider tensor T̂ with three legs, say a, b, c:

T̂ = (Tabc)ijk|i⟩a ⊗f |j⟩b ⊗f |k⟩c (S2)

Leg indices abc are sometimes ignored when there is no confusion. We may also omit ⊗f ’s and use a more compact

form T̂ = Tijk|ijk⟩.
Ket and bra states can be contracted using fTr, defined as

fTr[⟨i| ⊗f |j⟩] = (−)|i||j|fTr[|j⟩ ⊗f ⟨i|] = δij (S3)

It is noteworthy that the order of contracted states matters as extra −1 may be produced. Generalization to tensor
contractions is straightforward. As shown in Fig. 1, for two fermionic tensors M̂ =M ijk⟨i|a⟨j|b⟨k|c, N̂ = Nlm|l⟩b|m⟩d,

fTrb[M̂ ⊗f N̂ ] ≡ (−1)|j||k|M ijkNlmδjl⟨i|⟨k||m⟩ , (S4)

which is represented graphically by connecting inward and outward leg. We may omit fTr’s and ⊗f ’s and use M̂ · N̂
to represent tensor contraction.

M̂

b

a c

N̂

d

FIG. 1. Graphic representation of contraction between fermionic tensors M̂ and N̂ . The outward legs are bra spaces and
inward legs are ket spaces. The intersection of leg b and c indicates a possible extra minus sign due to exchanging fermions.

For local tensors in tensor network states, there are two types of legs: internal ones and physical ones. States in
physical legs is denoted by |•⟩/⟨•|, while states in internal legs by |•) / (•|. To get a physical wavefunction, all internal
legs are contracted. By fixing parity of all local tensors, physical wavefunctions also have fixed parity. In this work,
we focus on the case where all local tensors are parity even.
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(a) (b)

(c)

T̂s T̂s′B̂ss′

T̂s

D(sα)

D(sβ)

D(sγ)

D(sδ)

=

T̂s

FIG. 2. (a) A bond tensor B̂ss′ and its neighbouring site tensors. (b) A 3 × 3 fPEPS on square lattice with boundary legs.
(c) IGG invariance of a single site tensor.

B. Gauge transformation and symmetries of fPEPS

We consider a particular type of fermionic tensor network – fermionic projected entangled-pair state(s) (fPEPS)[29].
As shown in Fig. 2(a), we focus on fPEPS with both site tensors T̂s and bond tensors B̂ss′ , where s, s

′ label neighbouring
site coordinates. Without loss of generality, we assume that internal legs of site tensors all point inward (ket spaces),
while those of bond tensors point outward (bra spaces). Physical wavefunction then reads |Ψ⟩ = fTr [B⊗f T], where
T =

⊗
sf T̂s and B =

⊗
⟨ss′⟩f B̂ss′ Note that as all tensors are parity even, different orders of tensor contraction give

the same state.
Representation of one physical wavefunction |Ψ⟩ by fPEPS is far from unique. In particular, different fPEPS

represent the same wavefunction if they are related by some gauge transformation, as

|ψ⟩ = fTr [B⊗f T] = fTr
[
B⊗f W−1 ⊗f W⊗f T

]
(S5)

Here, W and W−1 are tensor products of gauge transformation W ’s on internal legs:

W =W(s1α1) ⊗f W(s1α2) ⊗f · · · ⊗f W(s1αm) ⊗f W(s2α1) ⊗f · · · ⊗f W(snαm) ,

W−1 =W−1
(snαm) ⊗f · · · ⊗f W

−1
(snα1)

⊗f · · ·W−1
(sn−1αm) ⊗f · · · ⊗f W

−1
(s1α1)

(S6)

where (sα) labels internal leg, and

W(sα) |i)(sα) =
∑

b

[W(sα)]ji |j)(sα) , (i|(sα)W−1
(sα) =

∑

j

(j|(sα)
[
W−1

(sα)

]
ij

(S7)

W ’s in general do not have fixed parity, and thus permuting W ’s and W−1’s may lead to fermion swapping gate.
For the case where |Ψ⟩ is invariant under symmetry g, we assume that g-action on physical legs can be pushed to

gauge transformation on internal legs of local tensors:

Us(g)⊗f

(⊗

α

f W(sα)(g)

)
· T̂s = T̂s , B̂ss′ ·W−1

(sα)(g)⊗f W
−1
(s′α′)(g) = B̂ss′ (S8)

The above equations give symmetry constraints for local tensors. We remark that to get a symmetric wavefunction,
orders of W (g)’s in the above equation are essential. In particular, as we will show in Sec. III, a valid order of W (g)’s
gives a Kasteleyn orientation on the lattice.

As shown in Fig. 2(c), there exists a special kind of gauge transformation D, which leaves every single tensor
invariant:

(⊗

α

f D(sα)

)
· T̂s = T̂s , B̂ss′ ·D−1

(sα) ⊗f D
−1
(s′γ) = B̂ss′ . (S9)
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Such gauge transformation form invariant gauge group (IGG). In this work, we focus on the case where D’s are parity
even.

Note that the group always have a trivial center H formed by phase factors χ(sα) that satisfy
∏

(sα) χ(sα) = 1.

In addition, if the IGG is a U(1) group generated by nD;(sα), namely, D(sα)(θ) = exp[i θnD;(sα)]. We then have(∑
α nD;(sα)

)
· T̂ s = 0

C. Plaquette IGG and vanishing long-range entanglement

In this work, all internal legs can be further decomposed to tensor product of local Hilbert space:

H(sα) =
⊗

a

f H(sαa) (S10)

Graphically, an internal leg are represented by multiple lines, and we use index a to label these lines.

