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Abstract

We study the problem of generating interesting integer sequences with a combinatorial inter-
pretation. For this we introduce a two-step approach. In the first step, we generate first-order logic
sentences which define some combinatorial objects, e.g., undirected graphs, permutations, matchings
etc. In the second step, we use algorithms for lifted first-order model counting to generate integer
sequences that count the objects encoded by the first-order logic formulas generated in the first step.
For instance, if the first-order sentence defines permutations then the generated integer sequence is
the sequence of factorial numbers n!. We demonstrate that our approach is able to generate interesting
new sequences by showing that a non-negligible fraction of the automatically generated sequences
can actually be found in the Online Encyclopaedia of Integer Sequences (OEIS) while generating
many other similar sequences which are not present in OEIS and which are potentially interesting.
A key technical contribution of our work is the method for generation of first-order logic sentences
which is able to drastically prune the space of sentences by discarding large fraction of sentences
which would lead to redundant integer sequences.

1 Introduction

In this paper we are interested in integer sequences. As its name suggests, an integer sequence is a
sequence of integers a0, a1, a2, . . . , where ai ∈ Z for all i ∈ N. Integer sequences are fundamental
mathematical objects that appear almost everywhere in mathematics, ranging from enumerative combi-
natorics, where they count objects with certain properties, to mathematical analysis, where they define
functions by means of Taylor series, and in many other areas as well. There is even an encyclopedia
of them, called Online Encyclopedia of Integer Sequences (OEIS),1 whose offline predecessor was es-
tablished in 1964 by Neil Sloane (OEIS Foundation Inc., 2023). It contains more than 359k integer
sequences, as of January 2023. OEIS contains sequences that are of interest to professional or amateur
mathematicians.

1https://oeis.org, for a popular account of the place of OEIS in mathematics, we also refer to the article in Quanta Magazine:
https://www.quantamagazine.org/neil-sloane-connoisseur-of-number-sequences-20150806/.
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A typical mode of use of the OEIS database is as follows. Say, you work on a combinatorial problem,
counting undirected graphs on n vertices that have certain property that you care about, e.g., having all
vertex-degrees equal to 3. You manage to compute the numbers of these graphs for several small values
of n and you start wondering if someone did not study the same sequence of numbers. So you take the
values you computed and insert them into the search box on the OEIS homepage and hit search. After
that you receive all hits into OEIS and if you are lucky, one of them will tell you something interesting
about your problem—maybe somebody has already solved it or at least computed more elements of the
sequence.2

How do sequences get into OEIS? Sequences that are deemed interesting are manually submitted to
OEIS by users. Here, what is interesting is obviously subjective to a large extent. However, this is also a
limitation of OEIS—the first person to study certain sequence will not get much help by looking it up in
OEIS. Many quite natural sequences are not contained in OEIS. For instance, as observed by (Barvı́nek
et al., 2021), it contains sequences counting 2-regular graphs properly colored by 2 colors, but not 2-
regular graphs properly colored by 3 colors. There are many similar examples of interesting sequences
missing from OEIS, which might be potentially useful for some users. This is also the motivation for
the work we present here in which we develop an automated method for discovering arguably interesting
integer sequences.

We focus on combinatorial sequences, i.e., sequences which count objects of size n that have some
given property, which are the subject of interest of enumerative combinatorics (Stanley, 1986). Examples
of such combinatorial sequences include sequences counting: subsets of an n-element set, graphs on
n vertices, connected graphs on n vertices, trees on n vertices, permutations on n elements without
fixpoints etc. In particular, we focus on combinatorial sequences of structures that can be described
using a first-order logic sentence.

There are several advantages of working with combinatorial enumeration problems expressed in first-
order logic. First, even though it may sometimes require some effort, the first-order logic sentences can
be interpreted by the human users. For instance, the sentence ∀x ¬R(x, x) ∧ ∀x∀y R(x, y) ⇒ R(y, x)
can be interpreted as encoding undirected graphs without loops. Second, despite the fact that counting
the models of first-order logic sentences is generally intractable (Beame et al., 2015), there are well-
characterized non-trivial fragments of first-order logic for which counting is tractable (Van den Broeck,
2011; Van den Broeck, Meert, and Darwiche, 2014; Kuželka, 2021) with fast implementations available
(Van den Broeck, 2011; van Bremen and Kuželka, 2021).3 This means that we are able to compute the
respective combinatorial sequences fast.4

Our method has two stages. First, we generate first-order logic sentences from a tractable fragment.
Second, we compute sequences for each of the generated sentences and filter out sentences which give
rise to redundant sequences. It turns out that the first step is critical. As we demonstrate experimentally
later in this paper, if we generated sentences naively, i.e., if we attempted to generate all sentences of
length at most k that differ syntactically, we would have to compute such huge numbers of sequences,
most of them redundant, that we would never be able to get to the interesting ones. In the present paper,
we therefore focus mostly on describing the sentence-generating component of our system.

The rest of this paper is structured as follows. Section 2 describes the preliminaries from first-order
logic. Section 3 describes our approach to construct a database of sentences and the respective integer
sequences, which is evaluated in Section 4. The paper ends with related work in Section 5 and conclusion

2For instance, for undirected graphs with all vertex degrees equal to 3, one of the hits in OEIS would be sequence A002829:
Number of trivalent (or cubic) labeled graphs with 2n nodes.

3https://github.com/UCLA-StarAI/Forclift, https://www.comp.nus.edu.sg/∼tvanbr/software/fastwfomc.tar.gz
4Computational complexity of integer sequences that count combinatorial objects is an active research direction in enumer-

ative combinatorics, see, e.g., (Pak, 2018).
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in Section 6.

2 Preliminaries

We work with a function-free subset of first-order logic. The language is defined by a finite set of con-
stants ∆, a finite set of variables V and a finite set of predicates P . An atom has the form P (t1, . . . , tk)
where P ∈ P and ti ∈ ∆ ∪ V . A literal is an atom or its negation. A formula is an atom and a literal.
More complex formulas may be formed from existing formulas by logical connectives, or by surrounding
them with a universal (∀x) or an existential (∃x) quantifier where x ∈ V . A variable x in a formula is
called free if the formula contains no quantification over x. A formula is called a sentence if it contains
no free variables. A formula is called ground if it contains no variables.

As is customary in computer science, we adopt the Herbrand semantics (Hinrichs and Genesereth,
2006) with a finite domain. We use HB to denote the Herbrand base, i.e., the set all ground atoms. We
use ω to denote a possible world, i.e., any subset of HB. Elements of a possible world are assumed to
be true, all others are assumed to be false. A possible world ω is a model of a sentence φ (denoted by
ω |= φ) if the sentence is satisfied in ω.

2.1 Weighted First-Order Model Counting

To compute the combinatorial integer sequences, we make use of the weighted first-order model counting
(WFOMC) problem (Van den Broeck et al., 2011).

Definition 1. (Weighted First-Order Model Counting) Let φ be a sentence over some relational language
L. Let HB denote the Hebrand base of L over some domain of size n ∈ N. Let P be the set of the
predicates of the language L and let pred : HB 7→ P map each atom to its corresponding predicate
symbol. Let w : P 7→ R and w : P 7→ R be a pair of weightings assigning a positive and a negative
weight to each predicate in L. We define

WFOMC(φ, n,w,w) =
∑

ω⊆HB:ω|=φ

∏
l∈ω

w(pred(l))
∏

l∈HB\ω

w(pred(l)).

Example 1. Consider the sentence
φ = ∀x ¬E(x, x)

and the weights w(E) = w(E) = 1. Since all the weights are unitary, we simply count the number
of models of φ. We can interpret the sentence as follows: Each constant of the language is a vertex.
Each atom E(A,B) ∈ HB with A,B ∈ ∆ denotes an edge from A to B. Furthermore, the sentence
prohibits reflexive atoms, i.e, loops. Overall, the models of φ will be all directed graphs without loops on
n vertices. Hence, we obtain

WFOMC(φ, n,w,w) = 2n
2−n.

Example 2. Consider the sentence
φ = ∃x Heads(x)

and the weights w(Heads) = 4, w(Heads) = 1. Now, we can consider each domain element to be the
result of a coin flip. The sentence requires that there is at least one coin flip with the value of “heads”
(there exists a constant A ∈ ∆ such that Heads(A) is an element of the model). Suppose we have i > 0
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“heads” in the model. Then, the model’s weight will be 4i · 1n−i = 4i and there will be
(
n
i

)
such models.

Therefore,

WFOMC(φ, n,w,w) =
n∑
i=1

4i ·
(
n

i

)
= 5n − 1.

2.2 WFOMC in the Two-Variable Fragment

In order to make our calculations tractable, we limit the number of variables in each sentence to at most
two. Such language is known as FO2 and it allows computing WFOMC in time polynomial in the domain
size (Van den Broeck, 2011; Van den Broeck, Meert, and Darwiche, 2014). We provide a brief overview
of that tractability result.

When computing WFOMC in a lifted manner, we seek to avoid grounding the problem as much as
possible. Grounding first-order sentences often exponentially enlarges the problem and inherently leads
to many symmetrical subproblems.

Example 3. Consider the sentence

φ = ∀x (Smokes(x)⇒ Cancer(x)).

Grounding the sentence on the domain of size n ∈ N will produce a conjunction of n implications. Each
of those implications will have three models with atoms completely different from the atoms in models of
the other implications. Moreover, there will be bijections between the models of different implications.
Overall, we could have computed the model count in a much simpler way. For one particular constant,
there will be three distinct models. Since there are n constants, the final model count will be 3n.

To avoid repeating the computations on such symmetrical instances, we aim to decompose the WFOMC
problem into mutually independent parts with each needed to be solved only once. Cells of a logical
sentence whose WFOMC is to be computed allow such decomposition.

Definition 2 (Cell). A cell of an FO2 formula φ is a maximal consistent conjunction of literals formed
from atoms in φ using only a single variable.

Example 4. Consider the formula

φ = Smokes(x) ∧ Friends(x, y)⇒ Smokes(y).

Then there are four cells:

C1(x) = Smokes(x) ∧ Friends(x, x),

C2(x) = ¬Smokes(x) ∧ Friends(x, x),

C3(x) = ¬Smokes(x) ∧ ¬Friends(x, x),

C4(x) = Smokes(x) ∧ ¬Friends(x, x).

To simplify the WFOMC computation, we condition on cells in the following way:

ψij(x, y) = φ(x, y) ∧ φ(y, x) ∧ Ci(x) ∧ Cj(y),

ψk(x) = φ(x, x) ∧ Ck(x).

4



And we compute

rij = WMC(ψij(A,B), w′, w′),

wk = WMC(ψk(A), w, w),

where WMC is simply the propositional version of WFOMC, A,B ∈ ∆ and the weights (w′, w′) are
the same as (w,w) except for the atoms appearing in the cells conditioned on. Those weights are set to
one, since the weights of the unary and binary reflexive atoms are already accounted for in the wk terms.
Note that rij = rji.

