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We review recent studies of contact and thermodynamic geometry for black holes in AdS space-
times in the extended thermodynamics framework. The cosmological constant gives rise to the
notion of pressure P = −Λ/8π and, subsequently a conjugate volume V , thereby leading to a close
analogy with hydrostatic thermodynamic systems. To begin with, we review the contact geometry
approach to thermodynamics in general and then consider thermodynamic metrics constructed as
the Hessians of various thermodynamic potentials. We then study their correspondence to statistical
ensembles for systems with two-dimensional spaces of equilibrium states. From the zeroes and diver-
gences of the curvature scalar obtained from the metric, we carefully analyze the issue of ensemble
non-equivalence and show certain complimentary behaviors in the description of a thermodynamic
system. Following a thorough analysis of the familiar van der Waals system, we turn our attention
to black holes in extended phase space. Considering the example of charged AdS black holes, we
discuss the generic features of their thermodynamic geometry in detail. The relationship of the
thermodynamic curvature(s) with critical points as well as microscopic interactions in black holes is
also briefly explored. We finally set up the thermodynamic geometry for finite temperature gauge
theories dual to black holes in AdS via holographic correspondence and comment on recent progress.

I. INTRODUCTION

It is well appreciated that black holes are associated
with entropy and temperature, being given by the rela-
tions [1–5] (in units ~ = kB = c = G = 1):

S =
A
4
, T =

κ

2π
(1)

where A is the area of the event horizon whereas, κ is
the surface gravity at the horizon. The mass of the black
hole M can be interpreted as the fundamental energy
function whose variations satisfy: δM = TδS + µiδC

i

where Ci are typically the conserved charges such as
electric charge and angular momentum, while µi are
relevant chemical potentials. Asymptotically flat space
black holes are typically not thermodynamically stable
at non-zero temperatures. However, black holes in AdS,
i.e. with a negative cosmological constant (Λ < 0) can
reach thermodynamic stability via the Hawking-Page
transition [6]. The study of asymptotically AdS black
holes is further motivated from the AdS/CFT corre-
spondence [7–11], wherein the Hawking-Page transition
corresponds to a confinement-deconfinement transition
on the boundary [9]. In the recent years, it has been
shown that the cosmological constant Λ can be treated
as a thermodynamic pressure, leading to novel pressure-
volume variables in black hole mechanics [12–14]. Thus,
the first law of black hole thermodynamics gets modified
to: δM = TδS + V δP + µiδC

i, where P = −Λ/8π [12],
while V is known as the thermodynamic volume [14]
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appearing as conjugate to P . Such a viewpoint, has lead
to a flurry of research over the past decade, and a close
analogy between the thermodynamics of black holes in
AdS and that of ordinary hydrostatic systems has been
discovered [15–18] (see also [19–21]). Remarkably, phase
transitions of black holes have been shown to be closely
analogous to the liquid-gas phase transition, exhibited
by the van der Waals model, with an exact matching of
the critical exponents [15].

The introduction of geometrical ideas into thermody-
namics have led to several interesting physical insights
(see for example, the reviews [22, 23]). Of particular
interest is the concept of a length between different ther-
modynamic states [24–26]. A good starting point leading
to the notion of thermodynamic length is Einstein’s fluc-
tuation theory which can be motivated as follows. It is
a well understood fact that the entropy of a thermody-
namic system is a measure of the number of ways the
system can arrange itself microscopically. One can then
invert the Boltzmann’s formula for entropy (we shall set
kB = 1 throughout the paper): S = ln Ω where Ω is the
thermodynamic probability or equivalently the number
of accessible microstates to obtain

Ω = eS . (2)

We may then expand the entropy S about its equilib-
rium value S0, i.e. about the point at which all its first
derivatives vanish so that we have up to the second order:

S u S0 +
∂2S0

∂xi∂xj
dxi ⊗ dxj (3)

where {xi} are suitable thermodynamic variables spec-
ified by external baths or boundary conditions defining
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the ensemble. With this, one can re-write eqn (2) as

Ω ∼ e−dl
2
R (4)

with,

dl2R = − ∂2S0

∂xi∂xj
dxi ⊗ dxj . (5)

Clearly, dl2R can be interpreted as a length on the
space of thermodynamic equilibrium states between
points xi and xi + dxi. With this, eqn (4) can be
interpreted as follows: the shorter the length is between
two thermodynamic states, the more probable is a
fluctuation between them! It therefore follows from
elementary fluctuation theory that the notion of a length
on the spaces of thermodynamic equilibrium states is
very well motivated physically. The metric given in eqn
(5) for suitable thermodynamic variables {xi} is called
the Ruppeiner metric [22, 24]. Since the second law of
thermodynamics implies that the entropy of a system
is a concave function, the Ruppeiner metric is positive
definite.

The curvature scalar associated with the Ruppeiner
metric, known as the Ruppeiner curvature or simply
the thermodynamic curvature possesses an intriguing
behavior. The empirical understanding obtained from
studying several thermodynamic systems is as follows.
It typically diverges at critical points and possibly also
at points where the thermodynamic system exhibits
strong microscopic correlations. This has been verified
for several systems including the van der Waals fluid
[27, 28] and model magnetic systems [29–31] (see also
[32–34]). In fact, it has been argued [22, 35] that
close to the critical point, the Ruppeiner curvature
scales with the correlation volume, i.e. R ∼ ξd where
ξ is the correlation length and d is the number of
spatial dimensions. Another interesting aspect of the
Ruppeiner curvature is that its sign seems to have a
connection with the nature of dominant interactions
between the microscopic degrees of freedom in a given
thermodynamic system [35]. In the sign convention that
we adopt in this paper, the curvature scalar is negative
(R < 0) for the attractive van der Waals gas [27, 28] or
an ideal gas of bosons [36]. In the latter, the attractive
interactions are of quantum mechanical origin. Similarly,
for the ideal gas of fermions, one has R > 0 which may
be taken to signal the existence of quantum mechanical
repulsive interactions whose origin can be traced back
into the exclusion principle [36]. This feature has indeed
been verified for several systems where independent
microscopic calculations can be performed (see [35] and
references therein). Therefore, the Ruppeiner curvature
seems to be a powerful diagnostic tool whose behavior
may reveal early insights into the microscopic physics
of systems such as black holes where a satisfactory
microscopic theory is not yet available [27, 28, 37–66]
(see also [67–71]).

In recent times, there has been an ongoing debate
about the applicability of geometric methods for un-
derstanding the physics of thermodynamic systems
[72, 73, 75, 76], including black holes. Thermodynamic
or information geometry has been shown to be a
powerful diagnostic tool, with the divergences of the
associated curvature scalar capturing the critical points
in various thermodynamic systems. The connection
between thermodynamic curvature and the specific
heat capacities has also been explored, particularly
because the divergences of these quantities typically
signal the onset of instabilities and phase transitions in a
system. Despite these advantages, there have been a few
longstanding unresolved issues concerning the lack of
diffeomorphism invariance [42, 77] and non-equivalence
of thermodynamic curvatures constructed out of differ-
ent thermodynamic potentials [78], among others. It
has been noted in several papers in the past that ther-
modynamic Hessian metrics are not Legendre invariant
(see for example [42, 78, 79]) and we can understand it
by considering thermodynamic curvatures constructed
from two different thermodynamic potentials. Without
loss of generality, for example, one can construct a
certain thermodynamic curvature RU by taking the
internal energy U as the fundamental potential with the
divergences of RU capturing the critical point of the
system. Performing a partial Legendre transform and
using instead enthalpy H as the potential, leads to a
different thermodynamic curvature (call it, RH), which
may not capture the critical point exactly (as we show
later). Thus, the features exhibited by thermodynamic
curvatures computed using different potentials may
be different. This has been termed as ensemble non-
equivalence in thermodynamic geometry [78]. While a
large body of work is devoted to probing the connection
of the divergences of thermodynamic curvatures to phase
transitions, there has been a relatively less focus on
the study of their zeroes, until recently [27, 28, 54, 58, 60].