As shown in Fig. 3, we assume that all elements of IGG are parity even and have a “plaquette decomposition”[49]

D(sα) =
⊗

a

f D(sαa) (S11)

Here, a = 0/1 denote lines at two sides.

T̂s

=

T̂s

D(sz)

D(sy) D(sx)

=

T̂s

D(sz1)D(sz0)

D(sx0)

D(sx1)

D(sy1)

D(sy0)

=

T̂s

FIG. 3. Any IGG element can be decomposed to plaquette IGG.

In particular, for site tensors on honeycomb lattice, the plaquette IGG action gives

T̂s T̂s

D(sz1)

D(sx0)

T̂s

D(sy1)

D(sz0)

T̂s

D(sx1)D(sy0)

= = =
(S12)

Nontrivial IGG element often leads to topological ground state degeneracy. To see this, let us consider a fPEPS
with periodic boundary condition on square lattice:

|Ψ⟩ = ,

where the bond tensors, physical legs and leg orientations are omitted for brevity. If such tensor network has a
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nontrivial IGG element, we can insert “IGG loops” in internal legs, which leaves the wavefunction invariant:

|Ψ⟩ = = .

However, by inserting non-contractible loops of IGG action, we obtain a different state as

|Ψv⟩ = . (S13)

As one can move the non-contractible loop without energy cost, |Ψv⟩ is indistinguishable from |Ψ⟩ by local observables.
Thus, if |ψ⟩ is a ground state of a local Hamiltonian, a nontrivial IGG indicates that the Hamiltonian has topological
ground state degeneracy. In other words, |ψ⟩ is a long-range entangled state.

However, the plaquette decomposition of the IGG element kills the long-range entanglement. To see this, we apply
Eq. (S12) for |Ψv⟩ in Eq. (S13), and obtain

|Ψv⟩ = = = = = |Ψ⟩

The non-contractible loop of an IGG element acts trivially on the tensor network state if the IGG element has
plaquette decomposition. Thus, topological degeneracy is removed and we obtain a short-range entangled state.

II. TENSOR REPRESENTATION OF THE FIXED-POINT WAVEFUNCTION FOR THE QSH PHASE

In this section, we will prove that the wavefunction constructed from tensors in Eq. (10), (11), and (12) in the main
text is T symmetric.

The fPEPS physical wavefunction is |Ψ⟩ = fTr [T⊗f B]. Here,

T =
⊗

rs

f T̂rs , B =
⊗

rα

f B̂rα , (S14)

where r is coordinate for unit cell, s = u/v, and α = x/y/z. The order of tensors is not important since site and bond
tensors are all parity even.

Such wavefunction can be organized according to plaquette Ising spin configurations c:

|Ψ⟩ =
∑

c

Ψ(c)|c⟩ ⊗ |ψc⟩ (S15)

Here, c represents a Ising spin configuration, and |ψc⟩ is the spin-1/2 fermion decoration for c. We choose some fixed
order for physical fermions, and thus there is no ambiguous sign for Ψc. Entries of site and bond tensors in the main
take ±1, so Ψ(c) also takes ±1. In the following, we will show that for any configuration c and its T counterpart T c,
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Ψ(c) = (−1)Ndw(c)Ψ(T c), where Ndw(c) is the number of domain wall loops for c. As we argue in Eq. (7) and (8) in
the main text, such state is symmetric under T .
For the trivial configuration c where all Ising spins points up, |ψc⟩ is vacuum state, and Ψ(c) = Ψ(T c) = 1. Let

us consider configuration c with a single domain wall loop, and assume this loop contains 2L sites and 2L bonds.
Overlapping |Ψ⟩ with |c⟩, we obtain Ψ(c)|ψ(c)⟩, which is a new tensor network with site tensors T̂ c

rs and bond tensors
B̂c

rα. Any internal leg of this new tensor network only contains one state, which can be either parity even or odd.
Site and bond tensors away from the loop contains no fermion, and is a pure spin state with coefficient 1. We focus
on tensors in the loop. We label site tensors along the loop as T̂ c

j , where j ∈ {1 · · · 2L} increases clockwise along this

loop. B̂c
j,j+1 labels the bond tensor connecting j and j + 1. Ψ(c)|ψ(c)⟩ is then schematically drawn as following:

Ψ(c)|ψ(c)⟩ = T̂ c
1 B̂c

1,2 T̂ c
2

B̂c
2,3

T̂ c
3

· · · T̂ c
2L

B̂c
2L,1

, (S16)

where we only present tensors at the domain wall loop. Here, blue legs are physical fermions, and light gray legs are
internal spins connecting tensors within domains. Yellow dots are fermion swapping gates. Internal legs traveling
from right to left are colored red, and give an additional −1 when contracting odd parity states according to Eq. (S3).
Ψ(T c)|ψ(T c)⟩ can be represented in a similar way.
Coefficients for these configurations come from two contributions: one from swapping fermions, and the other one

from the ±1 entries of tensors. Let j = 2k − 1 to be u−sites, and j = 2k to be v−sites, we calculate these two
contributions respectively in the following.

• We assume that the loop encircles an ↑ domain. From Eq. (12) in the main text, B̂c
2k−1,2k contains fermion

modes c2k−1 and c2k, while B̂
c
2k,2k+1 carries zero fermion charge. From Eq. (S16), contraction between B̂c

2k−1,2k

and T̂ c
2k−1, and contraction between Bc

2k−1,2k and T c
2k both give a −1. Thus, no sign factor is produced.

