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Abstract—We present a dataset to evaluate localization al-
gorithms, which utilizes vision, audio, and radio sensors: the
Lund University Vision, Radio, and Audio (LuViRA) Dataset.
The dataset includes RGB images, corresponding depth maps,
IMU readings, channel response between a massive MIMO
channel sounder and a user equipment, audio recorded by 12
microphones, and 0.5 mm accurate 6DoF pose ground truth. We
synchronize these sensors to make sure that all data are recorded
simultaneously. A camera, speaker, and transmit antenna are
placed on top of a slowly moving service robot and 88 trajectories
are recorded. Each trajectory includes 20 to 50 seconds of
recorded sensor data and ground truth labels. The data from
different sensors can be used separately or jointly to conduct
localization tasks and a motion capture system is used to verify
the results obtained by the localization algorithms. The main aim
of this dataset is to enable research on fusing the most commonly
used sensors for localization tasks. However, the full dataset or
some parts of it can also be used for other research areas such as
channel estimation, image classification, etc. Fusing sensor data
can lead to increased localization accuracy and reliability, as well
as decreased latency and power consumption. The created dataset
will be made public at a later date.

Index Terms—Localization, Data set, Sensor fusion

I. INTRODUCTION

Fully autonomous driving and human-free smart factories
are expected to significantly increase life quality [1] [2]. To
build an autonomous smart factory, one of the most critical
challenges is performing accurate localization and monitoring
of autonomous service robots in real-time. The most com-
monly used sensors in robots and indoor environments are
cameras, microphones, and radio-frequency (RF) modules.
Accurately localizing the robots can be achieved using these
sensors even when the global navigation satellite system’s
(GNSS) signal is unavailable. These conditions usually occur
in indoor environments; e.g. a service robot in a factory needs
to localize itself within cm level accuracy to perform tasks
such as lifting an object, placing an object, etc.

In recent years, localization algorithms using different
sensors such as cameras, RF modules, and microphones
have developed immensely. In vision-based localization, algo-
rithms such as ORB-SLAM3 [3] and DROID-SLAM [4] have
reached centimeter-level accuracy by both localizing the sensor
and mapping the environment. In radio-based localization,
multiple-input and multiple-output (MIMO) antenna arrays
are used to localize radio transmitters with high accuracy
[5]. Audio-based localization has also become popular in
recent years, enabling both the sound source and microphone
localization down to centimeter-level accuracy [6] [7]. Yet,

all of these algorithms also require high computing capability,
power consumption, and/or large training datasets.

Vision, radio, and audio-based localization have their own
advantages and disadvantages in terms of accuracy, reliability,
complexity, and timing performance. For example, vision-
based localization algorithms can achieve very high accuracy
in real-time while they cannot operate in a dark scenario. Radio
and audio based localization algorithms are not affected by
the lack of light in the room. On the other hand, if the audio
noise level of the room is very high, audio-based localization
techniques are neither accurate nor reliable. By combining
information from these sensors, each system’s disadvantage
can be counteracted by the advantages of the others. This can
lead to reduced power consumption, high reliability, increased
accuracy, and higher confidence in the estimated locations.
However, to develop and evaluate algorithms that fuse data
from these sensors, a dataset that includes sensor readings
from each sensor is required.

Public datasets and benchmarks are key for evaluating the
algorithms designed by the scientific community. EuRoC [8],
KITTI [9] and TUM RGB-D [10] datasets are best-known
datasets in computer vision area [11]. EuRoC dataset includes
data from two cameras, an IMU, a laser tracker, motion
capture, and a 3D scanner. KITTI dataset allows outdoor
localization methods using LiDAR, monochrome and color
cameras to be evaluated with RTK-GPS&INS data as ground
truth. For RGB-D camera-based localization methods, TUM
RGB-D dataset is a very popular choice. There are fewer
public datasets for the evaluation of radio and audio based
localization algorithms. KU Leuven [12] and StuctureFrom-
Sound [13] are examples of public datasets for radio and audio
based localization methods, respectively. KU Leuven dataset
contains measured channel state information (CSI) between
a user and a massive MIMO testbed. StuctureFromSound
dataset is collected with 12 microphones and a motion capture
system is used to track ground truth labels of a sound source.
However, to the best of our knowledge, there is no public
dataset that includes synchronized data from vision, radio, and
audio sensors.

