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Abstract

We study three combinatorial models for the lower-triangular matrix with
entries tn,k =

(
n
k

)
nn−k: two involving rooted trees on the vertex set [n + 1],

and one involving partial functional digraphs on the vertex set [n]. We show
that this matrix is totally positive and that the sequence of its row-generating
polynomials is coefficientwise Hankel-totally positive. We then generalize to
polynomials tn,k(y, z) that count improper and proper edges, and further to
polynomials tn,k(y,ϕ) in infinitely many indeterminates that give a weight y to
each improper edge and a weight m!ϕm for each vertex with m proper children.
We show that if the weight sequence ϕ is Toeplitz-totally positive, then the two
foregoing total-positivity results continue to hold. Our proofs use production
matrices and exponential Riordan arrays.
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1 Introduction and statement of results

It is well known [59,79] that the number of rooted trees on the vertex set [n+1]
def
=

{1, . . . , n + 1} is tn = (n + 1)n; and it is also known (though perhaps less well so)
[12,13,75] that the number of rooted trees on the vertex set [n+ 1] in which exactly
k children of the root are lower-numbered than the root is

tn,k =

(
n

k

)
nn−k . (1.1)

The first few tn,k and tn are

n \ k 0 1 2 3 4 5 6 7 8 (n+ 1)n

0 1 1
1 1 1 2
2 4 4 1 9
3 27 27 9 1 64
4 256 256 96 16 1 625
5 3125 3125 1250 250 25 1 7776
6 46656 46656 19440 4320 540 36 1 117649
7 823543 823543 352947 84035 12005 1029 49 1 2097152
8 16777216 16777216 7340032 1835008 286720 28672 1792 64 1 43046721

[61, A071207 and A000169].
There is a second combinatorial interpretation of the numbers tn,k, also in terms

of rooted trees: namely, tn,k is the number of rooted trees on the vertex set [n + 1]
in which some specified vertex i has k children.1

1This fact ought to be well known, but to our surprise we have been unable to find any published
reference. Let us therefore give two proofs:
First proof. Let T •

n denote the set of rooted trees on the vertex set [n], and let degT (i) denote
the number of children of the vertex i in the rooted tree T . Rooted trees T ∈ T •

n+1 are associated
bijectively to Prüfer sequences (s1, . . . , sn) ∈ [n+1]n, in which each index i ∈ [n+1] appears degT (i)
times [79, pp. 25–26]. There are

(
n
k

)
nn−k sequences in which the index i appears exactly k times.

Equivalently, by [79, Theorem 5.3.4, eq. (5.47)],

∑
T∈T •

n

n∏
j=1

x
degT (j)
j = (x1 + . . .+ xn)

n−1 .

Replacing n→ n+ 1 and then setting xi = x and xj = 1 for j ̸= i, we have∑
T∈T •

n+1

xdegT (i) = (x+ n)n .

Extracting the coefficient of xk yields
(
n
k

)
nn−k.

Second proof. There are fn,k =
(
n
k

)
k nn−k−1 k-component forests of rooted trees on n labeled

vertices (see the references cited in [76, footnote 1]). By adding a new vertex 0 and connecting it
to the roots of all the trees, we see that fn,k is also the number of unrooted trees on n + 1 labeled
vertices in which some specified vertex (here vertex 0) has degree k. Now choose a root: if this
root is 0, then vertex 0 has k children; otherwise vertex 0 has k − 1 children. It follows that the
number of rooted trees on n + 1 labeled vertices in which some specified vertex has k children is
fn,k + nfn,k+1 =

(
n
k

)
nn−k.

The second proof was found independently by Ira Gessel (private communication).
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And finally, there is a third combinatorial interpretation of the numbers tn,k [20]
that is even simpler than the preceding two. Recall first that a functional digraph
is a directed graph in which every vertex has out-degree 1; the terminology comes
from the fact that such digraphs are in obvious bijection with functions f from the

vertex set to itself [namely,
−→
ij is an edge if and only if f(i) = j]. Let us now define

a partial functional digraph to be a directed graph in which every vertex has
out-degree 0 or 1; and let us write PFDn,k for the set of partial functional digraphs
on the vertex set [n] in which exactly k vertices have out-degree 0. (So PFDn,0 is the
set of functional digraphs.) A digraph in PFDn,k has n − k edges. It is easy to see
that |PFDn,k| = tn,k: there are

(
n
k

)
choices for the out-degree-0 vertices, and nn−k

choices for the edges emanating from the remaining vertices.
We will use all three combinatorial models at various points in this paper.
The unit-lower-triangular matrix (tn,k)n,k≥0 has the exponential generating func-

tion
∞∑
n=0

n∑
k=0

tn,k
tn

n!
xk =

exT (t)

1− T (t)
(1.2)

where

T (t)
def
=

∞∑
n=1

nn−1 t
n

n!
(1.3)

is the tree function [19].2 An equivalent statement is that the unit-lower-triangular
matrix (tn,k)n,k≥0 is the exponential Riordan array [3, 22, 24,70] R[F,G] with F (t) =∑∞

n=0 n
n tn/n! = 1/[1 − T (t)] and G(t) = T (t); we will discuss this connection in

Section 4.1.
The principal purpose of this paper is to prove the total positivity of some matrices

related to (and generalizing) tn and tn,k. Recall first that a finite or infinite matrix
of real numbers is called totally positive (TP) if all its minors are nonnegative, and
strictly totally positive (STP) if all its minors are strictly positive.3 Background
information on totally positive matrices can be found in [28, 34, 46, 64]; they have
applications to many areas of pure and applied mathematics.4

Our first result is the following:

Theorem 1.1.

(a) The unit-lower-triangular matrix T = (tn,k)n,k≥0 is totally positive.

(b) The Hankel matrix H∞(t(0)) = (tn+n′,0)n,n′≥0 is totally positive.

2In the analysis literature, expressions involving the tree function are often written in terms of
the Lambert W function W (t) = −T (−t), which is the inverse function to w 7→ wew [19, 45].

3Warning: Many authors (e.g. [28, 33–35]) use the terms “totally nonnegative” and “totally
positive” for what we have termed “totally positive” and “strictly totally positive”, respectively. So
it is very important, when seeing any claim about “totally positive” matrices, to ascertain which
sense of “totally positive” is being used! (This is especially important because many theorems in
this subject require strict total positivity for their validity.)

4Including combinatorics [8–10,33,72], stochastic processes [46,47], statistics [46], the mechanics
of oscillatory systems [34, 35], the zeros of polynomials and entire functions [2, 27, 43, 46, 48, 64],
spline interpolation [37,46,68], Lie theory [32,54–56] and cluster algebras [30,31], the representation
theory of the infinite symmetric group [6,83], the theory of immanants [80], planar discrete potential
theory [21,29] and the planar Ising model [53], and several other areas [37].
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It is known [35,64] that a Hankel matrix of real numbers is totally positive if and
only if the underlying sequence is a Stieltjes moment sequence, i.e. the moments of a
positive measure on [0,∞). And it is also known that (nn)n≥0 is a Stieltjes moment
sequence.5 So Theorem 1.1(b) is equivalent to this known result. But our proof here
is combinatorial and linear-algebraic, not analytic.

However, this is only the beginning of the story, because our main interest [73,
74,77] is not with sequences and matrices of real numbers, but rather with sequences
and matrices of polynomials (with integer or real coefficients) in one or more in-
determinates x: in applications they will typically be generating polynomials that
enumerate some combinatorial objects with respect to one or more statistics. We
equip the polynomial ring R[x] with the coefficientwise partial order: that is, we say
that P is nonnegative (and write P ⪰ 0) in case P is a polynomial with nonnegative
coefficients. We then say that a matrix with entries in R[x] is coefficientwise to-
tally positive if all its minors are polynomials with nonnegative coefficients; and we
say that a sequence a = (an)n≥0 with entries in R[x] is coefficientwise Hankel-
totally positive if its associated infinite Hankel matrix H∞(a) = (an+n′)n,n′≥0 is
coefficientwise totally positive.

Returning now to the matrix T = (tn,k)n,k≥0, let us define its row-generating
polynomials in the usual way:

Tn(x) =
n∑

k=0

tn,k x
k . (1.4)

From the definition (1.1) we obtain the explicit formula

Tn(x) = (x+ n)n . (1.5)

Our second result is then:

Theorem 1.2. The polynomial sequence T =
(
Tn(x)

)
n≥0

is coefficientwise Hankel-

totally positive. [That is, the Hankel matrix H∞(T ) =
(
Tn+n′(x)

)
n,n′≥0

is coefficient-

wise totally positive.]

Theorem 1.2 strengthens Theorem 1.1(b), and reduces to it when x = 0. The proof
of Theorem 1.2 will be based on studying the binomial row-generating matrix
TBx, where Bx is the weighted binomial matrix

(Bx)ij =

(
i

j

)
xi−j (1.6)

5The integral representation [7] [45, Corollary 2.4]

nn

n!
=

1

π

π∫
0

(
sin ν

ν
eν cot ν

)n

dν

shows that nn/n! is a Stieltjes moment sequence. Moreover, n! =
∫∞
0

xn e−x dx is a Stieltjes moment
sequence. Since the entrywise product of two Stieltjes moment sequences is easily seen to be a
Stieltjes moment sequence, it follows that nn is a Stieltjes moment sequence. But we do not know
any simple formula (i.e. one involving only a single integral over a real variable) for its Stieltjes
integral representation.
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(see Sections 2.4 and 2.6).

But this is not the end of the story, because we want to generalize these polyno-
mials further by adding further variables. Given a rooted tree T and two vertices i, j
of T , we say that j is a descendant of i if the unique path from the root of T to j
passes through i. (Note in particular that every vertex is a descendant of itself.) Now
suppose that the vertex set of T is totally ordered (for us it will be [n + 1]), and let
e = ij be an edge of T , ordered so that j is a descendant of i. We say that the edge
e = ij is improper if there exists a descendant of j (possibly j itself) that is lower-
numbered than i; otherwise we say that e = ij is proper . We denote by imprope(T )
[resp. prope(T )] the number of improper (resp. proper) edges in the tree T .

We now introduce these statistics into our second combinatorial model. Let T ⟨i;k⟩
n

denote the set of rooted trees on the vertex set [n] in which the vertex i has k children.

For the identity |T ⟨i;k⟩
n+1 | = tn,k, we can use any i ∈ [n + 1]; but for the following we

specifically want to take i = 1. With this choice we observe that the k edges from
the vertex 1 to its children are automatically proper. We therefore define

tn,k(y, z) =
∑

T∈T ⟨1;k⟩
n+1

yimprope(T )zprope(T )−k . (1.7)

Clearly tn,k(y, z) is a homogeneous polynomial of degree n−k with nonnegative integer
coefficients; it is a polynomial refinement of tn,k in the sense that tn,k(1, 1) = tn,k.
(Of course, it was redundant to introduce the two variables y and z instead of just
one of them; we did it because it makes the formulae more symmetric.) The first few
polynomials tn,k(y, 1) are

n \ k 0 1 2 3 4

0 1
1 y 1
2 y + 3y2 1 + 3y 1
3 2y + 10y2 + 15y3 2 + 10y + 15y2 3 + 6y 1
4 6y + 40y2 + 105y3 + 105y4 6 + 40y + 105y2 + 105y3 11 + 40y + 45y2 6 + 10y 1

The coefficient matrix of the zeroth-column polynomials tn,0(y, 1) is [61, A239098/A075856].
This table also suggests the following result, for which we will give a bijective proof:

Proposition 1.3. For n ≥ 1, tn,0(y, z) = y tn,1(y, z).

In Section 4.2 we will show that the unit-lower-triangular matrix T(y, z) =(
tn,k(y, z)

)
n,k≥0

is an exponential Riordan array R[F,G], and we will compute F (t)

and G(t).
We now generalize (1.4) by defining the row-generating polynomials

Tn(x, y, z) =
n∑

k=0

tn,k(y, z)x
k (1.8)

or in other words

Tn(x, y, z) =
∑

T∈T •
n+1

xdegT (1)yimprope(T )zprope(T )−degT (1) (1.9)

6



where degT (1) is the number of children of the vertex 1 in the rooted tree T . Note
that Tn(x, y, z) is a homogeneous polynomial of degree n in x, y, z, with nonnegative
integer coefficients; it reduces to Tn(x) when y = z = 1. Our third result is then:

Theorem 1.4.

(a) The unit-lower-triangular polynomial matrix T(y, z) =
(
tn,k(y, z)

)
n,k≥0

is coef-

ficientwise totally positive (jointly in y, z).

(b) The polynomial sequence T =
(
Tn(x, y, z)

)
n≥0

is coefficientwise Hankel-totally

positive (jointly in x, y, z).

Theorem 1.4 strengthens Theorems 1.1(a) and 1.2, and reduces to them when
y = z = 1. The proof of Theorem 1.4(b) will be based on studying the binomial row-
generating matrix T(y, z)Bx, using the representation of T(y, z) as an exponential
Riordan array.

Finally, let us consider our third combinatorial model, which is based on partial
functional digraphs. Recall that a functional digraph (resp. partial functional digraph)
is a directed graph in which every vertex has out-degree 1 (resp. 0 or 1). Each weakly
connected component of a functional digraph consists of a directed cycle (possibly
of length 1, i.e. a loop) together with a collection of (possibly trivial) directed trees
rooted at the vertices of the cycle (with edges pointing towards the root). The weakly
connected components of a partial functional digraph are trees rooted at the out-
degree-0 vertices (with edges pointing towards the root) together with components of
the same form as in a functional digraph. We say that a vertex of a partial functional
digraph is recurrent (or cyclic) if it lies on one of the cycles; otherwise we call
it transient (or acyclic). If j and k are vertices of a digraph, we say that k is
a predecessor of j if there exists a directed path from k to j (in particular, every
vertex is a predecessor of itself).6 Note that “predecessor” in a digraph generalizes
the notion of “descendant” in a rooted tree, if we make the convention that all edges
in the tree are oriented towards the root. Indeed, if j is a transient vertex in a partial
functional digraph, then the predecessors of j are precisely the descendants of j in the
rooted tree (rooted at either a recurrent vertex or an out-degree-0 vertex) to which j
belongs. On the other hand, if j is a recurrent vertex, then the predecessors of j are
all the vertices in the weakly connected component containing j.

Now consider a partial functional digraph on a totally ordered vertex set (which

for us will be [n]). We say that an edge
−→
ji (pointing from j to i) is improper if

there exists a predecessor of j (possibly j itself) that is ≤ i; otherwise we say that

the edge
−→
ji is proper . When j is a transient vertex, this coincides with the notion

of improper/proper edge in a rooted tree. When j is a recurrent vertex, the edge
−→
ji

is always improper, because one of the predecessors of j is i. (This includes the case
i = j: a loop is always an improper edge.) We denote by imprope(G) [resp. prope(G)]
the number of improper (resp. proper) edges in the partial functional digraph G. We
then define the generating polynomial

t̃n,k(y, z) =
∑

G∈PFDn,k

yimprope(G)zprope(G) . (1.10)

6In a functional digraph, Dumont and Ramamonjisoa [26, p. 11] use the term “ascendance”, and
the notation A(j), to denote the set of all predecessors of j.
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Since G ∈ PFDn,k has n − k edges, t̃n,k(y, z) is a homogeneous polynomial of de-
gree n−k with nonnegative integer coefficients. By bijection between our second and
third combinatorial models, we will prove:

Proposition 1.5. tn,k(y, z) = t̃n,k(y, z) .

The row-generating polynomials (1.8)/(1.9) thus have the alternate combinatorial
interpretation

Tn(x, y, z) =
∑

G∈PFDn

xdeg 0(G)yimprope(G)zprope(G) (1.11)

where deg 0(G) is the number of out-degree-0 vertices in G.
We also have an interpretation of the polynomials tn,k(y, z) in our first combinato-

rial model (rooted trees in which the root has k lower-numbered children); but since
this interpretation is rather complicated, we defer it to Appendix A.

But this is still not the end of the story, because we can add even more variables
into our second combinatorial model — in fact, an infinite set. Given a rooted tree
T on a totally ordered vertex set and vertices i, j ∈ T such that j is a child of i, we
say that j is a proper child of i if the edge e = ij is proper (that is, j and all its
descendants are higher-numbered than i). Now let ϕ = (ϕm)m≥0 be indeterminates,

and let tn,k(y,ϕ) be the generating polynomial for rooted trees T ∈ T ⟨1;k⟩
n+1 with a

weight y for each improper edge and a weight ϕ̂m
def
= m!ϕm for each vertex i ̸= 1 that

has m proper children:

tn,k(y,ϕ) =
∑

T∈T ⟨1;k⟩
n+1

yimprope(T )

n+1∏
i=2

ϕ̂pdegT (i) (1.12)

where pdegT (i) denotes the number of proper children of the vertex i in the rooted tree
T . We will see later why it is convenient to introduce the factors m! in this definition.
Observe also that the variables z are now redundant and therefore omitted, because
they would simply scale ϕm → zmϕm. And note finally that, in conformity with (1.7),
we have chosen to suppress the weight ϕ̂k that would otherwise be associated to the
vertex 1. We call the polynomials tn,k(y,ϕ) the generic rooted-tree polynomials ,
and the lower-triangular matrix T(y,ϕ) =

(
tn,k(y,ϕ)

)
n,k≥0

the generic rooted-tree

matrix . Here ϕ = (ϕm)m≥0 are in the first instance indeterminates, so that tn,k(y,ϕ)
belongs to the polynomial ring Z[y,ϕ]; but we can then, if we wish, substitute specific
values for ϕ in any commutative ring R, leading to values tn,k(y,ϕ) ∈ R[y]. (Similar
substitutions can of course also be made for y.) When doing this we will use the
same notation tn,k(y,ϕ), as the desired interpretation for ϕ should be clear from the
context. The polynomial tn,k(y,ϕ) is homogeneous of degree n in ϕ; it is also quasi-
homogeneous of degree n − k in y and ϕ when ϕm is assigned weight m and y is
assigned weight 1. By specializing tn,k(y,ϕ) to ϕm = zm/m! and hence ϕ̂m = zm, we
recover tn,k(y, z).

We remark that the matrix T(y,ϕ), unlike T(y, z), is not unit-lower-triangular:
rather, it has diagonal entries tn,n(y,ϕ) = ϕn

0 , corresponding to the tree in which 1 is
the root and has all the vertices 2, . . . , n+ 1 as children. More generally, the polyno-
mial tn,k(y,ϕ) is divisible by ϕk

0, since the vertex 1 always has at least k leaf descen-
dants. So we could define a unit-lower-triangular matrix T♭(y,ϕ) =

(
t♭n,k(y,ϕ)

)
n,k≥0

8



by t♭n,k(y,ϕ) = tn,k(y,ϕ)/ϕ
k
0. (Alternatively, we could simply choose to normalize to

ϕ0 = 1.)
In Section 4.3 we will show that T(y,ϕ) is an exponential Riordan array R[F,G],

and we will compute F (t) and G(t).
Also, generalizing Proposition 1.3, we will prove:

Proposition 1.6. For n ≥ 1, tn,0(y,ϕ) = y tn,1(y,ϕ).

We can also define the corresponding polynomials t̃n,k(y,ϕ) in the partial-functional-
digraph model, as follows: If G is a partial functional digraph on a totally ordered
vertex set, and i is a vertex of G, we define the proper in-degree of i, pindegG(i),

to be the number of proper edges
−→
ji in G. We then define

t̃n,k(y,ϕ) =
∑

G∈PFDn,k

yimprope(G)

n∏
i=1

ϕ̂pindegG(i) . (1.13)

Then, generalizing Proposition 1.5, we will prove:

Proposition 1.7. tn,k(y,ϕ) = t̃n,k(y,ϕ) .

Now define the row-generating polynomials

Tn(x, y,ϕ) =
n∑

k=0

tn,k(y,ϕ)x
k (1.14)

or in other words

Tn(x, y,ϕ) =
∑

T∈T •
n+1

xdegT (1)yimprope(T )

n+1∏
i=2

ϕ̂pdegT (i) . (1.15)

The main result of this paper is then the following:

Theorem 1.8. Fix 1 ≤ r ≤ ∞. Let R be a partially ordered commutative ring, and
let ϕ = (ϕm)m≥0 be a sequence in R that is Toeplitz-totally positive of order r. Then:

(a) The lower-triangular polynomial matrix T(y,ϕ) =
(
tn,k(y,ϕ)

)
n,k≥0

is coefficien-

twise totally positive of order r (in y).

