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Random acceleration is a fundamental stochastic process encountered in many applications. In the
one-dimensional version of the process a particle is randomly accelerated according to the Langevin
equation ẍ(t) =

√
2Dξ(t), where x(t) is the particle’s coordinate, ξ(t) is Gaussian white noise with

zero mean, and D is the particle velocity diffusion constant. Here we evaluate the A→ 0 tail of the

distribution Pn(A|L) of the functional I[x(t)] =
∫ T
0
xn(t)dt = A, where T is the first-passage time of

the particle from a specified point x = L to the origin, and n ≥ 0. We employ the optimal fluctuation
method akin to geometrical optics. Its crucial element is determination of the optimal path – the
most probable realization of the random acceleration process x(t), conditioned on specified A→ 0,
n and L. This realization dominates the probability distribution Pn(A|L). We show that the A→ 0

tail of this distribution has a universal essential singularity, Pn(A→ 0|L) ∼ exp
(
−αnL

3n+2

DA3

)
, where

αn is an n-dependent number which we calculate analytically for n = 0, 1 and 2 and numerically for
other n. For n = 0 our result agrees with the asymptotic of the previously found first-passage time
distribution.

I. INTRODUCTION

The random acceleration process is governed by the
Langevin equation

ẍ(t) =
√

2Dξ(t) . (1)

This equation describes the position of a particle mov-
ing along the x-axis and subject to a random force which
is modeled as a Gaussian white noise with zero mean,
〈ξ(t)ξ(t′)〉 = δ(t − t′). Alternatively, x(t) can be consid-
ered as the integral of a Brownian motion over time. The
random acceleration is a fundamental stochastic process
in its own right. On the one hand, it serves as a sim-
ple example of a non-Markovian process (which becomes
Markovian when considered in two dimensions x and ẋ,
see e.g. Ref. [1]). On the other hand, its mathemat-
ical equivalents have found a variety of applications in
physics: from a simplified description of free semiflexi-
ble polymer chains in narrow channels [2–7] to interface
growth in 1+1 dimensions [8–10] and to decaying tur-
bulence in the Burgers equation [11, 12]. In all these
systems it is a spatial coordinate which plays the role of
time t in Eq. (1), while the polymer shape, or the inter-
face shape, etc. plays the role of x.

Here we are interested in the statistics of first-passage

functionals I[x(t)] =
∫ T
0
xn(t) dt of the random acceler-

ation x(t), defined up to the time of first passage of the
process T , starting say at x = L > 0, to a specified point
in space, for example to the origin. The case n = 0 cor-
responds to the statistics of the first-passage time itself.
The case n = 1 corresponds to the first-passage area un-
der the graph of x(t). In the context of interface growth,
governed by the noisy Mullins-Herring equation [8, 9], it
describes the area under the stochastic interface until it
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crosses a zero level in space for the first time. The case
n = 2 corresponds to the statistics of the moment of in-
ertia of a semiflexible polymer chain of a given length in
narrow channels. It is natural then to attempt to cal-
culate the distribution of the values of the first-passage

functional I[x(t)] =
∫ T
0
xn(t) dt for arbitrary n.

For comparison, the statistics of first-passage Brown-
ian functionals [13, 14] – where x(t) is a Brownian mo-
tion – is well studied, see Ref. [15] and references therein.
For the random acceleration process, however, the prob-
lem has been solved only for n = 0, that is only for the
statistics of the first-passage time itself [6, 16, 17].

In this work we focus on large-deviation statistics of
the first-passage functionals of random acceleration for
any n ≥ 0. Specifically, we evaluate the A → 0 tail of
the probability distribution Pn(A → 0|L) of the values
I[x(t)] = A and show that this tail exhibit an essential
singularity, see Eq. (18) below. To achieve these goals,
we employ the optimal fluctuation method akin to geo-
metrical optics. The method relies on the determination
of the optimal path, that is the most likely realization
of the process x(t), conditioned on the specified value of
A → 0 at given n and L. It is this optimal path that
dominates the A → 0 tail of Pn(A → 0|L). Previously,
the geometrical optics was applied to a plethora of prob-
lems related to statistics of Brownian motion [15, 18–26].
An extension of the method to the random acceleration
is a natural next step.