Configuration T c hosts a ↓ domain inside the loop. B̂T c
2k,2k+1 contains fermion modes c2k and c2k+1, while

B̂T c
2k−1,2k is a pure spin state. From Eq. (S16), one concludes that for k < L, the contraction between B̂T c

2k,2k+1,

T̂ T c
2k and T̂ T c

2k+1 contributes −1, and contraction between B̂T c
2L,1, T̂

T c
1 and T̂ T c

2L contributes no phase factor. So,

the sign difference between c and T c from fermion contraction is (−)L−1.

• We now calculate contribution from tensor entries. Given site and bond tensors in the main text, one can check
that for any loop with length 2L, under T action, there are always L site tensors and 2L bond tensors on the
loop change signs. This can be seen by noticing that on a domain wall loop, there are always same number of
u−sites and v−sites that locate between domain walls of an x−bond and a y−bond (or x−bond and z−bond,
or y−bond and z−bond), while sign factors of these u− and v−sites are opposite under T action. Thus, tensor
entries contribute (−1)L to the sign difference between c and T c.

Combining above contributions, we conclude that Ψ(c) = −Ψ(T c) for c with a single domain wall.
For configurations with multiple domain wall loops, one can first moving tensors belonging to a single loop together.

Coefficients for each loop can then be calculated one by one. So, for any configuration c with Ndw(c) domain wall
loops, we have Ψ(T c) = (−)Ndw(c)Ψ(c).

III. TIME REVERSAL SYMMETRY AND KASTELEYN ORIENTATION

When acting T on the honeycomb fPEPS, we get W (T )’s and W−1(T )’s on internal legs according to Eq. (14) in
the main text. For any internal leg (sα), W(sα)(T ) in general are not in the neighbourhood of W−1

(sα)(T ), and one

should move them together to cancel each other in the tensor contraction. Since W (T ) does not have fixed parity,
permuting W (T )’s and W−1(T )’s lead to fermion-swap gates. Eq. (14) in the main text in general does not lead to
a T -symmetric physical wavefunction due to these swap gates. In this section, we will show that local T constraint
gives a symmetric physical wavefunction if and only if a hidden Kasteleyn orientation can be extracted from such
local constraint.

Let us first introduce Kasteleyn orientation. For a given oriented graph, Kasteleyn orientation means that for any
face in such graph, the number of clockwise-oriented edges bounding it must be odd. It has been proven that Kasteleyn
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orientation exists for any planar graph with an even number of vertices[45]. The choice of Kasteleyn orientation is far
from unique: given an Kasteleyn orientation, one can obtain another one by flipping arrows on all edges connecting
a given vertex v. For each vertex, one can choose to flip or not to flip arrows on edges connecting this vertex, and it
exhausts all possible choices of Kasteleyn orientation. Thus, there are total 2Nv choices, where Nv is the total number
of vertices.

We now turn to the honeycomb example in the main text. Let us explain rules to extract orientation from action
of W (T )’s on local tensors. We first expand all sites of the honeycomb lattice to triangles as

→ (S17)

Vertices in the new lattice live on internal legs of the honeycomb fPEPS, and thus can be labeled as (sα). Arrows on
blue triangles in Eq. (S17) are extracted from T -action on site tensors, while arrows on magenta lines in Eq. (S17)
of the original hexagons from T -action on bond tensors. More specifically, from T -symmetric condition in the main
text, for T -action on tensor at site s

Us(T ) · T̂ ∗
s =

[
W(sα)(T )⊗f W(sβ)(T )⊗f W(sγ)(T )

]−1 · T̂s , (S18)

the arrows on the corresponding blue triangle is (sα) → (sβ), (sβ) → (sγ), and (sα) → (sγ). For example,

Us(T ) · T̂ ∗
s =

[
W(sx)(T )⊗f W(sy)(T )⊗f W(sz)(T )

]−1 · T̂s ⇒
yx

z

. (S19)

If T -action on bond tensor B̂α reads

V(α0)(T )⊗f V(α1)(T ) ·
(
B̂α

)∗
= B̂α ·W(sα)(T )⊗f W(s′α)(T ) , (S20)

the arrow is drawn from (sα) to (s′α). Following this rule, T -symmetry constraint in the main text leads to the
oriented graph in Eq. (S17), and one can check that it indeed gives one Kasteleyn orientation.

In the following, let us prove that the physical wavefunction is T -symmetric only when the right hand side of
Eq. (S17) is a Kasteleyn orientation. According to Eq. (16) in the main text, the commutator between W (T ) and
parity F reads

W ∗(T ) · F ·
[
W−1(T )

]∗
= D · F , where D = exp[iπn∗D] (S21)

Here, D can be expressed as Pe − Po, where Pe/o are projectors to internal states without/with Ising domain wall.

Using these projectors, we can decompose site and bond tensors to orthogonal sectors, e.g. Pe,x ⊗f Po,y ⊗f Po,z · T̂ .
By inserting Pe + Po on all internal legs of the tensor network wavefunction, the wavefunction equals summation of
tensor contractions for different sectors. However, as D is an IGG element of the tensor network, local tensors vanish
if acted by odd number of Po’s. So, for the whole tensor network, Po’s must form loops, which gives domain wall
loops for physical Ising spins after contraction.

Given a loop configuration d, we act Po’s on internal legs along loops and Pe’s on internal legs within domains, and
then obtain site tensors T̂ d’s and bond tensors B̂d’s. By contracting internal legs of T̂ d’s and B̂d’s, we get physical
state |ψd⟩. Physical wavefunction is obtained by summation over all loop configurations |Ψ⟩ =∑d|ψd⟩.
In the following, we will prove that ∀d, T |ψd⟩ = |ψd⟩ if there is hidden Kasteleyn orientation, and thus |Ψ⟩ is

invariant under T .
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Let us start from configuration d without any loop. In this case, we only get We(T )’s when acting T , which are
parity even and free to permute. |ψd⟩ is apparently invariant under T : T |ψd⟩ = |ψd⟩.