One of the major goals of this article is to pedagog-
ically introduce thermodynamic geometry with black
holes in mind, and to perform a critical analysis of the
thermodynamic curvatures obtained in different statisti-
cal ensembles related by (partial) Legendre transforms.
It is demonstrated that if RU captures the divergences
of a certain specific heat, RH (obtained by a Legendre
transform) contains information about the zeroes of that
specific heat and vice versa. This suggests a compli-
mentary nature of RU and RH (see also [78]). Different
parametrizations of thermodynamic Hessian metrics in a
given ensemble are elaborately discussed. We follow the
general route discussed by Mrugala [81] (discussed in
section-(II)) to obtain thermodynamic metrics in a given
ensemble, once the first law satisfied at thermodynamic
equilibrium is known. We particularly focus on entropic
metrics which are generated from the derivatives of
the entropy or the free entropy and highlight some
key features of such metrics and their relationship
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with energy metrics (those which are generated from
the derivatives of energy functions). The geome-
try described by entropic metrics is explored in some
detail, particularly in the context of black hole chemistry.

The paper is organized as follows. In section-(II), we
start by setting up our notation and summarize some
basic aspects of the contact geometry approach to ther-
modynamic phase spaces followed by the notion of Hes-
sian metrics defined on spaces of equilibrium states [72–
76]. Then, in section-(III), we discuss some key ideas on
thermodynamic Hessian metrics and their reparametriza-
tions. The issue of ensemble non-equivalence is analyzed
very carefully. For two-dimensional spaces of thermo-
dynamic equilibrium states, we follow closely the earlier
analysis in [78] (see also [79, 80]) and study the (Rup-
peiner) thermodynamic curvatures in two different en-
sembles contrasting their behavior. The possible sources
of singularities of the Ruppeiner metric are identified in
the two ensembles related by a (partial) Legendre trans-
form. As a model hydrostatic system, we consider the
van der Waals fluid and discuss its thermodynamic ge-
ometry. In section-(IV), we apply the ideas developed
earlier to explore the thermodynamic geometry of black
holes in AdS spacetimes in the extended thermodynam-
ics framework. This section contains two subsections, i.e.
(IV A) and (IV B), where the thermodynamic geometries
of the bulk and the boundary (via the gauge/gravity du-
ality) settings are discussed respectively. We end with
comments and a summary of the paper in the concluding
section-(V).

II. CONTACT AND METRIC STRUCTURES
ON THERMODYNAMIC PHASE SPACES

In this section, we shall very briefly review some basic
aspects of the geometry of thermodynamics. The reader
is referred to [82–86] for the details. Thermodynamic
phase spaces assume the structure of a contact manifold,
i.e. a (2n+ 1)-dimensional smooth manifoldM together
with a one form η such that

η ∧ (dη)n 6= 0. (6)

Clearly, η ∧ (dη)n is a volume form on M. The ker-
nel of the one form η defines a hyperplane distribution.
The condition given in eqn (6) is then equivalent to say-
ing that this hyperplane distribution is completely non-
integrable in the Frobenius sense or in simpler words the
hyperplanes are extremely twisted. This one form η shall
be called the contact form. Further, associated with the
contact form, there exists a globally defined and unique
vector field ξ known as the Reeb vector field defined
through the relations:

η(ξ) = 1, dη(ξ, .) = 0. (7)

In other words, the vector field ξ can be understood to
be dual to the one form field η. Analogous to the one on

symplectic manifolds, there exists a Darboux theorem on
contact manifolds which states that on any local patch on
a contact manifold (M, η), it is always possible to define
(Darboux) coordinates (s, qi, pi) such that

η = ds− pidqi, ξ =
∂

∂s
. (8)

There exist a very special class of submanifolds of a con-
tact manifold (M, η) which are of interest especially from
the perspective of thermodynamics. They are the inte-
gral submanifolds of maximum dimension such that η = 0
when restricted to the submanifold. In other words, if qi

and pi are to be treated as conjugate variables, it is easy
to see that such a submanifold cannot contain a conjugate
pair and hence would correspond to the familiar notion
of a configuration space from classical mechanics. For
a particular Legendre submanifold L having coordinates
(qi, pj) where i ∈ I, j ∈ J with I and J being a disjoint
partition of the index set {1, 2, ...., n}, the local structure
is always given as

pi =
∂F

∂qi
, qj = − ∂F

∂pj
, s = F − pj

∂F

∂pj
. (9)

In this context F = F (qi, pj) is known as the generator
of L and it should be clear that all Legendre subman-
ifolds are n-dimensional. It was shown long back that
any contact manifold can be associated with a Rieman-
nian metric structure which satisfies some compatibility
conditions with the contact form. The reader is referred
to the works [87–89] for details on compatible metric
structures on contact manifolds. The metric is a bilin-
ear, symmetric as well as non-degenerate structure. It
can be verified that the generic choice due to Mrugala
[81]: G = η2 + dqi ⊗ dpi satisfies all these three basic
requirements and also the compatibility condition pre-
sented in [87]. Since for an arbitrary Legendre submani-
fold L, one has η|L = 0 by definition, therefore restricting
G to L gives the local expression from eqns (9):

G|L = dqi⊗dpi|L =
∂2F

∂qj∂qj′
dqj⊗dqj

′
− ∂2F

∂pj∂pj′
dpj⊗dpj′ .

(10)
The metric on a Legendre submanifold L is therefore
defined from the Hessian of the generator of L. Such a
metric will be called a Hessian metric on L. There are of
course other ways of defining a symmetric, bilinear and
non-degenerate metric structure on a contact manifold
but that would not be of interest to us in the present
work.

With this background, we can now make connection
with thermodynamics (also see [72, 73, 75, 76]). We start
by recalling the first law of thermodynamics for a hydro-
static (P, V, T ) system described by the microcanonical
ensemble:

dU = TdS − PdV. (11)
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A direct comparison between the first of eqns (8) and
eqn (11) leads to the immediate identification that the
thermodynamic variables are local coordinates on a 5-
dimensional contact manifold. Explicitly, one identifies
s = U while (q1, q2) = (S, V ) and (p1, p2) = (T,−P ).
Further, eqn (11) which holds at equilibrium implies that
the system’s state is represented by a point on a Legendre
submanifold of the thermodynamic phase space. Such a
Legendre submanifold has the following local structure
[eqn (9)]:

s = U, T =
∂U

∂S
, −P =

∂U

∂V
. (12)

Legendre submanifolds therefore represent spaces of ther-
modynamic equilibrium states in the sense that each
point on the Legendre submanifold represents an equi-
librium state of the system. Thus, even though apriori
all the coordinates of the thermodynamic phase space
are independent, thermodynamic equilibrium or equiva-
lently the first law puts an on-shell condition such that
the system lives on a Legendre submanifold with just n
independent coordinates while the other n are derived by
taking derivatives of the thermodynamic potential (the
generator) with respect to the independent thermody-
namic variables. A thermodynamic system is therefore a
triplet (M, η, L) where (M, η) is a contact manifold and
L is the Legendre submanifold representing the system.
It also means that the spaces of thermodynamic equilib-
rium states are equipped with the notion of a thermody-
namic metric which is the Hessian of the relevant ther-
modynamic potential. In this paper, we are interested
in such thermodynamic metrics. The contact geometry
approach to thermodynamics naturally leads to a Hamil-
tonian framework for the latter which for black holes has
been discussed in [90, 91] (see also [92]).

III. TWO ENSEMBLES RELATED BY A
LEGENDRE TRANSFORM

We shall begin by analyzing two generic ensembles
which in the thermodynamic limit are related by a Leg-
endre transform (see also [78] and references therein).
Let us say that at equilibrium, the entropy can be ex-
pressed as S = S(xi) with i = 1, ...., n where xi are
suitable state variables characterzing the system’s equi-
librium state. For the sake of simplicity, we take the case
with n = 2 so that we have, S = S(E,X) where E is the
energy function (for example, internal energy U) and X
can be a suitable thermodynamic variable.