(b) The polynomial sequence T =
(
Tn(x, y,ϕ)

)
n≥0

is coefficientwise Hankel-totally

positive of order r (jointly in x, y).

(The concept of Toeplitz-total positivity in a partially ordered commutative ring will
be explained in detail in Section 2.1. Total positivity of order r means that the
minors of size ≤ r are nonnegative.) Specializing Theorem 1.8 to r =∞, R = Q and
ϕm = zm/m! (which is indeed Toeplitz-totally positive: see (2.1) below), we recover
Theorem 1.4. The method of proof of Theorem 1.8 will, in fact, be the same as that
of Theorem 1.4, suitably generalized.

We now give an overview of the contents of this paper. The main tool in our proofs
will be the theory of production matrices [23, 24] as applied to total positivity [77],
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combined with the theory of exponential Riordan arrays [3, 22, 24, 70]. Therefore,
in Section 2 we review some facts about total positivity, production matrices and
exponential Riordan arrays that will play a central role in our arguments. This
development culminates in Corollary 2.28; it is the fundamental theoretical result
that underlies all our proofs. In Section 3 we give bijective proofs of Propositions 1.3,
1.5, 1.6 and 1.7. In Section 4 we show that the matrices T, T(y, z) and T(y,ϕ) are
exponential Riordan arrays R[F,G], and we compute their generating functions F
and G. In Section 5 we combine the results of Sections 2 and 4 to complete the proofs
of Theorems 1.1, 1.2, 1.4 and 1.8.

This paper is a sequel to our paper [76] on the total positivity of matrices that
enumerate forests of rooted labeled trees. The methods here are basically the same
as in this previous paper, but generalized nontrivially to handle exponential Riordan
arrays R[F,G] with F ̸= 1. Zhu [87, 89] has employed closely related methods. See
also Gilmore [39] for some total-positivity results for q-generalizations of tree and
forest matrices, using very different methods.

2 Preliminaries

Here we review some definitions and results from [62, 77] that will be needed
in the sequel. We also include a brief review of ordinary and exponential Riordan
arrays [3, 22, 24,69,70,78] and Lagrange inversion [38].

The treatment of exponential Riordan arrays in Section 2.6 contains one novelty:
namely, the rewriting of the production matrix in terms of new series Φ and Ψ (see
(2.23) ff. and Proposition 2.23). This is the key step that leads to Corollary 2.28.

2.1 Partially ordered commutative rings and total positivity

In this paper all rings will be assumed to have an identity element 1 and to be
nontrivial (1 ̸= 0).

A partially ordered commutative ring is a pair (R,P) where R is a commu-
tative ring and P is a subset of R satisfying

(a) 0, 1 ∈ P .

(b) If a, b ∈ P , then a+ b ∈ P and ab ∈ P .

(c) P ∩ (−P) = {0}.

We call P the nonnegative elements of R, and we define a partial order on R (com-
patible with the ring structure) by writing a ≤ b as a synonym for b− a ∈ P . Please
note that, unlike the practice in real algebraic geometry [11, 50, 57, 65], we do not
assume here that squares are nonnegative; indeed, this property fails completely for
our prototypical example, the ring of polynomials with the coefficientwise order, since
(1− x)2 = 1− 2x+ x2 ̸⪰ 0.

Now let (R,P) be a partially ordered commutative ring and let x = {xi}i∈I be a
collection of indeterminates. In the polynomial ring R[x] and the formal-power-series
ring R[[x]], let P [x] and P [[x]] be the subsets consisting of polynomials (resp. series)
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with nonnegative coefficients. Then (R[x],P [x]) and (R[[x]],P [[x]]) are partially or-
dered commutative rings; we refer to this as the coefficientwise order on R[x] and
R[[x]].

A (finite or infinite) matrix with entries in a partially ordered commutative ring
is called totally positive (TP) if all its minors are nonnegative; it is called totally
positive of order r (TPr) if all its minors of size ≤ r are nonnegative. It follows
immediately from the Cauchy–Binet formula that the product of two TP (resp. TPr)
matrices is TP (resp. TPr).

7 This fact is so fundamental to the theory of total
positivity that we shall henceforth use it without comment.

We say that a sequence a = (an)n≥0 with entries in a partially ordered commuta-
tive ring is Hankel-totally positive (resp. Hankel-totally positive of order r)
if its associated infinite Hankel matrix H∞(a) = (ai+j)i,j≥0 is TP (resp. TPr). We say
that a is Toeplitz-totally positive (resp. Toeplitz-totally positive of order r)

if its associated infinite Toeplitz matrix T∞(a) = (ai−j)i,j≥0 (where an
def
= 0 for n < 0)

is TP (resp. TPr).
8

When R = R, Hankel- and Toeplitz-total positivity have simple analytic char-
acterizations. A sequence (an)n≥0 of real numbers is Hankel-totally positive if and
only if it is a Stieltjes moment sequence [35, Théorème 9] [64, section 4.6]. And a
sequence (an)n≥0 of real numbers is Toeplitz-totally positive if and only if its ordinary
generating function can be written as

∞∑
n=0

ant
n = Ceγttm

∞∏
i=1

1 + αit

1− βit
(2.1)

with m ∈ N, C, γ, αi, βi ≥ 0,
∑
αi <∞ and

∑
βi <∞: this is the celebrated Aissen–

Schoenberg–Whitney–Edrei theorem [46, Theorem 5.3, p. 412]. However, in a general
partially ordered commutative ring R, the concepts of Hankel- and Toeplitz-total
positivity are more subtle.

We will need a few easy facts about the total positivity of special matrices:

Lemma 2.1 (Bidiagonal matrices). Let A be a matrix with entries in a partially
ordered commutative ring, with the property that all its nonzero entries belong to two
consecutive diagonals. Then A is totally positive if and only if all its entries are
nonnegative.

Proof. The nonnegativity of the entries (i.e. TP1) is obviously a necessary condition
for TP. Conversely, for a matrix of this type it is easy to see that every nonzero minor
is simply a product of some entries. □

7For infinite matrices, we need some condition to ensure that the product is well-defined. For
instance, the product AB is well-defined whenever A is row-finite (i.e. has only finitely many nonzero
entries in each row) or B is column-finite.

8When R = R, Toeplitz-totally positive sequences are traditionally called Pólya frequency se-
quences (PF), and Toeplitz-totally positive sequences of order r are called Pólya frequency sequences
of order r (PFr). See [46, chapter 8] for a detailed treatment.
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Lemma 2.2 (Toeplitz matrix of powers). Let R be a partially ordered commutative
ring, let x ∈ R, and consider the infinite Toeplitz matrix

Tx
def
= T∞(xN) =


1
x 1
x2 x 1
x3 x2 x 1
...

...
...

...
. . .

 . (2.2)

Then every minor of Tx is either zero or else a power of x. Hence Tx is TP ⇐⇒ Tx
is TP1 ⇐⇒ x ≥ 0.

In particular, if x is an indeterminate, then Tx is totally positive in the ring Z[x]
equipped with the coefficientwise order.

Proof. Consider a submatrix A = (Tx)IJ with rows I = {i1 < . . . < ik} and columns
J = {j1 < . . . < jk}. We will prove by induction on k that detA is either zero or a
power of x. It is trivial if k = 0 or 1. If A12 = A22 = 0, then A1s = A2s = 0 for all
s ≥ 2 by definition of Tx, and detA = 0. If A12 and A22 are both nonzero, then the
first column of A is xj2−j1 times the second column, and again detA = 0. Finally,
if A12 = 0 and A22 ̸= 0 (by definition of Tx this is the only other possibility), then
A1s = 0 for all s ≥ 2; we then replace the first column of A by the first column minus
xj2−j1 times the second column, so that the new first column has xi1−j1 in its first
entry (or zero if i1 < j1) and zeroes elsewhere. Then detA equals xi1−j1 (or zero if
i1 < j1) times the determinant of its last k−1 rows and columns, so the claim follows
from the inductive hypothesis. □

See also Example 2.9 below for a second proof of the total positivity of Tx, using
production matrices.

Lemma 2.3 (Binomial matrix). In the ring Z, the binomial matrix B =
((

n
k

))
n,k≥0

is

totally positive. More generally, the weighted binomial matrix Bx,y =
(
xn−kyk

(
n
k

))
n,k≥0

is totally positive in the ring Z[x, y] equipped with the coefficientwise order.

Proof. It is well known that the binomial matrix B is totally positive, and this can
be proven by a variety of methods: e.g. using production matrices [46, pp. 136–137,
Example 6.1] [64, pp. 108–109], by diagonal similarity to a totally positive Toeplitz
matrix [64, p. 109], by exponentiation of a nonnegative lower-subdiagonal matrix [28,
p. 63], or by an application of the Lindström–Gessel–Viennot lemma [33, p. 24].

Then Bx,y = DBD′ where D = diag
(
(xn)n≥0

)
and D′ = diag

(
(x−kyk)k≥0

)
. By

Cauchy–Binet, Bx,y is totally positive in the ring Z[x, x−1, y] equipped with the coef-
ficientwise order. But because B is lower-triangular, the elements of Bx,y actually lie
in the subring Z[x, y]. □

See also Example 2.10 below for an ab initio proof of Lemma 2.3 using production
matrices.

Finally, let us show that the sufficiency half of the Aissen–Schoenberg–Whitney–
Edrei theorem holds (with a slight modification to avoid infinite products) in a general
partially ordered commutative ring. We give two versions, depending on whether
or not it is assumed that the ring R contains the rationals:
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Lemma 2.4 (Sufficient condition for Toeplitz-total positivity). Let R be a par-
tially ordered commutative ring, let N be a nonnegative integer, and let α1, . . . , αN ,
β1, . . . , βN and C be nonnegative elements in R. Define the sequence a = (an)n≥0 in
R by

∞∑
n=0

ant
n = C

N∏
i=1

1 + αit

1− βit
. (2.3)

Then the Toeplitz matrix T∞(a) is totally positive.

Of course, it is no loss of generality to have the same number N of alphas and betas,
since some of the αi or βi could be zero.

Lemma 2.5 (Sufficient condition for Toeplitz-total positivity, with rationals). Let R
be a partially ordered commutative ring containing the rationals, let N be a nonneg-
ative integer, and let α1, . . . , αN , β1, . . . , βN , γ and C be nonnegative elements in R.
Define the sequence a = (an)n≥0 in R by

∞∑
n=0

ant
n = C eγt

N∏
i=1

1 + αit

1− βit
. (2.4)

Then the Toeplitz matrix T∞(a) is totally positive.

Proof of Lemma 2.4. We make a series of elementary observations:
1) The sequence a = (1, α, 0, 0, 0, . . .), corresponding to the generating function

A(t) = 1 + αt, is Toeplitz-totally positive if and only if α ≥ 0. The “only if” is
trivial, and the “if” follows from Lemma 2.1 because the Toeplitz matrix T∞(a) is
bidiagonal.

2) The sequence a = (1, β, β2, β3, . . .), corresponding to the generating function
A(t) = 1/(1 − βt), is Toeplitz-totally positive if and only if β ≥ 0. The “only if” is
again trivial, and the “if” follows from Lemma 2.2.

3) If a and b are sequences with ordinary generating functions A(t) and B(t),
then the convolution c = a∗b, defined by cn =

∑n
k=0 akbn−k, has ordinary generating

function C(t) = A(t)B(t); moreover, the Toeplitz matrix T∞(c) is simply the matrix
product T∞(a)T∞(b). It thus follows from the Cauchy–Binet formula that if a and b
are Toeplitz-totally positive, then so is c.

4) A Toeplitz-totally positive sequence can be multiplied by a nonnegative con-
stant C, and it is still Toeplitz-totally positive.

Combining these observations proves the lemma. □

Proof of Lemma 2.5. We add to the proof of Lemma 2.4 the following additional
observation:

5) The sequence a = (γn/n!)n≥0, corresponding to the generating function A(t) =
eγt, is Toeplitz-totally positive if and only if γ ≥ 0. The “only if” is again trivial, and
the “if” follows from Lemma 2.3 because γn−k/(n− k)! =

(
n
k

)
γn−k × k!/n! and hence

T∞(a) = D−1Bγ,1D where D = diag( (n!)n≥0). □
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2.2 Production matrices

The method of production matrices [23, 24] has become in recent years an im-
portant tool in enumerative combinatorics. In the special case of a tridiagonal pro-
duction matrix, this construction goes back to Stieltjes’ [81, 82] work on continued
fractions: the production matrix of a classical S-fraction or J-fraction is tridiago-
nal. In the present paper, by contrast, we shall need production matrices that are
lower-Hessenberg (i.e. vanish above the first superdiagonal) but are not in general
tridiagonal. We therefore begin by reviewing briefly the basic theory of production
matrices. The important connection of production matrices with total positivity will
be treated in the next subsection.

Let P = (pij)i,j≥0 be an infinite matrix with entries in a commutative ring R.
In order that powers of P be well-defined, we shall assume that P is either row-finite
(i.e. has only finitely many nonzero entries in each row) or column-finite.

Let us now define an infinite matrix A = (ank)n,k≥0 by

ank = (P n)0k (2.5)

(in particular, a0k = δ0k). Writing out the matrix multiplications explicitly, we have

ank =
∑

i1,...,in−1

p0i1 pi1i2 pi2i3 · · · pin−2in−1 pin−1k , (2.6)

so that ank is the total weight for all n-step walks in N from i0 = 0 to in = k, in which
the weight of a walk is the product of the weights of its steps, and a step from i to j
gets a weight pij. Yet another equivalent formulation is to define the entries ank by
the recurrence

ank =
∞∑
i=0

an−1,i pik for n ≥ 1 (2.7)

with the initial condition a0k = δ0k.
We call P the production matrix and A the output matrix , and we write

A = O(P ). Note that if P is row-finite, then so is O(P ); if P is lower-Hessenberg,
then O(P ) is lower-triangular; if P is lower-Hessenberg with invertible superdiagonal
entries, then O(P ) is lower-triangular with invertible diagonal entries; and if P is
unit-lower-Hessenberg (i.e. lower-Hessenberg with entries 1 on the superdiagonal),
then O(P ) is unit-lower-triangular. In all the applications in this paper, P will be
lower-Hessenberg.

The matrix P can also be interpreted as the adjacency matrix for a weighted
directed graph on the vertex set N (where the edge ij is omitted whenever pij = 0).
Then P is row-finite (resp. column-finite) if and only if every vertex has finite out-
degree (resp. finite in-degree).

This iteration process can be given a compact matrix formulation. Let us define
the augmented production matrix

P̃
def
=

[
1 0 0 0 · · ·

P

]
. (2.8)

Then the recurrence (2.7) together with the initial condition a0k = δ0k can be written
as

A =

[
1 0 0 0 · · ·

AP

]
=

[
1 0
0 A

] [
1 0 0 0 · · ·

P

]
=

[
1 0
0 A

]
P̃ . (2.9)
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This identity can be iterated to give the factorization

A = · · ·

[
I3 0

0 P̃

][
I2 0

0 P̃

][
I1 0

0 P̃

]
P̃ (2.10)

where Ik is the k × k identity matrix; and conversely, (2.10) implies (2.9).
Now let ∆ = (δi+1,j)i,j≥0 be the matrix with 1 on the superdiagonal and 0 else-

where. Then for any matrix M with rows indexed by N, the product ∆M is simply
M with its zeroth row removed and all other rows shifted upwards. (Some authors

use the notation M
def
= ∆M .) The recurrence (2.7) can then be written as

∆O(P ) = O(P )P . (2.11)

It follows that if A is a row-finite matrix that has a row-finite inverse A−1 and has
first row a0k = δ0k, then P = A−1∆A is the unique matrix such that A = O(P ).
This holds, in particular, if A is lower-triangular with invertible diagonal entries and
a00 = 1; then A−1 is lower-triangular and P = A−1∆A is lower-Hessenberg. And if A
is unit-lower-triangular, then P = A−1∆A is unit-lower-Hessenberg.

We shall repeatedly use the following easy fact:

Lemma 2.6 (Production matrix of a product). Let P = (pij)i,j≥0 be a row-finite
matrix (with entries in a commutative ring R), with output matrix A = O(P ); and
let B = (bij)i,j≥0 be a lower-triangular matrix with invertible (in R) diagonal entries.
Then

AB = b00O(B−1PB) . (2.12)

That is, up to a factor b00, the matrix AB has production matrix B−1PB.

Proof. Since P is row-finite, so is A = O(P ); then the matrix products AB and
B−1PB arising in the lemma are well-defined. Now

ank =
∑

i1,...,in−1

p0i1 pi1i2 pi2i3 · · · pin−2in−1 pin−1k , (2.13)

while

O(B−1PB)nk =
∑

j,i1,...,in−1,in

(B−1)0j pji1 pi1i2 pi2i3 · · · pin−2in−1 pin−1in bink . (2.14)

But B is lower-triangular with invertible diagonal entries, so B is invertible and B−1

is lower-triangular, with (B−1)0j = b−1
00 δj0. It follows that AB = b00O(B−1PB). □

2.3 Production matrices and total positivity

Let P = (pij)i,j≥0 be a matrix with entries in a partially ordered commutative
ring R. We will use P as a production matrix; let A = O(P ) be the corresponding
output matrix. As before, we assume that P is either row-finite or column-finite.

When P is totally positive, it turns out [77] that the output matrix O(P ) has
two total-positivity properties: firstly, it is totally positive; and secondly, its zeroth
column is Hankel-totally positive. Since [77] is not yet publicly available, we shall
present briefly here (with proof) the main results that will be needed in the sequel.

The fundamental fact that drives the whole theory is the following:
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Proposition 2.7 (Minors of the output matrix). Every k × k minor of the output
matrix A = O(P ) can be written as a sum of products of minors of size ≤ k of the
production matrix P .

In this proposition the matrix elements p = {pij}i,j≥0 should be interpreted in the
first instance as indeterminates: for instance, we can fix a row-finite or column-finite
set S ⊆ N× N and define the matrix P S = (pSij)i,j∈N with entries

pSij =

{
pij if (i, j) ∈ S
0 if (i, j) /∈ S

(2.15)

Then the entries (and hence also the minors) of both P and A belong to the polyno-
mial ring Z[p], and the assertion of Proposition 2.7 makes sense. Of course, we can
subsequently specialize the indeterminates p to values in any commutative ring R.

Proof of Proposition 2.7. For any infinite matrix X = (xij)i,j≥0, let us write
XN = (xij)0≤i≤N−1, j≥0 for the submatrix consisting of the first N rows (and all the
columns) of X. Every k× k minor of A is of course a k× k minor of AN for some N ,
so it suffices to prove that the claim about minors holds for all the AN . But this is
easy: the fundamental identity (2.9) implies

AN =

[
1 0
0 AN−1

] [
1 0 0 0 · · ·

P

]
. (2.16)

So the result follows by induction on N , using the Cauchy–Binet formula. □

If we now specialize the indeterminates p to values in some partially ordered
commutative ring R, we can immediately conclude:

Theorem 2.8 (Total positivity of the output matrix). Let P be an infinite matrix
that is either row-finite or column-finite, with entries in a partially ordered commu-
tative ring R. If P is totally positive of order r, then so is A = O(P ).

Remarks. 1. In the case R = R, Theorem 2.8 is due to Karlin [46, pp. 132–134];
see also [64, Theorem 1.11]. Karlin’s proof is different from ours.

2. Our quick inductive proof of Proposition 2.7 follows an idea of Zhu [85, proof of
Theorem 2.1], which was in turn inspired in part by Aigner [1, pp. 45–46]. The same
idea recurs in recent work of several authors [86, Theorem 2.1] [16, Theorem 2.1(i)] [17,
Theorem 2.3(i)] [51, Theorem 2.1] [18, Theorems 2.1 and 2.3] [36]. However, all of
these results concerned only special cases: [1, 17,51,85] treated the case in which the
production matrix P is tridiagonal; [86] treated a (special) case in which P is upper
bidiagonal; [16] treated the case in which P is the production matrix of a Riordan
array; [18,36] treated (implicitly) the case in which P is upper-triangular and Toeplitz.
But the argument is in fact completely general, as we have just seen; there is no need
to assume any special form for the matrix P .