For configuration d with a single loop, let the number of internal ket legs to be 2L. We label internal legs along
this loop counter-clockwise by l, and assume site tensors sitting between l = 2k − 1 and l = 2k. Site tensors along
this loop for |ψd⟩ can then be named as T̂ d

2k−1,2k, while bond tensors as B̂d
2k,2k+1. As all tensors are parity even, we

rearrange tensors along the loop together in the following way:

|ψd⟩ = fTr[· · · ⊗f B̂
d
2,3 ⊗f B̂

d
3,4 ⊗f · · · ⊗f B̂

d
2L,1 ⊗f T̂

d
2L−1,2L ⊗f T̂

d
2L−3,2L−2 ⊗f · · · ⊗f T̂

d
1,2 ⊗f · · · ] (S22)

We now act T on |ψd⟩, and according to Eq. (S18) and Eq. (S20), it gives W (T )’s on internal legs of T̂ d’s and B̂d’s.
We define We/o(T ) ≡ Pe/o ·W (T ), which is parity even/odd sector of W (T ). From definition of |ψd⟩, W (T )’s act as
Wo(T )’s on internal legs along the loop, while acting as We(T )’s on internal legs away from the loop. Fermion signs
come from permuting Wo(T )’s and [Wo(T )]−1’s, and thus we focus on contraction of W (T )’s along the loop. We
arrange the order of Wo(T )’s contraction according to Eq. (S22) as

fTr

{(
(−1)s2,3 ·Wo,2(T )⊗f Wo,3(T )

)
⊗f · · · ⊗f

(
(−1)s2L,1 ·Wo,2L(T )⊗f Wo,1(T )

)⊗
f

[(
(−1)s1,2 ·Wo,1(T )⊗f Wo,2(T )

)
⊗f · · · ⊗f

(
(−1)s2L−1,2L ·Wo,2L−1(T )⊗f Wo,2L(T )

)]−1}

= (−1)1+
∑

l sl,l+1 = 1 (S23)

where sl,l+1 = 0/1 if the arrow at (l, l + 1) is along/against the direction of the loop (counter-clockwise/clockwise
direction). The last equation is from the definition of Kasteleyn orientation: there are always odd number of arrows
against direction of the loop. So, for configuration d with a single loop, W (T )’s and [W (T )]−1’s cancels, and |ψd⟩ is
T -symmetric. In contrast, if the orientation is not Kasteleyn, one can always find a loop configuration d, such that
the last line of Eq. (S23) gives −1, making |Ψ⟩ break T .
For configuration d with multiple loops, we can arrange all tensors belonging to one loop together, and repeat the

above calculation for every loop. Thus, such |ψd⟩ is also T -symmetric. In conclusion, |Ψ⟩ is T -symmetric if and only
if the orientation extracted from W (T )’s is a Kasteleyn orientation.

As we mentioned in the beginning of this part, by flipping arrows on all edges connecting to certain vertices, one gets
another Kasteleyn orientation. In the tensor language, flipping arrows for edges connecting to vertex (sα) corresponds
to modifying W(sα)(T ) to D(sα) ·W(sα)(T ). To see this, we consider the following T -action on site tensors:

[
D(sx) ·W(sx)(T )⊗f W(sy)(T )⊗f W(sz)(T )

]−1 · T̂s =
[
W(sy)(T )⊗f W(sz)(T )⊗f W(sx)

]−1 · T̂s ⇒
yx

z

Similar logic works for bond tensors. Following these rules for arrows, there is one-to-one correspondence between
gauge transformation W (T ) and Kasteleyn orientation.
We focus on trivalent lattice in the above argument, where each vertex connects three bonds, and there is at most

one domain wall travelling through a vertex. We now generalize the above argument to generic lattices, where more
than one domain walls may meet at sites.

Let us present rules for extracting orientations in generic lattices. Similar as Eq. (S17), we first construct a new
planar graph, where a site connecting n-bonds in the original lattice splits to n vertices in the new graph, and each
vertex is labeled by the internal leg index. Each pair of these n vertices are connected by new edges. Given T -action
on internal legs, arrows on edges of the new planar graph follows similar rules presented in Eq. (S19) and Eq. (S20).
For example, consider site tensor s with four internal legs, arrows can be read from W (T ) action as

U(T ) · T̂ ∗
s =

[
W(sa)(T )⊗f W(sb)(T )⊗f W(sc) ⊗f W(sd)

]−1 · T̂s ⇒ a

b

c

d
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To proceed, let us focus on a particular choice of Kasteleyn orientation. We number the n vertices from 1 to n
clockwise, and let the arrow pointing from i to j if i < j. It is easy to verify that any loop within these n vertices
matches the condition for Kasteleyn orientation. Arrows on bond tensors are chosen to satisfy conditions for Kasteleyn
orientation on larger loops.

For configurations without loop crossing, using similar argument presented in the honeycomb case, we conclude
that W (T )’s cancels without additional sign.

s1

s2

FIG. 4. Two domain wall loops (red and blue) intersect at site s1 and s2. Here, s1,2 are not “true crossing points” of these two
loops: they are separate at these two points.

.

We consider configuration d where two loops (colored blue and red) intersect at site s1 and s2. As shown in Fig. 4,
colors are chosen such that loops can be separate at these two sites, and there are no “true crossing points” between
these two loops.