A. Ensemble A: X is fixed by the boundary

In the thermodynamic limit, we consider the first law
with E = U :

dU = TdS + Y dX (13)

where Y = (∂U/∂X)S is the variable conjugate toX. For
a hydrostatic system where X = V (imposed by bound-
ary conditions), one has Y = −P . On the other hand,
for a magnetic system one has X = η (the magnetiza-
tion) and Y = h (magnetic intensity). Comparison with
the first of eqns (8) leads us to the identification that
s = U and (q1, q2) = (S,X) whereas (p1, p2) = (T, Y ).
The condition, dU −TdS−Y dX = 0 defines the space of
equilibrium states on which it is most natural to choose S
and X as the independent coordinates whereas, T and Y
are defined on-shell as derivatives of the generator func-
tion U with respect to the independent ones. The ther-
modynamic metric [eqn (10)] is then (in our notation,
(dx)2 = dx⊗ dx)

dl2 =
∂2U

∂S2
(dS)2 + 2

∂2U

∂S∂X
dS ⊗ dX +

∂2U

∂X2
(dX)2

=
T

CX
(dS)2 + 2

(
∂T

∂X

)
S

dS ⊗ dX +

(
∂Y

∂X

)
S

(dX)2.

(14)

This is known as the Weinhold metric [25]. Note that
here CX is the the specific heat at constant X. Noting
that the function U = U(S,X) is obtained by invert-
ing the relation S = S(U,X) in favour of U , then since
S(U,X) is a concave function, U(S,X) is convex ensur-
ing that the metric given above is positive. This hap-
pens because of positivity of temperature, which implies
that entropy is a monotonically increasing function of U
[104]. Now, since S and X are the independent ther-
modynamic coordinates on the 2-dimensional space of
equilibrium states, such that U = U(S,X), one has T =
T (S,X) = ∂SU(S,X) and Y = Y (S,X) = ∂XU(S,X).
These are the equations of state. Using this, eqn (14) is
equivalent to

dl2 = dS ⊗ dT + dY ⊗ dX. (15)

This is also easily obtained from eqn (10):

dl2 = dqi ⊗ dpi = dq1 ⊗ dp1 + dq2 ⊗ dp2 (16)

with q1 = S, p1 = T, q2 = X, p2 = Y . Eqn (15) is
the line element of the natural metric on the Legendre
submanifold LX representing the system described by
this ensemble.

Now, because of the equations of state (the on-shell re-
lations between thermodynamic quantities such that only
two of them are independent), one can write T = T (S,X)
and Y = Y (S,X). These can in principle be inverted to
obtain S = S(T, Y ) and X = X(T, Y ). One may also ob-
tain S = S(T,X) and Y = Y (T,X) or even T = T (S,X)
and Y = Y (S,X). This means that by suitably invert-
ing the equations of state on the space of equilibrium
states LX , we can pick any two among S, T,X or Y to
be independent and re-express our metric [eqn (15)] in
four different ways. One is of course eqn (14). The other
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three are

dl2 =
CX
T

(dT )2 +

(
∂Y

∂X

)
T

(dX)2, (17)

dl2 =
T

CY
(dS)2 +

(
∂X

∂Y

)
S

(dY )2, (18)

dl2 =
CY
T

(dT )2 +

(
∂X

∂Y

)
T

(dY )2

+ 2

(
∂X

∂T

)
Y

dT ⊗ dY. (19)

Here, CX and CY are the specific heats at constant X
and Y respectively. It should be specially emphasized
that we have not performed any Legendre transforma-
tion in deriving these line elements. They are simply
eqn (15) in different coordinate parameterizations.
One goes from one set of independent coordinates to
another by exploiting the equations of state while still
being on the Legendre submanifold LX . All these
line elements therefore, represent the same length on
LX but expressed in different fluctuation coordinates.
This is possible because the fluctuations in the natural
coordinates (S,X) are related to those of the dependent
coordinates (T, Y ) via the equations of state. Therefore,
one expects that the Ricci scalars associated with the
line elements given in eqns (14), (17), (18) and (19)
are all equivalent to each other. For example, one can
compute the scalar curvature on the (S,X) plane [eqn
(14)] and then using the equations of state re-express it
as a function of say, T and Y . It then means that the
curvature scalar so obtained would be the same as that
directly calculated using the line element given in eqn
(19).

Since there is a natural first law associated with a given
ensemble, this introduces a set of natural coordinates on
the Legendre submanifold or the space of thermodynamic
equilibrium states on which the system of interest is de-
scribed. For example, for the present case the natural co-
ordinates are S and X although as we saw, by using the
on-shell equations of state T and/or Y could be made in-
dependent on LX . The choice of natural coordinates does
not depend on the specific functional form of the ther-
modynamic potential (in this case, the internal energy
U = U(S,X)). In an arbitrary case with n independent
variables, one has S = S(E,Xj) where j = 1, 2, ...., n−1.
One can therefore write E = E(S,Xj) giving the first
law:

dE = TdS +

n−1∑
j=1

YjdX
j . (20)

This sets the natural coordinates to {S,Xj} and
the Legendre submanifold describing the system is n-
dimensional. Keeping in mind that the exact form of
E is not relevant here (as long as it is well behaved), one
may assert that a given statistical ensemble describes a

family of Legendre submanifolds in the thermodynamic
limit. The choice of natural coordinates is specified by
the ensemble of interest.

B. Ensemble B: There is a reservoir for X

Let us consider the case where the system is in contact
with a reservoir for the variable X. For a hydrostatic sys-
tem, with our usual identification that Y is the pressure,
the bath is a barostat with which the system can ex-
change its volume. If on the other hand, the system was
a magnetic system with Y being the magnetic intensity,
one can think about the system attaining thermodynamic
equilibrium in the presence of a constant external field.
In the present case, the first law is given by

dE = TdS −XdY (21)

for some energy function E = E(S, Y ). The first laws
given in eqns (13) and (21) can be related by the
Legendre transformation, E(S, Y ) = U(S,X) − XY
provided it exists. For a usual hydrostatic sys-
tem, E(S, P ) = U(S, V ) + PV := H(S, P ) which
is the enthalpy whereas for a magnetic system,
E(S, h) = U(S, η)− ηh.

Inspecting eqn (21), we arrive at the following iden-
tifications: (q1, q2) = (S, Y ) and (p1, p2) = (T,−X) on
the space of equilibrium states (say) LY . The thermody-
namic length [eqn (10)] is then

dl2 = dS ⊗ dT − dY ⊗ dX (22)

or in the natural coordinates,

dl2 =
∂2E

∂S2
(dS)2 + 2

∂2E

∂S∂Y
dS ⊗ dY +

∂2E

∂Y 2
(dY )2

=
T

CY
(dS)2 + 2

(
∂T

∂Y

)
S

dS ⊗ dY −
(
∂X

∂Y

)
S

(dY )2.

(23)

Clearly, the thermodynamic lengths on Legendre sub-
manifolds LX and LY given respectively in eqns (15)
and (22) are not the same. It can be shown [76] that
two Legendre submanifolds are diffeomorphic to each
other if the Legendre transformation connecting them
is regular. Even then, the thermodynamic lengths for
two ensembles do not coincide. In other words, in
the thermodynamic limit where the ensembles become
equivalent (up to Legendre transformations), the lengths
are not! We strongly emphasize on the fact that this
non-equivalence has nothing to do with the microscopic
description of a particular system. It is well appreciated
that the presence of long ranged interactions may render
different ensembles inequivalent to each other [93, 94]
(see also [95]). However, the non-equivalence which is
being discussed here follows from the basic structure of
the thermodynamic phase space and shall continue to
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be there even when there are no long range interactions
between the microscopic degrees of freedom. Thus,
non-equivalence in the present context shall refer to
the fact that some of the geometrical properties of
the two Legendre submanifolds representing the same
system but in two different ensembles are not the same.
It can be intuitively understood on physical grounds
by noting that although one is finally working in the
thermodynamic limit, the Hessian metrics are all derived
generically based on thermodynamic fluctuations which
are not equivalent in different ensembles. As it is clear,
the two distinct ensembles are associated with different
system-boundary conditions. For example, in ensemble
A, the variable X is held fixed by the boundary of the
system whereas in ensemble B, the system is in contact
with a bath with constant intensive parameter Y . Thus,
the fluctuation properties of the thermodynamic system
are in general different in the two different ensembles. As
it turns out, although in the thermodynamic limit, the
behavior of the system consistently agrees in both the
ensembles, the thermodynamic lengths which are derived
from fluctuation properties within each ensembles are
still not equivalent. In other words, the process of taking
the thermodynamic limit does not erase the fluctuation
properties captured by the thermodynamic lengths.