3. A slightly different version of this proof was presented in [62,63]. The simplified
reformulation given here, using the augmented production matrix, is due to Mu and
Wang [60]. ■
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Example 2.9 (Toeplitz matrix of powers). Let P = xe00 + y∆, where x and y are
indeterminates (here eij denotes the matrix with an entry 1 in position ij and 0 else-
where). By Lemma 2.1, P is TP in the ring Z[x, y] equipped with the coefficientwise
order. An easy computation shows that O(xe00 + y∆)nk = xn−kyk I[k ≤ n]. When
y = 1, this is the Toeplitz matrix of powers (2.2). So Theorem 2.8 implies that Tx
is TP in the ring Z[x] equipped with the coefficientwise order. This gives a second
proof of the total positivity stated in Lemma 2.2. ■

Example 2.10 (Binomial matrix). Let P be the upper-bidiagonal Toeplitz matrix
xI + y∆, where x and y are indeterminates. By Lemma 2.1, P is TP in the ring
Z[x, y] equipped with the coefficientwise order. An easy computation shows that
O(xI + y∆) = Bx,y, the weighted binomial matrix with entries (Bx,y)nk = xn−kyk

(
n
k

)
.

So Theorem 2.8 implies that Bx,y is TP in the ring Z[x, y] equipped with the coeffi-
cientwise order. This gives an ab initio proof of Lemma 2.3. ■

Now define O0(P ) to be the zeroth-column sequence of O(P ), i.e.

O0(P )n
def
= O(P )n0

def
= (P n)00 . (2.17)

Then the Hankel matrix of O0(P ) has matrix elements

H∞(O0(P ))nn′ = O0(P )n+n′ = (P n+n′
)00 =

∞∑
k=0

(P n)0k (P
n′
)k0 =

∞∑
k=0

(P n)0k ((P
T)n

′
)0k =

∞∑
k=0

O(P )nkO(PT)n′k =
[
O(P )O(PT)

T]
nn′ . (2.18)

(Note that the sum over k has only finitely many nonzero terms: if P is row-finite,
then there are finitely many nonzero (P n)0k, while if P is column-finite, there are
finitely many nonzero (P n′

)k0.) We have therefore proven:

Lemma 2.11 (Identity for Hankel matrix of the zeroth column). Let P be a row-finite
or column-finite matrix with entries in a commutative ring R. Then

H∞(O0(P )) = O(P )O(PT)
T
. (2.19)

Remark. If P is row-finite, then O(P ) is row-finite; O(PT) need not be row- or

column-finite, but the product O(P )O(PT)
T
is anyway well-defined. Similarly, if P is

column-finite, then O(PT)
T
is column-finite; O(P ) need not be row- or column-finite,

but the product O(P )O(PT)
T
is again well-defined. ■

Combining Proposition 2.7 with Lemma 2.11 and the Cauchy–Binet formula, we
obtain:

Corollary 2.12 (Hankel minors of the zeroth column). Every k × k minor of the
infinite Hankel matrix H∞(O0(P )) = ((P n+n′

)00)n,n′≥0 can be written as a sum of
products of the minors of size ≤ k of the production matrix P .
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And specializing the indeterminates p to nonnegative elements in a partially or-
dered commutative ring, in such a way that P is row-finite or column-finite, we
deduce:

Theorem 2.13 (Hankel-total positivity of the zeroth column). Let P = (pij)i,j≥0 be
an infinite row-finite or column-finite matrix with entries in a partially ordered com-
mutative ring R, and define the infinite Hankel matrix H∞(O0(P )) = ((P n+n′

)00)n,n′≥0.
If P is totally positive of order r, then so is H∞(O0(P )).

One might hope that Theorem 2.13 could be strengthened to show not only
Hankel-TP of the zeroth column of the output matrix A = O(P ), but in fact Hankel-
TP of the row-generating polynomials An(x) for all x ≥ 0 (at least when R = R) —
or even more strongly, coefficientwise Hankel-TP of the row-generating polynomials.
Alas, this hope is vain, for these properties do not hold in general :

Example 2.14 (Failure of Hankel-TP of the row-generating polynomials). Let P =
e00 +∆ be the upper-bidiagonal matrix with 1 on the superdiagonal and 1, 0, 0, 0, . . .
on the diagonal; by Lemma 2.1 it is TP. Then A = O(P ) is the lower-triangular matrix
will all entries 1 (see Example 2.9), so that An(x) =

∑n
k=0 x

k. Since A0(x)A2(x) −
A1(x)

2 = −x, the sequence (An(x))n≥0 is not even log-convex (i.e. Hankel-TP2) for
any real number x > 0. ■

Nevertheless, in one important special case — namely, exponential Riordan arrays
R[1, G] — the total positivity of the production matrix does imply the coefficientwise
Hankel-TP of the row-generating polynomials of the output matrix: this was shown
[76, Theorem 2.20]. That result will be generalized here, in Corollary 2.28, to provide
a more general sufficient (but not necessary) condition for the coefficientwise Hankel-
TP of the row-generating polynomials of the output matrix.

2.4 Binomial row-generating matrices

Let A = (ank)n,k≥0 be a row-finite matrix with entries in a commutative ring R.
(In most applications, including all those in the present paper, the matrix A will be
lower-triangular.) We define its row-generating polynomials in the usual way:

An(x)
def
=

∞∑
k=0

ank x
k , (2.20)

where the sum is actually finite because A is row-finite. More generally, let us define
its binomial partial row-generating polynomials

An,k(x)
def
=

∞∑
ℓ=k

anℓ

(
ℓ

k

)
xℓ−k (2.21a)

=
1

k!

dk

dxk
An(x) . (2.21b)

(Note that the operator (1/k!) dk/dxk has a well-defined action on the polynomial
ring R[x] even if R does not contain the rationals, since (1/k!)(dk/dxk)xn =

(
n
k

)
xn−k.)
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The polynomials An,k(x) are the matrix elements of the binomial row-generating
matrix ABx:

(ABx)nk = An,k(x) , (2.22)

where Bx = Bx,1 is the weighted binomial matrix defined in (1.6). The zeroth column
of the matrix ABx consists of the row-generating polynomials An(x) = An,0(x).

In this paper the matrix A will be either the matrix T = (tn,k)n,k≥0 or one of its
polynomial generalizations.

We can now explain the method that we will use to prove Theorems 1.2 and 1.4:

Proposition 2.15. Let P be a row-finite matrix with entries in a partially ordered
commutative ring R, and let A = O(P ).

(a) If P is totally positive of order r, then so is A.

(b) If the matrix B−1
x PBx is totally positive of order r in the ring R[x] equipped

with the coefficientwise order, then the sequence (An(x))n≥0 of row-generating
polynomials is Hankel-totally positive of order r in the ring R[x] equipped with
the coefficientwise order.

Indeed, (a) is just a restatement of Theorem 2.8; and (b) is an immediate consequence
of Lemma 2.6 and Theorem 2.13 together with the fact that the zeroth column of the
matrix ABx consists of the row-generating polynomials An(x).

2.5 Riordan arrays

Let R be a commutative ring, and let f(t) =
∑∞

n=0 fnt
n and g(t) =

∑∞
n=1 gnt

n

be formal power series with coefficients in R; note that g has zero constant term
(for clarity we set g0 = 0). Then the (ordinary) Riordan array associated to the
pair (f, g) is the infinite lower-triangular matrix R(f, g) = (R(f, g)nk)n,k≥0 defined
by

R(f, g)nk = [tn] f(t)g(t)k . (2.23)

That is, the kth column of R(f, g) has ordinary generating function f(t)g(t)k. Note
that R(f, g) is invertible in the ring RN×N

lt of lower-triangular matrices ⇐⇒ the
diagonal elements R(f, g)nn = f0g

n
1 are invertible elements of the ring R ⇐⇒ f0

and g1 are invertible elements of R ⇐⇒ f(t) has a multiplicative inverse f(t)−1 in
the ring R[[t]] and g(t) has a compositional inverse ḡ(t) in the ring R[[t]].

Warning. We have interchanged the letters f and g compared to the
notation of Shapiro et al. [69, 70] and Barry [3]. This notation seems to us
more natural, but the reader should be warned.

We shall use an easy but important result that is sometimes called the funda-
mental theorem of Riordan arrays (FTRA):

Lemma 2.16 (Fundamental theorem of Riordan arrays). Let b = (bn)n≥0 be a se-
quence with ordinary generating function B(t) =

∑∞
n=0 bnt

n. Considering b as a
column vector and letting R(f, g) act on it by matrix multiplication, we obtain a
sequence R(f, g)b whose ordinary generating function is f(t)B(g(t)).
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Proof. We compute

n∑
k=0

R(f, g)nk bk =
∞∑
k=0

[tn] f(t)g(t)k bk (2.24a)

= [tn] f(t)
∞∑
k=0

bk g(t)
k (2.24b)

= [tn] f(t)B(g(t)) . (2.24c)

□

We can now determine the production matrix of a Riordan array R(f, g). Let
a = (an)n≥0 and z = (zn)n≥0 be sequences in a commutative ring R, with ordinary
generating functions A(t) =

∑∞
n=0 ant

n and Z(t) =
∑∞

n=0 znt
n. We then define the

AZ matrix associated to the sequences a and z by

AZ(a, z)ij =

{
zi if j = 0

ai−j+1 if j ≥ 1
(2.25)

or in other words

AZ(a, z) =


z0 a0 0 0 0
z1 a1 a0 0 0
z2 a2 a1 a0 0
z3 a3 a2 a1 a0
...

... · · · . . .

 . (2.26)

We also write AZ(A,Z) as a synonym for AZ(a, z). It is convenient to define also

Y (t) =
A(t)

A(t)− tZ(t)
, (2.27)

which is well-defined if a0 is invertible in R. We then have [24, 42] [3, pp. 148–
149] [70, Theorems 4.15 and 6.29]9:

Theorem 2.17 (Production matrices of Riordan arrays). Let L be a lower-triangular
matrix (with entries in a commutative ring R) with invertible diagonal entries and
L00 = 1, and let P = L−1∆L be its production matrix. Then L is a Riordan array if
and only if P is an AZ-matrix.

More precisely, L = R(f, g) if and only if P = AZ(a, z), where the generating
functions

(
f(t), g(t)

)
and

(
A(t), Z(t)

)
are connected by

g(t) = t A(g(t)) , f(t) =
1

1 − tZ(g(t))
= Y (g(t)) (2.28)

or equivalently

A(t) =
t

ḡ(t)
, Z(t) =

f(ḡ(t)) − 1

ḡ(t) f(ḡ(t))
. (2.29)

9This theorem is also essentially contained in [58, Theorems 3.2, 3.6 and 3.7], though those
authors do not use the terminology of production matrices.
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Proof [42, p. 18]. Suppose that L = R(f, g). The hypotheses on L imply that
f0 = 1 and that g1 is invertible in R; so g(t) has a compositional inverse ḡ(t). Now let
(pk(t))k≥0 be the column generating functions of P = L−1∆L. Applying the FTRA
to each column of P , we see that R(f, g)P is a matrix whose column generating
functions are

(
f(t) pk(g(t))

)
k≥0

. On the other hand, ∆R(f, g) is the matrix R(f, g)
with its zeroth row removed and all other rows shifted upwards, so it has column
generating functions [f(t) − 1]/t for column 0 and f(t)g(t)k/t for columns k ≥ 1.
Comparing these two results, we see that ∆R(f, g) = R(f, g)P if and only if

f(t) p0(g(t)) =
f(t)− 1

t
(2.30)

and

pk(g(t)) =
g(t)k

t
for k ≥ 1 . (2.31)

The latter equation can be rewritten as

pk(t) =
tk

ḡ(t)
, (2.32)

which means that the columns k ≥ 1 of the production matrix P are identical with
those of AZ(a, z), when a is given by (2.29). And (2.30) then states that column 0 of
the production matrix P is identical with that of AZ(a, z), when z is given by (2.29).
Therefore, L = R(f, g) implies that L−1∆L = AZ(a, z) where a and z are given by
(2.29).

Conversely, suppose that P = AZ(a, z). Let g(t) be the unique formal power series
in R[[t]] with g(0) = 0 that satisfies the functional equation g(t) = t A(g(t)), and
then let f(t) = 1/[1− tZ(g(t))]. Then running the foregoing computation backwards
shows that ∆R(f, g) = R(f, g)P . Since by hypothesis L00 = 1, it follows that
L = O(P ) = R(f, g). □

2.6 Exponential Riordan arrays

LetR be a commutative ring containing the rationals, and let F (t) =
∑∞

n=0 fnt
n/n!

and G(t) =
∑∞

n=1 gnt
n/n! be formal power series with coefficients in R; we set g0 = 0.

Then the exponential Riordan array [3, 22, 24, 70] associated to the pair (F,G)
is the infinite lower-triangular matrix R[F,G] = (R[F,G]nk)n,k≥0 defined by

R[F,G]nk =
n!

k!
[tn]F (t)G(t)k . (2.33)

That is, the kth column of R[F,G] has exponential generating function F (t)G(t)k/k!.
Equivalently, the bivariate exponential generating function of R[F,G] is

∞∑
n,k=0

R[F,G]nk
tn

n!
xk = F (t) exG(t) . (2.34)

The diagonal elements of R[F,G] are R[F,G]nn = f0g
n
1 , so the matrix R[F,G] is

invertible in the ring RN×N
lt of lower-triangular matrices if and only if f0 and g1 are

invertible in R.
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Please note that the exponential Riordan array R[F,G] is nothing other than a
diagonal similarity transform of the ordinary Riordan array R(F,G) associated to
the same power series F and G: that is,

R[F,G] = DR(F,G)D−1 (2.35)

where D = diag
(
(n!)n≥0

)
.

Lemma 2.18 (Fundamental theorem of exponential Riordan arrays). Let b = (bn)n≥0

be a sequence with exponential generating function B(t) =
∑∞

n=0 bnt
n/n!. Considering

b as a column vector and letting R[F,G] act on it by matrix multiplication, we obtain
a sequence R[F,G]b whose exponential generating function is F (t)B(G(t)).

Proof. We compute

n∑
k=0

R[F,G]nk bk =
∞∑
k=0

n!

k!
[tn]F (t)G(t)k bk (2.36a)

= n! [tn] F (t)
∞∑
k=0

bk
G(t)k

k!
(2.36b)

= n! [tn] F (t)B(G(t)) . (2.36c)

□

Let us now consider the product of two exponential Riordan arrays R[F1, G1] and
R[F2, G2]. Applying the FTERA to the kth column of R[F2, G2], whose exponential
generating function is F2(t)G2(t)

k/k!, we readily obtain:

Lemma 2.19 (Product of two exponential Riordan arrays). We have

R[F1, G1]R[F2, G2] = R[(F2 ◦G1)F1, G2 ◦G1] . (2.37)

In particular, if we let R[F2, G2] be the weighted binomial matrix Bξ = R[eξt, t]
defined by (1.6), we obtain:

Corollary 2.20 (Binomial row-generating matrix of an exponential Riordan array).
We have

R[F,G]Bξ = R[eξGF,G] . (2.38)

Similarly, letting R[F1, G1] be the weighted binomial matrix Bξ, we obtain:

Corollary 2.21 (Left binomial transform of an exponential Riordan array). We have

BξR[F,G] = R[eξtF,G] . (2.39)

We can now determine the production matrix of an exponential Riordan array
R[F,G]. Let a = (an)n≥0 and z = (zn)n≥0 be sequences in a commutative ring R,
with ordinary generating functions A(s) =

∑∞
n=0 ans

n and Z(s) =
∑∞

n=0 zns
n. We

then define the exponential AZ matrix associated to the sequences a and z by

EAZ(a, z)nk =
n!

k!
(zn−k + k an−k+1) , (2.40)
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or equivalently (if R contains the rationals)

EAZ(a, z) = DT∞(z)D−1 + DT∞(a)D−1∆ (2.41)

where D = diag
(
(n!)n≥0

)
. We also write EAZ(A,Z) as a synonym for EAZ(a, z).

Remark. We have the exponential generating functions

∞∑
n,k=0

EAZ(a, z)nk
sn

n!
uk = esu

[
Z(s) + uA(s)

]
(2.42)

and
∞∑

n,k=0

EAZ(a, z)nk
sn

n!
k!uk =

Z(s)

1− su
+

uA(s)

(1− su)2
. (2.43)

■

Theorem 2.22 (Production matrices of exponential Riordan arrays). Let L be a
lower-triangular matrix (with entries in a commutative ring R containing the ra-
tionals) with invertible diagonal entries and L00 = 1, and let P = L−1∆L be its
production matrix. Then L is an exponential Riordan array if and only if P is an
exponential AZ matrix.

More precisely, L = R[F,G] if and only if P = EAZ(A,Z), where the generating
functions

(
F (t), G(t)

)
and

(
A(s), Z(s)

)
are connected by

G′(t) = A(G(t)) ,
F ′(t)

F (t)
= Z(G(t)) (2.44)

or equivalently

A(s) = G′(Ḡ(s)) , Z(s) =
F ′(Ḡ(s))

F (Ḡ(s))
(2.45)

where Ḡ(s) is the compositional inverse of G(t).

Proof (mostly contained in [3, pp. 217–218]). Suppose that L = R[F,G]. The
hypotheses on L imply that f0 = 1 and that g1 is invertible in R; so G(t) has a
compositional inverse Ḡ(s). Now let P = (pnk)n,k≥0 be a matrix; its column expo-
nential generating functions are, by definition, Pk(t) =

∑∞
n=0 pnk t

n/n!. Applying the
FTERA to each column of P , we see that R[F,G]P is a matrix whose column expo-
nential generating functions are

(
F (t)Pk(G(t))

)
k≥0

. On the other hand, ∆R[F,G] is
the matrix R[F,G] with its zeroth row removed and all other rows shifted upwards,
so it has column exponential generating functions

d

dt

(
F (t)G(t)k/k!

)
=

1

k!

[
F ′(t)G(t)k + k F (t)G(t)k−1G′(t)

]
. (2.46)

Comparing these two results, we see that ∆R[F,G] = R[F,G]P if and only if

Pk(G(t)) =
1

k!

F ′(t)G(t)k + k F (t)G(t)k−1G′(t)

F (t)
, (2.47)
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or in other words

Pk(t) =
1

k!

[
F ′(Ḡ(t))

F (Ḡ(t))
tk + k tk−1G′(Ḡ(t))

]
. (2.48)

Therefore

pnk =
n!

k!
[tn]

[
F ′(Ḡ(t))

F (Ḡ(t))
tk + k tk−1G′(Ḡ(t))

]
(2.49a)

=
n!

k!

[
[tn−k]

F ′(Ḡ(t))

F (Ḡ(t))
+ k [tn−k+1]G′(Ḡ(t))

]
(2.49b)

=
n!

k!
(zn−k + k an−k+1) (2.49c)

where a = (an)n≥0 and z = (zn)n≥0 are given by (2.45).
Conversely, suppose that P = EAZ(A,Z). Define F (t) and G(t) as the unique

solutions (in the formal-power-series ring R[[t]]) of the differential equations (2.44)
with initial conditions F (0) = 1 and G(0) = 0. Then running the foregoing compu-
tation backwards shows that ∆R[F,G] = R[F,G]P . Since by hypothesis L00 = 1, it
follows that L = R[F,G]. □

We refer to A(s) =
∑∞

n=0 ans
n and Z(s) =

∑∞
n=0 zns

n as the A-series and Z-
series associated to the exponential Riordan array R[F,G].