By inserting Po’s on internal legs at these two loops, and Pe’s on other internal legs, we obtain tensors T̂ d’s and
B̂d’s, and wavefunction |ψd⟩ from contracting T̂ d’s and B̂d’s. Let the number of internal ket legs of the red/blue loop
to be 2L1/2L2. We label internal legs along these two loops by index l, where 1 ≤ l ≤ 2L1 labels internal legs for the
red loop and 2L1 + 1 ≤ l ≤ 2L1 + 2L2 for the blue loop. Due to the intersecting sites s1/2, Eq. (S22) do not directly
apply to the case here. However, at any intersection point, two W−1

o ’s belonging to one loop are always neighbour to
each other (or can be moved as neighbour without sign). Thus, we can always move all W−1

o ’s belonging to one loop
together without extra sign, and Eq. (S23) still applies for every single loop.

The above argument can be easily generalized to any loop configurations, as we can always choose loops such that
there are no “true crossing points”. We conclude that for a T symmetric fPEPS of the QSH phase in any lattice, the
planar graph extracted from W (T )’s satisfies Kasteleyn orientation.

IV. T 2 = F ON INTERNAL LEGS

In this part, we show that Eq. (18) in the main text is consistent with T 2 = F when acting on tensors. We consider
a tensor T̂A with L internal bra legs and physical Hilbert space HA. According to the main text, the T -symmetric
condition for T̂A reads

UA(T ) · T̂ ∗
A = T̂A ·

L⊗

j=1

f Wj(T ) (S24)

By acting T twice, we obtain

FA · T̂A = UA(T ) · U∗
A(T ) · T̂A = T̂A ·




L⊗

j=1

f Wj(T )


 ·




L⊗

j=1

f W
∗
j (T )


 (S25)
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Due to the unfixed parity of W (T )’s, one cannot permute W (T )’s directly. Instead, from Eq. (S21), we have

FA · T̂A = T̂A ·




L⊗

j=1

f Wj(T )


 ·




L⊗

j=1

f W
∗
j (T )




= T̂A ·
L⊗

j=1

f (−)nD,j

∑
k<j nD,kWj(T ) ·W ∗

j (T ) = T̂A · (−)
∑

k<j nD,knD,j

L⊗

j=1

f Wj(T ) ·W ∗
j (T )

= T̂A · e− i π
2

∑
j ̸=k nD,knD,j

L⊗

j=1

f Wj(T ) ·W ∗
j (T ) = T̂A ·

L⊗

j=1

f e
i π

2 n2
D,jWj(T ) ·W ∗

j (T ) , (S26)

where the last line comes from the condition that
∑

j nD,j = 0 when acting on T̂A. Then on each internal leg we have

exp
[
i
π

2
n2D

]
·W (T ) ·W ∗(T ) = F (S27)

or at most differ from F up to an IGG element. So, by acting T 2 = F on internal legs of tensors, we get consistent
result as Eq. (18) in the main text.

V. EDGE THEORIES FROM INFINITE PEPS

In this section, we will identify Hilbert space and symmetry action of the edge theory from infinite PEPS.
We cut a finite region A from an infinite PEPS. By contracting all internal legs within A, we obtain a linear map

T̂A from virtual legs at boundary of A – labeled as H∂A – to physical legs in the bulk of A – labeled as HA:

T̂A =
∑

(TA)ibie |ib⟩ (ie| , |ib⟩ ∈ HA, (ie| ∈ H∂A (S28)

Here, without loss of generality, we choose all boundary legs to be bra spaces. For large enough region A, dimHA ≫
dimH∂A, so the map can never be surjective.
We can write down a symmetric Hamiltonian for a system on A, whose low-energy space is image of T̂A, which is

isomorphic to H∂A/ ker T̂A. As bulk excitations are gapped, low energy states are identified as edge modes, and thus
Hedge

∼= H∂A/ ker T̂A.

If T̂A is injective, Hedge = H∂A, and it naturally leads to a tensor product structure of the edge Hilbert space. If

IGG is nontrivial, T̂A will no longer be injective. Given an IGG element whose action on ∂A is J∂A, according to the
definition of IGG, TA · (1̂∂A − J∂A) = 0, and we have ker T̂A ⊃ imag(1̂∂A − J∂A) ̸= 0.

In this work, we further assume that ker T̂A =
{
imag(1̂∂A − J∂A)

∣∣∀J ∈ IGG
}
. In other words, IGG determines the

edge Hilbert space:

Hedge = {|ψ∂A⟩ | J∂A|ψ∂A⟩ = |ψ∂A⟩, ∀J ∈ IGG} (S29)

We define T̂−1
A : HA → H∂A as pseudo-inverse of T̂A, which satisfies

T̂A · T̂−1
A = Pl , T̂−1

A · T̂A = Pedge , (S30)

where Pl is the projector from HA to imag T̂A, while Pedge is the projector from H∂A to Hedge.
In the following, let us work out how symmetries act on edge. Here, we focus on onsite symmetry group G. For

g ∈ G, we have

UA(g)Ks(g) · TA = TA ·W∂A(g)Ks(g) (S31)

So, it is natural to identify Uedge(g)Ks(g) ≡ Pedge ·W∂A(g)Ks(g) · Pedge as symmetry action on Hedge.
Note that ∀J ∈ IGG, we have

UA(g)Ks(g) · T̂A = T̂A ·W∂AKs(g) = UA(g)Ks(g) · T̂A · J∂A = T̂A ·W∂AKs(g) · J∂A (S32)

Together with Eq. (S29), we conclude

Uedge(g)Ks(g) = Pedge ·W∂A(g)Ks(g) =W∂A(g)Ks(g) · Pedge (S33)
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VI. FUSION OF T −FLUX

As in Sec. V, let us consider a region A described by a large tensor T̂A with physical Hilbert space HA and boundary
legs H∂A, where legs at ∂A are labeled by j = {1, 2, . . . , L}.
We create T -flux at j = 1 and l+1 by inserting a charge-neutral operator UM (T )K ≡ Pedge·wl+1·w1·WM (T )K·Pedge,

where M = {2, 3, . . . , l} ∈ ∂A. Here, w1/(l+1) are local operators at the ends and