Now for the present case, it is possible to re-express
the length [eqn (22)] in different coordinate parameteri-
zations. One of them is eqn (23). The other three are

dl2 =
CY
T

(dT )2 −
(
∂X

∂Y

)
T

(dY )2, (24)

dl2 =
T

CX
(dS)2 −

(
∂Y

∂X

)
S

(dX)2, (25)

dl2 =
CX
T

(dT )2 −
(
∂Y

∂X

)
T

(dX)2

− 2

(
∂Y

∂T

)
X

dT ⊗ dX. (26)

It turns out that the Ricci scalars of the line elements
given in eqns (23), (24), (25) and (26) are equivalent
to one another. However, the line elements with the
same fluctuation coordinates (say (T,X)) are not equiv-
alent in the two ensembles. Therefore, to summarize, the
Ricci scalars associated with thermodynamic metrics cor-
responding to different ensembles (hence, different fam-
ilies of Legendre submanifolds) are in general inequiva-
lent.

C. Entropic metrics

So far we saw that it is possible to construct various
thermodynamic metrics by taking Hessians of different
thermodynamic potentials. Typically, such potentials
are the energy functions of the system such as the
internal energy or the enthalpy. However, it is often

physically more intuitive to consider entropic potentials
(those with dimensions of entropy) in the construction
of such metrics. Among them the Ruppeiner metric is
special because it is directly linked with the probability
of fluctuations rendering a physical meaning to the
length between two thermodynamic states. Further-
more, its Ricci scalar, i.e. the Ruppeiner curvature
or the thermodynamic curvature bears a nice physical
interpretation as was pointed out in the introduction.

As it turns out, eqn (13) can be re-written as

dS =
dU

T
− Y

T
dX. (27)

This is clearly a microcanonical description where the en-
tropy is given by the Boltzmann formula S = ln Ω(U,X).
From the point of view of statistical mechanics, this is a
more fundamental form of the first law as compared to
eqn (13) because all the equilibrium properties including
the specific heats and susceptibilities can be computed
from the knowledge of S derived from microscopic de-
tails (via Ω). The Ruppeiner metric is then defined as
the negative Hessian of the entropy or equivalently, the
Hessian of the negative entropy. In order to derive an ex-
pression for the Ruppeiner metric in ensemble A, let us
start out with the generic expression for the Ruppeiner
line element, dl2R = −gijdxi ⊗ dxj with gij = ∂i∂jS.
Writing out dzi = gijdx

j one finds

dl2R = −dzi ⊗ dxi. (28)

Now, since dzi = gijdx
j , we must have

zi =
∂S

∂xi
. (29)

From the first law given in eqn (13), one can write

dS − dU

T
+
Y dX

T
= 0 (30)

which means that z1 = 1/T and z2 = −Y/T whereas
x1 = U and x2 = X. With these identifications,

dz1 = −dT
T 2

, dz2 =
Y dT

T 2
− dY

T
. (31)

The line element given in eqn (28) can now be expressed
as

dl2R = −
(
− dT

T 2

)
⊗ dU −

(
Y

T 2
dT − dY

T

)
⊗ dX (32)

which from the first law reduces to

dl2R =
1

T
(dS ⊗ dT + dX ⊗ dY ). (33)

We can now turn to ensemble B where Y is fixed by an
external bath. In this case the Ruppeiner line element is

dl2R =
1

T
(dS ⊗ dT − dY ⊗ dX) (34)



7

where the entropy of the system is of the generic form
S = S(E, Y ). This is different from the microcanonical or
(V,U)-description. The first law in terms of the entropy
can be re-written as

dS =
dE

T
+
X

T
dY (35)

which is equivalent to rearranging eqn (27) and defining
E = U − Y X. Since X is an extensive variable, its
conjugate, Y is intensive and consequently S has been
expressed as a function of an intensive and an extensive
variable as opposed to the microcanonical description
where it is a function of U and X, both being extensive.
It therefore follows that in ensemble B, the entropy
is convex in argument Y while still being concave in
E. Nevertheless, its Hessian is still negative making
it a concave function overall. This ensures that the
Ruppeiner metric defined as the negative Hessian of
the entropy is positive. The energy metric defined as
the Hessian of E discussed in the previous subsection,
being conformally related to the Ruppeiner metric [eqn
(34)] is also positive for T > 0. If the system of interest
is a hydrostatic system, then such a description would
correspond to the (H,P )-ensemble where the pressure P
and the enthalpy H are held fixed at the boundary.

As it turns out, the curvature scalar associated with
the Ruppeiner metric has a peculiar behavior close to
critical points or even the points at which the system
gets strongly correlated [24]. Let us examine the case of
a system described by the ensemble A with two indepen-
dent thermodynamic coordinates. For such a case, the
metric has the general form: dl2R = g11(dx1)2 + g12dx

1⊗
dx2 + g21dx

2 ⊗ dx1 + g22(dx2)2 where g12 = g21. The
Ricci scalar corresponding to the geometry described by
the metric can be obtained to be [96]

R = − 1
√
g

[
∂

∂x1

(
g12

g11
√
g

∂g11
∂x2

− 1
√
g

∂g22
∂x1

)
∂

∂x2

(
2
√
g

∂g12
∂x1

− 1
√
g

∂g11
∂x2

− g12
g11
√
g

∂g11
∂x1

)]
(36)

where g is the determinant of the metric tensor. This
means that calculations are a lot simpler if the metric is
diagonal. For the sake of simplicity, let us consider the
ensemble A discussed in a preceding subsection and pick
up the Ruppeiner element dl2R obtained by dividing the
line element given in eqn (17) by a factor of T :

dl2R =
CX
T 2

(dT )2 +
1

T

(
∂Y

∂X

)
T

(dX)2. (37)

Clearly, one finds that the metric is singular if CX = 0
or (∂Y/∂X)T = 0. Taking the Ruppeiner line element
obtained by dividing eqn (18) by a factor of T , it also
follows that the curvature scalar say RU in ensemble
A can also diverge as CY → ∞. Blowing up of the
specific heat is reminiscent of a critical point which

indicates that RU may blow up at the critical point. For
a hydrostatic system where Y = −P and X = V , the
situation corresponds to blowing up of CP at the critical
point.

Next, let us consider the ensemble B consisting of a
system in contact with a bath for X. It is not hard to
convince oneself that the thermodynamic curvature ob-
tained in this case, say RE does not coincide with RU .
The metrics and hence their Ricci scalars simply do not
match. However, the curvature scalar RE diverges as
CX → ∞ and CY = 0 suggesting a complimentary be-
havior to RU as far as divergences are concerned. For
a general case where there are two fluctuation variables,
the correspondence between the zeroes and divergences of
the specific heats with the singularities of the thermody-
namic lengths (which could possibly lead to divergences
of the curvature scalars) has been summarized in table-
(1).

D. (U, V ) and (H,P )-ensembles

In this subsection, we shall make our assertions
concrete by considering the van der Waals model, which
exhibits features of the liquid-gas phase transition. Then,
ensemble A discussed in subsection-(III A) is the familiar
microcanonical or (U, V )-ensemble where symbols have
their usual meaning. On the other hand, ensemble B
discussed in subsection-(III B) then corresponds to the
isoenthalpic-isobaric or (H,P )-ensemble [97] with energy
function H = U + PV . For a hydrostatic system, our
notations and conventions are as follows: The number of
particles N is kept fixed and is not allowed to fluctuate.
Thus N is merely a fixed parameter setting the system’s
size. For convenience, we put X = v (rather than V )
and we have Y = −P where v = V/N is now the specific
volume of the fluid such that the ideal gas equation
reads Pv = T .

The van der Waals (vdW) fluid is a prototypical exam-
ple of a model fluid exhibiting features of the liquid-gas
phase transition. The attractive interactions among the
fluid molecules can be summarized by the van der Waals
potential V (r) = −k/r6 for some constant k > 0 acting
between pairs of molecules. Furthermore, the molecules
are modelled as impenetrable hard spheres and there-
fore, if σ be the distance at which two molecules touch
each other, the potential is infinite. Such a description
of intermolecular interactions is mean field. The fluid is
described by the equation of state:

P =
T

v − b
− a

v2
. (38)

Taking Cv = 3/2, one has the following expression for
CP :

CP =
Tv3

Tv3 − 2a(b− v)2
+

3

2
. (39)
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TABLE I: Possible sources of singularities of the Ruppeiner metric.