This paper presents the measurement description of a novel
dataset that includes data from vision, audio, and radio sensors
in an indoor environment: The Lund University Vision, Radio,
and Audio (LuViRA) Dataset. Our dataset consists of 88
trajectories that are recorded in Lund University Humanities
Lab’s motion capture (mocap) studio using a mobile indus-
trialized robot (MIR200). Each trajectory contains data from
four different systems, different sensors, and a ground truth
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Fig. 1: General overview of the measurement environment.

system that can provide 0.5mm accuracy. These systems are
synchronized using a time synchronization unit. A general
overview of the systems is shown in Fig. 1. In the next section,
the measurement setup which includes the environment of
the measurement campaign and the ground truth system is
described. The setup of different sensors will be described
in the third section. The synchronization unit that combines
all the sensors and the calibration of different systems will
be explained in the fourth section. The different trajectories
created as a result of the measurement campaign will be the
main topic of the fifth section, followed by the format used
to store collected data and known limitations of the dataset in
the sixth and seventh sections.

II. MEASUREMENT SETUP

As mentioned in the introduction, the measurement cam-
paign took place in Lund University Humanities Lab’s motion
capture (mocap) studio. A top-down view of the environment
and the sensor placement in the room can be seen in Fig. 2.
A 4.2×2.5m2 area in the center of the room is chosen as the
effective area where the trajectories are recorded.

Many precautions have been taken to create a controlled
environment in the mocap studio for our measurement cam-
paign. Most importantly, a robot MIR200 is used to move a
camera, a single antenna user equipment (UE), a sound source
(speaker), and the equipment connected to them. The camera,
antenna, and speaker are placed on a higher-level platform
built for this measurement campaign which can be seen in Fig.
1. The platform ensures that the sensors have dedicated and
stable locations on the robot and have an unobstructed view of
the environment. The rest of the equipment is placed around
this effective area. The size of the effective area is decided
based on many factors but the main reason is the coverage of
the ground truth system. The ground truth system is the most
accurate when several cameras can see the markers. On the
side of the rooms, some markers are usually blocked by other

Fig. 2: Top-down view of the environment where the rounded
red rectangle depicts the robot, squares marked with “A”, “C”
and “S” stands for antenna, camera, and speaker respectively.
The placement of the microphones is illustrated as numbered
squares where the yellow color on rectangles indicates the
object is a sensor.

objects and the ground truth system’s localization accuracy
decreases. At the beginning of the measurements, the ground
truth system is calibrated. The accuracy of the ground truth
system is measured as 0.5mm in the effective area, during
the calibration step. Due to the achieved high accuracy, the
mocap system is used as a ground truth system throughout all
the measurements. The produced calibration file is provided
along with the ground truth files.

During the movement of the robot, a high-precision motion
capture (mocap) system is used as a ground truth/reference
system to track the 3D positions of the robot and the sensors
in real-time with millimeter accuracy. The 18 networked high-
speed infrared (IR) cameras of the mocap system (Qualisys)
are used at 100Hz throughout the measurement campaign, and
a dedicated tracking software (QTM app) runs on an ordinary
workstation. All cameras are connected to the Qualisys Sync
Unit (synchronization box) for accurate synchronization. The
synchronization box is also connected to the desktop with
the QTM application for controlling the cameras. The QTM
application is used to record, pre-process and post-process
the ground truth data. By placing reflective spherical markers
on moving objects, this system calculates 3D positions and
trajectories and with a rigid setup of at least 3 markers
on an object, the system provides six degrees of freedom
(6DoF) data, i.e., 3D orientation plus the 3D position. The
orientation is given by default both as Euler angles (yaw-pitch-
roll) and the rotation matrix. The system creates two different
files for the rigid objects and all the markers existing in the
environment.

The local origin (center) of a rigid object is computed by
calculating the mean of the position of the markers. The local



origin and direction of a rigid body can be edited and 6DoF
data reprocessed in the QTM application. In the same way, an
extra ‘virtual’ marker can be added by defining its 3D position
relative to other markers in that rigid body. Both techniques
are convenient if a position of interest cannot be represented
by a physical marker while being inside or outside a physical
object or in the way for some reason. The antenna array of the
LuMaMi testbed has 4 real markers attached and one virtual
added and defined to represent the top of the antenna and used
as a baseline for the localization algorithm. The camera and
the speaker have 6 and 4 markers respectively.

III. SENSOR SETUP

This section gives detailed descriptions of the radio, vision,
and audio systems and their setups. In addition to Fig. 1, a
summary of all the recorded sensors and their features are
outlined in Table I. For completeness, the ground truth system
is also added to the table.