WM (T ) =

l⊗

j=2

f Wj(T )

We choose w1/(l+1) such that wl+1 · w1 ·WM (T )K commute with Pedge.
To make UM (T )K charge neutral, we require commutator between w1/(l+1) and nf to be

[w1, nf;1
] = n

(0)

λ; 32
· w1 ; [wl+1, nf;l+1

] = n
(1)

λ;l+ 1
2

· wl+1 (S34)

The charge neutral condition is satisfied as [Wj(T ), n
f;j

] = nD;j ·Wj(T ) and
(
n
(0)

λ; 32
+ n

(1)

λ;l+ 1
2

+
∑l

j=2 nD,j

)
·Pedge = 0.

We now calculate fusion of two T -flux. Without loss of generality, we assume that j = 1 and j = l + 1 legs belong
to v-sublattice. By performing similar derivation presented in Eq. (S26), we have

UM (T ) · U∗
M (T ) (S35)

=Pedge · e
iπn

(0)

λ; 3
2 e

i π
2

(
n
(1)

λ;l+1
2

)2

wl+1 · w∗
l+1 ⊗f e

i π
2

(
n
(0)

λ; 3
2

)2

w1 · w∗
1

l⊗

j=2

f e
i π

2 n2
D,jWj(T ) ·W ∗

j (T ) · Pedge .

As
(
n
(1)

λ;l+ 1
2

)2
= n

(1)

λ;l+ 1
2

and
(
n
(0)

λ; 32

)2
= −n(0)

λ; 32
for v−sites, we obtain

(UM (T )K)2 = Pedge · Ωl+1Ω1 ·
l∏

j=2

Fj · Pedge , (S36)

Here,

Ωl+1 =Pedge · e
i π

2 n
(1)

λ;l+1
2 wl+1 · w∗

l+1 · Pedge = e
i π

2 n
(1)

λ;l+1
2 c†l+1 , (S37)

Ω1 =Pedge · e
i π

2 n
(0)

λ; 3
2 w1 · w∗

1 · Pedge = e
i π

2 n
(0)

λ; 3
2 c1 . (S38)

where we use Eq. (24) in the main text to fix the final form of Ω1/(l+1).

VII. VARIATIONAL ANSATZ FOR THE QSH PHASE ON SQUARE LATTICE SPIN-1/2
ELECTRONIC SYSTEM

In this section, we present detailed derivation for solving tensor equations on a spin- 12 fermionic system on the
bipartite square lattice. Each site tensor has four internal legs and one physical spin- 12 fermion, which is represented
as

|p⟩

|i)1

|l)4

|k)3

|j)2 = Tijkl,p |i)1 |j)2 |k)3 |l)4 |p⟩ .
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Sites on the bipartite square lattice can be grouped to two types, where we use T̂u/v to label site tensors on different
sublattices. Physical legs are spin-1/2 fermions fσ, and charges carried by fσ’s are opposite in u− and v−site.
As in the honeycomb example, an internal leg (sα) can also be represented by a triple-line, where the middle line
is a spinless fermion mode c(sα), and two side lines are Ising spins |τ)(sαa), where s = u/v, α ∈ {1, 2, 3, 4} and

a = 0/1. Orders of a is counter-clockwise/clockwise for site u/v. For simplicity, we focus on four of eight basis states:

{|↑↑)(sα) , c
†
(sα) |↑↓)(sα) , |↓↑)(sα) , |↓↓)(sα)}.

Symmetry constraints on site tensor T̂s are

4⊗

α=1

f W(sα)(T )⊗f Us(T ) · T̂ ∗
s = T̂s

[ 4∑

α=1

nf ;(sα) + nf ;s

]
· T̂s = 0 (S39)

where W (T ), nf , and nλ take the same form as those in the honeycomb example. To take care of sign factors when

acting W (T )’s on site tensor T̂s, a Jordan-Wigner string J = exp{iπnf} is introduced. Then, the “bosonized” W (T )
is

W b
(sj)(T ) = Pe ·W(sj)(T ) +

j−1⊗

k=1

Jk ⊗ Po ·W(sj)(T ) , (S40)

T symmetry constraint on a site tensor gives

4∏

α=1

W b
(sα)(T ) · U(T ) · T ∗

s = Ts (S41)

Here Ts without hat is a “bosonic tensor” with entries (Ts)αβγδ,p.

Site tensor T̂s should also satisfy the plaquette IGG condition:

(
nλ;(sα0) + nλ;(sα̃1)

)
· T̂s = 0, ∀α . (S42)

where α̃ = α+ (−1)s. This equation identifies internal states within a plaquette:

p

α

δ

γ

β → p →

a δab

p

a

b .

The dimension of the tensor Ts is 1024, and after solving the tensor equations in Eq. (S39) and (S42) there are only
14 linearly independent solutions. And the solution for T̂v reads

