
����������
�������

Citation: Schmitz, G.J.; te Vrugt, M.;

Haug-Warberg, T.; Ellingsen, L.;

Needham, P.; Wittkowski, R.

Thermodynamics of an Empty Box.

Entropy 2023, 25, 315.

https://doi.org/10.3390/e25020315

Academic Editors: Antonio M.

Scarfone, Christopher Jeynes,

Michael Parker and Luisberis

Velazquez

Received: 13 December 2022

Revised: 15 January 2023

Accepted: 3 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Thermodynamics of an Empty Box
Georg J. Schmitz 1,∗ , Michael te Vrugt 2 , Tore Haug-Warberg 3, Lodin Ellingsen 3, Paul Needham 4

and Raphael Wittkowski 2

1 MICRESS Group, ACCESS e.V., Intzestr. 5, D-52072 Aachen, Germany
2 Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149

Münster, Germany; michael.tevrugt@uni-muenster.de (M.t.V.);
raphael.wittkowski@uni-muenster.de (R.W.)

3 Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU),
N-7491 Trondheim, Norway; tore.haug-warberg@ntnu.no (T.H.-W.); lodin.ellingsen@ntnu.no (L.E.)

4 Department of Philosophy, University of Stockholm, SE-106 91 Stockholm, Sweden;
paul.needham@philosophy.su.se

* Correspondence: g.j.schmitz@access-technology.de

Abstract: A gas in a box is perhaps the most important model system studied in thermodynamics
and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an
idealized confinement. The present article focuses on the box as the central object and develops a
thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom
of a thermodynamic system. Applying standard mathematical methods to the thermodynamics of an
empty box allows equations with the same structure as those of cosmology and classical and quantum
mechanics to be derived. The simple model system of an empty box is shown to have interesting
connections to classical mechanics, special relativity, and quantum field theory.

Keywords: Euler homogeneity; Unruh temperature; anisotropic Hubble parameter; quantized space;
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1. Introduction

The concepts of thermodynamics, general relativity, and quantum mechanics are consid-
ered the three main pillars of contemporary physics by the general physics community. Many
philosophers and physicists, on the other hand, consider thermodynamics a phenomenological
theory, which might be reducable to microscopic theories such as statistical mechanics. The
question of whether or not thermodynamics is a fundamental theory is discussed from a philo-
sophical perspective in a separate article [1]. The three pillars above jointly describe most of the
essential features of our world such as “discrete things or states” and their interaction (quantum
mechanics), the direction of processes and their final target state—the equilibrium (thermody-
namics), and the relative motion and interaction and, to some extent, shape or change of shape of
objects such as length contraction (special and general relativity). Quantum mechanics and
general relativity both require the notion of space and time, whereas classical thermodynamics
has so far only addressed space as a hidden variable, for example, as the “volume” in the ideal
gas equation, and has only implicit time dependence, e.g., in the “initial” and “final” states.
Basically, thermodynamics describes the most probable state of a complex system allowing for
multiple states that can be realized under given conditions. This can be seen when connecting
it to microscopic physics via statistical mechanics, where the equilibrium state (which is what
thermodynamics describes) corresponds to the most probable state of a system under certain
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conditions. Thermodynamics is, however, broader than just the statistical description linked to
it. In this article, we consider equilibrium thermodynamics.

Probability theory has been claimed as being the logic of science [2], which highlights the
relation between the notions of entropy in thermodynamics and information theory. Two
further important pillars of physics are geometry, which addresses the shape of objects, and
algebra, which allows for the quantification of both the number of objects and their individual
properties. Geometry, algebra, and, eventually, their combination in terms of geometric algebra
[3] (not addressed here) form the basis of many other theories.

Thermodynamics plays an important role in physics and often seems to be overlooked or at
least not adequately interpreted or considered. A number of notions used in quantum physics
and cosmology draw on thermodynamic notions. Some examples are the “entropy” of a black
hole [4,5], the photon “gas” [6], the “temperature” of the universe [7], the “adiabatic expansion”
of the universe [8–10], and “entropic” gravity [11].

Geometry also plays a role in many phenomena in physics. Some examples are Kepler’s
laws on the “ellipsoidal” motion of the planets [12], the Schwarzschild “radius” [13], the
“curvature” of spacetime [14], the “area” of holographic projection [15], confinement in a
“volume” as a classical quantization example [16] including black-body radiation [17], the
“dimensional confinement” as the origin of Giant Magneto Resistance [18], or the “droplet
model” of the atomic nucleus [19].

An important relation between thermodynamics and geometry of a physical object is provided
by the entropy equation of a black hole. The dimensionless (i.e., without Boltzmann constant
kB) entropy S relates to the surface area of the black hole via the famous Bekenstein–Hawking
equation [20]:

S =
A

4l2
p

(geometric formulation), (1)

S =
c3 A
4h̄G

(physics formulation). (2)

Here, A is the surface area of the event horizon, c is the speed of light, h̄ is the reduced
Planck constant, and G is the gravitational constant. Obviously, Equation (1) follows from
Equation (2) if we define the Planck length as lp =

√
Gh̄/c3. Recently, it has been shown

that the geometric formulation of Equation (1) can be derived on the basis of mere geomet-
ric/statistical considerations for a sphere having a boundary with a finite thickness [5]. The
present article aims to broaden this “geometric thermodynamics” approach toward a fully
anisotropic geometry of an empty box.

1.1. Scope

The aim of the present article is to connect the elementary thermodynamics of an empty
box with fundamental physical theories, giving us, to coin a phrase, “physics out of a box”.
Thermodynamics, considered from the outset as a theory in its own right, will be combined with
geometry. This link has not yet been properly established, mainly because thermodynamics
does not embody a length scale. This deficiency can be addressed by assuming that interfaces
have a finite thickness, which then represents a length scale in a thermodynamic system
[21]. Another obvious link between thermodynamics and geometry is the concept of volume.
Thermodynamics treats the volume of a system simply as a parameter, whereas geometry
allows its calculation from more basic properties. The description of an anisotropic volume—a
box—will be investigated in detail in the present article, treating any parameter occurring in this
description as a potential degree of freedom of the thermodynamic system. The present article
focuses on exploiting the scalar thermodynamic potentials at the mathematical foundations of
thermodynamics.
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The primary concern is to investigate what can be learned from this approach. Expectations
range from a possible description of relations between forces and temperature as found, e.g., in
the Unruh temperature [22], to special relativity and perhaps further unexpected terms and
equations. As will be shown, applying elementary operations to a thermodynamic model for
the box results in several equations that formally resemble known equations used in special
and general relativity, as well as quantum mechanics. Analogies between general relativity and
condensed matter systems [23] are known to be useful for investigating gravitational systems,
and finding analogies between systems from classical statistical mechanics and quantum
mechanics is a rapidly growing field of research [24]. Moreover, the successes of entropic
gravity [11] indicate that the mathematical relation between thermodynamics and general
relativity might not be merely an analogy, but reflect a deeper connection.

1.2. Outline

Starting with the above introductory motivation highlighting the role of thermodynamic
and geometric concepts in physics, a short historical review of thermodynamics is followed
by an introduction to thermodynamic potentials and their mutual convertibility via Legendre
transformations. The internal energy U(S, V, N) is selected as the thermodynamic potential
for further discussion in the present article. The three state variables S (entropy), V (volume),
and N (particle number, not treated here) are then briefly discussed before taking a closer look
at the role of the volume state variable V. In classical thermodynamics, this state variable
goes along with a change in the volume value. The present article will discuss changes in vol-
ume shape while the volume value is kept constant. The discussion is based on a box, and
an entire ensemble of boxes with the same volume values can easily be imagined. One of
the major differences between such boxes, however, is their anisotropy. To allow for com-
prehensive treatment and a comparison of “areas” and “volumes” in a common description,
a concept of quantized space is introduced. This concept treats volumes as consisting of an
interior volume and a boundary volume. Boundary volume and interior volume thus represent two
degrees of freedom in the thermodynamic system, which can be varied independently under
the constraint of their sum being a constant volume value. For this reason, our article might
also be called Thermodynamics of constraints. We have nevertheless chosen to call it Thermo-
dynamics of an empty box to emphasize that we focus on the special case of a box. A variety
of dimensionless entities can be defined based on our quantization scheme and examples
of their exploitation will be provided for the gravitational potential and black-hole entropy.
Uniaxially squeezing the box leads to insights concerning special relativity. Translating the box
will be shown to result in Newtonian mechanics and an expression for the Unruh tempera-
ture. The summary in the conclusion provides an outlook on (i) filling the box with particles
possibly leading to black-body radiation and classical quantum mechanics of a particle in a box,
(ii) oriented box surfaces as a possible link to electrostatics, and (iii) higher-order correlations as a
possible pathway to other fundamental forces.