Ensemble Possible sources of singularities of the Ruppeiner metric

(U,X) (a) Divergences of CY (b) Zeroes of CX (c) At (∂Y/∂X)T = 0 (d) At (∂X/∂Y )S = 0

(E, Y ) (a) Divergences of CX (b) Zeroes of CY (c) At (∂X/∂Y )T = 0 (d) At (∂Y/∂X)S = 0

Note that putting a = b = 0, one has CP − Cv = 1
as expected from the ideal gas. In the microcanonical
ensemble, the thermodynamic curvature reads (see also
[27, 28])

RU = −
4a(b− v)2

(
a(b− v)2 − Tv3

)
3 (Tv3 − 2a(b− v)2)

2 (40)

whereas, in the isoenthalpic-isobaric ensemble, the cur-
vature scalar of the Ruppeiner metric reads the following
when expressed in T and v coordinates:

RH = −
4a(b− v)2

(
3a(b− v)2 − 5Tv3

)
(6a(b− v)2 − 5Tv3)

2 (41)

where the subscript H signifies that in this case, the en-
ergy function E is equal to the enthalpy. The thermo-
dynamic curvatures RU and RH have been plotted as
a function of v in figures-(1). Clearly, the divergences
in CP and RU exactly coincide as was expected. With
v > b = 1, CP has divergences at v = 1.21, 37.9 and RU
diverges exactly at these points. We mention that the
plots are for a temperature below the critical tempera-
ture. The curvature scalar RU becomes zero at the point
v = b where the specific volume and the co-volume coin-
cide putting a lower cutoff to the physical values v can
take. However, this point lies in the negative bulk mod-
ulus range below the critical temperature. We also note
that RU crosses zero for two values of v > b. However,
both of them occur in the region where the isothermal
bulk modulus is negative thus falling in a thermodynam-
ically unstable region. For T = 0.1, a = 2 and b = 1, the
isothermal bulk modulus is negative (shaded in grey in
the plots) between v = 1.210 and 37.918). Such crossings
are therefore not considered to be of physical interest. It
is then simple to check that the thermodynamic curva-
ture is negative definite over the entire thermodynami-
cally stable region with v > b and (∂P/∂v)T ≤ 0. This
can empirically be taken to signal the existence of attrac-
tive interactions between molecules. It may be shown
that near the critical temperature Tc, the specific heat

CP and thermodynamic curvature RU scale as [28]

CP ∼ |T − Tc|−1, RU ∼ |T − Tc|−2. (42)

The exponent ‘2’ for the thermodynamic curvature near
the critical point has been obtained earlier in other
contexts [27, 33, 34, 63, 71].

As for RH , the divergences of RH do not correspond to
those of CP . As a matter of fact, if Cv had divergences,
one could expect such divergences to coincide with those
of the thermodynamic curvature RH . In the present
case where Cv is a constant it can be clearly seen that
the divergences of RH correspond to the zeroes of CP .
It should be emphasized that the constancy of one of
the specific heats (here Cv) originates from the specific
choice X = v for the (U,X) ensemble where Cv is a
constant due to the equipartition theorem for the van der
Waals fluid. For v > b = 1, CP has zeroes at v = 21.8
and 1.3. RH diverges at both these points. This is
expected from the generic structure of the line elements
presented earlier. Let us also note that RH consistently
goes to zero at v = b. Finally, we point out that the
other crossings of RH fall into the region of negative
isothermal bulk modulus (shaded in grey) and are
therefore discarded. Thus, RH is negative over the entire
physically interesting region possibly signifying the
attractive nature of van der Waals interactions between
the molecules. Furthermore, let us note that as one takes
v → ∞, both RU and RH approach zero. This is the
ideal gas limit where the thermodynamic geometry is flat.

Some discussion is in order. Although we find that for
the van der Waals model, the physically interesting zero
of both RU and RH agree, irrespective of their inequiva-
lence, this is not true in general. For example, if we use
the fact that the specific heat at fixed volume is a con-
stant (certainly true for several model systems), then RH
and RU have the following general expressions (written
in terms of specific volume):

RH = −T
2Cv∂T,vP

2 − 2T 2Cv∂vP∂T,T,vP − Cv∂vP 2 + 2T 3∂TP
2∂T,T,vP − 2T 2∂TP

2∂T,vP + 2T∂T,vP
2∂vP

2

2 (T∂TP 2 − Cv∂vP ) 2
(43)

and,

RU =
T 2
(
−∂T,vP 2

)
+ 2T 2∂vP∂T,T,vP + ∂vP

2

2Cv∂vP 2
. (44)
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FIG. 1: Thermodynamic curvatures RU , RH and specific heat CP for the van der Waals fluid plotted versus specific volume
with a = 2, b = 1 below the critical temperature. The region(s) with negative bulk modulus are shaded in grey.

Now, using the fact that ∂T,T,vP = 0 (the equation of
state is linear in T ), it is simple to check that both RU =
RH = 0 when (

∂P

∂v

)
T=0

= 0. (45)

The above condition, gives one physical solution at which
both RU and RH vanish, both below and above the crit-
ical point. Other zero crossings are physically not quite
interesting because they lie in the range of negative bulk
modulus. Although the above result proving the equiv-
alence of the zero crossing(s) of RU and RH looks ap-
pealing, let us emphasize that it is based on two crucial
assumptions about the fluid system. First, we have as-
sumed that Cv is a constant, independent of T and v. Al-
though this follows from the equipartition theorem, this
is certainly not true for a general fluid with complicated
microscopic interactions where the virial coefficients are
temperature dependent. The second assumption is that
the equation of state is linear in T , i.e. ∂T,T,vP = 0.
While this is true for the ideal gas and several model fluid
systems (such as van der Waals), this is not the case for
a general fluid where the virial coefficients do not depend
on temperature linearly. Thus, the zero crossing behavior
of RU and RH are indeed not equivalent in the general
case. Nevertheless, they do follow some general trends as
far as their divergences are concerned.

IV. BLACK HOLES IN ADS SPACETIMES

We shall consider black holes in AdS spacetimes. In
the extended thermodynamics framework [12], the cos-
mological constant is treated as thermodynamic pressure
via the relation

P = − Λ

8π
with, Λ = − (d− 1)(d− 2)

2l2
. (46)

Here d is the number of spacetime dimensions. For
charged black holes, the first law of thermodynamics
takes the following form:

dM = TdS + V dP + ΦdQ (47)

where, Q is the electric charge (U(1) charge) of the black
hole, and Φ is the corresponding potential. The thermo-
dynamic variables satisfy the Smarr relation [12, 15, 16]:

(d− 3)M = (d− 2)TS − 2PV + (d− 3)QΦ (48)

which can be obtained via scaling arguments. Thermo-
dynamic geometry of black holes was first studied in [37]
wherein the BTZ black hole was considered and it was
found that the curvature scalar diverges at extremality.
This was followed by a series of papers (see for instance
[38, 39, 41, 42]) where the thermodynamic curvature for
various black holes were computed and analyzed. It
was found that upon suitably choosing the thermody-
namic potential, the thermodynamic curvature is diver-
gent along the Davies line [39] (see also [78]). The most
natural choice of energy metric for black holes is defined
as the Hessian of the mass [37–39], i.e.

dl2M =
∂2M

∂yi∂yj
dyi ⊗ dyj (49)

where M = M(yi) with y1 = S (entropy). One may
invert this fundamental relation, to express the entropy
as the potential, ie. S = S(M, · · · ) and subsequently
define the Ruppeiner metric dl2R from it. Using argu-
ments identical to those discussed in subsection-(III C),
it follows that dl2R = dl2M/T where, T is the Hawking
temperature. There have been several extensive inves-
tigations on thermodynamic geometry of black holes in
the literature [27, 28, 37–42, 44–54, 56–71]. We remark
here that although we shall be focussing on Hessian



10

metrics, there are other metric structures which have
been considered for black holes earlier [42, 77].