T̂v =

14∑

l

clt̂l , (S43)
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where cl’s are real numbers, and t̂l can be represented graphically as

t1 = 0

↓

↓ ↓

↓
+ 0

↑

↑ ↑

↑
; t2 = ↑↓

↓

↑ ↓

↑
+ ↑↓

↑

↓ ↑

↓
; t3 = ↑

↓

↑ ↑

↓
+ ↓

↑

↓ ↓

↑
; t4 = ↓

↓

↑ ↑

↓
− ↑

↑

↓ ↓

↑
;

t5 = ↓
↑

↑ ↓

↓
+ ↑

↓

↓ ↑

↑
; t6 = ↑

↑

↑ ↓

↓
− ↓

↓

↓ ↑

↑
; t7 = ↓

↑

↓ ↓

↓
+ ↑

↓

↑ ↑

↑
; t8 = ↑

↑

↓ ↓

↓
− ↓

↓

↑ ↑

↑
;

t9 = ↓
↓

↑ ↓

↓
− ↑

↑

↓ ↑

↑
; t10 = ↑

↓

↑ ↓

↓
+ ↓

↑

↓ ↑

↑
; t11 = ↓

↓

↓ ↑

↓
− ↑

↑

↑ ↓

↑
; t12 = ↑

↓

↓ ↑

↓
+ ↓

↑

↑ ↓

↑
;

t13 = ↑
↑

↑ ↑

↓
− ↓

↓

↓ ↓

↑
; t14 = ↓

↑

↑ ↑

↓
+ ↑

↓

↓ ↓

↑
.

Magenta arrow indicates a fermion on the internal leg, and the ↑ / ↓ at 4 corners are the identified internal states
within the same plaquette. T̂u’s solution is given by flipping all plaquette Ising spins of T̂v.

Now, let us discuss the bond tensors. As shown in Sec. III, to make the tensor network T symmetric, T action on
bonds should be chosen to satisfy Kasteleyn orientation:

B̂α ·W(uα)(T )⊗f W(vβ)(T ) = B̂∗
α (S44)

Here, we impose rotational symmetry, and thus all four types of bond tensors share the same form:

B

(β|v

(α|u

= B(α|u (β|v = B

(α|u

(β|v

= B(β|v (α|u = Bαβ (α| (β| (S45)

Bond tensors should also be invariant under plaquette IGG:
(
nλ;(uαa) + nλ;(vαa)

)
· B̂α = 0 , ∀α & a , (S46)

which identifies the internal states within a plaquette:

B → B → B . (S47)

By further imposing charge neutral condition, we get solution for B̂α as

B̂α = deb̂e + dob̂o , (S48)

where b̂e = (↑↑|u (↑↑|v + (↓↓|u (↓↓|v, and b̂o = (↑↓|u (↑↓|vcucv − (↓↑|u (↓↑|v. Here, de/o are real parameters. By
performing gauge transformation, we can always absorb d’s to site tensors and simply set de = do = 1. Namely, bond
tensors are maximal entangled states, which share the same form as Eq. (12) in the main text.

VIII. NUMERICAL CALCULATION OF MANY-BODY TOPOLOGICAL INVARIANTS

In this appendix, we present the ansatz tensor for the honeycomb lattice with a bond dimension 4 and perform
explicit numerical calculations of the many-body topological invariant proposed by Shiozaki et al[35]. This analysis
demonstrates the existence of a parameter region corresponding to the Quantum Spin Hall (QSH) phase.
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By solving the symmetry and IGG restrictions (Eq. (S39) and (S42)), we get ansatz tensors. The u-site variational
tensor can be written as:

T̂u =
∑

l

cul t
u
l (S49)

where cul ’s are real numbers, and t̂ul ’s are shown graphically below:

tu1 = 0
↓

↓ ↓ + 0
↑

↑ ↑ ; tu2 = ↑
↓

↑ ↑ − ↓
↑

↓ ↓ ; tu3 = ↓
↓

↑ ↑ + ↑
↑

↓ ↓ ; tu4 = ↑
↑

↑ ↓ + ↓
↓

↓ ↑ ;

tu5 = ↓
↑

↑ ↓ − ↑
↓

↓ ↑ ; tu6 = ↑
↑

↓ ↑ − ↓
↓

↑ ↓ ; tu7 = ↓
↑

↓ ↑ + ↑
↓

↑ ↓ ;

For v-site variational tensor, we have

T̂v =
∑

l

cvl t
v
l (S50)

with cvl ’s real numbers and t̂n’s below

tv1 = 0
↑

↑ ↑ + 0
↓

↓ ↓ ; tv2 = ↑
↓

↑ ↑ + ↓
↑

↓ ↓ ; tv3 = ↓
↓

↑ ↑ − ↑
↑

↓ ↓ ; tv4 = ↑
↑

↓ ↑ − ↓
↓

↑ ↓ ;

tv5 = ↓
↑

↓ ↑ + ↑
↓

↑ ↓ ; tv6 = ↑
↑

↑ ↓ + ↓
↓

↓ ↑ ; tv7 = ↓
↑

↑ ↓ − ↑
↓

↓ ↑ ;

And bond tensor is chosen to be B̂ = (↑↑|u (↑↑|v + (↓↓|u (↓↓|v − (↑↓|u (↑↓|vcucv + (↓↑|u (↓↑|v. In contrast to the
fixed-point wavefunction discussed in the main text, the variational wavefunction remains a superposition of loop
configurations with decorated fermions. However, it now exhibits distinct coefficients and does not involve any
additional physical Ising spins. Notably, the spin degrees of freedom become decoupled from the fermion degrees of
freedom, existing solely as internal degrees of freedom.