Now, assuming there are p distinct cells, we can write

WFOMC(φ, n,w,w) =
∑

k∈Np:|k|=n

(
n

k

) ∏
i,j∈[p]:i<j

r
(k)i(k)j
ij

∏
i∈[p]

r
((k)i

2 )
ii w

(k)i
i . (1)

However, the approach above is only applicable for universally quantified FO2 sentences. To get
rid of existential quantifiers in the input formula, we can utilize specialized Skolemization for WFOMC
(Van den Broeck, Meert, and Darwiche, 2014). The procedure eliminates existential quantifiers by intro-
ducing new (fresh) Skolem predicates Sk with w(Sk) = 1 and w(Sk) = −1.

Example 5. Consider formulas

φ = ∀x∃y E(x, y),

ψ = ∀x∀y ¬E(x, y) ∨ Sk(x).

It holds that
WFOMC(φ, n,w,w) = WFOMC(ψ, n,w′, w′),

where
w(E) = w′(E),

w(E) = w′(E),

w′(Sk) = 1,

w′(Sk) = −1.

We refer the readers to (Van den Broeck, Meert, and Darwiche, 2014) for justification.

Due to Equation (1) combined with the specialized Skolemization procedure, WFOMC can be evaluated
in time polynomial in n for any FO2 sentence.

2.3 WFOMC in the Two-Variable Fragment with Counting Quantifiers

Although the language of FO2 permits a polynomial-time WFOMC computation, its expressive power is
naturally quite limited. The search for a larger logical fragments still permitting a polynomial complexity
is a subject of active research. One possibility to extend the FO2 while preserving its tractable property is
by adding counting quantifiers. Such language is known as C2 and its tractability was shown by Kuželka
(2021).

Counting quantifiers are a generalization of the traditional existential quantifier. For a variable x ∈ V ,
we allow usage of a quantifier of the form ∃=kx, where k ∈ N.5 Satisfaction of formulas with counting
quantifiers is defined naturally. For example, ∃=kx ψ(x) is satisfied in ω if there are exactly k constants
{A1, A2, . . . , Ak } ⊆ ∆ such that ω |= ψ(Ai) if and only if 1 ≤ i ≤ k.

5Kuželka (2021) actually proved the tractability for a more general version of the counting quantifiers, i.e., ∃./kx, where
./∈ {<,≤,=,≥, > }. However, the counting with inequalities does not scale very well—in fact, even the equalities turn out
to be computationally challenging—so we only work with equality in our counting quantifiers.
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To handle counting quantifiers, Kuželka (2021) suggested evaluating WFOMC repeatedly on many
points (domains). The values would be subsequently used in a polynomial interpolation. Instead, we
work with symbolic weights, which is, for all our purposes, equivalent to the polynomial interpolation.
We simply obtain the would-be-interpolated polynomial directly.6

When we have a sentence with counting quantifiers whose WFOMC is to be computed, first thing
to do is to convert the counting quantifiers to the traditional existential quantifier. That can be achieved
using yet another syntactic construct known as cardinality constraints. We allow the formula to contain
an atomic formula of the form (|P | = k),7 where P ∈ P is a predicate and k ∈ N. Intuitively speaking, a
cardinality constraint enforces that all models of a sentence contain exactly k atoms with the predicate P .

Example 6. Consider the sentences

φ = ∀x∃=1y E(x, y),

φ′ = (∀x∃y E(x, y)) ∧ (|E| = n).

Then it holds that
WFOMC(φ, n,w,w) = WFOMC(φ′, n, w,w)

for any weights (w,w).

Using transformations such as the one shown in Example 6, WFOMC of a C2 sentence φ can be reduced
to WFOMC of the sentence

φ′ = ψ ∧
m∧
i=1

(|Pi| = ki),

where ψ is an FO2 sentence. Then, for each cardinality constraint (|Pi| = ki), we define w′(Pi) = xi,
where xi is a new symbolic variable. For predicates Q ∈ P , which do not occur in any cardinality
constraint, we leave the positive weight unchanged, i.e., w′(Q) = w(Q).

Finally, we are ready to compute WFOMC(ψ, n,w′, w). The result will be a multivariate polynomial
over the symbolic variables introduced for each cardinality constraint. However, only one of its mono-
mials will carry the information about the actual WFOMC of the original C2 sentence.8 Namely, the
monomial

A ·
m∏
i=1

xeii

such that ei = ki for each cardinality constraint (|Pi| = ki).
Now, we can report the final WFOMC result of the original C2 sentence φ. Nevertheless, we must still

account for the positive weights that were replaced by symbolic variables when dealing with cardinality
constraints. Hence,

WFOMC(φ, n,w,w) = A ·
m∏
i=1

w(Pi)
ki .

6In Definition 1, we defined WFOMC for real-valued weights only. However, the extension to (multivariate) polynomials is
natural and does not break anything.

7Similarly to counting quantifiers, cardinality constraints can be generalized to (|P | ./ k) with ./ ∈ {<,≤,=,≥>}. See
(Kuželka, 2021) for the full treatment.

8When using counting quantifiers ∃=k with k > 0, we also need to take care of overcounting, which is described in detail
in (Kuželka, 2021).
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Example 7. Consider the sentence
φ = ∀x∃=1y E(x, y),

domain of size n = 5 and w(E) = w(E) = 1. Let us compute WFOMC(φ, n,w,w).
First, we get rid of the counting quantifier:

φ′ = (∀x∃y E(x, y)) ∧ (|E| = 5)

Second, we introduce a symbolic variable x as the positive weight of the E predicate:

w′(E) = x

Finally, we evaluate WFOMC(∀x∃y E(x, y), n, w′, w) and extract the coefficient of the term where x is
raised to the fifth power:

WFOMC(φ, n,w,w) = 3125.

Let us check the obtained result. We can interpret the formula φ as a directed graph with each vertex
having exactly one outgoing edge. For each vertex, there are n vertices that it could be connected to.
Hence, there are nn such graphs. For n = 5, we obtain 55 = 3125.

3 Constructing the Sequence Database

Our aim is to build a database consisting of first-order logic sentences and the respective integer se-
quences that are generated by these sentences. We do not want the database to be exhaustive in terms of
sentences. For any integer sequence, there may be many sentences that generate it9 and we want only one
sentence per integer sequence. If there are multiple sentences that generate the same integer sequence,
we call them redundant. We generally try to avoid generating redundant sentences.

The database is constructed in two steps. In the first step, we generate first-order logic sentences
and in the second step we compute the integer sequences that count the models of these sentences. In
this section, we describe these two steps in the reverse order. First we describe how the sequences,
which we will call combinatorial spectra, are computed from first-order logic sentences, which can be
done using existing lifted inference methods. Then we describe our novel sentence-generation algorithm
which strives to generate as few redundant sentences as possible.

3.1 Computing the Integer Sequences

Given a first-order logic sentence, we need to compute a number sequence such that its k-th member is
the model count of a relational sentence on the domain of size k. The set of domain sizes, for which
the sequence member would be non-zero is called a spectrum of the sentence. Spectrum of a logical
sentence φ is the set of natural numbers occurring as size of some finite model of φ (Börger, Grädel, and
Gurevich, 2001). Since the sequence that we seek builds, in some sense, on top of the spectrum, and
since the sequence can also be described as the result of the combinatorial interpretation of the original
sentence, we dub the sequence combinatorial spectrum of the sentence.

Definition 3 (Combinatorial Spectrum). Combinatorial spectrum of a logical sentence φ, denoted as
S(φ), is a sequence of model counts of φ on finite domains of sizes taking on values 1, 2, 3, 4, . . .

9Trivially, if we allowed arbitrary predicate names, we could even say that there are infinitely many sentences that generate
the same sequence.
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Example 8. Consider again the sentence

φ = ∃x Heads(x).

Then, all subsets of HB are a model of φ except for the empty set. Hence, for a domain of size n, there
will be 2n − 1 models, i.e,

S(φ) = 1, 3, 7, 15, . . .

Combinatorial spectra can be computed using a WFOMC algorithm. In this work we use our imple-
mentation of the algorithm from (van Bremen and Kuželka, 2021), which is a state-of-the-art algorithm
running in time polynomial in n for FO2. We use it together with our implementation of the reductions
from (Kuželka, 2021) which allow us to compute spectra of any C2 sentence in time polynomial in n.

3.2 Generating the First-Order Logic Sentences

In general, we aim to generate sentences that have the following syntactic form:10

∧
Q1 ∈ {∀, ∃,∃=1, . . . ,∃=K},
Q2 ∈ {∀,∃,∃=1, . . . ,∃=K}

M∧
i=1

Q1xQ2y ΦQ1,Q2
i (x, y)∧

∧
Q∈{∀,∃,∃=1,...,∃=K}

M ′∧
i=1

Qx ΦQ
i (x) (2)

where each ΦQ1,Q2
i (x, y) is a quantifier-free disjunction of literals containing only the logical variables

x and y and, similarly, each ΦQ
i (x) is a quantifier-free disjunction of literals containing only the logical

variable x. The integers K, M and M ′ are parameters.
Examples of sentences that have the form (2) are:

• ∀x∃=1y R(x, y) ∧ ∀x∃=1y R(y, x),

• ∀x ¬R(x, x) ∧ ∀x∀y ¬R(x, y) ∨R(y, x).

Here the first sentence defines bijections (i.e., permutations) and the second sentence defines undirected
graphs without loops.

Note 1. We will slightly abuse terminology and use the term clause for the quantified disjunctions of the
form Q1xQ2y ΦQ1,Q2

i (x, y) and Qx ΦQ
i (x), even though the term clause is normally reserved only for

universally quantified disjunctions.
10There are at least two Scott normal forms for C2 appearing in the literature (Grädel and Otto, 1999; Pratt-Hartmann,

2009), which would allow us to use less quantifier prefixes. However, these normal forms were not designed for combinatorial
counting—they were designed only to guarantee equisatisfiability of C2 sentences and their normal forms and they do not
guarantee combinatorial equivalence. That is why they would not be directly useful for us in this paper.
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3.2.1 Do We Cover All of C2?

A natural question to ask is: Do we get all possible combinatorial spectra of C2 sentences if we restrict
ourselves to sentences in the form of (2)? The answer seems to be negative, as we explain next, but it
hardly matters in our opinion because the task that we set for ourselves in this paper is not to generate
all combinatorial sequences of C2 sentences—this would not be feasible anyways because the number
of different integer sequences generated as spectra of C2 sentences is infinite.11 Instead, what we want
to achieve is to generate as many interesting integer sequences as possible within a limited time budget.