TABLE I: Summary of the 4 main system’s features

System Snapshot Sensor Source/ File
Rate Target Format

Radio 100Hz LuMaMi testbed UE .txt
with 100 antennas

Vision 15-30 fps Intel® RealSense™ lights .pnga
depth camera

Audio up to 12 speaker .flacb
96 kHz microphones

Mocap 100Hz 18 high markers .txt
speed cameras

aAlso available as rosbags.
bAlso available as wave files (.wav).

A. Radio system

The Lund University Massive MIMO (LuMaMi) [14]
testbed is shown in Fig. 3 and used in the measurement
campaign as a channel sounder in the radio system. A universal
software radio peripheral (NI X310) connected to a single
dipole antenna is used as a UE. During the measurement
campaign, the UE is moved on top of the robot, following
the mentioned trajectories while LuMaMi remains static. The
center frequency of LuMaMi is 3.7GHz and we utilize 100
antennas that are connected to individual RF chains. To estab-
lish frequency synchronization between LuMaMi and the UE,
cable sync is used so that carrier frequency offset is eliminated.
To exploit more information from the azimuth compared to the
elevation domain, a wide antenna configuration of LuMaMi is
selected rather than a quadratic one.

B. Camera system

An Intel® RealSense™ D435i camera is used as a sensor
for the vision system. Each snapshot of visual data includes
an RGB image, left and right images (black and white images
with depth information embedded in the images), a depth map,
a point cloud, and IMU data. The IMU data is collected by
two sensors: an accelerometer (accel) and a gyroscope (gyro).
The camera is connected to an Ubuntu 18.04, i7 laptop with

Fig. 3: Lund University Massive MIMO (LuMaMi) [14]
testbed.

only USB-2 ports available. The features are captured by using
Robot Operating System (ROS) and rosbag file format. The
images, depth maps, and the IMU data are extracted as .png,
.png, and .csv files respectively as a part of the post-processing
step. The frequency of different features is chosen based on
the maximum bandwidth of the USB-2 bus. Important to note
is that since the left and right images have embedded depth
information (with the help of a filter), using these images as
stereo-based SLAM gives lower accuracy compared to non-
filtered images. The effect of the rolling shutter camera is
ignored since the camera is placed on top of a relatively stable
robot and at a low speed. A summary of all the features of
the camera is given in Table II.

TABLE II: Features of the Camera

Sensor Snapshot Resolution File
Rate Format

RGB camera 30 fps 640x480 .pnga

Left Imager 15 fps 640x480 .pnga

Right Imager 15 fps 640x480 .pnga

Depth map 15 fps 640x480 .pnga

IMU - gyro 400Hz N/A .txt
IMU - accel 100Hz N/A .txt
aAlso available as rosbags.

The mocap studio is decorated with posters and objects with
different textures to enable feature extraction in vision-based
localization. Some example decorations can be seen in Fig. 4.

As can be seen from Table II, different sensors in the camera
have different snapshot rates. Thus, when these sensors will
be used together, the data should be associated with each
other based on their timestamps. An example code that uses
the sensor with the lowest snapshot rate as a reference and
maps the others using the smallest time difference between
timestamps, is given with the dataset for reference. For future
dataset creation, we suggest choosing the same fps for the
RGB and infra cameras and depth map as well as the same



Fig. 4: Examples of the Decorations in the environment.

frequency for accel, and gyro, if possible.

C. Audio system

Twelve microphones (T-bone MM-1) are set up in the
environment and connected to a sound card that is connected
to a laptop. The sound level of every microphone is checked
individually and the speaker is tested. One of the microphones
is placed on the robot and the rest are spread around the
effective area as depicted in Fig. 2. The microphone on the
robot is placed as close as possible to the speaker (sound
source) and worked as a reference, essentially synchronizing
the speaker with the microphones. In addition to the 12 audio
tracks, a 13th track, “Sync”, recorded a synchronization pulse
from the ground truth system (on start and stop). In order to
make calculations easier by viewing the sound source as a
point source, only one side of the speaker is enabled (playing
sound) and the head of the microphone on the robot is placed
directly in front of the sound source. All microphones, except
the one in the robot, have two markers placed, as seen in Fig.
5.

The sampling frequency of the microphones is 96 kHz and
if required, the audio system can localize the speaker in the
same frequency. However, to decrease the execution time of
the localization algorithm, the samples are usually divided into
windows instead of continuous localization and assume the
speaker’s location is constant during that window.

Microphones on the floor are placed asymmetrically to
avoid microphones being co-linear or co-planar (as this may
cause degeneracies when solving for positions) and as close as
possible to the effective area to get an accurate ground truth
label.