2. Thermodynamics

The connotation of the term “thermodynamics” has changed somewhat since the creation
of the theory around 1850 and is not really concerned with the dynamics of heat. Etymologically,
the term “thermodynamics” derives from the Greek words “thermé” (heat) and “dynamics”
(force). The concept of force was for a long time not distinguished from what came to be
called energy, and the term “thermodynamics” in contemporary usage thus has the sense of
“thermal energy”. The perception of the science of thermodynamics in different communities is
heterogeneous with a variety of perspectives.

There is a classical perspective on thermodynamics that is typically taught at university. It
relates, e.g., to heat and work or Carnot cycles and originates from the age of the steam engines.
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The chemical thermodynamics perspective relates to the use of thermodynamics to predict
energy and matter exchanges that occur in chemical reactions during phase changes or during
the formation of solutions. The work of Josiah Willard Gibbs [25–28] on the applications of
thermodynamics was instrumental in transforming physical chemistry into a rigorous inductive
science. The following state functions and thermodynamic potentials are of primary concern in
chemical thermodynamics: the internal energy (U), the enthalpy (H), the entropy (S), and the
Gibbs free energy (G). These thermodynamic potentials also form the basis for the fundamental
mathematical perspective.

The statistical mechanics perspective essentially goes back to Ludwig Boltzmann, who
developed the fundamental interpretation of entropy in terms of a collection of microstates;
James Clerk Maxwell, who developed models of probability distribution of such states such
as the Maxwell distribution of velocities; and Josiah Willard Gibbs, who coined the name
“statistical mechanics” for the field in 1884 [29].

The computational thermodynamics perspective has evolved from the use of thermodynamic
data for the optimization of materials and processes. Computational thermodynamics is gener-
ally based on the CALPHAD method [30] and makes use of thermodynamic databases. These
are not simple databases and have underlying models such as a polynomial description of the
Gibbs energies of the various phases in an alloy system. Nowadays, numerous thermodynamic
databases and related software tools (e.g., [31–34]) are regularly used to develop and optimize
innovative materials and their processing.

The resource/control theory perspective (see [35–37]) considers thermodynamics to be a theory
that describes possible manipulations of a system and the response of the system to these
manipulations. These introduce a heat/work distinction.

The fundamental mathematical perspective encompasses the mathematical foundations of
thermodynamics such as the Euler homogeneity principle, thermodynamic potentials, and
Legendre transformations [38], allowing switching between the different potentials.

The geometric perspective has been developed during recent decades. In particular, the
phase-field method (for a review see, e.g., [39]) and its implementation in contemporary
software tools (e.g., [40]) allows for a spatially resolved description of shapes and structures
and their evolution, even in complex technical alloys [41]. Further investigations in the geometric
perspective relate to the use of entropic concepts for the description of shapes (e.g., [42]) or
the description of boundaries and higher-order junctions by mereotopology [43]. It also
seems interesting to note the similarity between Gibbs’ phase rule F = C + P− 2 (degrees
of freedom F, number of constituents C, number of phases P) and the Euler characteristic
for convex polyhedra V − E + F = 2 (number of vortices V, number of edges E, number
of faces F). This similarity is not coincidental but is already apparent in Gibbs’ “Graphical
Methods in the Thermodynamics of Fluids” and a “Method of Geometrical Representation of
the Thermodynamic Properties of Substances by means of Surfaces” [44,45].

The physics perspective on thermodynamics goes far beyond the classical thermodynamics
of steam engines. Similar to the chemical thermodynamics perspective, which describes
chemical phenomena in terms of thermodynamics, the physics perspective aims at describing
phenomena of physics based on thermodynamic principles. This perspective encompasses
notions such as black-hole entropy [4], entropic gravity [11], and others.

The present article is especially concerned with the last three perspectives.

2.1. Mathematical Thermodynamics

From a mathematical perspective, a thermodynamic system is any system—real or not—
that fulfills Euler’s homogeneity principle in addition to the axioms of equilibrium [38]. This
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theorem assumes that the following condition defines the function F(X) as homogeneous of
the order k:

F(X) = λk f (x); X := λx; λ ∈ R. (3)

The free variables are assumed to be x without saying anything about their true nature, except
that they satisfy the scaling law λx including λ = 0, which corresponds to F = 0 regardless
of the physical reference point. The functions F(X) and f (x) represent two different scales
of the thermodynamic state but otherwise share the same function definition (see Equation
(3)). This is in contrast to, say, the functions U(S, V, N) and U(T, V, N), which are (typically)
used to express the same state but with two different function expressions. All thermodynamic
potentials for extensive systems must be homogeneous functions of order k = 1. For a function
with several variables xi, the integration theorem of Euler [46] yields

Xi
∂F
∂Xi

= kF(λx), (4)

where x stands for all variables xi and the Einstein summation convention is applied. There are
many interesting side effects of homogeneity of which only three are mentioned here. First, we
note that because F ≡ f , Equation (4) also applies to f (x). Second, we note that a homogeneous
function is identified by its partial derivatives. The exception is the intensive function with
k = 0, which is important because, although F is determined by ∂F

∂Xi
, the first derivatives are not

determined by their first derivatives. This is because the homogeneity of F (and its derivatives)
is reduced upon differentiation. In fact, if F is homogeneous of order k = 1, ∂F

∂Xi
is homogeneous

of order k = 0, and so on. Third and finally, a direct consequence of Equation (4) and the
differentiation rule just mentioned is

Xj
∂2F

∂Xj∂Xi
= 0 ∀i (5)

which, in thermodynamics, is more commonly written in the differential form

Xi d
(

∂F
∂Xi

)
= 0 (6)

and is then called the Gibbs–Duhem equation.

2.1.1. Thermodynamic Potentials

Thermodynamic potentials are abstract functionals in several variables. These variables are
not always easy to determine because a thermodynamic system can have more internal degrees
of freedom than external ones (sometimes called work modes). A simple example would be
the chemical reaction of two chemical species A and B, usually written as A⇔ B. Here, only
the total amount A + B can be varied externally, whereas the distribution of A in relation
to B represents an internal degree of freedom that rests on the principle of thermodynamic
equilibrium. The extremum of a thermodynamic potential allows the specification of a special
state called equilibrium, corresponding to, e.g., a minimum of energy or maximum of entropy.
A specific example of a thermodynamic potential is the internal energy U, which provides the
basis for all discussions throughout the present article. It is a function of the three extensive
variables entropy S, volume V, and number of particles N

U = U(S, V, N). (7)
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The Euler homogeneity theorem stated in Equation (4) applied to U requires

U =
∂U
∂V

V +
∂U
∂S

S +
∂U
∂N

N. (8)

Introducing the definitions for pressure p, temperature T, and chemical potential µ

∂U
∂V

=: −p,
∂U
∂S

=: T, and
∂U
∂N

=: µ (9)

allows the internal energy potential U to be formulated as

U = TS + (−p)V + µN. (10)

By utilizing the definitions in Equation (9), the total differential of U in Equation (7) reads:

dU = TdS + (−p)dV + µdN. (11)

Since U is a Euler homogeneous function, a second non-trivial differential arises if the differ-
ential of Equation (10) is instead used as a starting point for the differentiation. This is the
celebrated Gibbs–Duhem equation from Equation (6):

SdT + Vd(−p) + Ndµ = 0. (12)

As a representative of Euler homogeneity in differential form, this equation must be fulfilled
everywhere and at all times for a thermodynamic continuum. For it to be valid in the case of
a nonequilibrium system whose state changes over time, one has to assume that the size of
the system in the form of S, V, N is small enough so that the respective densities are constant
throughout the volume and that the changes in the system are slow enough so that the intensive
state variables retain their macroscopic significance. Even in a spatially inhomogeneous system,
thermodynamic concepts often continue to be applicable in the case of “local equilibrium”,
where an equilibrium-like description holds within each small volume element.

Both Equations (11) and (12) are invariant under translations/rotations in space and
time. Such symmetries are significant because of their role in Noether’s theorem [47], which
has recently also been applied to thermodynamic potentials [48]. Thermodynamic potential
formulations (see Appendix A) comprising macroscopically and practically measurable state
properties such as pressure and temperature and countable or measurable quantities such as
particle number and volume can be derived in this way, with an example being the Gibbs free
energy USV =: G(T,−p, N). In summary, all thermodynamic potentials can be transformed
into each other and any one of them is, accordingly, sufficient for describing a thermodynamic
system. The present article considers thermodynamics to be a theory in its own right [1] and
discusses the internal energy U of an empty box, starting with a discussion of the classical
internal energy U = U(S, V, N).

2.2. Scalar Potentials, Gradients, and Forces

Since the internal energy potential formulation depends neither on space nor time, it holds
for all positions~r and times t. We now assume that the thermodynamic potentials can depend
on~r and t. For an empty box (N = 0), Equation (7) then reads

U(~r, t) = TS(~r, t) + (−p)V(~r, t) for all positions~r and times t. (13)

A possible physical reason why S and V depend on~r and t—a dependence not usually assumed
in thermodynamic treatments—is that the system is in a spatially or temporally changing
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environment, something that is, in fact, the rule rather than the exception for actual physical
systems. For example, if a gas confined by a piston, which changes its volume depending
on the external pressure, is in an environment where the external pressure changes with
position or time, then the volume and entropy will also change. In this work, we are not
concerned with a specific physical example of this kind. (Otherwise, it could affect our choice
of thermodynamic potential—for a gas with prescribed external pressure, the enthalpy or
Gibbs free energy could be a more natural choice. This does not, however, change the reason
for studying thermodynamic potentials in the form of Equation (13).) Instead, we consider a
simple mathematical object (a box), assume it to have a certain internal energy, and explore the
consequences.