Now we briefly explain why sentences of the form (2) do not guarantee that we would be able
to find all C2 combinatorial spectra. First of all, we cannot rely on normal forms from (Grädel and
Otto, 1999; Pratt-Hartmann, 2009) because those were not designed to preserve model counts. While
the transformation presented in (Kuželka, 2021) allows one to reduce the computation of model counts
of any C2 sentence to a computation with sentences that are in the form of (2), it requires some of the
predicates to have negative weights. We do not allow negative weights in the generated sentences because
they make the post-hoc combinatorial explanation of the sentences significantly more difficult.

3.2.2 Traversing the Sentence Space

We use a standard breadth-first search algorithm to traverse the space of C2 sentences. The algorithm
starts with the empty sentence. In each layer of the search tree it generates all possible sentences that can
be obtained by adding a literal to one of the sentences generated in the previous layer. The literal may
be added into an existing clause or it can be added to the sentence as a new clause, in which case it also
needs to be prefixed with quantifiers.

Example 9. Suppose we have the sentence ϕ = ∀x∃y R(x, y), which we want to extend. Suppose also
that the only predicate in our language is the binary predicate R and that the only allowed quantifiers
are ∀ and ∃ (for simplicity). To extend ϕ, the first option we have is to add a new R-literal to the clause
∀x∃y R(x, y). There are 8 ways to do this resulting in the following sentences: ϕ1 = ∀x∃y (R(x, y) ∨
R(x, x)), ϕ2 = ∀x∃y (R(x, y) ∨ R(x, y)), ϕ3 = ∀x∃y (R(x, y) ∨ R(y, x)), ϕ4 = ∀x∃y (R(x, y) ∨
R(y, y)), ϕ5 = ∀x∃y (R(x, y) ∨ ¬R(x, x)), ϕ6 = ∀x∃y (R(x, y) ∨ ¬R(x, y)), ϕ7 = ∀x∃y (R(x, y) ∨
¬R(y, x)), ϕ8 = ∀x∃y (R(x, y) ∨ ¬R(y, y)). The second option is to create a new single-literal
clause and add it to ϕ. In this case we have the following: ϕ9 = ∀x∃y R(x, y) ∧ ∀x R(x, x), ϕ10 =
∀x∃y R(x, y)∧∃x R(x, x), ϕ11 = ∀x∃y R(x, y)∧∀x ¬R(x, x), ϕ12 = ∀x∃y R(x, y)∧∀x ¬R(x, x),
and then sentences of one of the following types: ∀x∃y R(x, y) ∧ Q1xQ2y R(x, y), ∀x∃y R(x, y) ∧
Q1xQ2y R(y, x), ∀x∃y R(x, y) ∧ Q1xQ2y ¬R(x, y), and ∀x∃y R(x, y) ∧ Q1xQ2y ¬R(y, x) where
Q1, Q2 ∈ {∀,∃}.

As can be seen from this example, the branching factor is large even when the first-order language of the
sentences contains just one binary predicate. However, if we actually computed the combinatorial spec-
tra of these sentences, we would see that many of them are redundant (we give a precise definition of this
term in the next subsection). Furthermore, if we were able to detect which sentences are redundant with-
out computing their spectra, we would save a significant amount of time. This is because computation
of combinatorial spectra, even though polynomial in n, is still computationally expensive. Moreover,
if we were able to remove some sentences from the search, while guaranteeing that all non-redundant
sentences would still be generated, we would save even more time. In the remainder of this section, we

11This is easy to see. In fact, even FO2 sentences generate infinitely many integer sequences. Take, for instance the sentences
ϕk of the form ϕk = ∃x

∨k
i=1 Ui(x). Their combinatorial spectra are S(ϕk) =

(
(2k)n − 1

)∞
n=1

. Hence, we have infinitely
many combinatorial spectra even for these simple sentences—one for each k ∈ N.
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describe such techniques—either techniques that mark sentences as just redundant, in which case we
will not compute their combinatorial spectra, or also as safe-to-delete, in which case we will not even
use them to generate new sentences. We will use the term not-safe-to-delete when we want to refer to
sentences which are redundant but not safe-to-delete.

3.2.3 What Does It Mean That a Sequence Is Redundant?

Given a collection of sentences S, a sentence ϕ ∈ S is considered redundant if there is another sentence
ϕ′ ∈ S and S(ϕ) = S(ϕ′), i.e., if the other sentence generates the same integer sequence. Since
checking whether two sentences have the same combinatorial spectrum is computationally hard (we give
details in the Appendix), we will only search for sufficient conditions for when two sentences generate
the same spectrum.

Apart from the above notion of redundancy, we also consider a sentence ϕ ∈ S redundant if there are
two other sentences ϕ′, ϕ′′ such that S(ϕ) = S(ϕ′) ·S(ϕ′′), where the product · is taken element-wise.
The rationale is that when this happens, the set of models of ϕ likely corresponds to the elements of the
Cartesian product of the models of ϕ′ and ϕ′′ (or, at least, there is a bijection between them), which is
not combinatorially very interesting.12

3.2.4 Detecting Redundant Sentences

Now that we explained what we mean by redundant sentences, we can move on to methods for detecting
whether a sentence is redundant and if it is then whether it is also safe-to-delete. We stress upfront that
the methods described in this section will not guarantee detecting all redundancies. On the other hand,
these methods will be sound—they will not mark non-redundant sentences as redundant. Some of the
techniques will mark a sentence as redundant but they will not give us a witness for the redundancy, i.e.,
other sentences with the same combinatorial spectrum. This will be the case for techniques that guarantee
that the witness is a shorter sentence (in the number of literals), which must have been generated earlier,
thus, we will know that by pruning the longer redundant sentences, we will not affect completeness of
the search.

The pruning methods that are used by our algorithm for generation of sentences are summarized in
Table 1. Some of them are rather straightforward and do not require much further justification here.

The method called Isomorphic Sentences is a straightforward extension of the methods for enumera-
tion of non-isomorphic patterns, known from data mining literature (see, e.g., (Nijssen and Kok, 2001)),
where the main difference is that when checking isomorphism, we allow renaming of predicates (the
details are described in the Appendix for completeness).

The method called Decomposable Sentences is based on the following observation, which is well-
known among others in lifted inference literature (Van den Broeck, 2011): Let ϕ = ϕ1 ∧ ϕ2 be a
first-order logic sentence. If ϕ1 and ϕ2 use disjoint sets of predicates then it is not hard to show that
S(ϕ) = S(ϕ1) ·S(ϕ2), where the product is taken element-wise and S(ϕ1) and S(ϕ2) are understood
to be computed only over the languages consisting of the predicates contained in ϕ1 and ϕ2, respectively.

While the method called Permuting Arguments may not need a more detailed explanation per se,
we will still illustrate it here on an example to provide a better intuition. Suppose that we have two
sentences: ϕ1 = ∀x∃y E(x, y) and ϕ2 = ∀x∃y E(y, x). The first one can be interpreted as modelling
directed graphs in which no vertex has out-degree 0 and the second one as modelling directed graphs in
which no vertex has in-degree 0. This interpretation was based on our decision to interpret E(x, y) as

12After all, one can always create such sequences in a post-processing step and interpret them as elements of the respective
Cartesian products if one so desires.

10



Table 1: Pruning techniques used in the algorithm for generation of non-redundant sentences.

Pruning Technique Name Short Description of the Idea
Sentences detected using the techniques described below are safe-to-delete.
Isomorphic Sentences Two sentences are isomorphic if one can be obtained from the other

by renaming variables and predicate names. See Appendix for details.
Decomposable Sentences If a sentence ϕ can be written as a conjunction ϕ = ϕ′ ∧ ϕ′′ of two

conjunctions with disjoint sets of predicates then ϕ is redundant. See
the main text for a justification.

Tautologies & Contradictions Any sentence which contains an always-true (i.e., tautological) clause
is redundant—there exists a shorter sentence with the same combina-
torial spectrum. All unsatisfiable sentences (contradictions) produce
the same combinatorial spectrum consisting of zeros and, hence, are
also redundant.

Negations If two sentences can be made isomorphic by negating all occurrences
of literals of some predicates, then they generate the same combinato-
rial spectra. For example, S(∀x∃y R(x, y)) = S(∀x∃y ¬R(x, y)).

Permuting Arguments Argument-flip on a predicate R is a transformation which replaces all
occurrences of R(x, y) by R(y, x) and all occurrences of R(y, x) by
R(x, y). If two sentences ϕ and ϕ′ can be made isomorphic using
argument flips, then they generate the same combinatorial spectra, i.e.,
S(ϕ) = S(ϕ′).

Sentences detected by techniques described below are not-safe-to-delete. We do not compute
combinatorial spectra for those sentences and do not store them in the database.
Trivial Constraints Suppose a sentence ϕ contains a clause of the form ∀x U(x) or

∀x∀y R(x, y), which we call a trivial constraint. Then the sentence
ϕ′ obtained from ϕ by dropping the trivial constraint and replacing all
occurrences of U or R, respectively by true, has the same combinato-
rial spectrum as ϕ.

Reflexive Atoms If a binary literalR appears in a sentence ϕ only asR(x, x), ¬R(x, x),
R(y, y) or ¬R(y, y) and ϕ has at least two literals, then the sentence
is redundant. See the main text for a justification.

Subsumption If a sentence ϕ contains two clauses Q1xQ2y α(x, y) and
Q1xQ2y β(x, y), with the same quantifier prefix, and if there is a sub-
stitution θ : {x, y} → {x, y} such that αθ ⊆ β, then ϕ is redundant—
the sentence ϕ′ obtained from ϕ by dropping Q1xQ2y β(x, y) gener-
ates the same combinatorial spectrum.

Cell Graph Isomorphism See the main text.
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an edge form x to y, yet we could have also interpreted it as an edge from y to x and this would change
nothing about the combinatorial spectrum of the sentence (which does not depend on how we interpret
the sentence). If we generalize this observation, we realize that sentences that differ only in the order of
arguments of some predicates (like ϕ1 and ϕ2 above) must generate the same combinatorial spectrum.

Next, we give little more detail on the method called Reflexive Atoms. If a sentence ϕ contains atoms
of some binary predicate R only in the form R(x, x) or R(y, y) then all the ground atoms R(i, j), where
i and j are domain elements and i 6= j, are unconstrained by ϕ. It follows that S(ϕ) = S(ϕ′) ·S(ϕ′′)
where ϕ′ = ∀x ¬R(x, x) and ϕ′′ is a sentence obtained by replacing all occurrences of R(x, x) by
UR(x) and occurrences of R(y, y) by UR(y) where UR is a fresh predicate. Here, ϕ′ accounts for all
possible configurations of the atoms R(i, j) with arguments i 6= j. It follows that such a sentence ϕ is
redundant.

The methods Tautologies & Contradictions, Negations, Trivial Constraints and Subsumption, do not
need any further explanation beyond what is in Table 1. The only remaining method, namely Cell Graph
Isomorphism, is described in the next subsection.