IV. CALIBRATION AND SYNCHRONIZATION

In this section, we outline the calibration and synchro-
nization procedures of different systems in the dataset. As
an overview, the camera (and the IMU) used for the vision
system is calibrated internally and externally while the internal

Fig. 5: Markers and the microphone.

calibrations of the sensors used for radio and audio systems
are not done by us. Moreover, synchronizing the timestamps
of the sensor data is required to match the data recorded
from different systems. We take many steps to make sure the
timestamps can be matched for each sensor (and the ground
truth) so the collected data can be verified with the ground
truth data and used for sensor fusion. The verification of the
time synchronization in different systems is also described
below.

A. Internal and External Calibration of the sensors

For the Intel® RealSense™ Depth Camera D435i, two inter-
nal calibrations are done. For the first calibration, we follow
the calibration procedure proposed by the manufacturer for
the best performance. The second calibration is done via the
calibration tool Kalibr [15]. With this calibration, the intrinsic
and extrinsic parameters of the camera are extracted. The
intrinsic parameters obtained with this method include camera
centers, focal length and distortion parameters of the cameras,
and noise information for the IMU. The relationship between
different cameras (i.e., two infra cameras and the RGB camera)
and the transformation matrix between the cameras and IMU
are obtained and used as extrinsic parameters of the camera.

The relationship between sensors is also calculated as a
part of the external calibration. Both antenna and speaker are
considered point sources, and as a result, the orientations of the
antenna and speaker are not relevant. The camera center has
been chosen as the origin of the system. Thus, the translation
matrices for antenna-to-camera and speaker-to-camera have
been provided with the rest of the calibration files.

Obtained data is formatted as YAML files, with one file
for each ORB-SLAM3 mode (Monocular, Monocular-Inertial,
Stereo, Stereo-Inertial, RGB-D, etc.). However, it should be
noted that there are differences in the data structure of the
YAML file generated by Kalibr and the one required for
ORB-SLAM3. To assist with collecting the information from
various sources and performing necessary format conversion,
we have created a separate script that handles the conversion
automatically [16].



B. Time Synchronization
The time synchronization of different systems relies on the

time synchronization unit in Fig. 1 which is composed of
a Raspberry Pi and the Qualisys sync unit. An NTP server
is established by using the Raspberry Pi to synchronize all
the computers regularly except the computer used for sound
recordings (even when there are other circuits to sync the
different systems). The summary of all the methods used to
synchronize the systems and how we verified the synchroniza-
tion can be found below:

• Radio: One of the Input/Output (IO) pins of the Raspberry
Pi with interrupt function is connected to the Qualisys
Sync Unit (synchronization box), in order to listen to the
short pulse (TTL signal) sent by the ground truth system.
The timestamp of the TTL signal is logged at that moment
as T1. Another IO pin is connected to the control port of
an RF switch on the robot, therefore, timestamps when
UE starts and stops transmission are recorded as T2 and
T3. In addition, the periods of pilot signal transmission
and position label update are both fixed to 10ms. This
enables us to calculate all timestamps with respect to all
transmitted pilot signals and all reported positions based
on T1, T2, and T3. As a next step, each UE pilot as
well as their corresponding received channel matrices are
matched with recorded positions by finding the position
label which has the smallest timestamp difference. This
time difference is limited to a maximum of 0.5ms and
the robot is moving at a low speed (0.1m s−1). The time-
stamp mismatch results in a maximum 0.5mm ground
truth error, which is trivial and thus negligible.

• Vision: The NTP server in the Raspberry Pi is used to
update the clock in the laptop that is used to record all the
vision data. The connection is established via an Ethernet
cable and the accuracy of the system is validated up to
33ms (the frame rate of the camera) with the help of a
LED connected to the circuit used for the radio system.

• Audio: A separate circuit is built to convert the TTL
signal from the synchronization box to an audio signal
which is passed to the sound card as a separate channel, as
described above. In the audio recordings, the 13th channel
is the recording of the pulse which gets triggered when
the mocap system started recording and when it stopped.

V. CREATED TRAJECTORIES

There are 88 trajectories collected in this measurement cam-
paign. To meet all the requirements of different systems, we
divide the dataset into two parts: the “grid” and “random” data.
The “grid” data consists of 75 trajectories while “random” data
consists of 13 trajectories. All the trajectories are divided into
small trajectories because of the limited amount of continuous
data LuMaMi can store at a time. Based on the previous
experiments, we calculate the maximum amount of time that
LuMaMi can keep capturing data continuously as 50 s (which
includes the time it takes to establish the synchronization
between all the systems). If longer trajectories are required,
the data can be used jointly instead.