Here is a plan of the remainder of the paper. We com-
plete the formulation of the problem, establish the scal-
ing properties of Pn(A → 0|L) and derive the governing
equation of the optimal fluctuation method in Sec. II.
Some analytical and numerical solutions for different n
are presented in Sec. III. Section IV includes a brief
summary and an extension of our results. A technical
derivation is delegated to the Appendix.
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II. FORMULATION OF THE PROBLEM AND
GOVERNING EQUATIONS

We start by completing the formulation of the problem.
The initial and final positions of the particle are

x(t = 0) = L , x(T ) = 0 , (2)

where T is the first passage time to the origin, and L
can be assumed positive without loss of generality. We
assume for simplicity that the particle starts with zero
velocity:

ẋ(t = 0) = 0 . (3)

We consider first-passage functionals of the form

I[x(t)] =
∫ T
0
xn(t) dt and study the probability distri-

bution Pn(A|L) of their values A:∫ T

0

xn(t) dt = A . (4)

Equations (1)-(4) define the stochastic problem com-
pletely. Their dimensional analysis yields the following
exact scaling behavior of Pn(A|L):

Pn(A|L) =
D1/3

Ln+
2
3

Fn

(
D1/3A

Ln+
2
3

)
(5)

with an unknown scaling function Fn(z).
Rather than attempting to determine the entire scal-

ing function Fn(z), here we find its leading-order z →
0 asymptotic. This asymptotic describes the large-
deviation tail A → 0 of the distribution Pn(A|L), and
it can be obtained by the optimal fluctuation method,
akin to geometrical optics. We identify the action func-
tional, corresponding to the Langevin equation (1):

S[x(t)] =
1

4D

∫ T

0

ẍ2(t) dt , (6)

and seek the optimal path x∗(t) which minimizes this
functional subject to the boundary conditions (2) and
(3), to the positivity condition x(t) > 0 for 0 < t < T ,
and to the integral constraint

I[x(t)] =

∫ T

0

xn(t) dt = A . (7)

The minimization must be performed not only with re-
spect to different paths x(t), but also with respect to the
first-passage time T .

Let us rescale the coordinate, x̃ = x/L. The action
functional (6) takes the form

S[x(t)] =
L2

2D
s(x̃), where s(x̃) =

1

2

∫ T

0

¨̃x2(t) dt .

(8)

The constraint (7) becomes

I[x̃(t)] =

∫ T

0

x̃n(t)dt =
A

Ln
. (9)

The minimization of the rescaled functional s(x̃) subject
to the constraint (9) can be achieved by minimizing the
modified functional

sλ[x̃(t)] = s[x̃(t)]− λI[x̃(t)] . (10)

The Lagrange multiplier λ turns out to be negative, so
we can set λ = −Λ4, where Λ > 0. Now we also rescale
time, t̃ = Λt. The first-passage time T also gets rescaled,
T̃ = ΛT . The functional (10) becomes

sλ[x̃(t̃)] = Λ3

∫ T̃

0

[ ¨̃x2(t̃)

2
+ x̃n(t̃)

]
dt̃ . (11)

and we will drop the tildes everywhere in the follow-
ing. Since the rescaled functional s0[x(t)] (recall that
the tildes are dropped) involves the particle acceleration
ẍ(t), the Euler-Lagrange equation is of the fourth order
(see the Appendix):

x(4)(t) + nxn−1(t) = 0, (12)

where the superscript (4) denotes the fourth deriva-
tive with respect to time. Three boundary conditions
for Eq. (12) come with the formulation of the original
stochastic problem, see Eqs. (2) and (3):

x(0) = 1 , ẋ(0) = 0 , and x(T ) = 0 . (13)

The fourth boundary condition,

ẍ(T ) = 0 , (14)

follows from minimization of the action with respect to
all possible variations of the particle velocity ẋ at t = T
(see the Appendix).