3.2.5 Cell Graph Isomorphism

The final pruning method of Table 1 called Cell Graph Isomorphism relies on a concept from the area
of lifted inference, originally intended for a more efficient evaluation of Equation (1). In (van Bremen
and Kuželka, 2021), the authors introduced a special structure called a cell graph to help them compute
WFOMC faster.

Definition 4 (Cell Graph). A cell graph Gφ of a sentence φ is a complete graph (V,E) such that

1. V is the set of cell labels { 1, 2, . . . , p },

2. each node i ∈ V has a label wi,

3. each edge, including loops, from node i to j has a label rij .

As one can observe from Equation (1), the WFOMC computation is fully determined by the terms rij
and wk. That remains unchanged even with the counting quantifiers, since then, only the symbolic result
of Equation (1) is further searched for particular monomials. Hence, the computation is fully determined
by a cell graph, which contains all the rij and wk values.

Building on that observation, we propose a pruning technique based on two cell graphs being iso-
morphic. If cell graphs of two sentences are isomorphic, then their WFOMC results will be the same,
and consequently, their combinatorial spectra will be the same as well. We formalize those claims below.

We start by discussing the simpler case where all weights are real-valued. That is enough to apply
this pruning method to FO2 sentences, and then we extend it to the case with symbolic weights, which
is needed for correct handling of sentences from C2.

First we define what we mean by cell graph isomorphism.

Definition 5 (Cell Graph Isomorphism, for graphs with real-valued weights). Let G and G′ be two cell
graphs where each edge {i, j} ∈ E(G) ({i′, j′} ∈ E(G′), respectively) is labeled by a real-valued
weight rij (r′i′j′ , respectively) and each vertex i ∈ V (G) (i′ ∈ V (G′)) is labeled by a real number wi
(w′i′). We say that G and G′ are isomorphic if there exists a bijection f : V (G) → V (G′) such that
w′i = wf(i) and r′ij = rf(i),f(j) for all i, j ∈ V (G).

In order to exploit the isomorphism, we will exploit the following interesting property of C1.
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Remark 1. Let p be again the number of cells in Equation (1) and let

f : [p]→ [p]

be a bijection. Then the following equality holds:∑
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In other words, permuting the cells, while preserving the structure of the weights, does not change the
resulting value.

Next we state the result which will justify using the cell graph isomorphism method for FO2 sen-
tences.

Theorem 1. Let φ and ψ be two FO2 sentences with weights (w,w) and (w′, w′), respectively, and let
Gφ and Gψ be their respective cell graphs. If Gφ is isomophic to Gψ, then

WFOMC(φ, n,w,w) = WFOMC(ψ, n,w,w)

for any domain size n ∈ N.

Proof sketch. The proof follows from the following observation: Let f be the bijection f : V (Gφ) →
V (Gψ) preserving weights, which must exist from the definition of cell graph isomorphism. Consider
the equation for computing WFOMC of a sentence from its cell graph, Equation (1). If we apply the
bijection f on the cell indices (i’s and j’s from the equation), it will turn the equation for computing
WFOMC of φ to the one for ψ (again because f is weight-preserving bijection). It follows from Remark
1 that these two must be the same and therefore WFOMC of φ and ψ must be equal for any domain
size n.

Next we extend the cell graph isomorphism method to C2 sentences. For that, we first need to extend
the definition of cell graphs and of cell graph isomorphism.

Definition 6 (Cell Graph with Cardinality Constraints). A cell graph Gφ of a sentence φ is a pair (G,C)
consisting of:

1. A complete graph G = (V,E) such that

(a) V is the set of cell labels { 1, 2, . . . , p },
(b) each node i ∈ V has a label wi,

(c) each edge, including loops, from node i to j has a label rij .

Here the weights wi and rij are, in general, multivariate polynomials.

2. A set C of monomials representing the cardinality constraints.

13



Example 10. Consider the sentence

φ = (∀x ¬E(x, x)) ∧ (∀x∀y ¬E(x, y) ∨ E(y, x)) ∧ (|E| = 10)

which models undirected graphs with 5 edges. There is only one cell which is consistent with φ for this
sentence, ¬E(x, x). As we already saw in Example 7, to encode the cardinality constraint |E| = 5, we
need to introduce the symbolic weight w(E) = x. The cell graph then consists of the graph given by the
the weights w1 = 1, r1,1 = 1 + x2, and of the singleton set C = {x10}, representing the cardinality
constraint.

Now we are ready to state the definition of cell graph isomorphism for FO2 sentences with cardinality
constraints (which is all we need to encode C2 sentences).

Definition 7 (Cell Graph Isomorphism, for graphs with symbolic weights and cardinality constraints).
Let (G,C) and (G′, C ′) be two cell graphs with cardinality constraints where each edge {i, j} ∈ E(G)
({i′, j′} ∈ E(G′), respectively) is labeled by a multivariate polynomial rij (r′i′j′ , respectively) and each
vertex i ∈ V (G) (i′ ∈ V (G′)) is labeled by a multivariate polynomial wi (w′i′). We say that G and
G′ are isomorphic if there exists a bijection f : V (G) → V (G′) and another bijection g mapping
variables occurring in the polynomials in (G,C) to variables occurring in the polynomials in (G′, C ′)
which satisfy the following conditions:

1. w′i = g(wf(i)),

2. r′ij = g(rf(i),f(j)) for all i, j ∈ V (G),

3. C ′ = g(C).

The above definition is more complicated than the one for cell graphs of FO2 sentences because we need
to make sure that when we discover an isomorphism of the cell graph, it will not “break” the cardinality
constraints.

Finally we are ready to formally show that cell graph isomorphism can be used also for C2 sentences.

Theorem 2. Let φ and ψ be two C2 sentences and φ′ and ψ′ be their encoding into FO2 sentences with
cardinality constraints. Let (Gφ′ , Cφ′) and (Gψ′ , Cψ′) be their respective cell graphs with constraints.
If (Gφ′ , Cφ′) is isomorphic to (Gψ′ , Cψ′), then

WFOMC(φ, n,w,w) = WFOMC(ψ, n,w,w)

for any domain size n ∈ N and any weights (w,w).

Proof. The proof is a straightforward extension of the proof of Theorem 1.

Therefore, it is enough to output just one sentence from each equivalence class induced by cell graph
isomorphism. However, as is already stated in Table 1, sentences with isomorphic cell graphs are not-
safe-to-delete, meaning that combinatorial spectrum is computed only for one member of the induced
equivalence class, but all the members are used to further expand the search space.

4 Experiments

In this section, we experimentally evaluate the effectiveness of the techniques for constructing the
database of integer sequences described in Section 3.2 within a reasonable amount of time. Further-
more, we take a closer look at a few interesting generated C2 sentences whose combinatorial spectra
appear in OEIS. Finally, we investigate a few sentences whose combinatorial spectra do not appear in
OEIS.
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4.1 Filling the Database of Integer Sequences

We ran two separate experiments with generators of FO2 and C2 sentences. We set a time-limit of five
minutes for the computation of combinatorial spectra per sentence; results for these experiments are
depicted in Figure 1 and Figure 2 for FO2 and C2, respectively. Our aim with these experiments was to
assess the effect of the pruning techniques that we proposed.

We started with a baseline consisting of just the method that filters out sentences which are isomor-
phic (using the standard notion of isomorphism used in pattern mining literature, which does not consider
renaming predicates (Nijssen and Kok, 2001)) and with pruning of decomposable sentences—these are
the very essentials any reasonable method would probably implement. Then we enhanced the baseline
with Tautologies & Contradiction. In a similar fashion, we added a single pruning technique on top of the
previous one in the following order: Isomorphic Sentences, Negations, Permuting Arguments, Reflexive
Atoms, Subsumption, Trivial Constraints, and Cell Graph Isomorphism. It can be seen that our methods
reduce both the runtime and the number of generated sentences by orders of magnitude.

The pruning techniques help to scale up the process of filling the database in two ways. Whereas the
naive approach (e.g. baseline) generates a lot of sentences fast, soon consuming all available memory,
safe-to-delete techniques lower the memory requirements significantly. All pruning techniques consume
some computation time, but that is negligible compared to the time needed for computing combinatorial
spectra, which is the most time-demanding part of the task; see Figure 1c and Figure 1b, respectively.
Since the pruning methods, including those which are not-safe-to-delete, reduce the number of compu-
tations of combinatorial spectra, their use quickly pays off, as can be clearly seen from Figure 1b and
Figure 2b which show the estimated13 time to fill in the database.

Figure 1a and Figure 2a also show a lower bound on the number of unique combinatorial spectra,14

i.e. the minimum number of non-redundant sentences that would fill the database with the same number
of unique integer sequences.

We refer to the Appendix B.3 for detailed information about the setup of the experiments and Ap-
pendix C for more experiments of the pruning techniques.

4.2 An Initial Database Construction

Apart from the experiments in which we compared the benefits of the proposed pruning methods, we
also used our algorithm to generate an initial database of combinatorial sequences. For that we let the
sentence generator run for five days to obtain a collection of sentences and their combinatorial spectra
on a machine with 500 GB RAM, 128 processors (we used multi-threading). We used a five-minute time
limit for combinatorial spectrum computation of a sequence.

The result was a database containing over 26,000 unique integer sequences. For each of the sequences
in our database, we queried OEIS to determine if the sequence matches a sequence which is already in
OEIS. We found that 301 of the sequences were present in OEIS—this makes ≈1.2% of the sequences
we generated. This may not sound like much, but it is certainly non-negligible. Moreover, our goal was
to generate primarily new sequences. We show several interesting generated sequences that happened to
be in OEIS in Table 2.

An example of an interesting sequence is the last one in Table 2. This sequence does not have any
combinatorial characterization in OEIS. We can obtain such a characterization from the C2 sentence

13Since the methods which do not use the full set of our pruning techniques, generate an extremely high number of (mostly
redundant) sentences, computing their spectra would take thousands of hours. Therefore, we only estimated the runtime by
computing the spectra only for a random sample of sentences for these methods.

14Computing spectra for sentences with more than five literals is time demanding, so we estimated the upper levels with only
a random sample of longer sentences. Therefore we show the lower bound of spectra only for the fully evaluated levels.
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Figure 1: Cumulative # of FO2 sentences (a), the expected time to fill in the database (b), and the time needed to
generate sentences (c) with up to x literals. At most five literals per clause, at most two clauses per sentence, one
unary, and one binary predicate.
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16



Table 2: A sample of sequences that are combinatorial spectra of sentences generated by our algorithm that also
appear in OEIS.

Sentence OEIS ID OEIS name
(∀x∃=1yB(x, y)) ∧ (∀x∃=1yB(y, x)) ∧
(∀x∀yB(x, x) ∨B(x, y) ∨ ¬B(y, x))

A85 Number of self-inverse permutations on n
letters, also known as involutions; number
of standard Young tableaux with n cells.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) A142 Factorial numbers: n! = 1 · 2 · 3 · 4 · ... · n
(order of symmetric group Sn, number of
permutations of n letters).