The typical interpretation for the differential of U relates to a “change” between an initial
state and a final state and does not consider any spatial dependencies:

U(t) = TS(t) + (−p)V(t) for all times t. (14)

The differential then reads

dU = TdS + (−p)dV → U̇ = TṠ + (−p)V̇, (15)

where the overdot indicates a derivative with respect to time. For a stationary spatial pattern
with no dependence on time, we obtain

U(~r) = TS(~r) + (−p)V(~r) for all positions~r. (16)

The differential then reads

dU = TdS + (−p)dV → ~∇U = T~∇S + (−p)~∇V. (17)

Note that we use the symbol ~∇ to denote a derivative with respect to all dependencies on~r
and the symbol ∂

∂~r for derivatives with respect to explicit dependencies on~r. For example, if
we have a potential U(V(~r),~r), we have

~∇U(V(~r),~r) =
∂U
∂V

∂V
∂~r

+

(
∂U
∂~r

)
V

, (18)

∂U
∂~r

=

(
∂U
∂~r

)
V

, (19)

with the subscript V indicating (as is usual) that the derivative is taken at constant V. Note
that there is, in this example, no difference between ~∇V and ∂V

∂~r . In a Hamiltonian system, a
force is given by the negative gradient of the internal energy U:

~F = −~∇U. (20)

Equation (20) might not seem obvious since the thermodynamic potential U is not the same
mathematical object as the potential energy from classical mechanics and since it is the potential
energy whose gradient gives the force. However, if we allow a thermodynamic potential
to explicitly depend on the centroid position ~r, we are essentially treating ~r as a relevant
macroscopic variable. This was done in a microscopic treatment based on the Mori–Zwanzig
formalism [49–52] in Ref. [53] for the simpler case of a sphere immersed in a fluid. There, it
was demonstrated that the thermodynamic conjugate of the centroid position—in this work,
given by ~∇U—can indeed be interpreted as the mechanical force. Here, we consider an explicit
dependence of U on~r—corresponding to treating~r as a relevant variable—in Section 4.5.1.
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Note that the definition in Equation (20) is more general than the mechanical definition because
it also includes entropic forces.

Assuming that S and V are position-dependent, we obtain a potential

U = U(S(~r), V(~r)) (21)

and can calculate the gradients

−~∇U = −T~∇S + p~∇V. (22)

These can be identified with an entropic force and kinetic force:

~Ftotal = ~Fentropic + ~Fkinetic. (23)

Imposing the condition ~Ftotal = ~0 in line with the assumption of an isolated system with
~∇U =~0 yields

~Fentropic = −~Fkinetic (actio = reactio). (24)

This corresponds to one of the necessary conditions of mechanical equilibrium—the sum of all
forces must vanish (~Ftotal =~0). It can also be thought of as a manifestation of Newton’s third
law. The other necessary condition is a vanishing sum of torques, which is not treated here. A
kinetic force can thus be defined as

~Fkinetic := −∂U
∂V

∂V
∂~r

= p~∇V (kinetic force). (25)

An entropic force can accordingly be defined as

~Fentropic := −∂U
∂S

∂S
∂~r

= −T~∇S (entropic force). (26)

The relation ∂U
∂S = T is used here. This reasoning recovers the standard definition ~F =

−T~∇S [54] of the entropic force. The interesting fact here is that “force”—up to some constant—
is the gradient of entropy.

2.3. The Internal Energy of an Empty Box

Starting with the classical formulation for the internal energy of a thermodynamic system
U = U(S, V, N), it is obvious that the classical state variable N takes the value 0. The classical
internal energy formulation thus reduces to U = U(S, V). In classical thermodynamics, the
volume V is treated as a scalar, positive, and real value, denoting the size of the region within
which a thermodynamic system is confined. Here, we define the volume V of a box as

V =~a · (~b×~c). (27)

with the vectors~a,~b, ~c denoting the vectors spanning the volume. For a box with mutually
pairwise perpendicular axes, the spade product reduces to the simple product. Being the
product of three vectors, however, the volume defined in Equation (27) is a pseudoscalar
because inverting the sign of each of the three vectors in a parity operation will change the
sign of the product of these three vectors, i.e., the sign of the value of the volume as well.
This change in sign corresponds to a change in helicity, i.e., a transition from a left-handed
coordinate system to a right-handed one. Consequently, our definition of V differs from the
standard one in that it is a pseudoscalar and not a scalar. The motivation for this is that it allows,
in principle, the treatment of the orientation of the faces of the box as an additional degree
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of freedom (see Section 5). However, throughout the present article, we do not consider the
orientations of vectors and simply describe the volume as a function of their absolute values.
This volume, which we assume (as is standard) to be positive, is given by

|V| = V = abc. (28)

where a,b,c are the absolute values of the vectors~a,~b,~c. A precise formulation of the internal
energy is, therefore, U = U(S, |V|). We maintain the interpretation and notation of V := |V|.
In most cases, we are interested in isochoric processes, i.e., processes that do not change the
value of the volume of the box (i.e., dV = 0). We can already note here that a variety of boxes
exists, all having the same volume V but differing in their anisotropy κ. The anisotropy can
be defined, e.g., as the ratio of the a and b axes, keeping c constant. Squeezing a box thus
generates the first new degree of freedom, κ, entering into the internal energy formulation:

U = U(S, |V|, κ, ...). (29)

We neglect any dependence on N since here, we only consider an empty box. Finally, we write
V for |V| to simplify the notation (and to keep it in the usual form) and include the centroid
position~r. The internal energy of an empty box is, therefore, formulated as

U = U(S, V, κ,~r, ...) (internal energy of a classical empty box) (30)

with V = abc being the scalar volume value, κ being some anisotropy factor (see Section 4.3 on
squeezing the box), and~r denoting the centroid position (see Section 4.5 on translating the box,
where we also discuss the relation of this dependence to kinetic terms). All these represent
independent DoFs (degrees of freedom) for a fixed absolute scalar value of the volume (i.e.,
V = abc = constant). They are independent since the box might, for example, be translated
without being squeezed or be rotated without being translated, etc. The differential dU then
reads

dU =
∂U
∂S

dS +
∂U
∂V

dV +
∂U
∂κ

dκ +
∂U
∂~r
· d~r + ...... (31)

It is interesting to see how our considerations affect the Euler equation. We focus on position
dependence. If~r and−~F are conjugate variables, “standard” thermodynamics would lead us to
expect that this pair of variables also appears in the Euler equation, i.e., that it reads (ignoring
N) U = TS− pV −~r · ~F. Since the Euler equation is derived from the assumption that U is a
first-order homogeneous function, whether this holds depends on whether U(λ~r) = λU(~r)
holds. This will be the case for a spatially homogeneous force field ~F, where the potential is
given by U = −~r · ~F. In general, however, this does not have to be the case since ~F may also
depend on~r (note that other homogeneity assumptions, such as U(λV) = λU(V), may also
break down).

On the level of phenomenological equilibrium thermodynamics, a system (such as a gas)
is, in general, simply assumed to be described by a certain functional U (for an isolated system)
and to have a certain equation of state. Deriving such an equation of state from the microscopic
properties of the system lies in the realm of statistical mechanics. What we have to assume
about the box as a physical system is that it has a certain energy and that this energy depends
on the parameters of the system. Constraining the box to have a certain volume or shape
requires us to put energy into it, for example, by compressing, expanding, or deforming it. The
pressure p and temperature T then arise as conjugate variables to volume V and entropy S,
respectively. If the box is not empty, for example, because it contains a gas, the internal energy
U of the system box + gas would also depend on the number of gas particles N. In this case,
the temperature of the box would, in equilibrium, have to be the same as the temperature of
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the gas (making the reasonable assumption that heat can flow between the gas and box). Note
that N denotes only the number of gas particles, i.e., even if N = 0 (no gas), the box, being a
macroscopic physical object, still consists of a large number of particles and thus allows for a
thermodynamic description.

Equation (30) has been labeled the internal energy of a classical empty box because it treats the
classical box as bound by a mathematically sharp interface. The thickness of the boundary or,
in other words, the fraction ΦB that the boundary volume takes of the total volume, however,
represents another very interesting DoF for an empty box, which is discussed next, providing
an intriguing view on entropy.