The general solution of the rescaled Euler-Lagrange
equation (12) has four arbitrary constants. When this
equation is supplemented by the four boundary condi-
tions (13) and (14) [and the inequality x(0 < t < T ) > 0],
the problem of finding the A→ 0 asymptotic of Pn(A|L)
is determined completely only for n = 0 where A = T ,
and one is looking for the distribution Pn(T |L) of first
passage times. For all other n > 0 one should, in ad-
dition, minimize the action S(A, T ) with respect to T .
The minimization yields the optimal value of the first-
passage time T = T∗(A) which dominates the probability
Pn(A|L) that we are after. As we show in the Appendix,
this additional minimization brings about a fifth bound-
ary condition

...
x (T ) = 0 . (15)

Once the optimal path x(t) and, for n 6= 0, the optimal
value T = T∗(A), are found, we can determine Λ from the
relation

Λ =
Ln

A

∫ T∗

0

xn(t) dt , (16)
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which follows from the constraint (7) or, equivalently, (9).
The original action (6) can now be written as follows:

S[x(t)] =
L2Λ3

2D
s0[x(t)] , where

s0[x(t)] =
1

2

∫ T

0

ẍ2(t)dt . (17)

Plugging Eq. (16) into the first line of Eq. (17) we obtain,
up to a pre-exponential factor, the A→ 0 tail of Pn(A|L).
It scales as

− lnPn(A→ 0|L) ' S =
αnL

3n+2

DA3
, (18)

where

αn =
1

4

[∫ T∗

0

xn(t)dt

]3 ∫ T∗

0

ẍ2(t)dt . (19)

Equation (18) describes a universal essential singularity
∼ exp(−A−3) of the A→ 0 tail of the distribution. It is
much steeper than the essential singularity ∼ exp(−A−1)
of the first-passage Brownian functionals [15].

In fact, the large-deviation scaling (18) (with an un-
known αn) immediately follows from the exact scaling (5)
once we realize that the A→ 0 asymptotic of the function
Fn(. . . ) in Eq. (5) must exhibit, up to a pre-exponent,
the characteristic weak-noise scaling Fn ∼ exp(−Φ/D),
where Φ depends on A and L but is independent of D.
Now let us concentrate on finding the optimal path, that
is on solving Eq. (12) subject to the boundary conditions
(13)-(15).

III. SOLUTION

A. General

Equation (12) is easily solvable for n = 0, 1 and 2,
when the equation is linear. We will present these solu-
tions shortly. In the general case, there is conservation
law

ẋ(t)
...
x (t)− 1

2
ẍ2(t) + xn(t) = C = const, (20)

which is a higher-order analog of energy conservation in
classical mechanics. The conservation law (20) reduces
the order of Eq. (12) by one. Using the boundary condi-
tions (13)-(15) at t = T , we find that C = 0 for all n > 0
[27].

Evaluating the left hand side of the conservation
law (20) (where C = 0) at t = 0, we uncover one more
universal property of the optimal path:

ẍ(t = 0) = −
√

2 for all n > 0 . (21)

Finally, using the conservation law (20) with C = 0, in-
tegration by parts and Eqs. (13) and (14), we can rewrite

the expression (19) for αn in two equivalent alternative
forms:

αn =
1

6

[∫ T∗

0

xn(t)dt

]3
=

27

32

[∫ T∗

0

ẍ2(t)dt

]4
. (22)

B. n = 0: First-passage time

The first-passage time distribution P (T |L) of the ran-
dom acceleration process was determined quite some time
ago [6, 16, 17]. Its short-time asymptotic coincides, in
the leading order, with the short-time asymptotic of the
propagator of the random acceleration. For the zero ini-
tial particle velocity, the exact propagator (see e.g. Ref.
[6]) simplifies to

ρ(T, v) =

√
3

2πDT 2
e−

3L2+3LTv+T2v2

DT3 , (23)

where v = ẋ(t = T ) is the particle velocity (in the original
units) at t = T . We identify the action, corresponding to
this distribution,

Sρ(T, v) =
3L2 + 3LTv + T 2v2

DT 3
, (24)

and focus on the large-deviation regime T → 0, where
this action is much larger than unity. Minimizing
Sρ(T, v) with respect to v, we obtain the optimal value
v∗ = −3L/(2T ). The corresponding minimum of the ac-
tion,

Sρ(T, v∗) =
3L2

4DT 3
, (25)

determines the small-A asymptotic of P (T |L):

− lnP (T |L) ' 3L2

4DT 3
, (26)

which obeys our asymptotic scaling relation (18) with
α0 = 3/4. Now we will rederive the asymptotic (26) by
using the optimal fluctuation formalism.