(∀xB(x, x)) ∧ (∀x∃=1y¬B(x, y)) ∧
(∀x∃=1y¬B(y, x))

A166 Subfactorial or rencontres numbers, or de-
rangements: number of permutations of n
elements with no fixed points.

(∀x∀yB(x, y)∨¬B(y, x))∧(∃xB(x, x))∧
(∀x∃=1y¬B(x, y))

A1189 Number of degree-n permutations of order
exactly 2.

(∀x∀y U(x)∨B(x, y))∧ (∀x∀y ¬U(x)∨
B(y, x))

A47863 Number of labeled graphs with 2-colored
nodes where black nodes are only con-
nected to white nodes and vice versa.

(∀x B(x, x)) ∧ (∀x∃y ¬B(x, y)) ∧
(∀x∃y ¬B(y, x))

A86193 Number of n × n matrices with entries in
{0, 1} with no zero row, no zero column
and with zero main diagonal.

(∀x∀y U(x) ∨ ¬U(y) ∨ B(x, y)) ∧
(∀x∃=1y ¬B(x, y))

A290840 a(n) = n! · [xn] exp(n·x)
1+LambertW (−x) .

that generated it:15 (∀x∀y U(x) ∨ ¬U(y) ∨ ¬B(x, y)) ∧ (∀x∃=1y B(x, y)). This can be interpreted
as follows: We are counting configurations consisting of a function b : [n] → [n] and a set U ⊆ [n]
that satisfy that if y = b(x) and y ∈ U then x ∈ U . While this may not be a profound combinatorial
problem, it provides a combinatorial interpretation for the sequence at hand—we would not be able to
find it without the database.

Next we discuss several examples of arguably natural combinatorial sequences that were constructed
by our algorithm which are not present in OEIS. The first of these examples is the sequence 0, 0, 6, 72,
980, 15360, . . . generated by the sentence (∀x ¬B(x, x))∧ (∃x∀y ¬B(y, x))∧ (∀x∃=1y B(x, y)). We
can interpret it as counting the number of functions f : [n] → [n] without fixed points and with image
not equal to [n]. Another example is the sequence 1, 7, 237, 31613, 16224509, 31992952773, . . . , which
corresponds to the sentence (∀x∃y B(x, y)) ∧ (∃x∀y B(x, y) ∨B(y, x)) and counts directed graphs on
n vertices in which every vertex has non-zero out-degree and there is a vertex that is connected to all
other vertices (including to itself) by either an outgoing or incoming edge. Yet another example is the
sequence 1, 5, 127, 12209, 4329151, 5723266625, . . . , corresponding to the sentence (∀x∃y B(x, y))∧
(∃x∀y B(x, y)), which counts directed graphs where every vertex has non-zero out-degree and at least
one vertex has out-degree n, which is also the same as the number of binary matrices with no zero rows
and at least one row containing all ones. These examples correspond to the simpler structures in the
database, there are others which are more complex (and also more difficult to interpret). For example,
another sequence 0, 3, 43, 747, 22813, 1352761, . . . constructed by our algorithm, given by the sentence
(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨ B(y, x)) ∧ (∃x∀y ¬B(x, y) ∨ ¬U(y)) ∧ (∃x∃y B(x, y)), counts
undirected graphs without loops with at least one edge and with vertices labeled by two colors, red and

15For easier readability, we replaced the predicate B by its negation, which does not change the spectrum.
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black (red corresponding to U(x), and black corresponding to ¬U(x)) such that there is at least one
vertex not connected to any of the red vertices (note that this vertex can itself be red). We could keep on
listing similar sequences, but we believe the handful we showed here give sufficient idea about the kind
of sequences one could find in the database constructed by our system.

5 Related Work

To our best knowledge, there has been no prior work on automated generation of combinatorial se-
quences. However, there were works that intersect with the work presented in this paper in certain
aspects. The most closely related are works on lifted inference (Poole, 2003; Gogate and Domingos,
2011; Van den Broeck, 2011; Van den Broeck, Meert, and Darwiche, 2014; Beame et al., 2015; Kuželka,
2021); this work would not be possible without lifted inference. We directly use the algorithms, even
though re-implemented, as well as the concept of cell graphs from (van Bremen and Kuželka, 2021).
The detection of isomorphic sentences is similar to techniques presented in (van Bremen et al., 2021),
however, that work focused on propositional logic problems, whereas here we use these techniques for
problems with first-order logic sentences. There were also works on automated discovery in mathemat-
ics, e.g. (Colton, 2002; Davies et al., 2021) or the database http://sequencedb.net, but as far as we know,
none in enumerative combinatorics that would be similar to ours. The closest line of works at the inter-
section of combinatorics and artificial intelligence are the works (Suster et al., 2021) and (Totis et al.,
2023). However, those works do not attempt to generate new sequences or new combinatorics results,
as they mostly aim at solving textbook-style combinatorial problems, which is still a highly non-trivial
problem too, though. Finally, there are several recent works that use OEIS sequences as inputs for pro-
gram synthesis, e.g., (D’Ascoli et al., 2022; Gauthier, Olšák, and Urban, 2023). The goal of such works
is orthogonal to ours and it would be interesting to see whether we could get interesting synthesized
programs if we used our combinatorial sequences, which are not present in OEIS, to these systems.

6 Conclusion

We have introduced a method for constructing a database of integer sequences with a combinatorial in-
terpretation and used it to generate a small initial database consisting of more than 26k unique sequences,
of which a non-negligible fraction appears to have been studied, which is a sign that we are able to gen-
erate interesting integer sequences automatically. Our approach has two key components: an existing
lifted-inference algorithm (van Bremen and Kuželka, 2021) that computes sequences from first-order
logic sentences and the new method for generation of first-order sentences which successfully prunes
huge numbers of redundant sentences.

A Implementation Details

We implemented the sentence generator described in Section 3.2 with all of the pruning techniques from
Table 1 in Java using the following dependencies: Sat4J16, supertweety17, and Prover918. A pseudocode
of the algorithm generating sentences is depicted in Algorithm 1; the output sentences contains all gen-

16https://www.sat4j.org/
17https://github.com/supertweety/LogicStuff
18https://www.cs.unm.edu/∼mccune/prover9/
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Algorithm 1 Pseudocode of the C2 sentence generator
Parameter: literals limit as ML, clauses limits as MC, # unary and binary predicates as UP and BP
Output: sentences

1: sentences← ∅
2: hidden← ∅
3: layer← {∅}
4: for i ∈ [1, 2, 3, . . . ,ML×MC] do
5: nextLayer← ∅
6: for sentence ∈ layer do
7: for child ∈ refinements(sentence, ML, MC, UP , BP ) do
8: if is-redundant(child, sentences ∪ hidden) then
9: if is-safe-to-delete(child, sentences ∪ hidden) then

10: discard the sentence child
11: else
12: nextLayer← nextLayer ∪{child}
13: hidden← hidden ∪{child}
14: end if
15: else
16: nextLayer← nextLayer ∪{child}
17: sentences← sentences ∪{child}
18: end if
19: end for
20: end for
21: layer← nextLayer
22: end for
23: return sentences

erated C2 sentences which are further inserted into the database and their combinatorial spectra are
computed.

To avoid the possibility of getting stuck while checking whether a sentence is a tautology, a contra-
diction, or neither of those, we use a short time limit, i.e. 30 seconds, for Prover9’s execution, using it
effectively as a soft filter. In general, the check is an undecidable problem, and for C2 it is NEXPTIME-
complete (Pratt-Hartmann, 2005).

The WFOMC computation, including cell graph construction and C2-related reductions, was imple-
mented in the Julia programming language (Bezanson et al., 2017). We made use of the Nemo.jl package
Fieker et al. (2017) for polynomial representation and manipulation.

A.1 OEIS Hits

Table 3 shows all OEIS hits found during the initial database construction described in Section 4.2.

B Further Details

In this section, we discuss remaining technical issues.
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B.1 Complexity of Combinatorial Equivalence

The problem of deciding whether two sentences have the same combinatorial spectrum is no easier than
checking whether they are equivalent, which can be seen as follows. Let one of the sentences be a con-
tradiction. Checking whether the other sentence has the same combinatorial spectrum, i.e., 0, 0, 0, . . . ,
is equivalent to checking whether it is also a contradiction. This is only a complexity lower bound, but it
already shows that checking equivalence of combinatorial spectra of C2 sentences is NEXPTIME-hard,
which follows from the classical results on the complexity of satisfiability checking in C2 Pratt-Hartmann
(2005). The exact complexity of deciding whether two C2 sentences generate the same combinatorial
spectra remains an interesting open problem.

B.2 Isomorphism of Sentences

Here, we give a formal definition of isomorphism of two C2 sentences. We only consider sentences in
the form described in Section 3.2:

∧
Q1 ∈ {∀, ∃,∃=1, . . . ,∃=K},
Q2 ∈ {∀,∃,∃=1, . . . ,∃=K}

M∧
i=1

Q1xQ2y ΦQ1,Q2
i (x, y)∧

∧
Q∈{∀,∃,∃=1,...,∃=K}

M ′∧
i=1

Qx ΦQ
i (x). (3)

where each ΦQ1,Q2
i (x, y) and ΦQ

i (x) is a disjunction of literals.
We say that the clause Q1xQ2y Φ(x, y) is isomorphic to the clause Q′1xQ

′
2y Ψ(x, y) if one of the

following conditions holds:

1. If Q1 = Q′1 = Q2 = Q′2 and there exists a bijection f : {x, y} → {x, y} such that the set of
literals of f(Φ(x, y)) is the same as the set of literals of Ψ(x, y).

2. If Q1 = Q′1 6= Q2 = Q′2 and the set of literals of Φ(x, y) is the same as the set of literals of
Ψ(x, y).

We say that two sentences of the form (2) are isomorphic if, for every clause from one sentence, we
can find a clause from the other sentence which it is isomorphic to.

Finally, we extend this with isomorphism that allows renaming predicates: We say that two sen-
tences of the form (3) are isomorphic by renaming of predicates if there exists a bijection between their
predicates that makes the two sentences isomorphic according to the definition of isomorphism above.

B.3 Experiments Setup

This section contains all details needed to reproduce experiments done in Section 4. Namely, the FO2

experiment visualized in Figure 1 had the following language restrictions: at most five literals per clause,
at most two clauses per sentence, at most one unary and one binary predicate.

These restrictions also apply to the second experiment visualized in Figure 2 which concerned C2

with k ≤ 1, i.e. only quantifiers of type ∀x∃k=1y, ∃k=1x, etc. We further forbid tuples of quantifiers
where one is in the form ∃=kx and the other is either ∃=ly or ∃y, i.e. ∃x∃=ky, ∃=kx∃y, ∃=kx∃=ly.
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Figure 3: Cumulative # of FO2 sentences (a) and the time needed to generate sentences (b) with up to x literals.
At most six literals per clause, at most two clauses per sentence, one unary, and one binary predicate.