Remark. The identity A(s) = G′(Ḡ(s)) can equivalently be written as A(s) =
1/(Ḡ)′(s). This is useful in comparing our work with that of Zhu [87, 89], who uses
the latter formulation. ■

Let us now show how to rewrite the production matrix (2.41) in a new way, which
will be useful in what follows. Define

Ψ(s)
def
= F (Ḡ(s)) , (2.50)

so that F (t) = Ψ(G(t)) and Ψ(0) = F (0) = 1. Then a simple computation using
(2.44)/(2.45) shows that

Z(s) =
Ψ′(s)

Ψ(s)
A(s) . (2.51)

And let us define Φ(s)
def
= A(s)/Ψ(s). Then the pair (Φ,Ψ) is related to the pair

(A,Z) by

A(s) = Φ(s) Ψ(s) (2.52a)

Z(s) = Φ(s) Ψ′(s) (2.52b)

And conversely, given any pair (A,Z) of formal power series (over a commutative
ring R containing the rationals) such that A(0) is invertible in R, there is a unique
pair (Φ,Ψ) satisfying (2.52) together with the normalization Ψ(0) = 1, namely

Ψ(s) = exp

[∫
Z(s)

A(s)
ds

]
(2.53a)

Φ(s) = A(s) exp

[
−
∫
Z(s)

A(s)
ds

]
(2.53b)
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[Here the integral of a formal power series is defined by∫ ( ∞∑
n=0

αns
n

)
ds

def
=

∞∑
n=0

αn
sn+1

n+ 1
. (2.54)

It is the unique formal power series with zero constant term whose derivative is the
given series.] We refer to Φ(s) and Ψ(s) as the Φ-series and Ψ-series associated
to the exponential Riordan array R[F,G].

Rewriting the production matrix (2.41) in terms of the pair (Φ,Ψ) provides a
beautiful — and as we shall see, very useful — factorization. For reasons that shall
become clear shortly (see Lemma 2.27 below), it is convenient to study the more
general quantity EAZ(A,Z + ξA):

Proposition 2.23. Let R be a commutative ring containing the rationals, let Φ(s) =
∞∑
n=0

ϕns
n and Ψ(s) =

∞∑
n=0

ψns
n be formal power series with coefficients in R, and let

A(s) and Z(s) be defined by (2.52). Now let ξ be any element of R (or an indetermi-
nate). Then

EAZ(A,Z + ξA) = [DT∞(ϕ)D−1] (∆ + ξI) [DT∞(ψ)D−1] (2.55)

where D = diag
(
(n!)n≥0

)
.

To prove Proposition 2.23, we need a lemma. Given a sequence ψ = (ψn)n≥0 in
R with ordinary generating function Ψ(s) =

∑∞
n=0 ψns

n, we define ψ′ = (ψ′
n)n≥0 by

ψ′
n = (n+ 1)ψn+1, so that Ψ′(s) =

∑∞
n=0 ψ

′
ns

n. We then have:

Lemma 2.24. Let ψ and ψ′ be as above, and let D = diag
(
(n!)n≥0

)
. Then

T∞(ψ′) + T∞(ψ)D−1∆D = D−1∆DT∞(ψ) . (2.56)

Proof. All three matrices in (2.56) are lower-Hessenberg, and their (n, k) matrix
elements are (for 0 ≤ k ≤ n+ 1)

(n− k + 1)ψn−k+1 + kψn−(k−1) = (n+ 1)ψ(n+1)−k . (2.57)

□

Remarks. 1. The identity (2.56) can also be written as [D−1∆D, T∞(ψ)] =

T∞(ψ′), where [A,B]
def
= AB − BA is the matrix commutator. Thus, [D−1∆D, · ] is

the “differentiation operator” for Toeplitz matrices. Note that D−1∆D is the matrix
with 1, 2, 3, . . . on the superdiagonal and zeroes elsewhere.

2. Lemma 2.24 was found independently by Ding, Mu and Zhu [25, proof of
Theorem 2.1]. ■

Proof of Proposition 2.23. From (2.41) we have

EAZ(A,Z + ξA) = DT∞(z + ξa)D−1 + DT∞(a)D−1∆ . (2.58)
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The definitions (2.52) imply

T∞(a) = T∞(ϕ)T∞(ψ) (2.59a)

T∞(z + ξa) = T∞(ϕ)T∞(ψ′) + ξ T∞(ϕ)T∞(ψ) (2.59b)

Hence

EAZ(A,Z + ξA)

= D
[
T∞(ϕ)T∞(ψ′) + ξ T∞(ϕ)T∞(ψ)

]
D−1 + DT∞(ϕ)T∞(ψ)D−1∆

(2.60a)

= DT∞(ϕ)
[
ξT∞(ψ) + T∞(ψ′) + T∞(ψ)D−1∆D

]
D−1 (2.60b)

= DT∞(ϕ)
[
ξT∞(ψ) + D−1∆DT∞(ψ)

]
D−1 (2.60c)

= [DT∞(ϕ)D−1] (∆ + ξI) [DT∞(ψ)D−1] , (2.60d)

where the next-to-last step used Lemma 2.24. □

As an immediate consequence of Proposition 2.23, we have:

Corollary 2.25. Fix 1 ≤ r ≤ ∞. Let R be a partially ordered commutative ring
containing the rationals, and let ϕ = (ϕn)n≥0 and ψ = (ψn)n≥0 be sequences in R
that are Toeplitz-totally positive of order r. Let ξ be an indeterminate. With the
definitions (2.52), the matrix EAZ(A,Z+ξA) is totally positive of order r in the ring
R[ξ] equipped with the coefficientwise order.

Proof. By Lemma 2.1, the matrix ∆+ ξI is totally positive (of order∞) in the ring
Z[ξ] equipped with the coefficientwise order. By hypothesis the matrices T∞(ϕ) and
T∞(ψ) are totally positive of order r in the ring R; so Lemma 2.30 implies that also
DT∞(ϕ)D−1 and DT∞(ψ)D−1 are totally positive of order r in R. The result then
follows from Proposition 2.23 and the Cauchy–Binet formula. □

Remark. The hypothesis that the ring R contains the rationals can be removed,
by using Lemma 2.30 (see Section 2.7) together with the reasoning used in the proof
of Theorem 1.8 (see Section 5.3). ■

It is worth observing that the converse to Corollary 2.25 is false:

Example 2.26. Let A(s) = 1 + s and Z(s) = (λ + µ) + µs. Then P = EAZ(A,Z)
is the tridiagonal matrix with pn,n+1 = 1, pn,n = λ + µ + n and pn,n−1 = nµ, which
can be written in the form P = LU + λI, where L is the lower-bidiagonal matrix
with 1 on the diagonal and 1, 2, 3, . . . on the subdiagonal, U is the upper-bidiagonal
matrix with 1 on the superdiagonal and µ on the diagonal, and I is the identity
matrix; so by the tridiagonal comparison theorem [77] [88, Proposition 3.1] P is
totally positive, coefficientwise in λ and µ. [When µ = 0 the total positivity is even
more elementary, by Lemma 2.1.] Note also that, in this example, EAZ(A,Z + ξA)
is simply P = EAZ(A,Z) with µ replaced by µ+ ξ.

But this pair (A,Z) corresponds to

Φ(s) = e−µs (1 + s)1−λ Ψ(s) = eµs (1 + s)λ (2.61)
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which are not Toeplitz-TP coefficientwise in λ and µ. Indeed, even for real λ and µ, the
sequence ϕ (resp.ψ) is Toeplitz-TP only for λ ∈ {0, 1} and µ ≤ 0 (resp. λ ∈ {0, 1} and
µ ≥ 0). So all nonnegative λ, µ other than λ ∈ {0, 1} and µ = 0 yield counterexamples
to the converse to Corollary 2.25, and even to its restriction to the case ξ = 0.

In this example F (t) = eλt+µ(et−1) and G(t) = et − 1, so the exponential Riordan
array is R[F,G] = R[eλt+µ(et−1), et − 1] = BλR[1, et − 1]Bµ by Corollaries 2.20 and
2.21; here R[1, et − 1] is the Stirling subset matrix [61, A008277]. ■

So the condition of Corollary 2.25 is sufficient but not necessary for its conclusion.

Finally, a central role will be played in this paper by a simple but remarkable
identity for B−1

ξ EAZ(a, z)Bξ, where Bξ is the ξ-binomial matrix defined in (1.6) and
EAZ(a, z) is the exponential AZ matrix defined in (2.40)/(2.41).

Lemma 2.27 (Identity for B−1
ξ EAZ(a, z)Bξ). Let a = (an)n≥0, z = (zn)n≥0 and ξ

be indeterminates. Then

B−1
ξ EAZ(a, z)Bξ = EAZ(a, z + ξa) . (2.62)

The special case z = 0 of this lemma was proven in [62, Lemma 3.6]; a simpler
proof was given in [76, Lemma 2.16]. Here we give the easy generalization to include
z. We will give two proofs: a first proof by direct computation from the definition
(2.40)/(2.41), and a second proof using exponential Riordan arrays.

First Proof. We use the matrix definition (2.41):

EAZ(a, z) = DT∞(z)D−1 + DT∞(a)D−1∆ (2.63)

where D = diag
(
(n!)n≥0

)
. Since EAZ(a, z) = EAZ(a,0) + EAZ(0, z), it suffices to

consider separately the two contributions.
The key observation is that Bξ = DT∞

(
(ξn/n!)n≥0

)
D−1. Now two Toeplitz ma-

trices always commute: T∞(a)T∞(b) = T∞(a ⋆ b) = T∞(b)T∞(a). It follows that
DT∞(z)D−1 and DT∞(a)D−1 commute with Bξ. Therefore

B−1
ξ EAZ(0, z)Bξ = EAZ(0, z) . (2.64)

On the other hand, the classic recurrence for binomial coefficients implies

∆Bξ = Bξ (ξI +∆) (2.65)

(cf. Example 2.10). Therefore

B−1
ξ EAZ(a,0)Bξ = B−1

ξ DT∞(a)D−1∆Bξ (2.66a)

= B−1
ξ DT∞(a)D−1Bξ (ξI +∆) (2.66b)

= DT∞(a)D−1 (ξI +∆) (2.66c)

= EAZ(a, ξa) . (2.66d)

Adding (2.64) and (2.66) yields (2.62). □
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Second Proof. Let R[F,G] be the exponential Riordan array generated by the
production matrix EAZ(A,Z) according to Theorem 2.22, so that

G′(t) = A(G(t)) ,
F ′(t)

F (t)
= Z(G(t)) . (2.67)

By Corollary 2.20 we have

R[F,G]Bξ = R[eξGF,G] . (2.68)

Since
d

dt
log[eξG(t)F (t)] =

F ′(t)

F (t)
+ ξG′(t) , (2.69)

Theorem 2.22 implies that the exponential Riordan array R[eξGF,G] has production
matrix EAZ(Â, Ẑ) where

Â(s, ξ) = A(s) , Ẑ(s, ξ) = Z(s) + ξA(s) . (2.70)

On the other hand, by Lemma 2.6 the production matrix of R[eξGF,G] = R[F,G]Bξ

is B−1
ξ EAZ(A,Z)Bξ. □

Remark. A special case of the ideas in the second proof can be found in [4,
Proposition 4]. ■

Combining Proposition 2.15 with Corollary 2.25 and Lemma 2.27, we obtain:

Corollary 2.28. Fix 1 ≤ r ≤ ∞. Let R be a partially ordered commutative ring
containing the rationals, and let ϕ = (ϕn)n≥0 and ψ = (ψn)n≥0 be sequences in R that
are Toeplitz-totally positive of order r. Then the exponential Riordan array R[F,G]
defined by (2.44)/(2.52) has the following two properties:

(a) The lower-triangular matrix R[F,G] is totally positive of order r.

(b) The sequence of row-generating polynomials of R[F,G] is coefficientwise Hankel-
totally positive of order r.

Corollary 2.28 will be the main theoretical tool in this paper.

Remarks. 1. The special case Ψ = 1 (i.e., F = 1) of Corollary 2.28(b) was
proven in [76, Theorem 2.20] and was the fundamental theoretical tool of that paper.

2. Another special case of Proposition 2.23 and Corollaries 2.25 and 2.28 was
employed recently by Ding, Mu and Zhu [25, proof of Theorem 2.1] to study some
far-reaching generalizations of the Eulerian polynomials.

3. Example 2.26 shows that the condition of Corollary 2.28 is sufficient but not
necessary for its two conclusions. ■

Finally, it is worth singling out a subclass of Riordan arrays that will occur in the
cases to be studied in the present paper:
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Lemma 2.29. Consider an exponential Riordan array R[F,G] with F (0) = 1 and
corresponding series A(s), Z(s), Φ(s), Ψ(s). Then, for any constant c, the following
are equivalent:

(a) R[F,G]n,0 = cR[F,G]n,1 for all n ≥ 1.

(b) EAZ(A,Z)n,0 = cEAZ(A,Z)n,1 for all n ≥ 0.

(b′) EAZ(A,Z) = EAZ(A,Z)∆T (c e00 + ∆) where e00 denotes the matrix with an
entry 1 in position (0, 0) and all other entries zero.

(c) Ψ(s) = 1/(1− cs).

Proof. (a)⇐⇒ (c): (a) holds if and only if F (t) = 1+ cF (t)G(t), or in other words
F (t) = 1/[1− cG(t)], or in other words Ψ(s) = 1/(1− cs).

(b) ⇐⇒ (c): By (2.40), (b) holds if and only if zn = c(zn−1 + an), or in other
words Z(s) = c[sZ(s) + A(s)], or in other words

Ψ′(s)

Ψ(s)
=

Z(s)

A(s)
=

c

1− cs
. (2.71)

Since Ψ(0) = 1, this is equivalent to Ψ(s) = 1/(1− cs).
(b′) =⇒ (b): The zeroth column of the matrix c e00 + ∆ equals c times its first

column; so for any matrix M , the zeroth column of the matrix M (c e00 +∆) equals
c times its first column.

(b) =⇒ (b′): The matrix EAZ(A,Z)∆T is obtained from EAZ(A,Z) by remov-
ing its zeroth column; it is lower-triangular. And since, by hypothesis, the zeroth
column of EAZ(A,Z) is c times its first column, EAZ(A,Z) can be recovered from
EAZ(A,Z)∆T by by right-multiplying by c e00 +∆. □

The case c = 0 (that is, Ψ = 1 and hence F = 1) corresponds to the associated
subgroup (or Lagrange subgroup) of exponential Riordan arrays; it arose in our earlier
work [62, 76] on generic Lah and rooted-forest polynomials. Using criterion (a), we
can already see that the matrix T defined in (1.1) will correspond to c = 1, while
the matrices T(y, z) and T(y,ϕ) defined in (1.7)/(1.12) will correspond, according to
Propositions 1.3 and 1.6, to c = y. Of course, in order to apply Lemma 2.29 we will
first need to prove that these matrices are indeed exponential Riordan arrays: that
will be done in Section 4. But we can see now that, once we do this, the Ψ-series will
be Ψ(s) = 1/(1− cs).

2.7 A lemma on diagonal scaling

Given a lower-triangular matrix A = (ank)n,k≥0 with entries in a commutative ring

R, let us define the matrix A♯ = (a♯nk)n,k≥0 by

a♯nk =
n!

k!
ank ; (2.72)

this is well-defined since ank ̸= 0 only when n ≥ k, in which case n!/k! is an integer.
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If R contains the rationals, we can of course write A♯ = DAD−1 where D =
diag

(
(n!)n≥0

)
. And if R is a partially ordered commutative ring that contains the

rationals and A is TPr, then we deduce immediately from A♯ = DAD−1 that also
A♯ is TPr. The following simple lemma [62, Lemma 3.7] shows that this conclusion
holds even when R does not contain the rationals:

Lemma 2.30. Let A = (aij)i,j≥0 be a lower-triangular matrix with entries in a par-
tially ordered commutative ring R, and let d = (di)i≥1. Define the lower-triangular
matrix A♯d = (a♯dij )i,j≥0 by

a♯dij = dj+1dj+2 · · · di aij . (2.73)

Then:

(a) If A is TPr and d are indeterminates, then A♯d is TPr in the ring R[d] equipped
with the coefficientwise order.

(b) If A is TPr and d are nonnegative elements of R, then A♯d is TPr in the ring
R.

Proof. (a) Let d = (di)i≥1 be commuting indeterminates, and let us work in the
ring R[d,d−1] equipped with the coefficientwise order. Let D = diag(1, d1, d1d2, . . .).
Then D is invertible, and both D and D−1 = diag(1, d−1

1 , d−1
1 d−1

2 , . . .) have nonneg-
ative elements. It follows that A♯d = DAD−1 is TPr in the ring R[d,d−1] equipped
with the coefficientwise order. But the matrix elements a♯dij actually belong to the

subring R[d] ⊆ R[d,d−1]. So A♯d is TPr in the ring R[d] equipped with the coeffi-
cientwise order.

(b) follows from (a) by specializing indeterminates. □

The special case A♯d = A♯ corresponds to taking di = i.
Lemma 2.30 will be important to proving Theorem 1.8 in the case where the ring

R does not contain the rationals (see Section 5.3).

2.8 Lagrange inversion

We will use Lagrange inversion in the following form [38]: If ϕ(u) is a formal power
series with coefficients in a commutative ring R containing the rationals, then there
exists a unique formal power series f(t) with zero constant term satisfying

f(t) = t ϕ(f(t)) , (2.74)

and it is given by

[tn] f(t) =
1

n
[un−1]ϕ(u)n for n ≥ 1 ; (2.75)

and more generally, if H(u) is any formal power series, then

[tn]H(f(t)) =
1

n
[un−1]H ′(u)ϕ(u)n for n ≥ 1 . (2.76)

In particular, taking H(u) = uk with integer k ≥ 0, we have

[tn] f(t)k =
k

n
[un−k]ϕ(u)n for n ≥ 1 . (2.77)
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Figure 1: Bijection between T and T ′.

3 Bijective proofs

In this section we give bijective proofs of Propositions 1.3, 1.5, 1.6 and 1.7. This
section can be skipped on a first reading, as it is not needed for proving the main
theorems of the paper.

3.1 Proof of Propositions 1.3 and 1.6

Here we will prove Proposition 1.3, which asserts that the polynomials tn,k(y, z)
defined in (1.7) satisfy tn,0(y, z) = y tn,1(y, z) for all n ≥ 1; and more generally
Proposition 1.6, which asserts that the polynomials tn,k(y,ϕ) defined in (1.12) satisfy
tn,0(y,ϕ) = y tn,1(y,ϕ) for all n ≥ 1.

We will prove these results by constructing, for each n ≥ 1, a bijection from the
set T ⟨1;1⟩

n+1 of rooted trees on the vertex set [n + 1] in which the vertex 1 has exactly

one child, to the set T ⟨1;0⟩
n+1 of rooted trees on the vertex set [n+ 1] in which vertex 1

is a leaf, with the properties that

(a) the number of improper edges is increased by 1, and

(b) for eachm, the number of vertices withm proper children is preserved, provided

that in T ∈ T ⟨1;1⟩
n+1 one ignores the vertex 1 (which has one child).

This construction is illustrated in Figure 1. Since the weight in (1.12) is y for each
improper edge and ϕ̂m = m!ϕm for each vertex i ̸= 1 with m proper children, this
proves tn,0(y,ϕ) = y tn,1(y,ϕ). Specializing to ϕm = zm/m! then yields tn,0(y, z) =
y tn,1(y, z).

Proof of Proposition 1.6. Fix n ≥ 1, and let T be a rooted tree on the vertex
set [n + 1] in which r is the root and the vertex 1 has precisely one child a. Let Ta
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be the subtree rooted at a, and let Tr the subtree obtained from T by removing Ta
and the edge 1a. The vertex 1 is a leaf in Tr.

Now we create a new tree T ′, rooted at a, as follows: we start with Ta and then
graft Tr by making r a child of a. In the tree T ′, the vertex 1 is a leaf. The map
T 7→ T ′ map is a bijection, since this construction can be reversed. (The vertex r can
be identified in T ′ as the child of a that has 1 as a descendant.)

Clearly, all the proper (resp. improper) edges in T are still proper (resp. improper)
in T ′, except that:

(i) The edge 1a in T is proper, which is deleted in T ′; and

(ii) The edge ar in T ′ is new and improper, since the vertex 1 is a descendant of r.

In particular, the number of vertices with m proper children is the same in T and T ′,
provided that in T one ignores the vertex 1. □

3.2 Proof of Propositions 1.5 and 1.7

Now we will prove Proposition 1.5, which asserts the equality of the polynomials
tn,k(y, z) defined in (1.7) using rooted trees and the polynomials t̃n,k(y, z) defined in
(1.10) using partial functional digraphs. We will then show that the same argument
proves the more general Proposition 1.7, which asserts the equivalence of the polyno-
mials tn,k(y,ϕ) defined in (1.12) and the polynomials t̃n,k(y,ϕ) defined in (1.13).