2.3.1. Entropy—More than Statistics

S is the state variable for entropy. In the context of information theory, it is a dimensionless
quantity [55]. Entropy can be defined in various ways. In physics, a familiar notion is the
Boltzmann entropy [56], which measures the number of microstates corresponding to a given
macrostate. The challenge here is the identification of the possible “microstates” of an empty
box. The macrostate of the box may be specified by its total volume. This volume may be
composed of the interior volume of the box VI and its boundary volume VB, which sum up
to the total volume Vtot. What this means for interpreting a boundary as a part of the volume
is discussed in greater detail in Section 3. The fraction that the boundary volume takes of
the total volume thus becomes a new DoF, which vanishes in the classical sharp interface
thermodynamics, where the “volume” of the two-dimensional (2D) boundary would be exactly
0. A macrostate given by a total volume can then be specified by summing the fraction of a
system that belongs to the interior (ΦI) and the boundary (ΦB). Being fractions, they sum up
to one:

1 = ΦI + ΦB. (32)

Note that here, we are assuming that boundaries have a finite extension in the third dimension
(see Section 3) such that both ΦI and ΦB are well-defined and have finite values. ΦI and
ΦB will sum up to one if the system consists only of a boundary and interior, which is true
by definition if we take the interior to be the part of the system that does not belong to the
boundary. Simply squaring Equation (32) leads to

ΦI + ΦB = ΦI
2 + ΦB

2 + 2ΦIΦB (33)

and so
ΦI(1−ΦI) + ΦB(1−ΦB) = 2ΦIΦB. (34)

Each of the two terms on the left-hand side of Equation (34) corresponds to the lowest order of
the Taylor expansion of an entropy-type logarithmic formulation (for Φi ≤ 1) [57]:

Φi(1−Φi) ≈ −Φi ln Φi. (35)

This mathematical similarity to expressions typically occurring in the definition of entropy
motivates us to define a dual-state entropy S as

S = 2ΦIΦB ≈ − ∑
i=I,B

Φi ln Φi (Dual-State Entropy Equation). (36)

Note that the logarithmic terms here approximate the exact expression 2ΦIΦB and not vice
versa. A similar argument is commonly used in the study of entanglement. If we want to know
whether a quantum system described by a statistical operator ρ is entangled, we can calculate
its entropy S = −Tr(ρ ln ρ) with the trace Tr. This “entanglement entropy” vanishes for a
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pure state. Since this entropy is, in general, difficult to calculate, one can instead use the linear
entropy Sl = Tr(ρ)− Tr(ρ2) [58]. (The difference, of course, is that here, one would consider
the linear entropy to be the approximate one. Since we are not discussing quantum-mechanical
entanglement here, the discussion of quantum entanglement is merely an analogy.)

Although we are free to define a quantity S that we call “entropy” in any way we want, it
is not generally guaranteed that this entropy is in any way related to a quantity that is usually
thought of as “entropy” in thermodynamics (or statistical mechanics). Very roughly speaking,
one would usually define the (Boltzmann) entropy as a measure for the number of microscopic
realizations of a given macrostate and assume that systems maximize their entropy because
this is the most likely behavior on statistical grounds. Thus, it would confirm our definition
in Equation (36) if it is found that the maximum of S is, for a simple model system, indeed
the one with the largest number of microscopic realizations. That this is indeed the case is
demonstrated in Appendix B. In cases where the entropy in Equation (36) coincides with the
Boltzmann entropy, we can (assuming that the Boltzmann entropy is a valid analog of the
thermodynamic entropy) use the entropy calculated from S in thermodynamic calculations.

Expressed in words, Equation (36) indicates that entropy-type terms are related to correlations
and vice versa. This kind of relation has already been exploited in a preliminary fashion to
derive the Boltzmann distribution in a previous work by one of the authors [59]. Moreover,
it is also made plausible by the applications of entropy to entanglement [58], which is also a
correlation. All in all, the fraction of the boundary volume ΦB has been identified as a further
DoF and the extended internal energy now reads

U = U(S, ΦB, V, κ,~r, . . . ) (internal energy of a quantized empty box). (37)

An important factor in this description is the finite thickness of the boundaries of the box
leading to their finite volume. The caption of Equation (37) already indicates a possible model
of a quantized space. This model is further detailed in the following section.

3. Chopping the Box—Quantization of Space

This section introduces a model of a quantized space. Here, we do not claim that real
space is de facto quantized but only present a model assumption. One of the major benefits of
this perspective is the possibility of generating ratios of volume/area, area/line, volume/point,
etc., which are all dimensionless numbers under the assumption of a quantized space, which
we take here to imply that areas, lines, and points are three-dimensional objects that are very
thin in one or more directions. Any volume will be an integral multiple of an elementary
volume in this case. The model is based on the assumption that any geometric object is a
three-dimensional (3D) object. There is extensive work in both philosophy and mathematics
that questions, in one way or another, the geometric concepts of point, line, and surface figuring
in traditional formulations of Euclidean synthetic geometry. Whitehead instigated a program in
which points are defined by abstraction from “3-D” regions (see [60] for an overview). Roeper
[61] regards points as locations in space but not as parts or elements of space or the primary
bearers of spatial properties and relations. Johnstone [62] reviews the development of pointless
geometry in mathematics.

Surfaces, lines (edges), and points (vertices) all are geometric objects that have a finite
3D extension on this view. Surfaces are small in one dimension (with a thickness of η), lines
are small in two directions (with a cross-section of η2), and vertices/points are small in all
three directions (with a finite volume of η3). The smallest thickness is denoted by η. From this
perspective, any volume—and any geometric object—can be composed of non-overlapping
elementary volume elements, each having the volume η3. By analogy with regular numerical
grids, these elementary volume elements are called voxels. The overall box can then be chopped
into a number Nbox of voxels. These voxels could be floating around in some space individually.
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However, as they are all parts of a single geometric object—the box—each voxel is connected to
at least one other voxel. Requiring the geometric object to be a box puts further constraints on
their arrangement, allowing them to be classified into specific types of geometric sub-objects
such as the voxels forming faces, those forming edges, the vertex voxels, and the voxels forming
the bulk interior.

The total volume of a box is composed of its voxels, Nvoxels, each having the volume of an
elementary volume element η3.

Vtotal = Nvoxelsη3. (38)

There is no need to consider each of the voxels themselves as a DoF. They can be
classified into:

• bulk voxels,
• face voxels,
• edge voxels,
• vertex voxels.

They then behave coherently (Figure 1).
In the first step, they are classified into voxels of an interior volume VI and voxels of a

boundary volume VB. The total volume is then found to be

Vtotal = Vinterior + Vboundary. (39)

Again, we assume (as is thermodynamically reasonable [21]) that the boundaries have a finite
extension in three dimensions and therefore a non-zero volume. The boundary volume itself is
composed of different parts, faces, edges, and vertices, which are also volumes. It is given by

Vboundary = Vfaces + Vedges + Vvertices (40)

where Vfaces is the volume of the faces, Vedges is the volume of the edges, and Vvertices is the
volume of the vertices. The total volume is thus given by

Vtotal = Vinterior + Vfaces + Vedges + Vvertices. (41)

To account for the small extension in one, two, or all three dimensions of the faces, edges, and
vertices, respectively, a small but finite length η is introduced. This allows the recovery of the
classical description of area A, length L, and points P in the form

Figure 1. Visualization of the different voxel types: face voxels of the different faces (blue, green, red),
edge voxels (light gray, yellow), and vertex voxels (orange).
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Vtotal = Vinterior + ηAfaces + η2Ledges + η3Pvertices (42)

where Afaces is the area of the faces, Ledges is the length of all edges, and Pvertices is the number
of vertices. Dropping the superscripts and denoting the total volume by VT , Equation (42) can
be written as

VT = V + ηA + η2L + η3P. (43)

From this, we can define the volume of the boundary as

Vboundary = η(2ab + 2bc + 2ac) + η2(4a + 4b + 4c) + 8η3. (44)

The individual entities are all volume contributions in this case. The numbers of faces, edges,
and vertices are easily identified as 6, 12, and 8, respectively. The total volume of the box is
obtained by adding the interior volume V = abc to the above boundary volume Vboundary:

Vbox = abc + η(2ab + 2bc + 2ac) + η2(4a + 4b + 4c) + 8η3. (45)

Further, it can be argued that only one-half of each of the surface areas, one-quarter of each
line/edge, and one-eighth of each vertex belong to the volume of the box itself, whereas the
other fractions are part of adjacent boxes. The situation is similar to the definition of a unit cell
in crystallography [63] (although here, we physically consider an isolated box rather than a
lattice, as is common in solid-state physics, the discussion of adjacent boxes primarily serves to
illustrate the geometry). Any face is shared with another unit cell, each edge with four other
unit cells, and each vertex with eight neighboring unit cells. These considerations then yield:

Vbox = abc + η(ab + bc + ac) + η2(a + b + c) + η3. (46)

Equation (46) clearly recovers the classical—sharp interface—description for η → 0:

lim
η→0

Vbox = abc. (47)

Equation (43) can further be normalized by dividing by the total volume VT :

1 =
V
VT

+
ηA
VT

+
η2L
VT

+
η3P
VT

. (48)

Summarizing this section on quantization, the most important assumption is that any geo-
metric object, whether volume, line, area, or point, has a finite volume. The sharp interface
counterparts of areas with size A, lines with length L, and a number of points P (which do not
have a volume but also have a different physical dimension) can be related to the quantized
description as follows:

VArea = ηA,

VLine = η2L, (49)

VPoint = η3P.