To calculate the topological invariant, we set the y direction of our 2+1D wavefunction to be periodic, and keep
the x direction open to get a cylindrical geometry. Then we divide the cylinder as below

R1 R2 R3

The topological invariant of state |ϕ⟩ is obtained from the following formula:

Z = Tr[ρ+R1∪R3
CR1

T (ρ−R1∪R3
)T1 [CR1

T ]†]

ρ±R1∪R3
= TrR1∪R3

[exp
±2πiy

∑
r∈R2

n(r)

Ly
|ϕ⟩⟨ϕ|] (S51)

Where CR1

T (ρ−R1∪R3
)T1 [CR1

T ]† is the time-reversal partial transpose of ρ−R1∪R3
. In Fock space, the time-reversal partial

transpose of |{nj}j∈R1 , {nj}j∈R2⟩⟨{n̄j}j∈R1 , {n̄j}j∈R2 | is defined as[35]

(−i)[τ1+τ̄1](−1)(τ1+τ̄1)(τ2+τ̄2)UR1

T |{n̄j}j∈R1
, {nj}j∈R2

⟩⟨{nj}j∈R1
, {n̄j}j∈R2

|[UR1

T ]† (S52)

with [x] = 0 for even x and [x] = 1 for odd x and τ1/2 =
∑

j∈R1/2
nj . U

R1

T is the unitary part of time-reversal action

on region R1. The angle of Z is π for QSH phase and 0 for trivial phase.
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And bond tensor is chosen to be B̂ = (↑↑|u (↑↑|v + (↓↓|u (↓↓|v − (↑↓|u (↑↓|vcucv + (↓↑|u (↓↑|v. In contrast to the
fixed-point wavefunction discussed in the main text, the variational wavefunction remains a superposition of loop
configurations with decorated fermions. However, it now exhibits distinct coefficients and does not involve any
additional physical Ising spins. Notably, the spin degrees of freedom become decoupled from the fermion degrees of
freedom, existing solely as internal degrees of freedom.

To calculate the topological invariant, we set the y direction of our 2+1D wavefunction to be periodic, and keep
the x direction open to get a cylindrical geometry. Then we divide the cylinder as below

R1 R2 R3

The topological invariant of state |ϕ⟩ is obtained from the following formula:

Z = Tr[ρ+R1∪R3
CR1

T (ρ−R1∪R3
)T1 [CR1

T ]†]

ρ±R1∪R3
= TrR1∪R3

[exp
±2πiy

∑
r∈R2

n(r)

Ly
|ϕ⟩⟨ϕ|] (VIII.3)

Where CR1

T (ρ−R1∪R3
)T1 [CR1

T ]† is the time-reversal partial transpose of ρ−R1∪R3
. In Fock space, the time-reversal partial

transpose of |{nj}j∈R1
, {nj}j∈R2

⟩⟨{n̄j}j∈R1
, {n̄j}j∈R2

| is defined as[7]

(−i)[τ1+τ̄1](−1)(τ1+τ̄1)(τ2+τ̄2)UR1

T |{n̄j}j∈R1
, {nj}j∈R2

⟩⟨{nj}j∈R1
, {n̄j}j∈R2

|[UR1

T ]† (VIII.4)

with [x] = 0 for even x and [x] = 1 for odd x and τ1/2 =
∑

j∈R1/2
nj . U

R1

T is the unitary part of time-reversal action

on region R1. The angle of Z is π for QSH phase and 0 for trivial phase.
We set the length of the y-direction, Ly = 2 (two unit cells with four sites in the y-direction). Additionally, we set

the length of three middle regions in the x-direction to be Lx. By tuning cu2 while keeping other coefficients to be 1,
for different Lx, we get the sign and amplitude of Z as shown in Fig. 5.
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FIG. 5: The sign (a) and amplitude (b) of Z versus cu2 while other coefficients are set to be 1.

We can also enter QSH phase by tuning other coefficients, like cv3, while keeping other coefficients to be 1 as shown
in Fig. 6. Tuning other coefficients by the same means may not give us QSH phase region for the wavefunction are
already out of QSH phase and those coefficients are irrelevant. But if we allow two coefficients to vary simultaneously,
it is possible to make every coefficients relevant. To see this, we compare the sign of Z versus cv6 and different cu2 while
keeping other coefficients to be 1. As shown in Fig.7 , we can’t find QSH phase region when cu2 and other coefficients
are 1, but it is possible when cu2 = 2. Consequently, there is a wide parameter region in QSH phase that can be tuned
for variational simulations.
The results show that there exists a stable parameter region of QSH phase when the system size is large enough.

The emergence of the trivial phase region can be attributed to two factors. Firstly, it is influenced by the limitation
of system size, as finite-size effects become significant beyond the fixed point. Secondly, our ansatz possesses the
capability to represent long-range entangled GHZ (Greenberger-Horne-Zeilinger) states because emergent IGG cannot
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We set the length of the y-direction, Ly = 2 (two unit cells with four sites in the y-direction). Additionally, we set
the length of three middle regions in the x-direction to be Lx. By tuning cu2 while keeping other coefficients to be 1,
for different Lx, we get the sign and amplitude of Z as shown in Fig. 5.
We can also enter QSH phase by tuning other coefficients, like cv3, while keeping other coefficients to be 1 as shown

in Fig. 6. Tuning other coefficients by the same means may not give us QSH phase region for the wavefunction are
already out of QSH phase and those coefficients are irrelevant. But if we allow two coefficients to vary simultaneously,
it is possible to make every coefficients relevant. To see this, we compare the sign of Z versus cv6 and different cu2 while
keeping other coefficients to be 1. As shown in Fig.7 , we can’t find QSH phase region when cu2 and other coefficients
are 1, but it is possible when cu2 = 2. Consequently, there is a wide parameter region in QSH phase that can be tuned
for variational simulations.
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FIG. 7: The sign (a)/(c) and amplitude (b)/(d) of Z versus cv6 when cu2 = 1/cu2 = 2. Other coefficients are set to be 1.

be ruled out solely based on local tensor equations.
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The emergence of the trivial phase region can be attributed to two factors. Firstly, it is influenced by the limitation
of system size, as finite-size effects become significant beyond the fixed point. Secondly, our ansatz possesses the
capability to represent long-range entangled GHZ (Greenberger-Horne-Zeilinger) states because emergent IGG cannot
be ruled out solely based on local tensor equations.
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