In the extended thermodynamics framework, thermo-
dynamic geometry for BTZ black holes (d = 3) has been
studied in [58, 59] (also see [37, 40] for older studies).
It has been found that for the neutral and non-rotating
BTZ black hole, the thermodynamic geometry is Ricci
flat, empirically indicating towards the absence of net
microscopic interactions. However, for black holes with
electric charge and/or angular momentum, the geome-
try is curved with a positive thermodynamic curvature.
This may be taken to indicate towards the presence of
repulsive microscopic interactions and is consistent with
the fact that the BTZ black hole does not admit a phase
transition [18]. For charged and/or rotating BTZ black
holes, the scalar RH has been found to diverge at the
extremal point [58], consistent with a much older result
[37]. The thermodynamic curvature RH was obtained
for the case of exotic BTZ black holes in [58], and it was
found that RH could be both positive and negative with
a zero crossing between the two regimes. The origin of
such a crossing is not well understood, partly because ex-
otic BTZ black holes do not admit a fluid-like equation of
state. On the other hand, thermodynamic curvatures ob-
tained for black holes in higher dimensions exhibit richer
features. Below, we shall consider charged AdS black
holes in four dimensions.

A. Bulk

The solution to Einstein-Maxwell equations with a neg-
ative cosmological constant in four dimensions (d = 4)
reads [15]:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2, (50)

A = −q
r
dt, F = dA (51)

where dΩ2
2 is the line element on a 2-sphere and,

f(r) = 1− 2M

r
+
q2

r2
+
r2

l2
. (52)

Here, M is the ADM mass and q is the U(1) charge of
the spacetime. The event horizon is defined as the largest
root of the relation f(r+) = 0. In terms of r+, the black
hole mass can be expressed as

M =
r+
2

(
1 +

q2

r2+
+
r2+
l2

)
. (53)

It should be remarked that here, the mass takes the role
of the enthalpy of the system, i.e. M := H(S, P, q) [12].
In terms of thermodynamic variables S = πr2+ and P =
3/8πl2, the enthalpy (mass) is given by

H(S, P, q) =
1

6
√
π
S−

1
2

(
8PS2 + 3S + 3πq2

)
. (54)

Temperature and thermodynamic volume can be com-
puted by differentiating the enthalpy giving

T =

(
∂H

∂S

)
P

, V =

(
∂H

∂P

)
S

(55)

which upon elimination of S, gives the equation of state:

P =
2(6π)2/3q2 + 6(6π)2/3TV − 3 3

√
6V 2/3

36 3
√
πV 4/3

. (56)

This provides an on-shell relationship between P , V and
T for the charged AdS black hole. Thermodynamic ge-
ometry of the system has been studied earlier in both the
(U, V )-ensemble [27, 28] and the (H,P )-ensemble [48, 54].
Let us note that the thermodynamic volume turns out to
be (see also [14])

V =
4

3

S3/2

√
π

(57)

which is only a function of entropy (no pressure depen-
dence). Therefore, the specific heat at constant volume
CV identically vanishes ensuring that RU is divergent
for all thermodynamic equilibrium states. The authors
of [27, 28] have suggested a remedy by considering CV
to be a vanishingly small number (rather than zero), of
the order of kB and then one may define a normalized
curvature as

R̃U = lim
CV→0+

CVRU (58)

which is finite. As a matter of fact, in black hole
chemistry with d ≥ 3, CV vanishes for all black holes
with spherical symmetry and as such the procedure
described above works for all such cases. In what follows,
we compare and contrast the behavior of the curvature
scalars obtained in (U, V ) and (H,P )-ensembles [48, 54].

The specific heat CP turns out to be

CP =
9πTV 5/3

3
√

6π2/3 (4q2 + 3TV )− 3V 2/3
(59)

and we have the following expression for R̃U :

R̃U =
A1 ×A2

A3
(60)

where,

A1 =
(

4
3
√

6π2/3q2 − 3V 2/3
)
,

A2 =
(

2
3
√

6π2/3
(
2q2 + 3TV

)
− 3V 2/3

)
,

A3 = 3
(

3
√

6π2/3
(
4q2 + 3TV

)
− 3V 2/3

)2
.

R̃U has been plotted together with CP in figure-(2). One

clearly sees that the divergences of R̃U coincide with
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FIG. 2: Normalized thermodynamic curvature R̃U for the
RN-AdS black hole and specific heat CP plotted versus ther-
modynamic volume V with q = 1, T = 0.01.

those of CP . The only zero crossing of the normalized
thermodynamic curvature which falls in the region of
thermodynamic stability occurs at

4
3
√

6π2/3q2 = 3V 2/3. (61)

This in terms of the horizon radius r+ is equivalent to the
condition: r+ =

√
2|q|. On the other hand, the thermo-

dynamic curvature in the isothermal-isobaric ensemble is
regular, i.e. it does not need to be normalized. It reads

RH =
B1 ×B2

B3
(62)

where,

B1 =
(

4
3
√

6π2/3q2 − 3V 2/3
)
,

B2 = (4
3
√

6π2/3q2CV + 6
3
√

6π2/3TV CV

− 3V 2/3CV + 18πTV 5/3),

B3 = 2(4
3
√

6π2/3q2CV + 3
3
√

6π2/3TV CV

− 3V 2/3CV + 9πTV 5/3)2.

This expression coincides with the one obtained earlier
in [54] for the choice CV = 0. Since, the limit CV → 0+

is smooth for RH , we can very well set it equal to zero
without the need of normalizing the thermodynamic
curvature unlike the case of RU . The scalar RH diverges
as V → 0. This corresponds to the limit CP → 0 and is
consistent with our expectations. Remarkably, even for
the black hole, the two thermodynamic curvatures have
identical crossing points within the region of thermody-
namic stability (corresponding to the horizon radius r+
satisfying r+ =

√
2|q|) independent of CV [54]. This is

shown in figure-(3) and can also been seen by noticing
that the factors A1 and B1 appearing in eqns (60) and
(62) are the same, independent of the value (constant) of
CV chosen. This is because in the equation of state, i.e.
eqn (56), the pressure P depends on T linearly. It should
be noted that unlike the van der Waals fluid, where the
thermodynamic curvatures were negative definite over

5 10 15 20 25 30
V
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0.0

0.2

0.4

R
∼

U,RH

RH

R
~

U

FIG. 3: Zero crossing of R̃U and RH (with CV = 0) for the
RN-AdS black hole plotted versus thermodynamic volume V
with q = 1, T = 0.01.

the entire physical range, for charged black holes in AdS
there is a region in which the thermodynamic curvatures
are positive, possibly implying towards the existence of
repulsive interactions [27]. However, if we set q = 0, i.e.
consider (neutral) Schwarzschild-AdS black holes, the
thermodynamic curvatures are negative definite. If one
considers the sign of the thermodynamic curvatures to
indicate towards the nature of microscopic interactions,
at least empirically, then this gives rise to an interesting
picture. One may speculate that a charged black hole
in AdS is associated with two kinds of microscopic
degrees of freedom [48, 54]. The first type, which are
present even in the q = 0 case are associated with
attractive interactions whereas, the second type, which
are present only when q 6= 0, interact in a repulsive
manner. Therefore, Schwarzschild-AdS (q = 0) black

holes have R̃U , RH < 0 whereas, for their electrically
charged counterparts, the thermodynamic curvatures
can be both positive and negative (even zero) depending
on the competition between the two distinct kinds of
microscopic degrees of freedom. However, one should
bear in mind that these remarks are mere speculations
and cannot substitute for independent microscopic
computations to describe the statistical mechanics of
black holes.

Interestingly, the existence the zero crossings for black
holes may be explained naively as follows. If we define
a specific volume v = 2r+ = 2(3V/4π)1/3, then eqn (56)
becomes [15]

P =
T

v
− 1

2πv2
+

2q2

πv4
(63)

which resembles the equation of state of a non-ideal fluid,
i.e. a fluid with interactions among its molecules. Since
v is the specific volume, its reciprocal, i.e. ρ = 1/v can
be interpreted as a density of the degrees of freedom [49].
In terms of ρ, the equation of state takes the following
intuitive form [60]:

P = ρT − ρ2

2π
+

2q2ρ4

π
. (64)
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FIG. 4: Mean field potential u(ρ) for different values of elec-
tric charge.