Those three combinations do not scale well, so we would not be able to compute their combinatorial
spectra within the five-minute limit we used for filling in the database. For the same reason, we restricted
the number of literals to at most one in a clause with a counting quantifier.

Each sentence generator was executed with 51GB of memory and 48 hours of computation time. A
missing part of a curve means that the corresponding generator exceeded one of the limits.

C Further Evaluation of Pruning Techniques

We ran two more experiments that were focused purely on the presented pruning techniques rather than
on the construction of a database of integer sequences.

The first experiment concerns the generation of FO2 and C2 sentences with up to six literals per
a clause; the rest of the setup stays the same as in Appendix B.3. We did not compute combinatorial
spectra for those sentences, thus we only show the number of generated sentences and the runtime of
sentence generators for FO2 and C2 in Figure 3 and Figure 4, respectively.

Finally, we ran a setup with two unary and two binary predicates, with at most three clauses, and at
most two literals per clause; results for FO2 and C2 are shown in Figure 5 and Figure 6, respectively.
This last setup was the hardest due to the higher branching factor w.r.t. the previous ones.

The experiments clearly confirm the usefulness of the proposed pruning techniques.
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Kuželka, O. 2021. Weighted first-order model counting in the two-variable fragment with counting
quantifiers. Journal of Artificial Intelligence Research 70:1281–1307.

Nijssen, S., and Kok, J. N. 2001. Faster association rules for multiple relations. In Nebel, B., ed.,
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001,
Seattle, Washington, USA, August 4-10, 2001, 891–896. Morgan Kaufmann.

OEIS Foundation Inc. 2023. The on-line encyclopedia of integer sequences, published electronically at
http://oeis.org.

Pak, I. 2018. Complexity problems in enumerative combinatorics. In Proceedings of the International
Congress of Mathematicians: Rio de Janeiro 2018, 3153–3180. World Scientific.

Poole, D. 2003. First-order probabilistic inference. In Gottlob, G., and Walsh, T., eds., IJCAI-03,
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, 985–991. Morgan Kaufmann.

Pratt-Hartmann, I. 2005. Complexity of the two-variable fragment with counting quantifiers. Journal of
Logic, Language, and Information 369–395.

Pratt-Hartmann, I. 2009. Data-complexity of the two-variable fragment with counting quantifiers. Infor-
mation and Computation 207(8):867–888.

Stanley, R. P. 1986. What is enumerative combinatorics? In Enumerative combinatorics. Springer. 1–63.

Suster, S.; Fivez, P.; Totis, P.; Kimmig, A.; Davis, J.; De Raedt, L.; and Daelemans, W. 2021. Mapping
probability word problems to executable representations. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, 3627–3640.

Totis, P.; Davis, J.; De Raedt, L.; and Kimmig, A. 2023. Lifted reasoning for combinatorial counting.
Journal of Artificial Intelligence Research 76:1–58.
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Table 3: A bigger sample of OEIS hits.

Sentence OEIS ID OEIS name
(∃=1x U(x)) A27 The positive integers. Also called the nat-

ural numbers, the whole numbers or the
counting numbers, but these terms are am-
biguous.

(∀x U(x)∨¬U(x))∧(∀x ¬U(x)∨U(x)) A79 Powers of 2: a(n) = 2n.
(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y B(x, y) ∨ ¬B(y, x))

A85 Number of self-inverse permutations on n
letters, also known as involutions; number
of standard Young tableaux with n cells.

(∀x∃y ¬B(y, x)) ∧ (∃x∃y ¬B(x, y)) ∧
(∀x∃=1y ¬B(x, y))

A142 Factorial numbers: n! = 1∗2∗3∗4∗ ...∗n
(order of symmetric group Sn, number of
permutations of n letters).

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y B(x, y) ∨B1(x, y))

A165 Double factorial of even numbers:
(2n)!! = 2n ∗ n!.

(∀x ¬U(x) ∨ ¬B(x, x)) ∧
(∀x∃=1y ¬B(x, y))

A169 Number of labeled rooted trees with n
nodes: nn−1.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∃=1x B(x, x))

A240 Rencontres numbers: number of permuta-
tions of [n] with exactly one fixed point.

(∀x U(x) ∨ U1(x)) A244 Powers of 3: a(n) = 3n.
(∀x∀y B(x, y) ∨ ¬B(x, x)) ∧
(∀x∃=1y ¬B(y, x))

A248 expansion of e.g.f. exp(x ∗ exp(x)).

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y B(x, x) ∨ ¬B(x, y) ∨ ¬B(y, x))

A266 expansion of e.g.f. exp(−
x2

2
)

1−x .

(∃x∃yB(x, y)) ∧ (∀x∃=1y B(x, y)) A312 a(n) = nn; number of labeled mappings
from n points to themselves (endofunc-
tions).

(∀x U(x)∨U1(x))∧ (∀x U(x)∨U2(x)) A351 Powers of 5: a(n) = 5n.
(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y ¬B(x, x) ∨ U(x) ∨B(x, y))

A354 expansion of e.g.f. exp(−x)1−2∗x .

(∀x∃y U(x) ∨ U1(y)) ∧ (∀x∀y U1(x) ∨
¬U1(y) ∨ U2(x))

A400 Powers of 6: a(n) = 6n.

(∀x U(x) ∨ U1(x) ∨ U2(x)) A420 Powers of 7: a(n) = 7n.
(∀x∃y B(x, y))∧ (∀x B(x, x)∨U(x))∧
(∀x∃=1y B(y, x))

A522 Total number of ordered k-tuples (k =
0..n) of distinct elements from an n-
element set: a(n) =

∑
k=0..n

n!
k! .

(∀x U(x)∨U1(x)∨U2(x))∧(∀x U(x)∨
U3(x))

A1020 Powers of 11: a(n) = 11n.

(∀x U(x) ∨ U1(x) ∨ U2(x) ∨ U3(x)) A1024 Powers of 15.
(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∃xB(x, x)) ∧ (∀x∃=1y ¬B(x, y))

A1189 Number of degree-n permutations of order
exactly 2.

(∀x∃=1y ¬B(y, x)) ∧ (∃=1x∀yB(x, y)) A1804 a(n) = n! ∗ C(n, 2).
(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x ¬B(x, x) ∨ U(x) ∨ U1(x))

A1907 expansion of e.g.f. exp(−x)(1−4∗x) .
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Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x U(x) ∨ U1(x)) ∧ (∃=1x ¬U(x)) ∧
(∃=1x ¬U1(x))

A2378 Oblong (or promic, pronic, or heterome-
cic) numbers: a(n) = n ∗ (n+ 1).

(∀x B(x, x) ∨ ¬B(x, x)) A2416 a(n) = 2n
2
.

(∃x ¬B(x, x)) ∧ (∃x∀y ¬B(y, x)) A5019 The number of n X n (0,1)-matrices with
a 1-width of 1.

(∀x U(x) ∨ U1(x)) ∧ (∀x∀y ¬U(x) ∨
U2(y))

A5056 a(n) = 3n + 2n − 1.

(∀x∀y U(x) ∨ U1(y)) ∧ (∃x U(x)) ∧
(∀x∀y U(x) ∨ U2(y))

A5367 a(n) = 2 ∗ (2n + 1) ∗ (2n+1 − 1).

(∀x∀y B(x, y) ∨ ¬B(y, x)) A6125 a(n) = 2
n∗(n−1)

2 .
(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x∃y B(x, y)) ∧ (∃xB(x, x))

A6129 a(0), a(1), a(2), ... satisfy
∑

k=0..n a(k) ∗
binomial(n, k) = 2binomial(n,2), for n ≥
0.

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x)) ∧ (∀x∀y ¬B(x, y) ∨ U(x))

A6896 a(n) is the number of hierarchical linear
models on n labeled factors allowing 2-
way interactions (but no higher order inter-
actions); or the number of simple labeled
graphs with nodes chosen from an n-set.

(∀x∀y U(x)∨B(x, y))∧(∀x∀y B(x, y)∨
¬B(y, x))

A6898 a(n) =
∑

k=0..nC(n, k) ∗ 2
k∗(k+1)

2 .

(∀x∀y B(x, x) ∨ B(y, y)) ∧
(∀x∃=1y ¬B(x, y))

A7778 a(n) = nn+1.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x B(x, x) ∨ U(x) ∨ U1(x))

A10845 a(n) = 3 ∗ n ∗ a(n− 1) + 1, a(0) = 1.

(∀x∃y U(x) ∨ B(x, y)) ∧
(∀x∃=1y B(y, x)) ∧ (∃=1x ¬U(x)) ∧
(∃=1x ¬B(x, x))

A11379 a(n) = n2 ∗ (n+ 1).

(∀x U(x)∨U1(x)∨U2(x))∧(∀x ¬U(x)∨
U3(x))

A11557 Powers of 10: a(n) = 10n.

(∀x ¬B(x, x))∧ (∀x∃y B(x, y)∨U(x)∨
U1(y)) ∧ (∀x∀y ¬B(x, y) ∨B(x, x))

A20515 a(n) = 4n − 2n + 1.

(∀x∃y U(x) ∨ U1(y)) ∧ (∃x U(x) ∨
U2(x) ∨ U3(x))

A20518 10th cyclotomic polynomial evaluated at
powers of 2.

(∃x U(x)∨U1(x))∧(∃x ¬U(x)∨U2(x)) A20540 a(n) = 8n+1 − 2n+2.
(∀x∀y U(x) ∨ U(y) ∨ U1(x) ∨ ¬U1(y)) A27649 a(n) = 2 ∗ (3n)− 2n.
(∀x∀y U(x) ∨ U1(y)) ∧ (∀x∀y ¬U(x) ∨
U2(y))

A33484 a(n) = 3 ∗ 2n − 2.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y B(x, x) ∨ U(x) ∨ ¬U(y))

A33540 a(n + 1) = n ∗ (a(n) + 1) for n ≥ 1,
a(1) = 1.

(∀x∃=1y B(x, y)) ∧ (∀x B(x, x) ∨
U(x)) ∧ (∀x ¬B(x, x)) ∧
(∃=1x∀y ¬B(y, x))

A37184 Functional digraphs with 1 node not in the
image.
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Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∃xB(x, x)) ∧ (∃x∃yB(x, y)) ∧
(∀x∃=1y B(y, x))

A45531 Number of sticky functions: endofunc-
tions of [n] having a fixed point.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∃x∃yB(x, y) ∨ U(x) ∨ U1(x))

A47053 a(n) = 4n ∗ n!.