We recall that T •
n denotes the set of rooted trees on the vertex set [n], while T ⟨1;k⟩

n

denotes the subset in which the vertex 1 has k children. Similarly, PFDn denotes
the set of partial functional digraphs on the vertex set [n], while PFDn,k denotes the
subset in which there are exactly k vertices of out-degree 0.

To prove Proposition 1.5, we will construct, for each fixed n, a bijection ϕ : T •
n+1 →

PFDn with the following properties:

(a) ϕ maps T ⟨1;k⟩
n+1 onto PFDn,k.

(b) ϕ preserves the number of improper edges.

(c) ϕ|T ⟨1;k⟩
n+1

reduces the number of proper edges by k.

We observe that (c) is an immediate consequence of (a) and (b), since trees in T •
n+1

have n edges, while digraphs in PFDn,k have n− k edges.

Proof of Proposition 1.5. (The reader may wish to follow, along with this
proof, the example shown in Figure 2.)

Let T be a rooted tree on the vertex set [n + 1] in which the vertex 1 has k
children. Note that the k edges from vertex 1 to its children are all proper. Now let
P = v1 · · · vℓ+1 (ℓ ≥ 0) be the unique path in T from the root v1 = r to the vertex
vℓ+1 = 1; we call it the “backbone”. (Here ℓ = 0 corresponds to the case in which
vertex 1 is the root.) Removing from T the edges of the path P , we obtain a collection
of (possibly trivial) trees T1, . . . , Tℓ+1 rooted at the vertices v1, . . . , vℓ+1.
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Figure 2: (a) Tree T in the second model, where r = v1 = 6, vmax = 9, σ = 638951 =
(169)(3)(58), and vertex 1 has two children. The backbone edges are shown in red
and are improper; the other improper edges are shown in black; the proper edges are
shown in blue.

(b1,b2) Partial functional digraphs DP and D′. Improper edges arising from the
cycles of the permutation σ are shown in red; the other improper edges are shown in
black; the proper edges are shown in blue.

(c1,c2) Partial functional digraphs G′ and G in the third model, where the two
vertices 10 and 12 (resp. 9 and 11) have out-degree 0. Improper edges arising from
the cycles of the permutation σ are shown in red; the other improper edges are shown
in black; the proper edges are shown in blue.
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Now regard P as a permutation σ (written in word form) of its elements writ-
ten in increasing order.10 In particular, σ(1) = r and σ(vmax) = 1 where vmax =
max(v1, . . . , vℓ+1). Let DP be the digraph whose vertex set is {v1, . . . , vℓ+1}, with
edges

−→
ij whenever j = σ(i). Then DP consists of disjoint directed cycles (possibly of

length 1); it is the representation in cycle form of the permutation σ.
Now let D′ be the digraph obtained from DP by attaching the trees T1, . . . , Tℓ+1

to DP (identifying vertices with the same label) and directing all edges of those
trees towards the root. Then D′ is a functional digraph on the vertex set [n + 1].
Furthermore, the map T 7→ D′ is a bijection, since all the above steps can be reversed.

Now let G′ be the digraph obtained from D′ by deleting the vertex 1 and the k
tree edges incident on vertex 1, and contracting the edges

−−−→
vmax1 and

−→
1r into a single

edge −−−→vmaxr. Then G′ is a digraph on the vertex set {2, . . . , n + 1} in which every
vertex has out-degree 1 except for the k children of vertex 1 in T , which have out-
degree 0. Relabeling all vertices i → i − 1, we obtain a partial functional digraph
G = ϕ(T ) ∈ PFDn,k.

The step from D′ to G can also be reversed: given a partial functional digraph
G = PFDn,k, we relabel the vertices i→ i+1 and then insert the vertex 1 immediately
after the largest cyclic vertex of G (if any; otherwise 1 becomes a loop in D′); all the
vertices of out-degree 0 in G are made to point to the vertex 1 in D′.

It follows that the map ϕ : T 7→ G is a bijection from T •
n+1 to PFDn that maps

T ⟨1;k⟩
n+1 onto PFDn,k.
Clearly, in the rooted tree T , all the edges in the path P = v1 · · · vℓ+1 are improper,

since each vertex in P has vℓ+1 = 1 as its descendant. These ℓ edges correspond, after
relabeling, to ℓ + 1 cyclic edges in the functional digraph D′. These latter edges in
turn correspond, after removal of vertex 1 and contraction of its edges, to ℓ cyclic
edges in the partial functional digraph G′ (and hence also G). Because they are
cyclic edges, they are necessarily improper. All the other improper/proper edges in

T coincide with improper/proper edges
−→
ij in the partial functional digraph G′ (and

hence G) where i is a transient vertex. □

Remark. The first part of this proof (namely, the map T 7→ D′) is the well-
known bijection from doubly-rooted trees to functional digraphs on the same vertex
set [49, pp. 224–225] [79, p. 26]. In our application we need the second step to remove
the vertex 1 and thereby obtain a map from rooted trees on the vertex set [n+ 1] to
partial functional digraphs on the vertex set [n]. ■

Proof of Proposition 1.7. In the preceding proof, each vertex i ̸= 1 in the rooted
tree T corresponds to a vertex i− 1 in the partial functional digraph G = ϕ(T ). And
for each proper child j of i in T , the proper edge ij in T corresponds to a proper edge−−−−−−−→
j − 1 i− 1 in G; and those are the only proper edges in G. Therefore, if the vertex
i ̸= 1 in T has m proper children, then the vertex i− 1 in G has m proper incoming
edges. This proves that tn,k(y,ϕ) = t̃n,k(y,ϕ). □

10That is, let v′1 < . . . < v′ℓ+1 be the elements of the set S = {v1, . . . , vℓ+1} written in increasing
order. Then σ is the permutation of S defined by σ(v′i) = vi.
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4 The matrices T, T(y, z) and T(y,ϕ) as exponen-

tial Riordan arrays

In this section we show that the matrices T, T(y, z) and T(y,ϕ) are exponential
Riordan arrays R[F,G], and we compute their generating functions F and G as well
as their A-, Z-, Φ- and Ψ-series.

4.1 The matrix T

Proposition 4.1. Define

tn,k =

(
n

k

)
nn−k . (4.1)

Then the unit-lower-triangular matrix T = (tn,k)n,k≥0 is the exponential Riordan array
R[F,G] with F (t) =

∑∞
n=0 n

n tn/n! and G(t) =
∑∞

n=1 n
n−1 tn/n!.

Before proving Proposition 4.1, let us use it to compute the A-, Z-, Φ- and Ψ-
series:

Corollary 4.2. The exponential Riordan array T = R[F,G] has

A(s) =
es

1− s
, Z(s) =

es

(1− s)2
(4.2)

and

Φ(s) = es , Ψ(s) =
1

1− s
. (4.3)

Proof. We observe that G(t) is the tree function T (t) [19], which satisfies the func-
tional equation T (t) = teT (t). Furthermore, we have F (t) = 1/[1 − T (t)]: this well-
known fact can be proven using the Lagrange inversion formula [see (4.4) below
specialized to x = 0] or by various other methods.11 We now apply Theorem 2.22 to
determine the functions A(s) and Z(s). Implicit differentiation of the functional equa-
tion yields T ′(t) = eT (t)/[1−T (t)], which implies that A(s) = es/(1−s). On the other
hand, it follows immediately from the relation between F and G that Ψ(s) = 1/(1−s).
This implies that Φ(s) = es and Z(s) = es/(1− s)2. □

We will give five proofs of Proposition 4.1: a direct algebraic proof using Lagrange
inversion and an Abel identity; an inductive algebraic proof, using a different Abel
identity; a third algebraic proof using the A- and Z-sequences of an ordinary Rior-
dan array; a combinatorial proof using exponential generating functions based on the

11Algebraic proof. F (t) = 1 + tT ′(t) = 1 +
teT (t)

1− T (t)
= 1 +

T (t)

1− T (t)
=

1

1− T (t)
,

where the first equality used the power series defining F (t) and T (t), the second equality used the

identity T ′(t) =
eT (t)

1− T (t)
arising from implicit differentiation of the functional equation, and the

third equality used the functional equation.
Combinatorial proof. This follows from the identity of combinatorial species: endofunc-

tions = permutations ◦ rooted trees [5, pp. 41, 43]. See also [79, Exercise 5.32(b)] for a related
combinatorial proof.
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interpretation of tn,k as counting partial functional digraphs; and a bijective com-
binatorial proof based on the interpretation of tn,k as counting rooted labeled trees
according to the number of children of the root that are lower-numbered than the
root. In Section 4.2 we will give yet another combinatorial proof (also using expo-
nential generating functions), this time based on the interpretation of tn,k as counting
rooted labeled trees according to the number of children of a specified vertex i; but
this proof will be given in the more general context of the polynomials tn,k(y, z).

First Proof of Proposition 4.1. The tree function T (t) satisfies the functional
equation T (t) = teT (t). We use Lagrange inversion (2.76) with ϕ(u) = eu and H(u) =
exu/(1− u): this gives

[tn]
exT (t)

1− T (t)
=

1

n
[un−1]

(
x

1− u
+

1

(1− u)2

)
e(x+n)u (4.4a)

=
1

n

n−1∑
k=0

(x+ k + 1)
(x+ n)n−1−k

(n− 1− k)!
(4.4b)

=
1

n!

n−1∑
k=0

(
n− 1

k

)
k! (x+ k + 1)

(x+ n)n−1−k

(n− 1− k)!
(4.4c)

=
(x+ n)n

n!
, (4.4d)

where the last step used an Abel identity [67, p. 21, eq. (25) with n → n − 1 and
x→ x+1]. In view of (1.5), this proves (1.2), which by (2.34) proves that T = R[F,G].
□

Second Proof of Proposition 4.1. It is immediate that the zeroth column of T
has exponential generating function F (t) =

∑∞
n=0 n

n tn/n!. We now show by induc-
tion on k that the kth column has egf F (t)G(t)k/k! where G(t) =

∑∞
n=0 n

n−1 tn/n!:
that is, we need to show that the kth column has egf equal to G(t)/k times the egf
of the (k − 1)st column, or in other words

k! tn,k =
n−k+1∑
j=1

(
n

j

)
jj−1 (k − 1)! tn−j,k−1 (4.5)

for k ≥ 1. We start from the Abel identity [67, p. 18, eq. (13a)]

x−1 (x+ y + n)n =
n∑

i=0

(
n

i

)
(x+ i)i−1 (y + n− i)n−i . (4.6)

Now substitute x = 1 and y → y−n−1, divide both sides by n!, and relabel i = j−1:
the result is

yn

n!
=

n+1∑
j=1

jj−1

j!

(y − j)n+1−j

(n− j + 1)!
. (4.7)
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Next substitute n→ n− k and then set y = n:

nn−k

(n− k)!
=

n−k+1∑
j=1

jj−1

j!

(n− j)n−j−k+1

(n− j − k + 1)!
. (4.8)

Multiplying this by n! yields

n!

(n− k)!
nn−k =

n−k+1∑
j=1

(
n

j

)
jj−1 (n− j)!

(n− j − k + 1)!
(n− j)n−j−k+1 , (4.9)

which is (4.5). □

Third Proof of Proposition 4.1. Showing that (tn,k)n,k≥0 equals the exponen-
tial Riordan array R[F,G] is equivalent to showing that ((k!/n!) tn,k)n,k≥0 equals the

ordinary Riordan array R(F,G). We write rn,k
def
= (k!/n!) tn,k = nn−k/(n − k)! and

R = (rn,k)n,k≥0. By the binomial theorem we have

rn+1,k+1
def
=

(n+ 1)n−k

(n− k)!
=

n−k∑
j=0

1

j!

nn−k−j

(n− k − j)!
def
=

n−k∑
j=0

1

j!
rn,k+j (4.10)

for all k ≥ 0. So the matrix R satisfies the appropriate identities to have the A-
sequence aj = 1/j!. Similarly, by the binomial theorem we have

rn+1,0
def
=

(n+ 1)n+1

(n+ 1)!
=

(n+ 1)n

n!
=

n∑
j=0

1

j!

nn−j

(n− j)!
def
=

n∑
j=0

1

j!
rn,j . (4.11)

So the matrix R satisfies the appropriate identities to have the Z-sequence zj = 1/j!.
It follows from Theorem 2.17 that R is an ordinary Riordan array R(F,G) where F
and G are given by (2.28) with A(t) = Z(t) = et. By the Lagrange inversion formula
we find

[tn]G(t) =
1

n
[tn−1]A(t)n =

nn−1

n!
. (4.12)

And the ordinary generating function of the zeroth column of R is obviously F (t) =∑∞
n=0 n

n tn/n!. □

Remark. The identity (4.8) in the second proof can be written for k ≥ 1 as

rn,k =
n−k+1∑
j=1

jj−1

j!
rn−j,k−1 , (4.13)

which shows that the ordinary generating function of the kth column of R equals
G(t) =

∑∞
j=1 j

j−1 tj/j! times the ordinary generating function of the (k−1)st column.
Combining this with the fact that the ordinary generating function of the zeroth
column of R is F (t) =

∑∞
n=0 n

n tn/n! gives an alternate proof that R = R(F,G). ■

Fourth Proof of Proposition 4.1. We begin from the fact that tn,k =
(
n
k

)
nn−k

counts partial functional digraphs on n labeled vertices that have k vertices of out-
degree 0. Such a partial functional digraph is the disjoint union of k rooted trees
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(rooted at the vertices of out-degree 0) together with a functional digraph on the
remaining vertices. Standard enumerative arguments then imply that the exponential
generating function for the numbers tn,k is

∞∑
n=k

tn,k
tn

n!
= F (t)

T (t)k

k!
(4.14)

where F (t) =
∑∞

n=0 n
n tn/n! is the exponential generating function for functional

digraphs and T (t) =
∑∞

n=1 n
n−1 tn/n! is the exponential generating function for rooted

trees. □

Fifth Proof of Proposition 4.1. We begin from the fact [12, 13, 75] that tn,k
equals the number of rooted trees on the vertex set [n+1] in which exactly k children
of the root are lower-numbered than the root. We will prove (4.5) in the form

k tn,k =
n−k+1∑
j=1

(
n

j

)
jj−1 tn−j,k−1 (4.15)

for k ≥ 1. We interpret k tn,k as the number of triplets (T, r, v⋆) in which (T, r) is a
rooted tree on the vertex set [n+1] in which exactly k children of the root are lower-
numbered than the root, and v⋆ is one of those lower-numbered children (we call it
the “marked vertex”). See Figure 3. We interpret jj−1 as the number of rooted trees
on j labeled vertices. So the summand on the right-hand side of (4.15) enumerates
quintuplets (A, T1, r1, T2, r2) where A is a subset of [n] of cardinality j, (T1, r1) is a
rooted tree on the vertex set A, and (T2, r2) is a rooted tree on the vertex set [n+1]\A
in which exactly k − 1 children of the root are lower-numbered than the root. See
Figure 4.

Bijection RHS =⇒ LHS. Given the quintuplet (A, T1, r1, T2, r2), we construct
a triplet (T, r, v⋆) as follows. We distinguish two cases:

• Case I: r1 < r2. We let r2 be the new root and add an edge making r1 a child
of r2; this gives (T, r). We then mark the vertex v⋆ = r1. Please note that in
this case the vertex n+ 1 is not a descendant of v⋆ (see Figure 5a).

• Case II: r1 > r2. We let r1 be the new root and add an edge making r2 a
child of r1; we then interchange the lower-numbered children of r1 (together
with all their descendants) with the lower-numbered children of r2 (and their
descendants). This gives (T, r). We observe (see Figure 5b) that r2 is the
largest-numbered among all the lower-numbered children of r in T . We observe
also that the vertex n+1 must be a descendant of some lower-numbered child of
r1 in T ; we set the marked vertex v⋆ to be this lower-numbered child. Note that
v⋆ must either belong to the set S2 (consisting of the lower-numbered children
of r2 in T2, which became lower-numbered children of r1 in T ) or else be the
vertex r2.

In both cases, in the rooted tree (T, r), exactly k children of the root are lower-
numbered than the root.
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r

v1
v⋆

vk· · ·

· · ·

· · ·

· · ·

H

S1 S⋆ Sk H ′

Tree T on vertex set [n+ 1]

Figure 3: A triplet (T, r, v⋆), where v1, . . . , vk are the children of the root r that are
lower-numbered than r, and H depicts the children of r that are higher-numbered
than r.

r1

L1 H1

L′
1 H ′

1

Tree T1 on vertex set A ⊆ [n]

r2

L2 H2

L′
2 H ′

2

Tree T2 on vertex set [n+ 1] \ A

Figure 4: A quintuplet (A, T1, r1, T2, r2). Here Li (resp. Hi) depicts the children of
the root ri that are lower-numbered (resp. higher-numbered) than ri. In this figure
and the following ones, the shaded parts are the possible locations of the vertex n+1.

r1

L1 H1

L′
1 H ′

1

r2

L2 H2

L′
2 H ′

2

r1

L2 H1

L′
2 H ′

1

r2

L1 H2

L′
1 H ′

2

v⋆

(a) Case I: r1 < r2 (b) Case II: r1 > r2

Figure 5: Bijection RHS ⇒ LHS.
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v1
v⋆

vk· · ·

· · ·

· · ·

· · ·

H

S1 S⋆ Sk H ′

−→

v⋆

S⋆

r

v1 vk· · ·

· · ·

H

S1 Sk H ′

T1 T2

Figure 6: Bijection LHS ⇒ RHS: Case I.

r

v1 v⋆ v• vk H

S1

· · ·

· · · S⋆ L• H• Sk H ′

−→

r

L•

H

H ′

v•

v1
v⋆

vk

S1

· · ·

· · ·

· · ·

· · ·S⋆ Sk

H•

T1 T2

Figure 7: Bijection LHS ⇒ RHS: Case II.
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We now describe the inverse bijection:

Bijection LHS =⇒ RHS. Given the triplet (T, r, v⋆), we reconstruct the quin-
tuplet (A, T1, r1, T2, r2) as follows. We distinguish two cases:

• Case I: n+1 is not a descendant of v⋆. We delete the edge between r (the
root of T ) and v⋆. Then (T1, r1) is the tree whose root is v⋆, and A is its vertex
set; (T2, r2) is the tree whose root is r, and its vertex set is [n + 1] \ A. Since
n+1 is not a descendant of v⋆, it n+1 belongs to T2, so that A ⊆ [n]. And we
have r1 = v⋆ < r = r2. See Figure 6.

• Case II: n+ 1 is a descendant of v⋆. The root r of T has k (≥ 1) lower-
numbered children; let v• be the largest-numbered of these. We delete the
edge between r and v•; then we interchange the lower-numbered children of r
(together with all their descendants) with the lower-numbered children of v•
(and their descendants). Then (T1, r1) is the tree whose root is r, and A is its
vertex set; (T2, r2) is the tree whose root is v•, and its vertex set is [n+ 1] \ A.
Please observe that the marked vertex v⋆ was a lower-numbered child of r in T ;
therefore, it is either equal to v• = r2 or else becomes a lower-numbered child
of v• = r2 in T2. Since the vertex n+ 1 was a descendant of v⋆, it must belong
to T2; therefore A ⊆ [n]. And we have r1 = r > v• = r2. See Figure 7.

In both cases, in the rooted tree (T2, r2), exactly k− 1 children of the root are lower-
numbered than the root. □

4.2 The matrix T(y, z)

We now prove that the matrix T(y, z) = (tn,k(y, z))n,k≥0 is an exponential Riordan
array R[F,G], and we compute F and G. Most of this computation was done a
quarter-century ago by Dumont and Ramamonjisoa [26]: their arguments handled
the case k = 0, and we extend those arguments slightly to handle the case of general
k. Our presentation follows the notation of [76].