It may be speculated that the underlying degrees of free-
dom have some resemblance with those of a fluid. Noting
that by the equipartition theorem, the kinetic energy of
molecules is proportional to T , the first term appearing
in the RHS of eqn (64) can be interpreted as a kinetic
energy density of the degrees of freedom. Then, it is natu-
ral to interpret the remaining terms as a potential energy
density, i.e. one defines the potential energy density:

u(ρ) = −
(

1

2π

)
ρ2 +

(
2q2

π

)
ρ4 (65)

which has been plotted in figure-(4).

If the sign of the thermodynamic curvatures indicates
towards the nature of microscopic interactions, then the
point of zero crossing (R̃U = RH = 0) is expected to
coincide with the extremum of the mean field interaction
potential, i.e.

∂u(ρ)

∂ρ
= 0. (66)

The condition above gives ρ = 1/
√

8|q| or r+ =
√

2|q|,
exactly coinciding with the point at which the thermo-
dynamic curvatures (both R̃U and RH) vanish. From a
fluid-like perspective, in a mean field description, where
the particle positions are averaged, one can argue that
v ∼ r3 or ρ ∼ r−3 where r is the mean separation be-
tween the particles. Thus, from eqn (65), one can specu-
late that the microscopic potential describing the inter-
actions among the degrees of freedom can be taken to be
of the form [60]:

V (r) = − σ
r6

+
δ

r12
, σ, δ > 0. (67)

Therefore, the Lennard-Jones potential describes the
interactions between the microscopic degrees of freedom,
at least at a mean field level [28, 60, 98, 99].

The remarks made above may be generalized straight-
forwardly to the case of charged AdS black holes in an

arbitrary number of spacetime dimensions. It should be
mentioned that similar studies have been performed for
black holes in higher curvature theories, such Einstein-
Gauss-Bonnet theory [53–57]. The analysis of the ther-
modynamic curvatures for such systems can be done in a
similar manner as described above for charged AdS black
holes in Einstein gravity. Although we do not pursue it
further, we summarize the sign of the thermodynamic
curvature for several black holes in AdS in the extended
thermodynamic framework in table-(II). In the next sub-
section, we shall consider an alternate set-up, where black
hole chemistry has been studied in the context of the
AdS/CFT correspondence.

B. Boundary

A deep motivation for studying the thermodynamics
of black holes in AdS, is the all too important AdS/CFT
correspondence [7–9], which is a duality relating: a cer-
tain (quantum) theory of gravity in d-dimensional AdS
spacetime (known as the bulk) to a conformal field theory
(CFT) which is defined on the (d−1)-dimensional bound-
ary. One of the remarkable checks of this correspondence
is the identification of the cross-over from thermal AdS
phase to the black hole phase (the Hawking-Page transi-
tion), with the large N confinement-deconfinement tran-
sition in the boundary field theory [8]. This correspon-
dence has of course received continuous attention with
the most well studied case being the correspondence be-
tween string theory in AdS5 × S5 and N = 4, SU(N)
supersymmetric Yang-Mills theory at large N , meaning
that there exists a relation connecting parameters on
both sides of the duality, namely [7]:

l4 =

√
2l4pl
π2

N . (68)

Here, l gives a measure of number of degrees of freedom
via N which is the number of colors of the boundary
gauge theory with lpl being the ten dimensional Planck
length.

Now, with regards to extended thermodynamics
motivated above, we saw the possibility of having new
pressure P and thermodynamic volume V , variables in
the bulk (gravity) description. It is tempting to ask
what these quantities correspond to in the holographic
dual field theory via the AdS/CFT correspondence.
There are several arguments which reveal that the
pressure P in bulk introduced as above, is not the usual
pressure of the boundary field theory [19–21]. The
pressure of the boundary theory is fully determined
from the partition function of the theory. However, in
the bulk, the pressure comes from a different notion
of a variable Λ. It is useful to remember that the
length scale l comes from the underlying uncompactified
theory, and is just a number, N , related to the number
of D-branes in theory. Gauge/gravity duality is well
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TABLE II: Sign of Ruppeiner curvature for some black holes in AdS [27, 28, 37–42, 44–54, 56–71]. In the table below, by
“neutral” we mean the absence of electric charge.

Black hole Sign of thermodynamic curvature

Neutral and non-rotating BTZ 0

Rotating BTZ +

Charged BTZ +

Exotic BTZ 0, ±
Schwarzschild-AdS in d-dimensions −

Reissner-Nordström-AdS in d-dimensions 0, ±
Neutral or charged Gauss-Bonnet-AdS in 4-dimensions 0, ±

Neutral Gauss-Bonnet-AdS in 5-dimensions −
Charged Gauss-Bonnet-AdS in 5 and 6-dimensions 0, ±

Neutral Gauss-Bonnet-AdS in 6-dimensions 0, ±

studied in the large N limit giving several clarifying
results, which is the limit of large l or small curvature
limit. On the field theory side, N is generally the rank
of the gauge group and sets the number of degrees of
freedom (which are actually proportional to N2 for
the U(N) gauge group). This means that a dynamical
Λ, giving pressure P = −Λ/8πGd in the bulk, should
correspond to a dynamical N on the holographic dual
side [20]. Varying the number of branes N , might mean
holographic renormalization group (RG) flow and more
interestingly, to a tour in the space of dual field theories
[19]. It is well known that RG flow changes the effective
cosmological constant of the underlying theory and also
plays an active role in changing the number of degrees
of freedom.

It is important to note here that: in traditional black
hole thermodynamics (when Λ is not dynamical), the
gauge/gravity correspondence suggests identifying the
bulk quantities such as temperature T and entropy S
with the quantities in the boundary. What changes now,
in the context of a dynamical Λ is that, although black
hole mass M continues get identified with internal energy
U of the boundary [19]; in the bulk M is identified with
enthalpy H = U + PV . This holographic interpretation
was argued in several works to be a plausible starting
point to discuss holographic aspects of black hole
heat engines, most notably in [19]. There are further
subtleties such as the role of the Newton’s constant Gd
in the extended first law of black hole thermodynamics.
Such questions are currently being explored [100–102].

Let us consider the approach adopted in [67–71], where
a dynamical cosmological constant in the bulk corre-
sponds to varying the number of colours on the bound-
ary [20]. For definiteness, we shall consider black holes
in AdS5× S5. The bulk metric field reads [10]

ds2 = ds2AdS5
+ l2 dΩ2

5 (69)

where, dΩ2
5 is the line element on a 5-dimensional sphere

with unit radius and,

ds2AdS5
= −f(r) dt2 + f(r)−1 dr2 + r2 dΩ2

3 (70)

with dΩ2
3 being the metric on a 3-sphere. Here, f(r) is

the blackening factor which has the following form:

f(r) = 1−
8G(5)M

3πr2
+
r2

l2
(71)

where l is the radius of the AdS5 spacetime related to the
cosmological constant as Λ = − 6

l2 . M is the black hole
mass and the five dimensional Newton’s constant G(5)

appearing in the black hole solution is not fixed but is
tied to l as

1

16πG(5)
=

π2l5

16G(10)
. (72)

Here, it is the ten dimensional Newton’s constant G(10)

and the ten dimensional Planck length lP (linked as
~G(10) = l8P ) which are held fixed. The spacetime AdS5×
S5 can be thought of as the near horizon limit of N coin-
cident D3-branes stacked on top of each other in type IIB
supergravity. The dual description is the N = 4 SU(N)
SUSY Yang-Mills theory in the large N limit. The parti-
cle content of the theory is: N2 gauge fields, 6N2 mass-
less scalars, and 4N2 Weyl fermions. Thus, there are 8N2

bosonic and 8N2 fermionic degrees of freedom. There-
fore, the number of degrees of freedom scales as N2 (pro-
portional to the central charge). Following [69, 71], we
shall be considering energy and entropy densities instead
of their absolute values for convenience. Thus, the first
law reads

du = Tds+ µdN2 (73)

where u = 2π2M/V is the energy density, s = 2π2S/V
is the entropy density, and µ is the chemical potential
for the number of degrees of freedom. Here V = 2π2l3

is the CFT volume and the AdS radius l is related to
the number of D3-branes via eqn (68). In particular, the
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energy density in terms of thermodynamic quantities is
given by

u =
3s2/3

(
N5/6 + 2 3

√
2s2/3

)
4 22/3πN2/3

. (74)