A total energy can be assigned to this system of volume fractions by multiplying
Equation (43) with a pressure p. This generates notions of interfacial energy, line energy,
and even point energy:

pVT = pV + pηA + pη2L + pη3P. (50)
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The classical notions of interfacial energy σ and line tension α with dimension energy per area
and energy per length, respectively, and the point energy χ can be obtained by the following
assignments

σ := pη, α := pη2, and χ := pη3. (51)

pVT = pV + σA + αL + χP. (52)

4. Applications of the Quantized Box Model

The following subsections illustrate some implications of the model framework for a
quantized box, as outlined in the previous Section 3.

4.1. Thermodynamics of Geometric Objects

The volume of a simple sphere is described by a single parameter, i.e., a single degree of
freedom: the value of its radius r. Any change in radius directly results in a change in the
volume |V| of this fully symmetric object. The condition of 3D rotational symmetry thus fixes
all other DoFs and only leaves the radius unconstrained:

V = V(r). (53)

A sphere is characterized by its interior volume and its surface/boundary. The boundary “area”
A has already been described here as a finite volume that is thin in one dimension with a
thickness η. This approach has been further explained in Section 3. The total volume Vtotal

of the sphere is given by the sum of its interior volume Vinterior and its boundary volume
Vboundary, i.e.,

Vtotal = Vinterior + Vboundary = V + ηA. (54)

The thickness of the boundary is considered to be finite with a value η. Note that the size of
a sphere cannot be altered without altering its surface area and surface volume. The internal
energy U then can be written as

U(V(r)) = TS− pV + σA (55)

where σ is the interfacial energy. The parameter σ has the dimension of energy/area compared
to pressure with the dimension of energy/volume. For isothermal and reversible (dS = 0)
processes, this leads to the differential

dU(V(r)) = −pdV + σdA. (56)

At equilibrium, the variation in internal energy U will be 0:

dU = 0 (57)

This then yields

0 = −pdV + σdA→ pdV = σdA → p = σ
dA
dV

. (58)

Inserting the differentials dA = 8πrdr and dV = 4πr2dr finally yields

p =
2σ

r
. (59)

This is the well-known Young–Laplace equation relating the pressure of a gas in a soap bubble
to its radius [64]. The radius of a sphere is not a degree of freedom that can be varied while
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the volume is kept constant. A cylinder is an example of a geometric object that allows for a
variation of one of its DoFs while keeping its total volume constant.

The volume of a cylinder with a rotational symmetry along one axis exhibits at least two
DoFs: its length l and its radius r. A change in one or more of these DoFs may—or may
not—change the value of the overall volume of the cylinder. In case the cylinder is elongated in
the axial dimension, it may preserve the volume by a contraction in the radial dimension. This
is related to the Poisson effect in mechanics, which is measured by Poisson’s ratio ν relating the
transverse and longitudinal strain [65]. The differential of the volume V(l, r) reads

dV =
∂V
∂l

dl +
∂V
∂r

dr. (60)

In the case of a conserved volume, i.e., dV = 0, Equation (60) results in the condition

∂V
∂l

dl = −∂V
∂r

dr. (61)

For a cylinder (V = πr2l), we obtain

∂V
∂l

dl = πr2dl and − ∂V
∂r

dr = −2πrldr (62)

Division by π and r leads to
rdl = −2ldr (63)

and eventually to
dl
l
= −2

dr
r
→ −0.5

dl
l
=

dr
r
→ −ν

dl
l
=

dr
r

(64)

This reflects the Poisson effect for ν = 0.5, in the case of isotropic, volume-conserving materials
and small elongations.

Several aspects of a box make a deeper discussion interesting. In contrast to spheres and
cylinders, boxes can be used to densely tessellate a 3D universe. Furthermore, they exhibit
a full 3D anisotropy (in contrast to a cube). Compared with a sphere and a cylinder, a box
exhibits different kinds of characteristic boundary elements, namely faces, lines, and vertices.
The volume V of a box is anisotropic in three dimensions with length a, width b, and height c.

4.2. Dimensionless Entities

One of the interesting aspects of expressing all types of geometric objects as volumes, as
described in Section 3, is the fact that dimensionless parameters can be used. This especially
holds for ratios of only two entities, where everyone knows the famous dimensionless relation
between the perimeter and diameter of a circle, given by the constant

π =
perimeter
diameter

. (65)

An important example of a dimensionless constant with multiple entities is the fine-structure
constant α [66], which, as has been argued, is possibly related to discretized circles and polygons
[67]. It is given by

α =
1

137.035999084(21)
=

e2

4πε0h̄c
(66)

where e is the electron charge, ε0 is the vacuum permittivity, h̄ is the reduced Planck constant,
and c is the speed of light. A variety of such dimensionless numbers, which may be constants
or variables, can be defined. Some of them are discussed below.
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The ratio of “area volume” and “point volume” is such a dimensionless number. It reads

S =
ηA
η3 =

A
η2 . (67)

This is already close to the entropy formula for a black hole in the geometric version in Equation
(1). The factor 1/4 is still missing. The required step

S =
A
η2 → S =

A
4l2

p
(68)

can be performed by assuming an entropy-type distribution of gradients (or contrast) in the
transition region of thickness η, with 1/lp denoting the maximum possible contrast gradient.
A full derivation can be found in Refs. [5,59]. This expression then matches the Bekenstein–
Hawking Equation in (1) for the entropy of a black hole [4].

4.3. Squeezing the Box

Two simple vectors that are very relevant for the description of an anisotropic box and the
degree of its anisotropy are the vector of the space diagonal~n and the wave vector~k. The wave
vector is the “reciprocal vector”:

~k =

 a−1

b−1

c−1

 and ~n =

 a
b
c

. (69)

A scalar can be defined as the scalar product of these vectors. Clearly, this scalar product yields
a constant denoting the dimension of the underlying vector space (3 in the present case):

~k ·~n = 3 (number of spatial dimensions). (70)

The scalar product in Equation (70) can be related to a multiparameter homogeneous function
(see Section 2.1 on Euler homogeneity) describing the box. Simply multiplying both sides of
Equation (70) with the volume of the box gives, for the usual value V(a, b, c) = abc, the result

abc~k ·~n = 3abc. (71)

Writing the scalar product in components

abc~k =

 bc
ac
ab

 and ~n =

 a
b
c

 (72)

would specify V = abc be a homogeneous function in the case where the multiplication of the
volume with~k represents the derivative, which is obviously the case:

abc~k =

 ∂abc
∂a

∂abc
∂b

∂abc
∂c

 =:
∂V(xi)

∂xi
. (73)
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The multiplication of the scalar volume with the wave vector~k obviously corresponds to a
differentiation operation. Rewriting the scalar product according to well-known rules provides
the specification of an angle θ:

3 =~k ·~n = |~k||~n| cos θ. (74)

It can be directly inferred that the two vectors are parallel in the case of cos(θ) = 1 and θ = 0
and perpendicular when cos(θ) = 0. The latter case of perfect perpendicularity clearly can
never be reached by these two vectors.

cos θ = 1↔ ~n ‖~k, (75)

cos θ = 0↔ ~n ⊥~k. (76)

The two vectors are parallel in the case where both vectors are linearly dependent, i.e., one of
them is a scalar multiple of the other one:

~n ‖~k↔ ~n = scalar ·~k. (77)

It can be seen that this can be realized for cubes where a = b = c and using a2 as the scalar in
Equation (77)

a2

 a−1

a−1

a−1

 =

 a
a
a

. (78)

As a special case, both vectors might be identical, i.e.,~k = ~n. This then yields a unit cube with
a = 1, for which Equation (78) reads

12

 1
1
1

 =

 1
1
1

. (79)

A four-dimensional (4D) box in this context would generate a factor of ndim = 4. In the case
where both 4-vectors are identical, i.e.,~k4 = ~n4, a 4D unit cube with a = 1 is obtained:

~k4 =


1
1
1
1

 =


1
1
1
1

 = ~n4 (80)

and
~k4 ·~n4 = 4. (81)

Remember that to reach this description, all lengths in the 3D case have to be equal (i.e.,
a = b = c). In the case of extending to 4D, this would also hold for the fourth length τ
(i.e., τ = a = b = c). A limiting case—which cannot be reached but only asymptotically
approached—is the case where both vectors are mutually perpendicular. This case (θ ≈ π

2 )
leads to an extremely compressed box, which is almost a plane. All cases with θ = (2n + 1)π

2
then correspond to planes and no longer represent a box. These mathematically sharp 2D
planes obviously represent a further state of the system that complements the box with its finite
volume. The perpendicularity can be expressed using the cross-product

|~k×~n| = |~k||~n| sin(θ). (82)
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The angle θ is thus a parameter describing a transition from a “cube”, i.e., an ideal 3D object, to
a plane, i.e., an ideal 2D object, as visualized in Figure 2.