Let T •
n denote the set of rooted trees on the vertex set [n]; let T [i]

n denote the

subset of T •
n in which the root vertex is i; and let T ⟨i;k⟩

n denote the subset of T •
n

in which the vertex i has k children. Given a tree T ∈ T •
n , we write imprope(T ) for

the number of improper edges of T . Now define the generating polynomials

Rn(y, z) =
∑
T∈T •

n

yimprope(T )zn−1−imprope(T ) (4.16)

Sn(y, z) =
∑

T∈T [1]
n+1

yimprope(T )zn−imprope(T ) (4.17)

An,k(y, z) = tn,k(y, z) =
∑

T∈T ⟨1;k⟩
n+1

yimprope(T )zn−k−imprope(T ) (4.18)

in which each improper (resp. proper) edge gets a weight y (resp. z) except that in
An,k the k proper edges connecting the vertex 1 to its children are unweighted. And
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then define the exponential generating functions

R(t; y, z) =
∞∑
n=1

Rn(y, z)
tn

n!
(4.19)

S(t; y, z) =
∞∑
n=0

Sn(y, z)
tn

n!
(4.20)

Ak(t; y, z) =
∞∑
n=0

An,k(y, z)
tn

n!
(4.21)

We will then prove the following key result, which is a slight extension of [26, Propo-
sition 7] to handle the case k ̸= 0:

Proposition 4.3. The series R, S and Ak satisfy the following identities:

(a) S(t; y, z) = exp
[
zR(t; y, z)

]
(b) Ak(t; y, z) =

R(t; y, z)k/k!
1− yR(t; y, z)

(c)
d

dt
R(t; y, z) = A0(t; y, z)S(t; y, z)

and hence

(d)
d

dt
R(t; y, z) =

exp
[
zR(t; y, z)

]
1− yR(t; y, z)

Solving the differential equation of Proposition 4.3(d) with the initial condition
R(0; y, z) = 0, we obtain:

Corollary 4.4. The series R(t; y, z) satisfies the functional equation

y − z + yzR = (y − z + z2t) ezR (4.22)

and hence has the solution

R(t; y, z) =
1

z

[
T
((

1− z

y
+
z2

y
t
)
e
−
(
1− z

y

))
−

(
1− z

y

)]
(4.23)

where T (t) is the tree function (1.3).

Comparing Proposition 4.3(b) with the definition (2.33) of exponential Riordan
arrays, we conclude:

Corollary 4.5. The matrix T(y, z) is the exponential Riordan array R[F,G] where

F (t) =
1

1− yR(t; y, z)
, G(t) = R(t; y, z) (4.24)

and R(t; y, z) is given by (4.23).
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And comparing Proposition 4.3(b,d) with the definitions (2.44)/(2.50)/(2.52) of
the A-series, Z-series, Φ-series and Ψ-series of an exponential Riordan array, we
conclude:

Corollary 4.6. The exponential Riordan array T(y, z) has

A(s) =
ezs

1− ys
, Z(s) =

yezs

(1− ys)2
(4.25)

and

Φ(s) = ezs , Ψ(s) =
1

1− ys
. (4.26)

The proof of Proposition 4.3 follows the elegant argument of Jiang Zeng that was
presented in [26, section 7], and extends it in part (b) to handle k ̸= 0:

Proof of Proposition 4.3. (a) Consider a tree T ∈ T [1]
n+1, and suppose that

the root vertex 1 has k (≥ 0) children. All k edges emanating from the root vertex
are proper and thus get a weight z each. Deleting these edges and the vertex 1, one
obtains an unordered partition of {2, . . . , n+ 1} into blocks B1, . . . , Bk and a rooted
tree Tj on each block Bj. Standard enumerative arguments then yield the relation (a)
for the exponential generating functions.

(b) Consider a tree T ∈ T ⟨1;k⟩
n+1 with root r, and let r1, . . . , rl+1 (l ≥ 0) be the path in

T from the root r1 = r to the vertex rl+1 = 1.12 All l edges of this path are improper,
and all k edges from the vertex 1 to its children are proper (and unweighted). Deleting
these edges and the vertex 1, one obtains a partition of {2, . . . , n+1} into an ordered
collection of blocks B1, . . . , Bl and an unordered collection of blocks B′

1, . . . , B
′
k, to-

gether with a rooted tree on each block. Standard enumerative arguments then yield
the relation (b) for the exponential generating functions.

(c) In a tree T ∈ T •
n , focus on the vertex 1 (which might be the root, a leaf, both

or neither). Let T ′ be the subtree rooted at 1, and let T ′′ be the tree obtained from
T by deleting all the vertices of T ′ except the vertex 1 (it thus has the vertex 1 as a
leaf). The vertex set [n] is then partitioned as {1} ∪ V ′ ∪ V ′′, where {1} ∪ V ′ is the
vertex set of T ′ and {1} ∪ V ′′ is the vertex set of T ′′; and T is obtained by joining
T ′ and T ′′ at the common vertex 1. Standard enumerative arguments then yield the
relation (c) for the exponential generating functions. □

Remarks. 1. Dumont and Ramamonjisoa also gave [26, sections 2–5] a second
(and very interesting) proof of the k = 0 case of Proposition 4.3, based on a context-
free grammar [14] and its associated differential operator.

2. We leave it as an open problem to find a direct combinatorial proof of the func-
tional equation (4.22), without using the differential equation of Proposition 4.3(d).

3. The polynomials Rn(y, z) enumerate rooted trees according to the number of
improper and proper edges; they are homogenized versions of the celebrated Ra-
manujan polynomials [15, 26,40,41,44,52,66,71,76,84] [61, A054589].

4. The polynomials Rn and An,0 also arise [44] as derivative polynomials for the
tree function: in the notation of [44] we have Rn(y, 1) = Gn(y − 1) and An,0(y, 1) =

12Here l = 0 corresponds to the case in which the vertex 1 is the root.
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y Fn(y − 1) for n ≥ 1. The formula (4.23) is then equivalent to [44, Theorem 4.2,
equation for Gn]. ■

4.3 The matrix T(y,ϕ)

We now show how Proposition 4.3 can be generalized to incorporate the additional
indeterminates ϕ = (ϕm)m≥0. We define T •

n , T
[i]
n and T ⟨i;k⟩

n as before, and then define
the obvious generalizations of (4.16)–(4.18):

Rn(y,ϕ) =
∑
T∈T •

n

yimprope(T )

n+1∏
i=1

ϕ̂pdegT (i) (4.27)

Sn(y,ϕ) =
∑

T∈T [1]
n+1

yimprope(T )

n+1∏
i=1

ϕ̂pdegT (i) (4.28)

An,k(y,ϕ) = tn,k(y,ϕ) =
∑

T∈T ⟨1;k⟩
n+1

yimprope(T )

n+1∏
i=2

ϕ̂pdegT (i) (4.29)

where pdegT (i) denotes the number of proper children of the vertex i in the rooted
tree T , and ϕ̂m = m!ϕm. (Note that in Rn and Sn we give weights to all the vertices,
while in An,k we do not give any weight to the vertex 1.13) We then define the
exponential generating functions

R(t; y,ϕ) =
∞∑
n=1

Rn(y,ϕ)
tn

n!
(4.30)

S(t; y,ϕ) =
∞∑
n=0

Sn(y,ϕ)
tn

n!
(4.31)

Ak(t; y,ϕ) =
∞∑
n=0

An,k(y,ϕ)
tn

n!
(4.32)

Let us also define the generating function

Φ(s)
def
=

∞∑
m=0

ϕm s
m =

∞∑
m=0

ϕ̂m
sm

m!
. (4.33)

We then have:

Proposition 4.7. The series R, S and Ak defined in (4.30)–(4.32) satisfy the fol-
lowing identities:

(a) S(t; y,ϕ) = Φ
(
R(t; y,ϕ)

)
13This differs from the convention used in [76, eq. (3.24)], where An = An,0 included a factor

ϕ0 = ϕ̂0 associated to the leaf vertex 1.
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(b) Ak(t; y,ϕ) =
R(t; y, z)k/k!
1− yR(t; y,ϕ)

(c)
d

dt
R(t; y,ϕ) = A0(t; y,ϕ)S(t; y,ϕ)

and hence

(d)
d

dt
R(t; y,ϕ) =

Φ
(
R(t; y,ϕ)

)
1− yR(t; y,ϕ)

Proof. The proof is identical to that of Proposition 4.3, with the following modifi-
cations:

(a) Consider a tree T ∈ T [1]
n+1 in which the root vertex 1 has k children. Since

all k edges emanating from the root vertex are proper, we get here a factor ϕ̂k/k! in
place of the zk/k! that was seen in Proposition 4.3. Therefore, the function ezs in
Proposition 4.3 is replaced here by the generating function Φ(s).

(b) No change is needed.
(c) No change is needed. (The tree T ′′ has vertex 1 as a leaf, but in An,0 the

vertex 1 is anyway unweighted.) □

Comparing Proposition 4.7(b) with the definition (2.33) of exponential Riordan
arrays, we conclude:

Corollary 4.8. The matrix T(y,ϕ) is the exponential Riordan array R[F,G] where

F (t) =
1

1− yR(t; y,ϕ)
, G(t) = R(t; y,ϕ) (4.34)

and R(t; y,ϕ) is the solution of the differential equation of Proposition 4.7(d) with
initial condition R(0; y,ϕ) = 0.

We observe that (4.34) is identical in form to (4.24); only R is different.
Comparing Proposition 4.7(b,d) with the definitions (2.44)/(2.50)/(2.52) of the A-

series, Z-series, Φ-series and Ψ-series of an exponential Riordan array, we conclude:

Corollary 4.9. The exponential Riordan array T(y,ϕ) has

A(s) =
Φ(s)

1− ys
, Z(s) =

yΦ(s)

(1− ys)2
(4.35)

and

Ψ(s) =
1

1− ys
(4.36)

where Φ(s) is given by (4.33).

We see that Ψ(s) is the same here as in (4.26); only Φ is different. Proposition 4.7
and Corollaries 4.8–4.9 reduce to Proposition 4.3 and Corollaries 4.5–4.6 if we take
ϕm = zm/m! and hence ϕ̂m = zm, Φ(s) = ezs.
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5 Proof of Theorems 1.1, 1.2, 1.4 and 1.8

In this section we will prove Theorems 1.1, 1.2, 1.4 and 1.8. The proofs are
now very easy: we combine the general theory of total positivity in exponential
Riordan arrays developed in Section 2 (culminating in Corollary 2.28) with the specific
computations of Φ- and Ψ-series carried out in Section 4.

It suffices of course to prove Theorem 1.8, since Theorems 1.1, 1.2 and 1.4 are
contained in it as special cases: take ϕm = zm/m! to get Theorem 1.4; then take
y = z = 1 to get Theorems 1.1 and 1.2. However, we find it instructive to work
our way up, starting with Theorems 1.1 and 1.2 and then gradually adding extra
parameters.

5.1 The matrix T

Proof of Theorems 1.1 and 1.2. In order to employ the theory of exponential
Riordan arrays, we work here in the ring Q, even though the matrix elements actually
lie in Z.

By Corollary 4.2, the exponential Riordan array T has Φ(s) = es and Ψ(s) =
1/(1− s). By Lemma 2.5, the corresponding sequences ϕ and ψ (namely, ϕm = 1/m!
and ψm = 1) are Toeplitz-totally positive in Q. Corollary 2.28 then yields Theo-
rems 1.1(a) and 1.2. Theorem 1.1(b) is obtained from Theorem 1.2 by specializing to
x = 0. □

Since this proof employed the production-matrix method (hidden inside Corol-
lary 2.28), it is worth making explicit what the production matrix is:

Proposition 5.1 (Production matrix for T). The production matrix P = T−1∆T
is the unit-lower-Hessenberg matrix

P = B1∆DT1D
−1 (5.1)

where B1 is the binomial matrix [i.e. (1.6) at x = 1], T1 is the lower-triangular matrix
of all ones [i.e. (2.2) at x = 1], and D = diag

(
(n!)n≥0

)
. More generally, we have

B−1
ξ P Bξ = B1 (∆ + ξI)DT1D

−1 . (5.2)

Proof. Since ϕm = 1/m! and ψm = 1, Proposition 2.23 implies

P = DT∞
(
(1/m!)m≥0

)
D−1∆DT1D

−1 = B1∆DT1D
−1 , (5.3)

and Lemma 2.27 implies (5.2). □

Remarks. 1. The zeroth and first columns of the matrix P are identical: that is,
pn,0 = pn,1. This can be seen from Lemma 2.29 with c = 1, by noting either that tn,0 =
tn,1 for n ≥ 1 or that Ψ(s) = 1/(1−s). Alternatively, it can be seen directly from (5.1):
the zeroth and first columns of the matrix ∆DT1D

−1 are identical (namely, they are
both equal to 1/(n+1)!); so the zeroth and first columns ofM ∆DT1D

−1 are identical,
for any row-finite matrix M . (Indeed, this would be the case if D = diag( (n!)n≥0)
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were replaced by any diagonal matrix diag(d0, d1, d2, . . .) satisfying d0 = d1.) We will
also see that pn,0 = pn,1 in the explicit formula (5.16).

The equality pn,0 = pn,1 implies, by Lemma 2.29(b)⇐⇒ (b′), the factorization

P = P∆T (e00 +∆) (5.4)

where e00 denotes the matrix with an entry 1 in position (0, 0) and all other entries
zero, and P∆T is the lower-triangular matrix obtained from P by deleting its zeroth
column.

2. Closely related to the production matrix P = B1∆DT1D
−1 are

P̂ = B1DT1D
−1∆ and P̂ ′ = ∆B1DT1D

−1 . (5.5)

It was shown in [76, Section 4.1] that P̂ is the production matrix for the forest
matrix F = (fn,k)n,k≥0 where fn,k =

(
n
k

)
k nn−k−1 counts k-component forests of rooted

trees on n labeled vertices; and that P̂ ′ = ∆P̂∆T is the production matrix for F′ =
∆F∆T = (fn+1,k+1)n,k≥0. All three production matrices correspond to the same A-
series A(s) = es/(1− s), but with different splittings into Φ and Ψ. ■

We have more to say about this production matrix P , but in order to avoid
disrupting the flow of the argument we defer it to Section 5.4.

5.2 The matrix T(y, z)

Proof of Theorem 1.4. In order to employ the theory of exponential Riordan
arrays, we work here in the ring Q[y, z], even though the matrix elements actually lie
in Z[y, z].

By Corollary 4.6, the exponential Riordan array T(y, z) has Φ(s) = ezs and Ψ(s) =
1/(1 − ys). By Lemma 2.5, the corresponding sequences ϕ and ψ (namely, ϕm =
zm/m! and ψm = ym) are Toeplitz-totally positive in the ring Q[y, z] equipped with
the coefficientwise order. Corollary 2.28 then yields Theorem 1.4. □

Analogously to Proposition 5.1, we have:

Proposition 5.2 (Production matrix for T(y, z)). The production matrix P (y, z) =
T(y, z)−1∆T(y, z) is the unit-lower-Hessenberg matrix

P (y, z) = Bz ∆DTyD
−1 (5.6)

where Bz is the weighted binomial matrix (1.6), Ty is the Toeplitz matrix of powers
(2.2), and D = diag

(
(n!)n≥0

)
. More generally,

B−1
ξ P (y, z)Bξ = Bz (∆ + ξI)DTyD

−1 . (5.7)

Remarks. 1. The zeroth and first columns of the matrix P (y, z) satisfy pn,0 =
ypn,1. This can be seen from Lemma 2.29 with c = y, by noting either that tn,0(y, z) =
ytn,1(y, z) for n ≥ 1 (Proposition 1.3) or that Ψ(s) = 1/(1− ys). Alternatively, it can
be seen directly from (5.1): the zeroth column of the matrix ∆DTyD

−1 is y times
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the first column (they are, respectively, yn+1/(n+ 1)! and yn/(n+ 1)!); so the zeroth
column of M ∆DTyD

−1 is y times the first column, for any row-finite matrix M .
The equality pn,0 = ypn,1 implies, by Lemma 2.29(b)⇐⇒ (b′), the factorization

P (y, z) = P (y, z)∆T (y e00 +∆) . (5.8)

2. Closely related to the production matrix P (y, z) = Bz ∆DTyD
−1 are

P̂ (y, z) = BzDTyD
−1∆ and P̂ ′(y, z) = ∆BzDTyD

−1 . (5.9)

It was shown in [76, Section 4.3] that P̂ (y, z) is the production matrix for F(y, z) =(
fn,k(y, z)

)
n,k≥0

where fn,k(y, z) counts k-component forests of rooted trees on the

vertex set [n] with a weight y (resp. z) for each improper (resp. proper) edge. Like-

wise, P̂ ′(y, z) = ∆P̂ (y, z)∆T is the production matrix for F′(y, z) = ∆F(y, z)∆T =(
fn+1,k+1(y, z)

)
n,k≥0

. All three production matrices correspond to the same A-series

A(s) = ezs/(1− ys), but with different splittings into Φ and Ψ. ■

5.3 The matrix T(y,ϕ)

The proof is similar to that in the preceding subsections, but a bit of care is needed
to handle the case in which the ring R does not contain the rationals.

Proof of Theorem 1.8. We start by letting ϕ = (ϕm)m≥0 be indeterminates,
and working in the ring Q[y,ϕ].

By Corollary 4.9, the exponential Riordan array T(y,ϕ) has Φ(s) =
∑∞

m=0 ϕms
m

and Ψ(s) = 1/(1 − ys), so ψm = ym. We therefore have T(y,ϕ) = O(P ) and more
generally T(y,ϕ)Bx = O(B−1

x PBx), where Proposition 2.23 and Lemma 2.27 tell us
that

B−1
x PBx = [DT∞(ϕ)D−1] (∆ + xI) [DT∞(ψ)D−1] . (5.10)

We now use the definition (2.72) to rewrite this as

B−1
x PBx = T∞(ϕ)♯ (∆ + xI) T∞(ψ)♯ . (5.11)

Having done this, the equality T(y,ϕ)Bx = O(B−1
x PBx) is now a valid identity in the

ring Z[y,ϕ]. We can therefore now substitute elements ϕ in any commutative ring R
for the indeterminates ϕ, and the identity still holds.

By hypothesis the sequence ϕ is Toeplitz-totally positive in the ring R. By
Lemma 2.4, the sequence ψ is Toeplitz-totally positive in the ring Z[y] equipped
with the coefficientwise order. By Lemma 2.30, the matrices T∞(ϕ)♯ and T∞(ψ)♯

are also totally positive. Therefore B−1
x PBx is totally positive in the ring R[x, y]

equipped with the coefficientwise order. Proposition 2.15 then yields Theorem 1.8.
□

Proposition 5.3 (Production matrix for T(y,ϕ)). The production matrix P (y,ϕ) =
T(y,ϕ)−1∆T(y,ϕ) is the unit-lower-Hessenberg matrix

P (y,ϕ) = T∞(ϕ)♯ ∆T ♯
y (5.12)

where Ty is the Toeplitz matrix of powers (2.2), and ♯ is defined in (2.72). More
generally,

B−1
ξ P (y,ϕ)Bξ = T∞(ϕ)♯ (∆ + ξI)T ♯

y . (5.13)
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Remark. 1. The zeroth and first columns of the matrix P (y,ϕ) satisfy pn,0 =
ypn,1, for exactly the same reasons as were observed for P (y, z). This implies the
factorization

P (y,ϕ) = P (y,ϕ)∆T (y e00 +∆) . (5.14)

2. Closely related to the production matrix P (y,ϕ) = T∞(ϕ)♯ ∆T ♯
y are

P̂ (y,ϕ) = T∞(ϕ)♯ T ♯
y ∆ and P̂ ′(y,ϕ) = ∆T∞(ϕ)♯ T ♯

y . (5.15)

It was shown in [76, Section 4.4] that P̂ (y,ϕ) is the production matrix for F(y,ϕ) =(
fn,k(y,ϕ)

)
n,k≥0

where fn,k(y,ϕ) counts k-component forests of rooted trees on the

vertex set [n] with a weight y for each improper edge and a weight ϕ̂m
def
= m!ϕm for

each vertex with m proper children. Likewise, P̂ ′(y,ϕ) = ∆P̂ (y,ϕ)∆T is the produc-
tion matrix for F′(y,ϕ) = ∆F(y,ϕ)∆T =

(
fn+1,k+1(y,ϕ)

)
n,k≥0

. All three production

matrices correspond to the same A-series A(s) = Φ(s)/(1 − ys), but with different
splittings into Φ and Ψ. ■

5.4 More on the production matrix for T

We now wish to say a bit more about the production matrix P for the tree matrix
T. We begin by giving an explicit formula:

Proposition 5.4. The production matrix P = T−1∆T is the unit-lower-Hessenberg
matrix with entries

pn,k = n

(
n

k

)
Sn−k +

(
n+ 1

k

)
(5.16a)

=
n!

k! (n− k + 1)!
(nSn−k+1 + 1) (5.16b)

where Sm denotes the ordered subset number [61, A000522]

Sm
def
=

m∑
k=0

m!

k!
. (5.17)

These matrix elements satisfy in particular pn,0 = pn,1 = nSn + 1 for all n ≥ 0.