For n = 0 the Euler-Lagrange equation (12) becomes
trivial: x(4) = 0. Its solution, satisfying the boundary
conditions (13) and (14),

x(t) = 1− 3t2

2T 2
+

t3

2T 3
, (27)

is a cubic parabola. Equation (16) yields Λ = 1. Then,
using Eq. (17), we arrive at Eqs. (25) and (26) as to be
expected.

C. n = 1: First-passage area

For n = 1 the Euler-Lagrange equation (12) is still very
simple: x(4) = −1. Its solution is a quartic parabola.
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Here we have to demand all five boundary conditions
(13)-(15) which determine the four arbitrary constants
and the optimal value of the first-passage time T∗ = 23/4.
The resulting rescaled optimal path,

x(t) = 1− t2√
2

+
t3

3 4
√

2
− t4

24
, (28)

is depicted, alongside with the optimal acceleration ẍ(t),
in Fig. 1. The optimal acceleration is nothing but the
(rescaled) optimal realization of the white Gaussian noise
ξ(t), see Eq. (1). Needless to say, the optimal realization
of the noise looks very differently from a typical realiza-
tion of the noise. Now using Eqs. (18) and (19) for n = 1,
we obtain

− lnP (A|L) ' 108L5

625DA3
, (29)

with α1 = 108/625.
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x..

FIG. 1: The rescaled optimal path x(t) (a) and optimal ac-
celeration ẍ(t) (b), dominating the A → 0 asymptotics of
P (A|L) for n = 1 (blue) and n = 2 (magenta). The optimal

first-passage time is T∗ = 23/4 for n = 1 and T∗ = π/23/4 for
n = 2.

D. n = 2

Here the Euler-Lagrange equation (12) is still linear
and elementary:

x(4)(t) + 2x(t) = 0 . (30)

The solution, obeying the boundary conditions (13)-(15),
yields the rescaled optimal path:

x(t) =

(
1− e

t
T∗

)
sin
(
πt
2T∗

)
+
(

1 + e
t
T∗

)
cos
(
πt
2T∗

)
(1 + e−π) e

πt
2T∗

,

(31)
where T∗ = 2−3/4π is the optimal first passage time. Fig-
ure 1 shows this optimal path alongside with the optimal
acceleration ẍ(t).

Using Eqs. (18) and (19) for n = 2, we obtain

− lnP (A|L) '
27 tanh4

(
π
2

)
L8

256DA3
, (32)

Here α2 = (27/256) tanh4 (π/2) = 0.074625 . . . .

E. Numerics

For arbitrary n the optimal path can be found numer-
ically. We used artificial relaxation in conjunction with
“shooting”. Artificial relaxation was implemented as fol-
lows. We introduced artificial time τ and replaced the
Euler-Lagrange equation (12) by the fourth-order partial
differential equation

∂τX(t, τ) = −∂4tX(t, τ)− nXn−1(t, τ) , (33)

where the physical time t plays the role of a coordi-
nate. The sign of the right-hand-side of Eq. (33) is
chosen so as to enforce relaxation to a steady-state,
x(t) = X(t, τ → ∞) which satisfies our Eq. (12). The
initial condition X(t, τ = 0) is chosen qualitatively sim-
ilar to the expected steady-state solution. Since we do
not know the optimal first-passage time T a priori, we
use the “shooting” method, see e.g. Ref. [28]. We first
solve Eq. (33) with boundary conditions (13) and (14)
for a fixed T (the first guess of T∗, or first “shot”) until
the steady-state solution x(t) is reached. Then we eval-

uate the third derivative ∂
(3)
t X(t, τ � 1) at t = T , and

iterate T until the third derivative vanishes [as Eq. (15)
demands] with desired accuracy. Alternatively, one can

iterate until ∂2tX(t, τ � 1) at t = 0 approaches −
√

2,
see Eq. (21). We validated the method by comparing the
numerically found x(t) with the analytical solutions for
n = 1 and 2. The accuracy was monitored by check-
ing the conservation law (20) with C = 0. Once T∗ and
x(t) are found, we can evaluate αn from any of the equa-
tions (19) or (22). We used a standard PDE solver of
“Mathematica” [29].