Figure 2. Visualization of a transition between a cube (cos(θ) = 1) and a plane (cos(θ) = 0). The volume
is kept the same in all cases.

4.3.1. Special Relativity

A comparison can be made between two different boxes with the same volumes, but
different shapes specified by the angle θ. In particular, we compare an unspecified box with a
special kind of box, namely a cube, and also a cube with a special cube, the unit cube.

The two states are defined by a property X and their difference can then be described as a
positive factor γ ≥ 1 similar to the notion of the Lorentz factor:

Xbox = γXcube → γ =
Xbox
Xcube

. (83)

The scalar product definition holds for both the box and the cube

cos(θ) =
~k ·~n
|~k||~n|

, (84)

|~k||~n| =
~k ·~n

cos(θ)
=

ndim
cos(θ)

. (85)

Equation (85) can be squared, which is useful for subsequent reasoning. Squaring Equation
(85) gives

~k2~n2 =
ndim

2

cos2(θ)
. (86)

We now use a prime symbol to indicate the parameters relating to the box, whereas the
parameters of the cubes will not be primed. The square of the ratio of the properties, as defined

in Equation (83), then reads (X2
cube =

n2
dim

cos2(θ)
and X2

box =
n2

dim
cos2(θ′)

):

γ2 =
cos2(θ)

cos2(θ′)
. (87)

Using the well-known relation

1 = sin2(θ) + cos2(θ), (88)



Entropy 2023, 25, 315 19 of 32

Equation (87) can be rewritten as

γ2 =
cos2(θ)

1− sin2(θ′)
. (89)

Inserting the value 1 for cos2(θ)—which is asserted for the case of a cube—into Equation (89)
gives:

γ2 =
1

1− sin2(θ′)
(90)

which is the same as

γ2 =
c2

c2 − c2 sin2(θ′)
. (91)

To obtain Equation (91) from Equation (90), we have multiplied the numerator and denominator
by a (in principle, arbitrary) quantity c2. Giving c2 a physical interpretation—e.g., the square
of a velocity—with a physical dimension, c2 sin2 θ′ must have the same physical dimension,
enabling us to define a velocity v and velocity ratio β as

v2 := c2 sin2 θ′ → β2 := sin2(θ′) =
v2

c2 . (92)

Finally, we obtain the Lorentz factor in the familiar formulation

γ2 =
1

1− β2 (Lorentz factor). (93)

The variables have been deliberately named β and γ to emphasize the mathematical analogy
with special relativity.

Following the above ratio between the property of a box and the property of a cube, which
has led to the specification of the Lorentz factor, the ratio between a cube and a unit cube is
investigated. We now use primed values for the cube and non-primed values for the unit cube.
Since both are cubes, both of them have cos(θ) = 1:

1 = cos(θ) =
~k ·~n
|~k||~n|

=
~k′ ·~n′

|~k′||~n′|
. (94)

For cubes, all vector components of the two vectors are identical. We name them lp
λ for

~k and λ
lp

for ~n, where lp is a constant and λ is a variable. Then, there exists a scalar variable

m2(λ) scaling the two vectors
~k = m2(λ)~n (95)

For the unit cube, we have~k =~n, which can only be realized for λ = lp and m2(lp) = 1.

4.4. Evolution of the Box

The fact that the identity

ndim =~k ·~n = |~k||~n| cos θ (96)
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holds regardless of the choice of a, b, and c makes it a sound and interesting starting point for
further mathematical operations. If our box evolves with time t, the vectors~k and~n become
time-dependent and we find that

ndim =~k(t) ·~n(t) for all t. (97)

Similarly, the box parameters could depend on the position~r, implying that

ndim =~k(~r) ·~n(~r) for all~r. (98)

The time derivatives of the space diagonal ~n and wave vector~k can be calculated via their
vector components as follows:

~̇k =
d
dt
~k = −

 ȧ/a2

ḃ/b2

ċ/c2

 and ~̇n =
d
dt
~n =

 ȧ
ḃ
ċ

. (99)

Further, we can calculate the second derivatives with respect to time and find that

~̈k =
d
dt
~̇k = −

 ä/a2

b̈/b2

c̈/c2

+ 2

 ȧ2/a3

ḃ2/b3

ċ2/c3

 and ~̈n =
d
dt
~̇n =

 ä
b̈
c̈

. (100)

In the case where both vectors are solely functions of time, their full derivative, which is equal
to the time derivative of ndim, is equal to their partial derivative and reads

dndim
dt

=
d(~k ·~n)

dt
→ 0 = ~n ·~̇k +~k · ~̇n. (101)

The sum of these two scalar products clearly vanishes, indicating that one is the negative of the
other. This allows for the identification of an anisotropic “Hubble parameter” Haniso given by

Haniso := −~n ·~̇k =
ȧ
a
+

ḃ
b
+

ċ
c

. (102)

The name “Hubble parameter” has been chosen here because, for the special case of a cube
(a = b = c), this defines a parameter Hiso, which up to a factor of 3, corresponds to the
Hubble parameter H entering into the Friedmann equations for the expansion of an isotropic
universe [9]. In fact, Hubble parameters of the form in Equation (102) have already been used
in anisotropic cosmological models [68]. For a cube, we recover the standard definition of the
Hubble parameter given by

H =
1
3

Hiso with Hiso = 3
ȧ
a

. (103)

Starting with the time-dependent scalar product, Equation (97), the vectors can be evolved
with a small time step dt yielding

~k(t + dt) =~k(t) +~̇kdt and ~n(t + dt) = ~n(t) + ~̇ndt. (104)

Since their scalar product is invariant, we must have

~n(t + dt) ·~k(t + dt) = (~k(t) +~̇kdt) · (~n(t) + ~̇ndt) = constant = ndim. (105)
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This results in a total of four terms

ndim =~k ·~n +~n ·~̇kdt +~k · ~̇ndt +O(dt2). (106)

This essentially corresponds to a Taylor expansion truncated to first order and thus reproduces
the result of Equation (101). More interesting is an expansion up to order dt2, which by the
same reasoning yields

ndim = ndim + (~̈k ·~n + 2~̇k · ~̇n +~k · ~̈n)dt2 +O(dt3). (107)

The sum of all terms of second order, of course, also vanishes. For a = b = c (the case of a
cube), we would find the familiar result

Ḣiso =
ä
a
−
(

ȧ
a

)2

=
ä
a
− H2

iso, (108)

which is useful for cosmological calculations [69]. Here, however, we have

Ḣaniso =
ä
a
−
(

ȧ
a

)2

+
b̈
b
−
(

ḃ
b

)2

+
c̈
c
−
(

ċ
c

)2

. (109)

On the other hand, we obtain

H2
aniso =

(
ȧ
a
+

ḃ
b
+

ċ
c

)2

= −~̇k · ~̇n + 2
(

ȧḃ
ab

+
ḃċ
bc

+
ċȧ
ca

)
. (110)

Thus, we cannot calculate Ḣaniso simply as a sum of terms of second order in derivatives and
the square of Haniso since squaring the anisotropic Haniso of a box generates correlation terms
between the expansion and contraction rates in the different directions. As a word of caution,
one should understand that an anisotropic expansion rate H in one direction would also allow
for compensation by shrinkage in another direction (similar to the Poisson effect discussed in
Section 4.1).

The actual universe is observed to be anisotropic and the development of cosmological
models incorporating such anisotropies is a topic of ongoing research [69,70]. Although the
smallness of anisotropies in the cosmic microwave background (CMB) suggests a relatively
homogeneous universe, at least at early times [71], the irrelevance of cosmological anisotropies
for the expansion of the universe has not yet been demonstrated [72] and the fact that they
should have at least some effect is a direct consequence of the mathematics of general relativity
[69]. In addition, the structure of the universe, and thus its inhomogeneity, has grown consider-
ably since early times, which are captured by the CMB (see Refs. [51,71] for studies employing
CMB data to analyze this problem). It might also be interesting to exploit models allowing
for expansion in one direction accompanied by simultaneous shrinkage in another direction
similar to the Poisson effect.