(∀x∀y B(x, y) ∨B(y, x)) A47656 a(n) = 3
n2−n

2 .
(∀x∀y U(x)∨B(x, y))∧ (∀x∀y ¬U(x)∨
B(y, x))

A47863 Number of labeled graphs with 2-colored
nodes where black nodes are only con-
nected to white nodes and vice versa.

(∀x∃y ¬B(x, y)) ∧ (∀x∃y ¬B(y, x)) A48291 Number of 0, 1 n X n matrices with no
zero rows or columns.

(∀x U(x) ∨ U1(x) ∨ U2(x)) ∧
(∀x∀y ¬U(x) ∨ ¬U1(y))

A48473 a(0) = 1, a(n) = 3∗a(n−1)+2; a(n) =
2 ∗ 3n − 1.

(∃x ¬B(x, x)) ∧ (∀x∃=1y B(x, y)) A48861 a(n) = nn − 1.
(∀x B(x, x)) ∧ (∀x∃y B(x, y)) A53763 a(n) = 2n

2−n.
(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∃xB(x, x)) ∧ (∀x ¬B1(x, x))

A53764 a(n) = 3n
2−n.

(∀x∃y ¬B(y, x)) A55601 Number of n X n binary matrices with no
zero rows.

(∀x∃=1y B(x, y)) ∧ (∀x B(x, x) ∨
U(x)) ∧ (∃x ¬U(x))

A55869 a(n) = (n+ 1)n − nn.

(∀x∃=1y B(x, y)) ∧ (∃=1x B(x, x)) A55897 a(n) = n ∗ (n− 1)n−1.
(∀x U(x) ∨ U1(x)) ∧ (∃x U(x)) ∧
(∃x U1(x))

A58481 a(n) = 3n − 2.

(∀x U(x) ∨ U1(x)) ∧ (∃x ¬U(x)) ∧
(∃=1x ¬U1(x))

A58877 Number of labeled acyclic digraphs with n
nodes containing exactly n − 1 points of
in-degree zero.

(∀x∀y U(x) ∨ U1(y)) ∧ (∃x ¬U(x) ∨
U2(x))

A59153 a(n) = 2n+2 ∗ (2n+1 − 1).

(∀x ¬B(x, x) ∨ ¬B1(x, x)) ∧
(∀x B1(x, x) ∨ U(x))

A60757 a(n) = 4n
2
.

(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∀x∀y B(x, y) ∨B2(x, y))

A60758 a(n) = 5n
2
.

(∀x∃y U(x) ∨ U1(y)) ∧ (∃x ¬U(x)) A60867 a(n) = (2n − 1)2.
(∀x∃y B(x, y)) ∧ (∃x∃y ¬B(x, y)) ∧
(∀x∃=1y ¬B(y, x))

A61190 a(n) = nn − n.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x ¬B(x, x) ∨ U(x)) ∧ (∃=1x ¬U(x))

A62119 a(n) = n! ∗ (n− 1).

(∃x∃yU(x) ∨ B(x, y)) ∧
(∀x∃=1y ¬B(x, y))

A62971 a(n) = (2 ∗ n)n.

(∀x∃y B(x, y)) ∧ (∃x∀y ¬B(y, x) ∨
¬B(x, y)) ∧ (∀x∃=1y B(y, x))

A66052 Number of permutations in the symmetric
group Sn with order ≥ 3.

(∀x∀y U(x)∨B(x, y))∧ (∀x∃y ¬U(x)∨
B(y, x)) ∧ (∀x∃=1y B(y, x))

A66068 a(n) = nn + n.
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Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∀y U(x) ∨ U1(y)) ∧ (∃x U(x)) ∧
(∀x∀y ¬U1(x) ∨ U2(y))

A68156 G.f.: (x+2)∗(x+1)
(x−1)∗(x−2) =

∑
n≥0 a(n) ∗ x2

n.

(∀x∀y U(x) ∨ B(x, y)) ∧
(∃x∃y ¬B(x, y)) ∧ (∀x∃=1y ¬B(y, x))

A72034 a(n) =
∑

k=0..n binomial(n, k) ∗ kn.

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x))∧(∀x∀y ¬B(x, y)∨U(x)∨U(y))

A79491 Numerator of
∑

k=0..n
binomial(n,k)

2
k∗(k−1)

2

.

(∀x∀y U(x) ∨ ¬U(y) ∨ U1(x) ∨ U2(y)) A81626 2 ∗ 6n − 4n.
(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∀x∀y B(x, y) ∨ ¬B1(y, x))

A81955 a(n) = 2r ∗ 3s where r = n(n+1)
2 and

s = n(n−1)
2 .

(∀x∀y U(x) ∨ U1(x) ∨ U2(y)) ∧
(∀x∀y U(x) ∨ ¬U2(y))

A83319 4n + 3n − 2n.

(∀x∀y U(x) ∨ U1(x) ∨ U2(y)) ∧
(∀x U(x) ∨ U2(x))

A83320 a(n) = 5n + 4n − 3n.

(∀x U(x) ∨ U1(x)) ∧ (∀x∃y U(x) ∨
¬U1(y)) ∧ (∃x U(x))

A83323 a(n) = 3n − 2n + 1.

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x))∧ (∀x∀y ¬B(x, y)∨B1(x, y))∧
(∀x∀y B1(x, y) ∨ ¬B1(y, x))

A83667 Number of antisymmetric binary relations
on a set of n labeled points.

(∀x∀y U(x) ∨ U1(y) ∨ U2(y)) ∧
(∀x U(x) ∨ ¬U1(x))

A85350 Binomial transform of poly-Bernoulli
numbers A027649.

(∀x∀y U(x) ∨ U(y) ∨ U1(x) ∨ U2(y)) A85352 expansion of 1−4x
(1−5x)(1−6x) .

(∀x∃=1y B(x, y)) ∧ (∀x B(x, x) ∨
U(x)) ∧ (∀x U(x) ∨ U1(x))

A85527 a(n) = (2n+ 1)n.

(∀x ¬U(x) ∨ B(x, x)) ∧
(∀x∃=1y ¬B(x, y))

A85528 a(n) = (2 ∗ n+ 1)n+1.

(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∃xB(x, x)) ∧ (∀x ¬B1(x, x)) ∧
(∀x∃=1y B1(x, y))

A85532 (2n)n+1.

(∀x B(x, x)) ∧ (∀x∃y ¬B(x, y)) ∧
(∀x∃y ¬B(y, x))

A86193 Number of n X n matrices with entries in
0, 1 with no zero row, no zero column and
with zero main diagonal.

(∀x ¬B(x, x)) ∧ (∀x∃y B(x, y)) A86206 Number of n X n matrices with entries in
0, 1 with no zero row and with zero main
diagonal.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y ¬B(x, x) ∨ U(y)) ∧ (∃=1x U(x))

A86325 Let u(1) = 0, u(2) = 1, u(k) = u(k −
1) + u(k−2)

k−2 ; then a(n) = n! ∗ u(n).
(∀x∀y U(x) ∨ B(y, y)) ∧ (∃x∃yU(x) ∨
U1(x) ∨B(x, y))

A88668 Number of n X n matrices over GF(2) with
characteristic polynomial xn−1 ∗ (x− 1).

(∀x U(x)∨¬B(x, x))∧ (∃=1x ¬U(x))∧
(∀x∃=1y B(x, y))

A89205 a(n) = nn ∗ (n− 1).

(∀x∃y U(x) ∨ U1(y)) ∧ (∀x∀y U1(x) ∨
U2(y))

A92440 a(n) = 2(n+1) − 2n+1 + 1.
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Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∀y U(x) ∨ ¬U(y)) ∧ (∀x∀y U(x) ∨
U1(x) ∨ U2(y))

A93069 a(n) = (2n + 1)2 − 2.

(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x∀y B(x, x) ∨ U(y)) ∧
(∃=1x ¬B(x, x))

A95340 Total number of nodes in all labeled
graphs on n nodes.

(∀x∀y U(x) ∨ B(x, y)) ∧
(∀x∃=1y ¬B(y, x)) ∧ (∃=1x∀yB(x, y))

A98916 Permanent of the n X n (0,1)-matrices
with ij-th entry equal to zero iff (i =
1, j = 1),(i = 1, j = n),(i = n, j = 1)
and (i = n, j = n).

(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x∀y B(x, y) ∨B1(x, y))

A99168 a(n) = 3n ∗ 5binomial(n,2).

(∀x∀y U(x) ∨ U1(x) ∨ U2(y)) ∧
(∀x∀y ¬U(x) ∨ U2(y))

A99393 a(n) = 4n + 2n − 1.

(∀x U(x) ∨ U1(x)) ∧ (∀x∃y ¬U(x) ∨
¬U1(y)) ∧ (∃x ¬U(x))

A101052 Number of preferential arrangements of n
labeled elements when only k ≤ 3 ranks
are allowed.

(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∀x∀y ¬B(x, y) ∨ ¬B(y, x))

A109345 a(n) = 5
n2−n

2 .

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B1(x, y)) ∧ (∀x∀y B1(x, y) ∨B(y, x))

A109354 a(n) = 6
n2−n

2 .

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x) ∨ B1(x, y)) ∧ (∀x∀y B1(x, y) ∨
B(x, y))

A109493 a(n) = 7
n2−n

2 .

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B1(x, y)) ∧ (∀x∀y B1(x, y) ∨B1(y, x))

A109966 a(n) = 8
n2−n

2 .

(∀x∃=1y B(x, y)) ∧ (∀x∀y B(x, x) ∨
¬B(y, y))

A110567 a(n) = nn+1 + 1.

(∀x∀y B(x, y)∨¬B(y, x))∧(∃xB(x, x)) A122743 Number of normalized polynomials of de-
gree n in GF (2)[x, y].

(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∃x∃yB(x, y))

A126883 a(n) = (20)∗(21)∗(22)∗(23)...(2n)−1 =
2T (n) − 1 where T (n) = A000217(n) is
the n-th triangular number.

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x)) ∧ (∀x∀y ¬B(x, y) ∨ U(x)) ∧
(∀x∀y U(x) ∨ ¬U(y))

A126884 a(n) = (20)∗(21)∗(22)∗(23)...(2n)+1 =
2Tn + 1 (cf. A000217).

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y B(x, x) ∨ U(y))

A127986 a(n) = n! + 2n − 1.

(∃=1x ¬B(x, x)) A128406 a(n) = (n+ 1) ∗ 2n∗(n+1).
(∀x∃y U(x)∨U1(y))∧ (∀x∃y ¬U1(x)∨
U2(y)) ∧ (∃x ¬U2(x))

A128831 Number of n-tuples where each entry is
chosen from the subsets of 1, 2, 3 such that
the intersection of all n entries is empty.
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Table 3 – continued from previous page
Sentence OEIS ID OEIS name
(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x B(x, x) ∨ U(x))

A132727 a(n) = 3∗2n−1 ∗a(n−1) with a(0) = 1.