The formula (5.16) has a very easy proof, based on the theory of exponential
Riordan arrays together with our formulae for A(s) and Z(s); we begin by giving this
proof. On the other hand, it is also of some interest to see that this production matrix
can be found by “elementary” algebraic methods, without relying on the machinery
of exponential Riordan arrays or on any combinatorial interpretation; this will be our
second proof.

First Proof of Proposition 5.4. From A(s) = es/(1− s) we have

an =
n∑

j=0

1

j!
=

Sn

n!
. (5.18)
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From Z(s) = es/(1− s)2 we have

zn =
n∑

j=0

n+ 1− j
j!

= n
n∑

j=0

1

j!
+

1

n!
=

nSn + 1

n!
. (5.19)

Theorem 2.22 and (2.40) give

pn,k =
n!

k!
(zn−k + k an−k+1) , (5.20)

and a little algebra leads to (5.16a,b). It is then easy to see that pn,0 = pn,1 = nSn+1.
□

Second Proof of Proposition 5.4. An Abel inverse relation [67, p. 96, un-
numbered equation after (3b)] says that the inverse matrix to T = (tn,k)n,k≥0 =((

n
k

)
nn−k

)
n,k≥0

is

(T−1)n,k = (−1)n−k

(
n

k

)
n kn−k−1 . (5.21)

It follows that P = T−1∆T has matrix elements

pn,k =
n∑

j=k−1

(−1)n−j

(
n

j

)
n jn−j−1

(
j + 1

k

)
(j + 1)j+1−k . (5.22)

Setting N = n− k + 1 and j = k − 1 + ℓ gives

pn,k =
N∑
ℓ=0

(−1)N−ℓ

(
n

k − 1 + ℓ

)
n (k − 1 + ℓ)N−ℓ−1

(
k + ℓ

k

)
(k + ℓ)ℓ , (5.23)

which after a bit of playing with the binomial coefficients gives

pn,k = − n · n!
k! (n− k + 1)!

N∑
ℓ=0

(
N

ℓ

)
(1− k − ℓ)N−ℓ−1 (k + ℓ)ℓ+1 . (5.24)

We now use the Abel identity [67, p. 22, eq. (27)]

N∑
ℓ=0

(
N

ℓ

)
(x+ℓ)ℓ+1 (y+N−ℓ)N−ℓ−1 = y−1

N∑
ℓ=0

(
N

ℓ

)
ℓ! (x+ℓ) (x+y+N)N−ℓ (5.25)
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with x = k and y = 1−N − k = −n: this gives

pn,k = − n · n!
k! (n− k + 1)!

(−1/n)
N∑
ℓ=0

(
N

ℓ

)
ℓ! (k + ℓ) 1N−ℓ (5.26a)

=
n!

k! (n− k + 1)!

N∑
ℓ=0

N !

(N − ℓ)!
(k + ℓ) (5.26b)

=
n!

k! (n− k + 1)!

N∑
m=0

N !

m!
(k +N −m) (5.26c)

=
n!

k! (n− k + 1)!

[
(n+ 1)Sn−k+1 −

n−k+1∑
m=0

(n− k + 1)!

(m− 1)!

]
(5.26d)

=
n!

k! (n− k + 1)!
[nSn−k+1 + 1] , (5.26e)

which is (5.16b). □

Remarks. 1. The first few rows of this production matrix are

P =



1 1
3 3 1
11 11 5 1
49 49 24 7 1
261 261 130 42 9 1
1631 1631 815 270 65 11 1
11743 11743 5871 1955 485 93 13 1

95901 95901 47950 15981 3990 791 126 15
. . .

...
...

...
...

...
...

...
...

. . .


. (5.27)

This matrix P (or its lower-triangular variant P∆T in which the zeroth column is
deleted) is not currently in [61]. However, the zeroth and first columns are [61,
A001339], and the second column pn,2 = nSn/2 is [61, A036919].

2. As mentioned earlier, it is not an accident that pn,0 = pn,1: by Lemma 2.29 this
reflects the fact that Ψ(s) = 1/(1− s), or equivalently that tn,0 = tn,1. For the same
reason, the production matrices P (y, z) and P (y,ϕ) satisfy pn,0 = ypn,1.

3. The ordered subset numbers satisfy the recurrence Sm = mSm−1 + 1. ■

Let us now state some further properties of the matrix elements pn,k:

Proposition 5.5. Define the matrix P = (pn,k)n,k≥0 by (5.16)/(5.17). Then:

(a) The pn,k are nonnegative integers that satisfy the backward recurrence

pn,k = (k + 1)pn,k+1 +

(
n

k − 1

)
(5.28)

with initial condition pn,n+1 = 1.
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(b) The pn,k are also given by

pn,k =
nSn − Qk(n)

k!
, (5.29)

where

Qk(n) = −1 +
k∑

j=2

(j − 1)!

(
n

j − 2

)
(5.30a)

= −1 +
k∑

j=2

(j − 1)nj−2 (5.30b)

are polynomials in n with integer coefficients. In particular, Q0(n) = Q1(n) =
−1 and Q2(n) = 0, so that pn,0 = pn,1 = nSn + 1 and pn,2 = nSn/2.

Proof. (a) It is immediate from (5.16a)/(5.17) that the pn,k are nonnegative integers.
And it is easy to verify, using the recurrence Sm = mSm−1 + 1, that the quantities
(5.16) indeed satisfy the recurrence (5.28).

(b) Introducing the Ansatz (5.29), a simple computation shows that the recurrence
(5.28) for pn,k is equivalent to the recurrence

Qk+1(n) = Qk(n) + k!

(
n

k − 1

)
(5.31)

for Qk(n). Furthermore, simple computations show that pn,0 = pn,1 = nSn + 1, so
that Q0(n) = Q1(n) = −1. It is then easy to see that the unique solution of the
recurrence (5.31) with initial condition Q0(n) = −1 is (5.30). □

Remarks. 1. The first few polynomials Qk(n) are

Q0(n) = −1 (5.32a)

Q1(n) = −1 (5.32b)

Q2(n) = 0 (5.32c)

Q3(n) = 2n (5.32d)

Q4(n) = 3n2 − n (5.32e)

Q5(n) = 4n3 − 9n2 + 7n (5.32f)

Q6(n) = 5n4 − 26n3 + 46n2 − 23n (5.32g)

Q7(n) = 6n5 − 55n4 + 184n3 − 254n2 + 121n (5.32h)

This triangular array is apparently not in [61]. In any case it follows immediately from
(5.30b) that for k ≥ 3 the leading term inQk(n) is (k−1)nk−2. And it also follows from
(5.30b) that for k ≥ 4 the next-to-leading term inQk(n) is−[(k−2)(k2−4k+1)/2]nk−3

[61, A154560].
2. Before we found either of the two proofs of Proposition 5.4, we initially guessed

the formulae (5.16) for pn,k, as follows: Comparison of successive columns of (5.27)
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suggested the backwards recurrence (5.28) for each row of (5.27), with initial condition
pn,n+1 = 1. On the other hand, by looking at the diagonals (n − k = constant)
successively for n − k = −1, 0, 1, 2, . . . , a little experimentation led to the formula
(5.16b).

3. The factorization (5.4) implies that the unit-lower-Hessenberg matrix P is

totally positive if and only if the unit-lower-triangular matrix P̃
def
= P∆T, obtained

from P by deleting its zeroth column, is totally positive. Now, the production matrix
of P̃ — namely, the unit-lower-Hessenberg matrix Q = P̃−1∆P̃ — appears to have a
very simple form:

Q
def
= P̃−1∆P̃ =



3 1
2 2 1
6 3 2 1
24 12 4 2 1
120 60 20 5 2 1

720 360 120 30 6 2
. . .

...
...

...
...

...
...

. . .


(5.33)

or in other words

qn,k =
(n+ 1)!

(k + 1)!
for k < n (5.34a)

q0,0 = 3 (5.34b)

qn,n = 2 for n ≥ 1 (5.34c)

qn,n+1 = 1 (5.34d)

qn,k = 0 for k > n+ 1 (5.34e)

(We have not proven this formula for Q, but it is probably not too difficult.) Alas,
this matrix Q is not even TP2 (for instance, q10q21 − q11q20 = 2 · 3 − 2 · 6 = −6), so
we cannot use this method to prove the total positivity of P . Nor does it help to
subtract of the identity matrix from Q (which would correspond to factoring out a

binomial matrix from P̃ on the left): there does not exist any c ∈ R for which the
leading 3× 3 principal submatrix of Q− cI is TP2. ■
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A Interpretation of tn,k(y, z) in our first combina-

torial model

In this appendix we give an interpretation of the polynomials tn,k(y, z), which
were defined in (1.7), in our first combinatorial model (rooted trees in which the root
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has k lower-numbered children). However, in order to make this interpretation most
natural, we modify the model slightly, by now considering rooted trees in which the
root has k higher -numbered children (this is of course equivalent by reversing all the
labels). We denote by T •

n+1,k the set of rooted trees on the vertex set [n+1] in which
exactly k children of the root are higher-numbered than the root.

We will therefore be defining a bijection between two models on the vertex set
[n+ 1]:

Model 1. Rooted trees in which the root has k higher-numbered children.

Model 2. Rooted trees in which the vertex 1 has k children.

We begin with some definitions.
Let T be a tree on a totally ordered vertex set (for us it will be [n + 1]), and let

e = ij be an edge of T , where i is the parent and j is the child. We say that the
edge e = ij is increasing if i < j, and decreasing if i > j. We recall that the
edge e = ij is improper if there exists a descendant of j (possibly j itself) that is
lower-numbered than i; otherwise it is proper . Clearly, every decreasing edge is
necessarily improper; an increasing edge can be either proper or improper, depending
on the behavior of the descendants of j.

We now classify edges in a tree T ∈ T •
n+1,k (that is, Model 1) as either regular or

irregular , as follows:

Definition A.1. Let e = ij be an edge in a tree T ∈ T •
n+1,k, where i is the parent and

j is the child. We classify this edge as follows:

(I1) If ij is decreasing, then it is irregular.

(I2) If ij is increasing and improper, and i is not the root, then ij is irregular.

(I3) If ij is increasing and i is the root, then ij is regular. (That is, the k increasing
edges emanating from the root are all regular.)

(I4) Suppose that all the children of vertex 1 are higher-numbered than the root.
If i = 1 and there is a descendant of j that is lower-numbered than the root,
then ij is irregular. (Note that in this case the root cannot be vertex 1; so this
rule does not contradict rule (I3).)

(I5) Suppose that vertex 1 has at least one child that is lower-numbered than the root
ρ. (Note that this implies ρ ̸= 1.) Let T1 be the maximal increasing subtree of
T rooted at vertex 1, whose vertices are 1 = v1 < · · · < vℓ+1 < vℓ+2 < · · · < vm,
where vℓ+1 < ρ < vℓ+2 (of course ρ /∈ T1). Then:

(a) all the edges on the path from vertex 1 to vℓ+1 are irregular; and

(b) an edge ij ∈ T1 with parent i = vs and child j = vt (s < t) is irregular
in case one of the following is satisfied:

(b1) ℓ+ 2 ≤ s < t and there is a descendant of vt in T that is < vs;

(b2) s ≤ ℓ < ℓ+ 2 ≤ t and there is a descendant of vt in T that is < vs+1;

(b3) s = ℓ+ 1 < ℓ+ 2 ≤ t and there is a descendant of vt in T that is < ρ;
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(b4) s < t ≤ ℓ and there is a descendant vτ of vt in T1 such that vτ+1 < ρ
and there is a descendant of vτ+1 in T that is < vs+1;

(b5) s < t ≤ ℓ and there is a descendant vτ of vt in T1 that is > ρ, and a
descendant of vτ in T that is < vs+1.

(I6) All other edges are regular.

(We apologize for the complexity of this definition; but these are the cases that seem
to be needed.)

We recall that the polynomials tn,k(y, z) enumerate trees in Model 2 with a weight
y (resp. z) for each improper (resp. proper) edge, except that the k proper edges
emanating from vertex 1 are unweighted. We now assert — and this is the main
result of this appendix — that the same polynomials tn,k(y, z) enumerate trees in
Model 1 with a weight y (resp. z) for each irregular (resp. regular) edge, except that
the k regular edges emanating from the root are unweighted:

Proposition A.2. The polynomials tn,k(y, z) defined in (1.7) satisfy

tn,k(y, z) =
∑

T∈T •
n+1,k

yirreg(T )zreg(T )−k . (A.1)

To prove Proposition A.2, we will construct, for each fixed n and k, a bijection σ
from Model 2 (namely, the set T ⟨1;k⟩

n+1 ) to Model 1 (namely, the set T •
n+1,k), with the

property that the number of proper (resp. improper) edges in T equals the number of
regular (resp. irregular) edges in σ(T ). Moreover, we will be able to say which edge in

T corresponds to which edge in σ(T ): that is, for each T ∈ T ⟨1;k⟩
n+1 we will construct a

bijection ψT : E(T )→ E(σ(T )) such that e ∈ E(T ) is proper (resp. improper) if and
only if ψT (e) ∈ E(σ(T )) is regular (resp. irregular). We summarize this as follows:

Proposition A.3. There are bijections (σ, ψT ) from Model 2 to Model 1 that map
proper (resp. improper) edges in Model 2 to regular (resp. irregular) edges in Model 1.

The remainder of this appendix is devoted to proving Proposition A.3.

Given a tree T rooted at r in Model 2, let v1 < v2 < · · · < vk be the k children of
the vertex 1. If vertex 1 is the root, then its k children are obviously higher-numbered
than the root. In this situation we define σ(T ) = T , which also belongs to Model 1;
and we define ψT (e) = e for all e ∈ E(T ).

Now suppose that the vertex 1 is not the root. First consider the case k = 0. Since
we will use this special case as a tool in handling the general case, we here denote the
bijection ϕ instead of σ.

Lemma A.4. For k = 0, there are bijections (ϕ, ψT ) from Model 2 to Model 1 that
map proper (resp. improper) edges in Model 2 to regular (resp. irregular) edges in
Model 1.

The following construction is inspired by [13, proof of Lemma 1].

Proof of Lemma A.4. Let T be a tree in Model 2, in which r is the root and
vertex 1 is a leaf. Since we have already handled the case r = 1, we assume henceforth
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Figure 8: (a) The tree T in Model 2 when r ̸= 1. (b) Subtrees of T .

that r ̸= 1. Let L (resp. H) denote the set of lower- (resp. higher-) numbered children
of the root; and let DL (resp. DH) denote the set of all descendants of the vertices in
L (resp. H), excluding those in L (resp. H) itself. See Figure 8(a).

Let Tmax be the maximal increasing subtree of T rooted at r, and let T0, . . . , Tp
be the trees obtained from T by deleting all the edges in Tmax. Let rj be the root
of Tj for 0 ≤ j ≤ p. In particular, we choose r0 to be the root r. Note that each rj
is a vertex in Tmax (otherwise it would not become a root when we delete the edges
in Tmax); and conversely, every vertex in Tmax becomes a root rj (though its tree Tj
might be trivial). Therefore, all of the higher-numbered children of rj belong to Tmax,
while all of the lower-numbered children of rj belong to Tj. We denote the set of those
lower-numbered children by Lj. Of course, L0 = L. See Figure 8(b). Furthermore,
since Tmax is an increasing tree, it is rooted at its smallest label (namely, r); therefore
rj > r for 1 ≤ j ≤ p.

Notation: Let S be a sequence of increasing numbers. For a ̸∈ S and b ∈ S, define
ρ−b
+a as an operator acting on S such that ρ−b

+a(S) := S ∪ {a}\{b} is still increasingly
ordered. For example, ρ−5

+2(1, 3, 5, 7) = (1, 2, 3, 7). We observe that the inverse of ρ−b
+a

is ρ−a
+b . Further, if T is a tree whose vertex set is S, we write ρ−b

+a(T ) to denote the tree

with vertex set ρ−b
+a(S) that is obtained from T by relabeling the vertices according

to the map ρ−b
+a.

We now make the trivial observation that, since r > 1 by assumption, the vertex 1
is not in Tmax. Let Ti be the tree containing vertex 1; since k = 0, the vertex 1 is a
leaf in Ti. The bijection ϕ is defined in three steps:

Step 1. Take the tree Tmax, and relabel its vertices to obtain ρ−ri
+1 (Tmax). Since Tmax is

an increasing tree, it is rooted at its smallest label (namely, r); therefore, the
relabeled tree ρ−ri

+1 (Tmax) is rooted at its smallest label, which is the vertex 1.
[If i = 0, we relabeled r → 1 and left all other labels unaffected. If i ̸= 0,
we relabeled r → 1 and relabeled the second-smallest label of Tmax (that is,
the lowest-numbered child of r) to r — among other relabelings, the details
of which will be worked out below.]
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Figure 9: The tree ϕ(T ) in Model 1 when r ̸= 1. (a) General case, but when i = 0
the vertex r and subtree T0 should be removed. (b) Redrawing of the special case
i = 0, where ρ−ri

+1 (Tmax) is the entire subtree of ϕ(T ) rooted at the vertex 1.

Step 2. Graft ρ−ri
+1 (Tmax) onto Ti by identifying the two vertices 1; call the result T ′

i .

Step 3. Graft each tree Tj (j ̸= i) onto T ′
i by identifying the two vertices rj; call the

result ϕ(T ). See Figure 9(a).

In this way we obtain a tree ϕ(T ) rooted at ri, in which all the children of ri are
lower-numbered, and in which ρ−ri

+1 (Tmax) is the maximal increasing subtree of ϕ(T )
rooted at the vertex 1. Furthermore, if i ̸= 0, then the lowest-numbered child of the
vertex 1 is r, which is smaller than the root ri of ϕ(T ); while if i = 0, then, as shown
in Figure 9(b), the children of vertex 1 are precisely the set H (which did not undergo
any relabeling in Step 1), which are all larger than the root r of ϕ(T ).

These observations allow us to obtain the inverse of ϕ. If the smallest-numbered
child of vertex 1 is smaller than the root of ϕ(T ), then that child is r, and we are in
the case i ̸= 0; otherwise we are in the case i = 0, and the root of ϕ(T ) is r. If we
delete the edges of ρ−ri

+1 (Tmax) from ϕ(T ), we recover the trees Ti; this undoes Step 3.
We then undo Step 2 by separating the subtree rooted at vertex 1. And finally, we
undo Step 1 by relabeling ρ−ri

+1 (Tmax) using the map ρ−1
+ri ; this yields Tmax. We can

then reassemble the pieces Tmax and T0, . . . , Tp to obtain T .
It is also clear how the map ψT is defined, since each edge of T corresponds, via

relabeling and grafting, to a well-defined edge of ϕ(T ).
We now look at how the map ψT acts on proper and improper edges of T . We

first observe that the edges in T0, . . . , Tp do not undergo any relabeling; so an edge e
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in one of these subtrees is increasing (resp. decreasing) according as the edge ψT (e) in
ϕ(T ) is increasing (resp. decreasing). Furthermore, the descendants in these subtrees
are the same as the descendants of their images in ϕ(T ), except that the vertex 1
in ϕ(T ) has acquired extra descendants, which are anyway higher-numbered and
therefore do not affect properness or improperness. Therefore, an edge e in one of
these subtrees is proper (resp. improper) according as the edge ψT (e) in ϕ(T ) is proper
(resp. improper). This means, by rules (I1), (I2) and (I6) of Definition A.1, that an
edge e in one of these subtrees is proper (resp. improper) according as the edge ψT (e)
in ϕ(T ) is regular (resp. irregular). [Note that rule (I3) plays no role here, because
k = 0. Rule (I4) does not apply because all the edges in ϕ(T ) emanating from vertex 1
lie in ρ−ri

+1 (Tmax). And rule (I5) applies only within ρ−ri
+1 (Tmax).]