4.5. Translating the Box
4.5.1. Newton’s Laws

The thermodynamic description has yet to take into account the position of the box.
Moving the box corresponds to changes in its centroid position~r. The thermodynamic potential,
in this case, will, therefore, also be a function of~r, indicating that this position is another DoF of
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the system. We still have an empty box with no particles inside (N=0) and the internal energy
reads

U(S, V,~r). (111)

It has the differential
dU = TdS− pdV +

∂U
∂~r
· d~r. (112)

Newton’s second law can be deduced from thermodynamics by assuming that the position
~r of the centroid of the box is a function of time t. For a non-dissipative and isochoric process (i.e.,
dS = 0 and dV = 0), the differential of U reads

dU =
∂U
∂~r
· ∂~r

∂t
dt =: Ėdt. (113)

Here, the product of the two partial derivatives has been identified with the time derivative of
an energy E (that, for the moment, is simply U):

−Ė = −(~∇U) ·~̇r := ~F ·~v. (114)

Defining the momentum vector ~p via its differential as

d~p := ~Fdt → ~F = ~̇p (115)

yields
−Ė = ~̇p ·~v. (116)

Finally, we can note that the energy should be conserved, i.e., Ė = 0. Then, Equations (115) and
(116) give

Ė = 0→ ~F =~0→ ~̇p =~0→ ~p = constant ∨ ~v =~0 (Newton’s first law). (117)

Although these results are encouraging, two problems remain:

1. So far, we cannot say anything about how the quantity ~p, defined by Equation (115), is
related to the velocity ~v. Of course, Equation (117) is only equivalent to the statement
usually thought of as Newton’s first law if ~p is proportional to the velocity.

2. Energy conservation in a closed system should also hold for the more general case ~F 6=~0
(whereas Equation (114) suggests a direct dependence of Ė on ~F, which motivated the
first implication in Equation (117)). A position-dependent potential does not lead to a
violation of energy conservation.

Both issues can be dealt with if we also allow the potential to depend on the velocity ~v. Let us
assume that the energy has a contribution Ekin (“kinetic energy”) that is simply added to the
energy E considered so far, which we denote with Epot and refer to as the “potential energy”.
The total energy E is then given by

E = Epot + Ekin. (118)

Equation (116) implies that
Ėpot = −~̇p ·~v. (119)

Imposing the condition Ė = 0, Equations (118) and (119) give

Ėkin = ~̇p ·~v. (120)
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If we assume that Ėkin is some function of ~v (and nothing else), we find, in general, that

Ėkin =
∂Ekin

∂~v
·~a (121)

where ~a = ~̇v is the acceleration. Comparing Equations (120) and (121), we note that the
simplest way to satisfy them simultaneously is to assume that ~̇p is proportional to~a and ∂Ekin

∂~v is
proportional to ~v. The proportionality constants can then simply be obtained from dimensional
analysis. In both cases, the proportionality constant needs to have a dimension of mass such
that we can choose the mass m of the box. This yields the standard results

Ekin =
1
2

m~v2, (122)

~p =m~v. (123)

Combining Equations (115) and (123) gives

~F = m~a (Newton’s second law). (124)

In the absence of any force and for a constant mass, the momentum will be a constant and
Newton’s first law is obtained:

~F =~0→ ~p = constant → ~v = constant (Newton’s first law). (125)

Note that we have simplified our approach here by obtaining Newton’s first law simply as a spe-
cial case of the second law. Although this is not uncommon in introductory presentations, it may
not be seen as completely adequate from a philosophical
perspective (see [73], p. 37). Strictly speaking, Newton’s first law introduces inertial frames of
reference in which Newton’s second law then holds (in the absence of apparent forces).

Newton’s third law was already discussed in Section 2.2.
Beyond the mere classical kinetic energy discussed above, other terms yielding a velocity

term can also be part of the energy, for example, terms proportional to~r2. This would be the
lowest-order term in a Taylor expansion of the contribution Epot. We, therefore, find that

E =
k
2
~r2 +

m
2
~̇r2

. (126)

Executing the time derivative then yields

Ė = k~r ·~̇r + m~̇r ·~̈r. (127)

Separating~̇r and renaming~̇r as ~v and~̈r as~a gives

Ė = (k~r + m~̈r) ·~̇r = (k~r + m~a) ·~v. (128)

A non-dissipative process (i.e., Ė = 0) corresponds to k~r + m~a = ~0 and/or ~v = ~0. For a
non-vanishing velocity ~v 6=~0, this then leads to the equation for a harmonic oscillator:

~0 = k~r + m~̈r (Harmonic Oscillator). (129)

4.5.2. The Unruh Effect

Next, we demonstrate how translating the box can allow for a classical derivation of a
relation formally resembling the definition of the Unruh temperature. To have a physical idea
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of how this can be achieved, imagine that a box with mass m is at rest in a gravitational field
with strength g and has a certain potential energy. If we let it fall a distance z and assume that
“falling” is an adiabatic process, the energy mgz is converted into the kinetic energy of the
center-of-mass motion. Next, the box is stopped instantaneously, which implies that the kinetic
energy is converted into heat. Overall, this constitutes a process in which the box has moved a
distance z, during which time an amount mgz of energy is converted into heat. The equivalence
between assuming that the box is in a constant gravitational field and assuming that it is subject
to a constant acceleration, which we call~a, can now be observed. Finally, we assume that this
process takes place over a very small length d~r. Thus, the energy that is converted into heat is
given by m~a · d~r, and we find that

TdS = m~a · d~r. (130)

This indicates a possible path to the Unruh temperature TUnruh [22], which reads

kBTUnruh =
h̄

2πc
|~a | . (131)

We can continue to follow this path by replacing the mass m of the particle with its Compton
wavelength λ:

λ =
h̄

2πmc
↔ m =

h̄
2πλc

. (132)

This replacement leads to

TdS =
h̄

2πλc
~a · d~r (Differential Unruh Equation) (133)

Under the reasonable assumption that the acceleration~a is parallel to the displacement d~r, the
scalar product turns into a simple product,

TdS =
h̄

2πc
a

dr
λ

, (134)

where a = |~a|. This is almost identical to the formulation of the Unruh temperature and
would be identical if the displacement were to match the Compton wavelength. Integrating the
displacement over one Compton wavelength and assuming the acceleration a to be constant
over this distance yields

T∆S =
h̄

2πc
a
∫ λ

0

1
λ

dr =
h̄

2πc
a. (135)

Identifying the resulting ∆S with the Boltzmann constant kB,

kB := ∆S, (136)

finally yields the Unruh equation in its familiar form

kBT =
h̄

2πc
a (Unruh Equation). (137)

The Boltzmann constant kB in this case can be interpreted as a “quantum” of entropy defined
by the amount of entropy generated by shifting a particle by exactly its Compton wavelength.
More precisely, the constant kB is defined by Equation (136) and does not have to be numerically
identical to the Boltzmann constant used in statistical mechanics (since, here, we are deriving
an analogy with the Unruh equation and not the Unruh equation itself).
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4.5.3. Position-Dependent Volume

The deliberations in Section 4.5.1 are not affected by the fact that we consider a box
rather than, say, a point mass. Let us now, as indicated in Section 2.2, assume that there
is also a position-dependent volume, i.e., that V changes if the box is moved. Assuming a
non-dissipative process (dS = 0), this gives

dU = −p
∂V
∂~r
· d~r + ∂U

∂~r
· d~r + ∂U

∂~v
· d~v, (138)

where we have used the definition of pressure (see Equation (9)). Exploiting the fact that
dU = 0 in a closed system and using ∂U

∂~v = ~p and ~̇v =~a (see Section 4.5.1), dividing Equation
(138) by dt gives

0 = ~v ·
(
− p

∂V
∂~r

+
∂U
∂~r

+ m~a
)

, (139)

giving

m~a = ~F = p
∂V
∂~r
− ∂U

∂~r
. (140)

Hence, the position dependence of the volume creates an additional contribution to the total
force.

This result can be given the following physical interpretation: the term ∂U
∂~r corresponds

to an explicit position dependence of U arising from an external potential. For a point mass,
a shift of the position, which leads to a change in the potential energy, must (due to energy
conservation) be compensated for by an increase in the kinetic energy. Hence, the external
force generates acceleration. Here, however, the energy coming from the external potential is
transformed partly into center-of-mass kinetic energy and partly into internal energy, resulting
from the change in volume. This is fully analogous to the well-known observation that a
cylinder rolling down an inclined plane arrives at the bottom more slowly than a point of
the same mass since for the cylinder, not all of the initial potential energy is converted into
center-of-mass kinetic energy, as some of it is converted into rotational energy.

4.5.4. Uncertainty Relation

Finally, we discuss the implications of the “discretized” view on space for the dynamic
equations if we apply it to both space and time. Replacing dt by ∆t, Equation (120) reads

∆Ekin
∆t

=
∆~p
∆t
· ∆~r

∆t
. (141)

Multiplying both sides of Equation (141) by (∆t)2 gives an “uncertainty relation”, which is
formally equivalent to an uncertainty relation that appears in quantum mechanics (although it
is formulated for Ekin rather than E):

∆Ekin∆t = ∆~p · ∆~r (uncertainty relation). (142)

Note that Equation (142) is not an uncertainty relation in the quantum-mechanical sense
but simply a result of elementary mechanics that has the same formal structure as a certain
quantum-mechanical result.

5. Beyond the Empty Box

A number of equations and relations have been discussed:

• all three laws of Newton (classical mechanics),
• the harmonic oscillator equation,
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• the Unruh equation,
• an uncertainty relation.