(∀x∀y U(x) ∨ U1(x) ∨ B(x, y)) ∧
(∀x U(x) ∨ U1(x))

A133460 3n ∗ 2n
2
.

(∀x∃y B(x, y)) ∧ (∃xB(x, x)) ∧
(∃x ¬B(x, x)) ∧ (∀x∃=1y B(y, x))

A133798 a(n) = A002467(n)− 1.

(∀x∀y U(x) ∨ U(y) ∨ B(x, y)) ∧
(∀x B(x, x))

A134485 Row sums of triangle A134484(n, k) =
2[n(n−1)−k(k−1)] ∗ C(n, k).

(∀x∀y U(x) ∨ U1(x) ∨ ¬U1(y)) ∧
(∀x U(x) ∨ U2(x))

A135160 a(n) = 5n + 3n − 2n.

(∀x∀y U(x) ∨ B(x, y)) ∧ (∀x∀y U(x) ∨
B(y, x))

A135748 a(n) =
∑

k=0..n binomial(n, k) ∗ 2k
2
.

(∀x∀y U(x) ∨ B(x, y) ∨ B(y, x)) ∧
(∀x∀y ¬U(x) ∨ ¬B(x, y))

A135755 a(n) =
∑

k=0..nC(n, k) ∗ 3[
k∗(k−1)

2
].

(∀x∀y B(x, y) ∨ ¬B(x, x)) ∧
(∀x∀y ¬B(x, x) ∨B(y, x))

A135756 a(n) =
∑

k=0..nC(n, k) ∗ 2k∗(k−1).

(∀x∀y ¬U(x) ∨ ¬B(y, x)) A136516 a(n) = (2n + 1)n.
(∀x∃y U(x) ∨ U1(y)) ∧ (∃x U(x) ∨
¬U1(x) ∨ U2(x))

A145641 Numbers whose binary representation is
the concatenation of n 1’s, n 0’s and n 1’s.

(∀x∀y U(x) ∨ ¬U(y) ∨ U1(x)) ∧
(∀x U(x) ∨ U2(x))

A155588 a(n) = 5n + 2n − 1n.

(∀x U(x) ∨ U1(x)) ∧ (∀x∃y ¬U(x) ∨
¬U1(y) ∨ U2(y))

A155597 a(n) = 6n − 2n + 1.

(∀x∃y U(x) ∨ U1(y) ∨ U2(y)) A155599 a(n) = 8n − 2n + 1n.
(∀x∀y U(x) ∨ ¬U(y) ∨ U1(x)) ∧
(∀x ¬U1(x) ∨ U2(x))

A155602 4n + 3n − 1.

(∀x U(x) ∨ U1(x)) ∧ (∀x∃y U(x) ∨
U2(y)) ∧ (∃x U(x))

A155611 6n − 3n + 1.

(∀x U(x) ∨ U1(x) ∨ U2(x)) ∧
(∃x∀yU(x) ∨ ¬U1(y))

A155612 7n − 3n + 1.

(∀x∃y U(x) ∨ U1(y)) ∧ (∃x U(x) ∨
U2(x))

A155629 a(n) = 8n − 4n + 1n.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∃=1x ¬B1(x, x))

A161937 The number of indirect isometries that are
derangements of the (n − 1)-dimensional
facets of an n-cube.

(∀x∀y B(x, x) ∨ ¬B(y, x)) A165327 E.g.f:
∑

n≥0 2n(n−1) ∗ exp(2n ∗ x) ∗ xnn! .
(∃x U(x) ∨ U1(x)) ∧ (∃x ¬U(x)) ∧
(∃x U(x) ∨ ¬U1(x))

A170940 4n − 2n − 2.

(∀x∀y U(x) ∨ U1(y)) ∧ (∃x U(x)) ∧
(∀x ¬U1(x) ∨ U2(x))

A171270 a(n) is the only number m such that m =

pi(1
1
n ) + pi(2

1
n ) + ...+ pi(m

1
n ).

(∀x∃y ¬B(x, y) ∨ ¬B(y, x)) ∧
(∃x∃y ¬B(x, y))

A173403 Inverse binomial transform of A002416.
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Sentence OEIS ID OEIS name
(∃x∀y B(x, y) ∨ ¬B(y, y)) ∧
(∃x∃y ¬B(x, y)) ∧ (∀x∃=1y B(y, x))

A176043 a(n) = (2 ∗ n− 1) ∗ (n− 1)n−1.

(∀x∃y ¬U(x) ∨B(x, y)) A180602 (2n+1 − 1)n.
(∀x∃y U(x) ∨ U1(y)) ∧ (∀x∃y U1(x) ∨
U(y))

A191341 a(n) = 4n − 2 ∗ 2n + 3.

(∀x∀y U(x)∨B(x, y))∧(∀x∀y B(x, y)∨
U1(y))

A196460 e.g.f.: A(x) =
∑

n≥0(1+2n)n ∗exp((1+

2n) ∗ x) ∗ xnn! .
(∀x∀y U(x) ∨ B(x, y)) ∧
(∀x∀y ¬B(x, y) ∨B1(x, y))

A202989 E.g.f:
∑

n≥0 3(n2) ∗ exp(3n ∗ x) ∗ xnn! .

(∀x U(x) ∨ U1(x)) ∧ (∀x∃y ¬U(x) ∨
B(x, y))

A202990 E.g.f:
∑

n≥0 3n∗2n2∗exp(−2∗2n∗x)∗xnn! .

(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∀x∃y B(x, y)) ∧ (∀x∃y ¬B(x, y) ∨
¬B1(x, y))

A202991 E.g.f:
∑

n≥0 3n
2 ∗ exp(−2 ∗ 3n ∗ x) ∗ xnn! .

(∀x∀y B(x, y) ∨ B(y, x)) ∧
(∃x∃y ¬B(x, y))

A206601 3
n(n+1)

2 − 1.

(∀x∃=1y B(x, y)) ∧ (∀x∃=1y B(y, x)) ∧
(∀x∀y ¬B(x, x) ∨B(x, y) ∨ ¬B(y, y))

A212291 Number of permutations of n elements
with at most one fixed point.

(∀x U(x) ∨ U1(x)) ∧ (∀x∃y ¬U(x) ∨
U2(y)) ∧ (∃x ¬U2(x))

A212850 Number of n X 3 arrays with rows be-
ing permutations of 0..2 and no column j
greater than column j-1 in all rows.

(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x∀y B(x, x) ∨ ¬B(y, y))

A217994 a(n) = 2
2+n+n2

2 .

(∀x ¬B(x, x)) ∧ (∀x∀y ¬B(x, y) ∨
B(y, x)) ∧ (∀x∀y ¬B(x, y) ∨ U(x) ∨
¬U(y))

A226773 Number of ways to select a simple labeled
graph on n nodes and then select a subset
of its connected components.

(∀x∀y B(x, y) ∨ B1(x, y)) ∧
(∀x∃y B(x, y)) ∧ (∀x∃y B(y, x)) ∧
(∃x∃yB(x, y))

A230879 Number of 2-packed n X n matrices.

(∀x∃y B(y, x) ∨B1(x, y)) A241098 (4n − 1)n.
(∀x ¬B(x, x))∧(∀x∀y ¬B(x, y)∨U(x)∨
U1(x)) ∧ (∀x∀y U(x) ∨ ¬B(y, x))

A243918 a(n) =
∑

k=0..n binomial(n, k) ∗ (1 +
2k)k.

(∃x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x B(x, x)) ∧ (∀x∃=1y ¬B(x, y))

A246189 Number of endofunctions on [n] where the
smallest cycle length equals 2.

(∀x∀y U(x) ∨ B(x, y)) ∧ (∀x∃y U(x) ∨
¬B(y, x))

A251183 a(n) =
∑

k=0..n binomial(n, k) ∗
(−1)n−k ∗ (2k + 1)k.

(∀x∀y U(x)∨B(x, y))∧(∀x∀y B(x, y)∨
U1(x))

A251657 a(n) = (2n + 3)n.

(∀x∀y U(x) ∨ U1(y)) ∧ (∃x U(x) ∨
U2(x)) ∧ (∃x U1(x))

A267816 Decimal representation of the n-th itera-
tion of the ”Rule 221” elementary cellu-
lar automaton starting with a single ON
(black) cell.
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Sentence OEIS ID OEIS name
(∀x∃y B(x, y) ∨ B1(x, y)) ∧
(∀x B(x, x)) ∧ (∀x∃=1y ¬B(x, y)) ∧
(∀x∃=1y ¬B1(x, y))

A281997 a(n) = (n− 1)n ∗ nn.

(∀x∃y B(x, y)) ∧ (∀x∃y ¬B(x, y)) ∧
(∀x∃y B(y, x)) ∧ (∀x∃y ¬B(y, x))

A283624 Number of 0, 1 n X n matrices with no
rows or columns in which all entries are
the same.

(∀x∃y B(x, y)) ∧ (∃x∀y ¬B(y, x) ∨
U(y)) ∧ (∀x∀y U(x) ∨ ¬U(y))

A287065 Number of dominating sets on the n X n
rook graph.

(∃x∀y B(x, y) ∨ U(y)) ∧
(∀x∃=1y B(y, x)) ∧ (∃=1x ¬B(x, x))

A317637 a(n) = n ∗ (n+ 1) ∗ (n+ 3).

(∀x∀y B(x, y) ∨ ¬B(y, x)) ∧
(∀x∃y B(x, y))

A322661 Number of graphs with loops spanning n
labeled vertices.

(∀x∀y U(x)∨B(x, y))∧ (∀x∃y ¬U(x)∨
¬B(y, x))

A324306 G.f.:
∑

n≥0
(2n+1)n∗xn
(1+2n∗x)n+1 .

(∀x∀y U(x)∨B(x, y))∧(∀x∀y B(x, y)∨
B1(x, y))

A326555 a(n) = (2n + 3n)n for n ≥ 0.

(∀x U(x)∨U1(x)∨U2(x))∧(∃x U(x))∧
(∃x U1(x))

A337418 Number of sets (in the Hausdorff metric
geometry) at each location between two
sets defined by a complete bipartite graph
K(3, n) (with n at least 3) missing two
edges, where the removed edges are not
incident to the same vertex in the 3 point
part but are incident to the same vertex in
the other part.

(∀x∀y U(x) ∨ B(x, y)) ∧ (∃x U(x)) ∧
(∀x∃y ¬B(y, x))

A337527 G.f.:
∑

n≥0
(2n+1)n∗xn

(1+(2n+1)∗x)n+1 .

(∀x U(x) ∨ U1(x)) ∧ (∀x∀y ¬U(x) ∨
B(x, y))

A337851 a(n) = (2n + 2)n.

(∀x∀y U(x)∨B(x, y))∧(∀x∃y B(x, y)∨
U1(x))

A337852 a(n) = (2n+1 + 1)n.
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