We now need to consider the edges in ρ−ri
+1 (Tmax). We divide the proof into two

cases:

Case 1: i = 0. Let r = u1 < u2 < · · · < um be the vertices in Tmax; then ρ
−ri
+1

acts as follows:
ρ−ri
+1 : (r, u2, . . . , um) 7→ (1, u2, . . . , um).

That is, as previously observed, ρ−ri
+1 (Tmax) is obtained from Tmax by only relabeling

the root r as the vertex 1; and ϕ(T ) is as shown in Figure 9(b). Therefore, for all edges
in Tmax other than those emanating from the root, properness/improperness in T cor-
responds to properness/improperness of their images in ϕ(T ); and by rules (I1), (I2)
and (I6), this corresponds to regularity/irregularity of the images in ϕ(T ). [Rule (I4)
does not apply because the parent is not vertex 1; and rule (I5) does not apply because
all the children of vertex 1 are higher-numbered than the root r.]

Now consider an edge e in T that emanates from the root r to a higher-numbered
child h ∈ H. The bijection ψT maps e to an edge e′ in ϕ(T ) that emanates from
vertex 1 to h ∈ H. The edge e is improper in case there is a descendant of h in T
that is < r; and this is equivalent to the existence of a descendant of h in ϕ(T ) that
is < r. Since in this case r is the root of ϕ(T ), and all the children of vertex 1 in ϕ(T )
are > r, rule (I4) of Definition A.1 specifies that the edge e′ is irregular whenever e is
improper; otherwise, by rule (I6), it is regular. [Once again, rule (I5) does not apply
here.]

Case 2: i ̸= 0. Let r = u1 < u2 < · · · < uℓ < uℓ+1 = ri < uℓ+2 < · · · < um be
the vertices in Tmax; then ρ

−ri
+1 acts as follows:

ρ−ri
+1 : (r, u2, u3, . . . , uℓ, ri, uℓ+2, . . . , um) 7→ (1, r, u2, . . . , uℓ−1, uℓ, uℓ+2, . . . , um)

:= (v1, v2, v3, . . . , vℓ, vℓ+1, vℓ+2, . . . , vm)

Set u0 := 1. Then ρ−ri
+1 (Tmax) is obtained from Tmax by relabeling each vertex us that

is ≤ ri by us−1, and leaving all vertices > ri unchanged; in other words, vs = us−1 for
s ≤ ℓ+ 1 and vs = us for s ≥ ℓ+ 2. Therefore, each edge e = usut in Tmax ⊆ T maps
onto ψT (e) = vsvt in ρ

−ri
+1 (Tmax) ⊆ ϕ(T ); and the descendants of ut in Tmax map via

ψT onto the descendants of vt in ρ
−ri
+1 (Tmax).

Note that in ϕ(T ), vertex 1 has at least one child (namely, r) that is lower-
numbered than the root ri. Therefore rule (I5) applies, with ρ = ri and T1 =
ρ−ri
+1 (Tmax):
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(a) All the edges on the path from the root r to vertex ri in Tmax ⊆ T are improper,
since vertex 1 is a descendant of ri in T . These edges map, under the relabeling
ρ−ri
+1 , onto the path from vertex 1 to vℓ+1 in ϕ(T ). By rule (I5a) of Definition A.1,

all the edges in this path are irregular.

The foregoing case needed to be treated separately, because the vertices in the path
from r to ri in Tmax ⊆ T have descendants (in particular, the vertex 1) that do not
correspond (via the relabeling) to descendants in their images in ϕ(T ), because the
tree Ti was moved from its position in T to the root in ϕ(T ). This problem does not
arise in the remaining cases:

(b1) Consider an edge e = usut in Tmax, where ℓ + 2 ≤ s < t. These vertices do
not get relabeled, so ψT (e) = e. This edge is improper in T in case there is a
descendant of ut in T that is < us. By rule (I5b1) of Definition A.1, this edge
is irregular in ϕ(T ) in exactly the same situation.

(b2,3) Now consider an edge e = usut in Tmax, where s ≤ ℓ + 1 < ℓ + 2 ≤ t. Then
vertex us gets relabeled to us−1, while ut does not get relabeled; so ψT (e) =
vsvt = us−1ut. The edge e is improper in T in case there is a descendant of
ut in T that is < us. Now us = vs+1 in case s ≤ ℓ, while us = ri = ρ in case
s = ℓ+1. By rules (I5b2,3) of Definition A.1, the edge vsvt is irregular in ϕ(T )
exactly when e is improper in T .

Note that in cases (b1–3), the descendants of ut in T are the same as the descendants
of vt in ϕ(T ), because the relevant trees Tj were grafted in the same place (since
their roots rj did not get relabeled). Things will be slightly more complicated in the
remaining cases:

(b4,5) Consider an edge e = usut in Tmax, where s < t ≤ ℓ. Then vertices us and ut
both get relabeled, so ψT (e) = vsvt = us−1ut−1. The edge e is improper in T
in case there is a descendant of ut in T that is < us. (Note that us = vs+1 and
ut = vt+1 because s, t ≤ ℓ.) Such a descendant cannot lie in Tmax, because Tmax

is increasing, but it can lie in one of the trees Tj that is attached to Tmax. So
consider all of the descendants uτ of ut in Tmax. If one of these descendants
is ri, then we are in the already-treated case (a); so we can assume that they
are all either < ri or > ri. The images of the vertices uτ under ρ−ri

+1 are the
descendants vτ = ρ−ri

+1 (uτ ) of vt in T1 = ρ−ri
+1 (Tmax). Now consider the two cases

uτ < ri and uτ > ri (recalling that ri = ρ):

(b4) uτ < ρ is equivalent to uτ = vτ+1 < ρ. The edge usut is improper in T
in case there is a descendant of uτ = vτ+1 in T that is < us = vs+1; and the
descendants of uτ = rj in the tree Tj ⊆ T are the same as the descendants
of vτ+1 = rj in the tree Tj ⊆ ϕ(T ). By rule (I5b4) of Definition A.1, the
edge vsvt is irregular in ϕ(T ) exactly when e is improper in T .

(b5) uτ > ρ is equivalent to uτ = vτ > ρ. The edge usut is improper in T
in case there is a descendant of uτ = vτ in T that is < us = vs+1; and the
descendants of uτ = rj in the tree Tj ⊆ T are the same as the descendants
of vτ = rj in the tree Tj ⊆ ϕ(T ). By rule (I5b5) of Definition A.1, the edge
vsvt is irregular in ϕ(T ) exactly when e is improper in T .
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In T

u1=r

u2 u5

u9 u6

u8

u10

u3=us

u4=utri=u7
T4

T6

T8

T10

In ϕ(T )

v1=1

v2=u1 v5=u4

v8=u8

v10=u10

v3=u2=vs

v4=u3=vtv7=u6

v6=u5v9=u9

T4

T6

T8

T10

(a) (b)

Figure 10: An example illustrating cases (b4,5) in the proof of Lemma A.4, showing
the trees Tmax ⊆ T and ρ−ri

+1 (Tmax) ⊆ ϕ(T ) along with some of the trees Tj hanging
off them (namely, those trees attached to the descendants of ut are shown). The edge
e = usut and its image ψT (e) = vsvt are shown in thick red. Note that tree Tj is
attached at vertex uj, which equals vj = ψT (uj) or vj+1 = ψT (uj+1) according as
uj > ri or uj < ri.

See Figure 10 for an example illustrating the cases (b4,5).

There is, a priori , one additional case for an edge e = usut in Tmax, namely, s < t =
ℓ + 1. But this corresponds to the last edge on the path from r to ri in Tmax, and
hence was already treated on case (a).

We have now considered all the cases in which an edge e ∈ T can be improper; so
by rule (I6) of Definition A.1, this completes the proof. □

Remark. In case (b4,5) one might worry what happens when vτ < ρ while
vτ+1 > ρ, which was not included in either (b4) or (b5). This happens if and only if
τ = ℓ + 1, i.e. uτ = ri, in which case all the edges having vτ as a descendant are
irregular by case (a). ■

Now we consider the general case k ≥ 1. The following construction is inspired
by [13, proof of Lemma 2].

Proof of Proposition A.3. Given a tree T rooted at r in Model 2, let v1 < v2 <
· · · < vk be the k children of the vertex 1. For any vertex i other than the root, we
define its top ancestor to be the ancestor of i (possibly i itself) that is a child of
the root. We construct the bijection σ in the following three cases:

Case I: v1 < r.

Case II: v1 > r and the top ancestor of vertex 1 is lower-numbered than
the root.
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Case III: v1 > r and the top ancestor of vertex 1 is higher-numbered than
the root.

Case I: v1 < r.
Let L (resp. H) denote the lower (resp. higher)-numbered children of vertex v1,

and let DL (resp. DH) denote their descendants excluding those in L (resp. H) itself.
We construct the tree σ(T ) as follows:

Step 1. Delete the k edges emanating from vertex 1 to its children, and the edges
from v1 to its higher-numbered children H.

Step 2. Attach the trees rooted at the vertices of H onto vertex 1 via new edges.

Step 3. Attach the trees rooted at r, v2, . . . , vk onto vertex v1 via new edges.

See Figure 11. We obtain thereby a tree σ(T ) rooted at v1 with k higher-numbered
children r, v2, . . . , vk, which also has the following properties:

A1) all the children of vertex 1 are higher-numbered than the root;

B1) the top ancestor of vertex 1 is higher-numbered than the root.

The k edges in T that emanate from vertex 1 to its children (shown in blue
in Figure 11) are clearly proper. These edges are mapped to the k edges in σ(T )
that emanate from the root v1 to its higher-numbered children, which are regular by
rule (I3) of Definition A.1.

An edge e ∈ T that emanates from vertex v1 to a higher-numbered child h ∈ H
(shown in red in Figure 11) is improper if (and only if) there is a descendant of h
that is < v1. Such an edge is mapped to the edge ψT (e) ∈ σ(T ) that emanates from
vertex 1 to its child h ∈ H; and since all the children of vertex 1 are higher-numbered
than the root v1, rule (I4) of Definition A.1 applies and says that the edge ψT (e) is
irregular if and only if e is improper.

All other edges e ∈ T (shown in black in Figure 11) have the property that
ψT (e) = e. Moreover, if e /∈ Tr, then the descendants of e in T are the same as its
descendants in σ(T ), so by rules (I1), (I2) and (I6) of Definition A.1, the edge e is
proper/improper in T exactly when it is regular/irregular in σ(T ). Finally, all the
edges e ∈ Tr are improper in T (because vertex 1 is a descendant), and they are
irregular in σ(T ) by rules (I1) and (I2).

We have therefore shown that the bijection ψT maps proper/improper edges in T
onto regular/irregular edges in σ(T ).

Case II: v1 > r and the top ancestor of vertex 1 is lower-numbered than
the root.

Let L (resp. H) denote the lower (resp. higher)-numbered children of the root r,
and let DL (resp. DH) denote their descendants excluding those in L (resp. H) itself.
We construct the tree σ(T ) as follows:

Step 1. Delete the k edges emanating from vertex 1 to its children, and the edges
from r to its higher-numbered children H.
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Step 2. Attach the trees rooted at the vertices of H onto vertex 1 via new edges.

Step 3. Attach the trees rooted at v1, v2, . . . , vk onto the root r via new edges.

(Note that this is identical to Case I but with the roles of v1 and r interchanged.)
See Figure 12. We obtain thereby a tree σ(T ) rooted at r with k higher-numbered
children v1, v2, . . . , vk, which also has the following properties:

A1) all the children of vertex 1 are higher-numbered than the root;

B2) the top ancestor of vertex 1 is lower-numbered than the root.

The k edges in T that emanate from vertex 1 to its children (shown in blue
in Figure 12) are clearly proper. These edges are mapped to the k edges in σ(T )
that emanate from the root r to its higher-numbered children, which are regular by
rule (I3) of Definition A.1.

An edge e ∈ T that emanates from the root r to a higher-numbered child h ∈ H
(shown in red in Figure 12) is improper if (and only if) there is a descendant of h
that is < r. Such an edge is mapped to the edge ψT (e) ∈ σ(T ) that emanates from
vertex 1 to its child h ∈ H; and since all the children of vertex 1 are higher-numbered
than the root r, rule (I4) of Definition A.1 applies and says that the edge ψT (e) is
irregular if and only if e is improper.

All other edges e ∈ T (shown in black in Figure 11) have the property that
ψT (e) = e. Moreover, if e /∈ T ↾ ({r}∪L∪DL), then the descendants of e in T are the
same as its descendants in σ(T ), so by rules (I1), (I2) and (I6) of Definition A.1, the
edge e is proper/improper in T exactly when it is regular/irregular in σ(T ). Finally,
all the edges e ∈ T ↾ ({r} ∪ L ∪ DL) are improper in T (because vertex 1 is a
descendant), and they are irregular in σ(T ) by rules (I1) and (I2).

We have therefore shown that the bijection ψT maps proper/improper edges in T
onto regular/irregular edges in σ(T ).

Case III: v1 > r and the top ancestor of vertex 1 is higher-numbered than
the root.

Let L (resp. H) denote the lower- (resp. higher-) numbered children of the root r,
and let DL (resp. DH) denote their descendants excluding those in L (resp. H) itself.
Let u be the vertex on the path from the root r to vertex 1 such that the path from
r to u is maximal increasing. Clearly, r < u. The first two steps in constructing the
tree σ(T ) are as follows:

Step 1. Delete the k edges from vertex 1 to its children, and denote by T0 the subtree
rooted at r in which 1 is a leaf.

Step 2. Use the bijection ϕ constructed in Lemma A.4 to yield a tree ϕ(T0). Note
that the vertex u plays the role of ri in Lemma A.4, so that the operator
ρ−u
+1 acts on the maximal increasing subtree (T0)max of T0 rooted at r. Note

also that ϕ(T0) is rooted at u, which has no higher-numbered children. See
Figure 13.

Then we distinguish two subcases, according as u < v1 or u > v1:

Case III(a): u < v1.
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Step 3. Attach the trees rooted at v1, v2, . . . , vk onto the root u of ϕ(T0) via new
edges.

See Figure 14. We obtain thereby a tree σ(T ) rooted at u with k higher-numbered
children v1, v2, . . . , vk, which also has the following properties:

A2) vertex 1 has at least one child that is lower-numbered than the root;

B2) the top ancestor of vertex 1 is lower-numbered than the root.

The k edges in T that emanate from vertex 1 to its children (shown in blue in
Figure 14) are clearly proper. These edges are mapped to the k edges in σ(T ) that em-
anate from the root u to its higher-numbered children, which are regular by rule (I3)
of Definition A.1. By the discussion in Lemma A.4, the proper/improper edges in
T0 are all mapped to regular/irregular edges in ϕ(T0). Finally, the proper/improper
edges in T1, . . . , Tk ⊆ T are mapped to regular/irregular edges in T1, . . . , Tk ⊆ σ(T )
by rules (I1), (I2) and (I6). We have therefore shown that the bijection ψT maps
proper/improper edges in T onto regular/irregular edges in σ(T ).

Case III(b): u > v1.
Consider the subtree T1 ⊆ T rooted at v1. Let L1 (resp. H1) denote the lower-

(resp. higher-) numbered children of the vertex v1, and let DL1 (resp. DH1) denote
their descendants excluding those in L1 (resp. H1) itself. Let w be the smallest vertex
in H1. Clearly, w > v1. We then proceed as follows:

Step 3. Let (T1)max be the maximal increasing subtree of T1 rooted at v1. Relabel its
vertices to obtain ρ−v1

+u ((T1)max), which is a tree rooted at w, since w is the
second-smallest vertex in (T1)max.

Step 4. Create a new tree T ′
1, rooted at v1, as follows:

– Attach the subtrees in L1 ∪DL1 to vertex v1 just as they are in T1.

– Attach the tree ρ−v1
+u ((T1)max) onto v1 via a new edge from v1 to w.

Step 5. Create a new tree ϕ′(T1), rooted at v1, by grafting the remaining trees in
T1 \ (L1 ∪DL1 ∪ (T1)max) onto T ′

1 by identifying vertices with the same label.
Note that, in ϕ′(T1), the root v1 has only one higher-numbered child, namely
w. See Figure 15.

Step 6. Graft ϕ(T0) onto ϕ
′(T1) by identifying vertex u to obtain T ′.

Step 7. Attach the trees rooted at v2, . . . , vk onto the root v1 of T ′ via new edges, to
obtain σ(T ). See Figure 16.

Note that ϕ′(T1) has one more vertex than T1; but one vertex is lost in Step 6 in
identifying the vertices u of ϕ(T0) and ϕ

′(T1), so σ(T ) has the same number of vertices
as T .

We obtain thereby a tree σ(T ) rooted at v1 with k higher-numbered children
w, v2, . . . , vk, which also has the following properties:
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A2) vertex 1 has at least one child (namely, r) that is lower-numbered than the root
v1;

B1) the top ancestor of vertex 1 (namely, w) is higher-numbered than the root v1.

The k edges in T that emanate from vertex 1 to its children (shown in blue
in Figure 16) are clearly proper. These edges are mapped to the k edges in σ(T )
that emanate from the root v1 to its higher-numbered children, which are regular by
rule (I3) of Definition A.1. By the discussion in Lemma A.4, the proper/improper
edges in T0 are all mapped to regular/irregular edges in ϕ(T0). By similar reasoning,
the proper/improper edges in T1 are all mapped to regular/irregular edges in ϕ′(T1).
Finally, the proper/improper edges in T2, . . . , Tk ⊆ T are mapped to regular/irregular
edges in T2, . . . , Tk ⊆ σ(T ) by rules (I1), (I2) and (I6). We have therefore shown that
the bijection ψT maps proper/improper edges in T onto regular/irregular edges in
σ(T ).

We complete the proof of Proposition A.3 by remarking that the map σ can be
reversed, since every tree in Model 1 must satisfy one of the four properties consist-
ing of a pair (A1)/(A2) and (B1)/(B2) stated in Case I, Case II, Case III(a) and
Case III(b). □
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DL DH
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v1

r v2 vk· · ·L
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1

T2 Tk

H

DH

Figure 11: The trees T and σ(T ) in Case I. The blue edges in T [resp. σ(T )] are
proper (resp. regular). The red edges in T [resp. σ(T )] could be either proper or
improper (resp. regular or irregular), depending on the behavior of their descendants.
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DL DH

1

v1 vk· · ·

T1 Tk

−→

σ(T )

r

v1 vk· · ·L

DL

1

H

DH

T1 Tk

Figure 12: The trees T and σ(T ) in Case II. The blue edges in T [resp. σ(T )] are
proper (resp. regular). The red edges in T [resp. σ(T )] could be either proper or
improper (resp. regular or irregular), depending on the behavior of their descendants.
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Figure 13: The trees T , T0 and ϕ(T0) in Case III. Here the vertex u can be either in
H or in DH .
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Figure 14: The trees T and σ(T ) in Case III(a).
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Figure 15: The trees T , T1 and ϕ′(T1) in Case III(b). Note that here T is the same
as in Figure 13, but the subtree T1 is shown in more detail.
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Figure 16: The trees T and σ(T ) in Case III(b).

69



References

[1] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory A 87,
33–51 (1999).

[2] B.A. Asner, Jr., On the total nonnegativity of the Hurwitz matrix, SIAM J.
Appl. Math. 18, 407–414 (1970).

[3] P. Barry, Riordan Arrays: A Primer (Logic Press, County Kildare, Ireland,
2016).

[4] P. Barry, Constructing exponential Riordan arrays from their A and Z sequences,
J. Integer. Seq. 17, article 14.2.6 (2014).

[5] F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like
Structures (Cambridge University Press, Cambridge–New York, 1998).

[6] A. Borodin and G. Olshanski, Representations of the Infinite Symmetric Group
(Cambridge University Press, Cambridge, 2017).

[7] C.J. Bouwkamp, Solution to Problem 85-16: A conjectured definite integral,
SIAM Rev. 28, 568–569 (1986).

[8] F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combina-
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