Figure 2 shows the numerically found optimal paths
x(t) and the optimal accelerations ẍ(t) for n = 3 and
4. In these cases T∗ ' 2.036 and 2.185, respectively,
whereas the A→ 0 asymptotics of P (A|L) are described
by Eq. (18) with α3 ' 0.041 and α4 ' 0.026. Overall, we
solved the problem numerically and found the optimal
first passage time T∗ and the factor αn for a range of n,
see Fig. 3. As one can see, T∗ increases with n, while αn
decreases.
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FIG. 2: Numerically found rescaled optimal path x(t) (a)
and optimal acceleration ẍ(t) (b), dominating the A → 0
asymptotics of P (A|L) for n = 3 (blue) and n = 4 (magenta).
The optimal first-passage time is ' 2.036 for n = 3 and T∗ '
2.20 for n = 4.
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FIG. 3: The optimal first-passage time T∗ (a) and the factor
αn which enters Eqs. (18) and (19) (b) are plotted as functions
of n. The points n = 1 and n = 2 were obtained analytically,
the rest of the points numerically.

IV. SUMMARY AND DISCUSSION

Statistics of first-passage functionals provide a useful
characterization of random processes. Here we evaluated
the A → 0 tail of these statistics for Brownian acceler-
ation. We also used this problem to extend the optimal
fluctuation (or geometrical optics) method to a stochas-
tic process of a higher-order. In addition to the A → 0
asymptotic of the probability distribution Pn(A|L), we
calculated analytically and numerically the optimal paths
of the conditioned processes at different n. These provide
an interesting insight into the nature of large deviations
in this system.

The problem of statistics of the first-passage function-

als I[x(t)] =
∫ T
0
xn(t)dt can be extended to a whole

family of processes, described by the Langevin equation
dkx(t)/dtk =

√
2Dξ(t), where k is any positive integer.

The cases of k = 1 and k = 2 correspond to the Brown-
ian motion and random acceleration, respectively. Again,
let x(0) = L, and suppose for simplicity that all the
derivatives of x(t) with order less than k vanish at t = 0.
Then the exact scaling behavior of probability distribu-

tion P
(k)
n (A|L) of the values I[x(t)] = A follows from

dimensional analysis:

P (k)
n (A|L) =

Dν

Ln+2ν
F (k)
n

(
DνA

Ln+2ν

)
, (34)

where F
(k)
n (z) is an unknown scaling function, and ν =

1/(2k − 1). In its turn, the leading-order A→ 0 asymp-
totic of Pk(A|L) must have the characteristic weak-noise
form

− lnP (k)
n (A→ 0|L) ' α

(k)
n L

n
ν+2

DA1/ν
, (35)

where α
(k)
n is a numerical factor which depends on k and

n. As one can see from Eq. (35), for all these models
theory predicts am essential singularity at A → 0, and
the singularity becomes stronger as k is increased.
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Appendix A: Derivation of Eq. (12) and boundary
condition (15).

Here we temporarily switch back to the original variables
and consider a linear variation of the constrained action
functional

sλ[x(t), T ] =

∫ T

0

(
ẍ2

2
− λxn

)
dt (A1)

with respect to small variations of both x(t) and T :
x(t)→ x(t)+δx(t) and T → T+δT . We need to linearize
the variation

δsλ = s[x(t) + δx(t), T + δT ]− s[x(t), T ] (A2)

with respect to δx and δT . The linearization yields, after
simple algebra,

δsλ =

∫ T

0

(
ẍδẍ− λnxn−1δx

)
dt

+

∫ T+δT

T

(
ẍ2

2
− λxn

)
dt . (A3)

Performing two integrations in parts in the first integral,
evaluating the second interval in the limit of δT → 0,
and taking into account the boundary conditions (13),
we obtain

δsλ =

∫ T

0

(
x(4) − λnxn−1

)
δx dt+ ẍ(T )δẋ(T )

+

[
ẍ2(T )

2
− λxn(T )− ...

x (T )ẋ(T )

]
δT . (A4)

Each of the three terms in the variation must vanish inde-
pendently for arbitrary δx and δT . The first term yields
the Euler-Lagrange equation x(4) − λnxn−1 = 0 which,
upon the rescaling Λt→ t (we recall that λ ≡ −Λ4), coin-
cides with Eq. (12). The second term yields the bound-
ary condition (14). Using the latter condition and the
condition x(T ) = 0 in the third term, we arrive at the
boundary condition (15).
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