In this article, a number of further observations and thoughts have emerged, which strike
us as very interesting and will be discussed in future articles. These thoughts arose from
relaxing the constraint of describing “an empty box” and are briefly mentioned below. They
refer to oriented surfaces (which takes us beyond a simple box), twisting and shearing the box
(dropping the rectangular characteristics of a box), and filling the box (dropping the constraint
of an “empty” box).

5.1. Oriented Surfaces

The classical relation describing the charge of a capacitor

Q = CUelectrostatic (143)

with the capacity C and the voltage Uelectrostatic—the difference in the electrostatic potential—
sustains a direct scalar relation between the charge Q and the surface A of a capacitor, given by

Q = ε0εr
A
d

Uelectrostatic (144)

where εr is the relative permittivity and d is the distance between the plates. Equation (144)
can be re-written under certain assumptions as a scalar product of the oriented surface ~A and
the gradient of a potential energy (the electrostatic potential) ~∇U:

Q = ε0εr ~A · ~∇Uelectrostatic. (145)

Equation (145) suggests a strong relation between the charge and both the area and area
orientation. An approach to describing “charges” and electrostatics might thus arise from
considering the orientations of the faces of the box as an additional degree of freedom, where
a “positive charge” would correspond to a box with all the normals of the faces pointing
“inwards”, whereas a negative charge would correspond to a box with all these normals
pointing “outwards” (see Figure 3).

Figure 3. Source and sink as states of a box

Similar interpretations of a quantum sink and quantum source are the philosophical
foundations of the Elementary Multiperspective Material Ontology (EMMO) described in
Ghedini et al. [74] and can also be found in the cell method (Figures 12 and 13 in [75]).

5.2. Shearing and Twisting the Box

The present article did not exploit the spade product describing a volume element in its
full depth but was limited to a box with parallel faces mutually perpendicular to each other.
Considering the angles between non-perpendicular faces as further DoFs can be expected to
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result in the description of “shear forces”. Twisting the two parallel faces of a box by some
angle will relax the constraint of “being a box” and can be expected to lead to the description
of a “torque”.

5.3. Filling the Box

Filling the box will, generally, allow addressing (i) a box containing a single particle,
and (ii) a box filled with massless particles. The model of a particle in a box is important in
quantum mechanics as it is, in contrast to most other models, exactly solvable [76] and it will
be interesting to make comparisons. The derivation of the well-known Planck formula for the
energy spectrum of black-body radiation also started with considering photons confined in a
box with multiples of their wavelengths matching the size of the box [6]. The additional 2D
DoF identified in Section 4.3 on squeezing the box might represent an interesting starting point
for the description of photons.

6. Summary and Outlook

The present article started with the idea of identifying the “hidden” degrees of freedom
(DoF) of an empty box. In classical thermodynamic potentials, the only degree of freedom
would be the value of the volume V of the box. Additional degrees of freedom were identified
in this article, all leaving the volume value V unchanged but relating to either a change
in the shape or position of the box. Considering these DoFs as functional dependencies
and performing the classical partial derivatives of the internal energy yielded a number of
interesting relations. In particular, terms and equations corresponding to black-hole entropy
[5], the Unruh temperature, and an uncertainty relation, as well as classical mechanics, could
be identified. The thermodynamic approach pursued in this article demonstrates that familiar
aspects of gravity, relativity, quantum mechanics and even quantum field theory can be obtained
from a common thermodynamic perspective. The question arises of whether the same approach
might be further extended to also describe phenomena of electrostatics and electrodynamics.
Thermodynamics in solid-state physics addressing cross-phenomena, e.g., between electrostatic
fields and temperature, are expected to provide guidance here [77]. Note that in the present
article, special relativity can be considered a cross-phenomenon between the respective DoFs
of “squeezing the box” and “translating the box”, eventually leading to compression during
translation resembling the relativistic length contraction. In our framework, forces have, in
some cases, been identified as corresponding to correlations. Only binary correlations of
type ΦiΦj have been exploited in the present article. It is anticipated that weak and strong
interactions are related to higher-order ternary (i.e., ΦiΦjΦk) and quaternary (i.e., ΦiΦjΦkΦl)
correlations, raising a spectrum of options for a possible “thermodynamics of everything”
(ToE).
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Appendix A. Legendre Transformations

The internal energy potential U can be transformed into other potentials expressed in
other—intensive or extensive—variables via the Legendre transformation

UX := U − ∂U
∂X

X, X ∈ (S, V, N) (A1)

Examples are the Helmholtz energy A or the enthalpy H:

A := US, H := UV . (A2)

From the outset, the derived potentials share the free variables of the parent potential U(S, V, N),
but there is another possibility with a simpler (so-called canonical) description, namely that the
transformed variable is replaced by the corresponding partial derivative. Hence,

A = A
(

∂U
∂S

, V, N
)

, H = H
(

S,
∂U
∂V

, N
)

(A3)

or, after inserting the definitions in Equation (9),

A = A(T, V, N), H = H(S,−p, N) (A4)

These canonical forms are derived using two important features of the partial differentiation of
a Legendre transform with more than one variable:(

∂UX
∂Y

)
∂U
∂X

=

(
∂U
∂Y

)
X

, (A5)

 ∂UX

∂
(

∂U
∂X

)
Y


Y

= −X. (A6)

Applied to A, after substituting for Equation (9), we can write(
∂A
∂V

)
T,N

=

(
∂U
∂V

)
S,N

:= −p, (A7)

(
∂A
∂T

)
V,N

= −S. (A8)

The enthalpy H and all the other imaginable Legendre transforms of U follow the same pattern.
The above derivative properties imply that the Legendre transformation, when expressed

in canonical variables, is (i) commutative, and (ii) reversible, or, to continue our line of thought
using A as an example, we can calculate the continued transformation of AV =: G (called
Gibbs energy) directly from U

AV := A− ∂A
∂V

V = A− ∂U
∂V

V := U − ∂U
∂S

S− ∂U
∂V

V =: USV , (A9)
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and also illustrate how the repeated transformation of S and T in U(S, V, N) and A(T, V, N),
respectively, returns the original potential U(S, V, N) after three cycles:

U(+S, V, N)+S =: A(+T, V, N) (A10)

A(+T, V, N)+T =: U(−S, V, N) (A11)

U(−S, V, N)−S =: A(−T, V, N) (A12)

A(−T, V, N)−T =: U(+S, V, N). (A13)

Positive and negative signs are deliberately used to illustrate the implications of the derivative
property in Equation (A6).

The Legendre transformation defined in Equation (A1) is linear and using a linear operator
on a first-order Euler homogeneous function gives a unique result. The total transformation of
U gives the zero potential

UXYZ = 0; (X 6= Y 6= Z). (A14)

Linearity also implies the existence of inversion and from Equation (10), we can easily formulate
several equivalent families of potentials, which can all undergo a Legendre transformation of
the same kind we have seen above:

S(U, V, N) = +
1
T

U − −p
T

V − µ

T
N, (A15)

V(S, U, N) = − T
−p

S +
1
−p

U − µ

−p
N, (A16)

N(S, V, U) = − T
µ

S− −p
µ

V +
1
µ

U. (A17)

The same inversion principle also applies to each of the Legendre transforms so, overall, there
are many possibilities for expressing the state of a thermodynamic system.

Appendix B. Relation between Dual-State Entropy and Boltzmann Entropy

Here, we discuss in more detail why, from the perspective of statistical mechanics, it is
reasonable to define the entropy via Equation (36) if we specify the macrostate based on interior
and boundary fractions.

An illustrative simple example is a system of three spins in one dimension that can be up
(↑) or down (↓). All spins can flip randomly and all configurations have the same energy. We
then describe this dual-state system in terms of the fraction of interior ΦI (corresponding to
the number of boundaries between spins pointing in the same direction) and boundary ΦB
(corresponding to the number of boundaries between spins pointing in opposite directions)
parts, i.e., the macrostate is specified by ΦI and ΦB. The system will evolve toward the most
likely macrostate, i.e., the one revealing the largest number of possible microscopic realizations.
This is the state with the largest Boltzmann entropy. The maximum of the dual-state entropy in
Equation (36) is reached when ΦI = ΦB = 1/2. If Equation (36) is an appropriate expression for
the entropy (assuming that the system evolves to the maximum entropy state), the macrostate
ΦI = ΦB = 1/2 should also be the microscopically most likely one, i.e., the one with the largest
Boltzmann entropy. The possible configurations are

↑↑↑, ↑↑↓, ↑↓↑, ↓↑↑, ↑↓↓, ↓↓↑, ↓↑↓, ↓↓↓.

As can be seen, there are two configurations with ΦI = 1 and ΦB = 0 (↑↑↑ and ↓↓↓), two
configurations with ΦI = 0 and ΦB = 1 (↑↓↑ and ↓↑↓), and four configurations with ΦI =
ΦB = 1/2 (↑↑↓, ↓↑↑, ↓↓↑, and ↑↓↓). Hence, the macrostate ΦI = ΦB = 1/2 is indeed the one
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with the largest number of microscopic realizations and thus the maximum of the Boltzmann
entropy.
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