Thus, from eqn (73), the Hawking temperature is calcu-
lated to be

T =

(
∂u

∂s

)
N2

=
N5/6 + 4 3

√
2s2/3

2× 22/3πN2/3 3
√
s

(75)

which has a minimum value, Tmin at s0 = N5/4

8
√
2

. For any

temperature above Tmin, there are two values of s with
the same temperature: s < s0 corresponds to the small
black hole branch whereas s > s0 corresponds to the large
black hole branch [6]. From the energy density [eqn (74)]
one can compute the chemical potential for N2, which
reads

µ =:

(
∂u

∂N2

)
s

=
3
√

2N5/6s2/3 − 8× 22/3s4/3

32πN8/3
. (76)

Before computing the thermodynamic curvatures, it is
important to find the specific heats. CN2 is given by

CN2 =

(
∂u

∂T

)
N2

= −
3s
(
N5/6 + 4 3

√
2s2/3

)
N5/6 − 4 3

√
2s2/3

. (77)

It diverges at T = Tmin and is positive in the region of the
large black hole while it is negative for that of the small
black hole [6]. In a fixed chemical potential setting, Cµ
is calculated to be

Cµ =

(
∂h

∂T

)
µ

= −
− 512 22/3s7/3

N5/6 + 11N5/6s− 84 3
√

2s5/3

3N5/6 − 36 3
√

2s2/3

(78)
where h = u− µN2. Thus, we now have two ensembles,
one with fixed N2 while the other is with fixed µ. In the
latter, the first law reads: dh = Tds−N2dµ.

Let us begin with the fixed N2 ensemble, in which fol-
lowing the treatment presented in section-(III), we have

dl2R =
1

T
(ds⊗ dT + dN2 ⊗ dµ) (79)

and this can be written in different parametrizations.
The associated thermodynamic curvature, Ru takes the
following form:

Ru =
C1

C2
, (80)

where,

C1 = 8(40 22/3N5/3s2/3 + 160N5/6s4/3

−5
3
√

2N5/2 + 768
3
√

2s2),

C2 = 3N5/6 3
√
s
(
N5/6 − 12

3
√

2s2/3
)2

×
(
N5/6 + 4

3
√

2s2/3
)
.
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FIG. 5: Plot of thermodynamic curvature Ru together with
the specific heats CN2 and Cµ as a function of entropy density
s.
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FIG. 6: Plot of thermodynamic curvature Rh together with
the specific heats CN2 and Cµ as a function of entropy density
s.

The thermodynamic curvature Ru has been plotted in
figure-(5), together with the specific heats Cµ and CN2 .
Clearly, the divergence of Ru coincides with that of Cµ
as one would have expected. Furthermore, if T0 be the
temperature at which Ru and Cµ diverge (as shown in
figure-(5)), it is straightforward to show [71]:

Cµ ∼ |T − T0|−1, Ru ∼ |T − T0|−2 (81)

thereby giving the same exponents as found in the
bulk concerning the divergence of CP and the normal-
ized curvature R̃U respectively. The same exponents
have been observed in various different contexts earlier
[27, 33, 34, 63, 71] including the case of black holes in
the bulk.

In the fixed µ ensemble, the Ruppeiner metric turns
out to have the following form:

dl2R =
1

T
(ds⊗ dT − dN2 ⊗ dµ). (82)

The associated curvature scalar, labelled as Rh is com-
puted to be

Rh =
D1

D2D3
(83)
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where,

D1 = −12N5/6
(
−968 22/3N5/3s2/3 − 6368N5/6s4/3

+ 165
3
√

2N5/2 − 61440
3
√

2s2
)
,

D2 = 3
√
s
(
N5/6 + 4

3
√

2s2/3
)
,

D3 =
(
−172

3
√

2N5/6s2/3 + 11N5/3 + 512 22/3s4/3
)2
.

The curvature scalar Rh has been plotted in figure-(6),
together with the specific heats CN2 and Cµ. In contrast
to Ru, the thermodynamic curvature Rh does not
diverge at the divergence of Cµ. However, its divergence
coincides with that of CN2 with the same exponents as
eqn (81) (with Cµ replaced by CN2 , and Ru replaced by
Rh). Furthermore, one may observe that Rh diverges at
the zero of Cµ. This is precisely what we expect based on
the discussions presented in section-(III). Henceforth, we
have demonstrated the generality of the arguments pre-
sented in section-(III) and the correspondence between
the divergences of specific heats and thermodynamic
curvatures in different ensembles related by Legendre
transforms [table-(I)].

Now, if one considers the sign of the thermodynamic
curvature to be an empirical indicator of the nature of
microscopic interactions, then clearly for the large black
hole branch (s > 0.0883883) one has Ru, Rh < 0 suggest-
ing that the system is attraction dominated, reminiscent
of an ideal gas of bosons. Moreover, it was shown in
[71] (see also [20]) that |Ru| increases as one approaches
towards z → 1 where z = eµ/T is the fugacity parame-
ter. For an ideal gas of bosons, this limit indicates Bose
condensation wherein the absolute value of the thermo-
dynamic curvature grows indicating the growth of inter-
particle correlations [36]. The fact that the same behav-
ior is observed for black holes in AdS5 × S5 may suggest
that the degrees of freedom undergo an analogous con-
densation [20]. However, a satisfactory understanding of
this can only be achieved via computations performed in
a quantum theory of gravity. Nevertheless, the study of
the thermodynamic curvature may reveal early insights
into the physics of black holes.

V. DISCUSSION

Geometrical approaches to thermodynamics and in
particular, thermodynamics of black holes have received
constant attention due to their potential to provide a
unique perspective on connecting the microscopic to
macroscopic physics [27, 28, 37–54, 56–71]. As sum-
marised in this review, methods of contact and metric
geometry have given novel insights (though qualitative
in nature) on the nature of dominant interactions and
phase transitions in black holes in AdS in the extended
thermodynamics set up. It should be mentioned here

that the thermodynamic metrics explored in this review
have been generalized further by several groups with var-
ied advantages, such as [42–44, 77], among others. For
instance, in the framework of geometrothermodynamics
[42, 77], the thermodynamic metric is Legendre invari-
ant, i.e. it is invariant under Legendre transformations.
However, the metric is not a Hessian although there
have been recent attempts to derive it from statistical
mechanics [103].

In this review, we considered Hessian thermodynamic
metrics in different ensembles connected by (partial)
Legendre transforms and discussed their complimentary
behavior as far as divergences are concerned [78]. While
such metrics are not Legendre invariant, they are
physically straightforward to motivate on the grounds of
thermodynamic fluctuation theory. We have emphasized
upon ensemble non-equivalence and reparametrizations
of Hessian metrics in various choices of independent
coordinates. We then considered the most widely used
Hessian metric, the Ruppeiner metric [22, 24] and listed
the sources of its divergences from general considera-
tions. They were then verified through various examples
considered subsequently. It was mentioned that the
sign of the thermodynamic curvature could possibly
indicate towards the nature of microscopic interactions
in a thermodynamic system. While this can indeed be
verified for the van der Waals fluid or ideal quantum
gases [36], one cannot yet ascertain its validity for a
general thermodynamic system. However, keeping in
mind that black holes in the extended thermodynamics
framework do admit a van der Waals-like behavior, one
may gain early insights into the microscopic interactions
from studying the behavior of the thermodynamic
curvature. In this sense, it is encouraging to explore
the thermodynamic geometry of black holes in various
settings.

In section-(IV), we applied the ideas developed in
sections-(II) to (III), to study thermodynamic geome-
try of black holes in AdS spacetimes in the extended
thermodynamics framework. In subsections-(IV A) and
(IV B), the thermodynamic geometries of the bulk and
the boundary (via the gauge/gravity duality) settings
were discussed respectively. We briefly touched upon
the applications of thermodynamic geometry in a holo-
graphic setting where the black hole in the AdS bulk is
dual to a finite temperature gauge theory on the bound-
ary. While some consistent results were demonstrated
including the exponent ‘2’ for the thermodynamic cur-
vature, it should be pointed out that in the context of
extended thermodynamics, there have been recent devel-
opments on new ideas in relating the holographic dual
theories [100–102]. It would be interesting to extend the
methods summarized in this review to such situations.
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