Fig. 6: Top-down view of the grid trajectories where the blue
cross is the initial location of the robot.

A. Grid Data

One of the main considerations for designing the trajectories
is to support dense sampling for radio-based localization algo-
rithms. Thus, the spatial sampling of the data should be less
than λ/2 (half wavelength) according to the Nyquist theorem.
The wavelength of LuMaMi is calculated as approximately
8 cm and as a result, the training data is created such that
it consists of measurements of the channel response approxi-
mately every 4 cm. In order to generate data that satisfies this
condition, we scan the target area in the room in 75 trajectories
and called this part the “grid data”.

To achieve the given resolution, the robot is placed on
the left-top corner of the effective area for the first grid
measurement. With the help of ROS, the robot is moved 4.2m
in a straight line with a speed of 0.1m s−1. Fig. 6 shows the
overall summary of the environment and planned trajectory
for this part. However, in the actual measurement campaign,
a slight deviation from the straight line is seen for each grid
trajectory. As a result of the changes in the trajectories and the
limited time available in the mocap studio, 4.2× 2.5m2 area
is covered with 75 parallel trajectories for the “grid” data. For
all the grid trajectories, a chirp sound is played by the speaker.

B. Random Data

In contrast, the second measurement scenario covered
several different movement trajectories that are either pro-
grammed with ROS to create trajectories that do not exist
in the “grid data” or by using the interface provided by
the company that manufactured the robot. Thus, compared
with the first scenario, the robot orientation is not always
perpendicular to the antenna array while humans act as static
or dynamic scatters in several trajectories. These trajectories
are called “random” data. In addition, sounding pilots are
transmitted following the same pattern as the first scenario



while the sampling rates of different systems remain the same.
We conduct a total of 13 measurements, which are shown in
Fig. 7.

The circular trajectories are specifically designed for local-
ization algorithms where loop closure is desirable. The diag-
onal trajectories are corner cases for audio-based localization
algorithms since they can cause some self-calibration methods
for the audio system to fail [17]. In the manual trajectories,
the robot is controlled by the built-in user interface with the
virtual joystick. Thus, the speed of the robot is not constant,
the movements are more unstable and faster compared to
the speed and movement of the robot in “grid” data. The
random manual trajectories number 1, 2, and 5 include people
moving around whereas number 3 and 4 do not. For the
trajectories with people moving around in them, ground truth
has dropped more frames due to markers not being seen by
enough cameras. Moreover, for all the sensors tested, these
trajectories are particularly hard to localize and map due to
the very dynamic environment. All the trajectories are fully
in Line-of-Sight (LoS) from the point of view of LuMaMi
except for the random manual trajectories with people walking
around. In some cases in these trajectories, the LoS between
LuMaMi and the UE is obstructed by people and/or cables.
We expect that the dynamic environment in these trajectories
affects all the localization methods.

VI. FORMAT OF THE DATA STORAGE

The data is cut from 1 s before the movement starts to 1 s
after the movement ends. As mentioned above, the duration
of the random manual trajectories is restricted by the amount
of time LuMaMi can record the trajectory (e.g. duration of
the grid trajectories is all around 42 s since the movement of
the robot is set to approximately 40 s). For the rest of the
trajectories, the movement of the robot stops before LuMaMi
stops recording so their duration is limited by the robot’s
movement. The ground truth data exist both as 3D and 6DoF
data and the orientation of the objects is expressed as rotation
matrix and Euler angles. The data provided for the radio
system is formatted as (frequency, time, antenna).

As mentioned before, LuMaMi creates a high background
noise throughout the measurements because of the need for a
powerful cooling system. A recording of only the background
noise existing in the environment is also given to enable
background noise removal for the audio-based localization
algorithms.

VII. KNOWN LIMITATIONS AND REMARKS

The following limitations and remarks should be considered
when using the dataset:

• Due to the requirements of the different systems, a bundle
of cables is added to the system that connects the robot
to different systems outside the effective area. For some
of the trajectories, the cables are hanging from the roof
to avoid complications in the scene due to the robot’s
movement. For the radio system, the cables become a
part of the channel which might affect the accuracy of the

localization algorithm. For the vision system, the cables
are seen by the camera in some frames and create a
dynamic environment. Moreover, the movement of the
robot is restricted by the cables that were attached to it.

• The “grid” part of the dataset includes the movement
facing the same direction of the studio due to the pre-
vious remark/limitation (cables). This results in the same
viewing direction for the camera and the same direction
between the antenna that is connected to the UE and
LuMaMi. For the vision data, random trajectories can be
used instead.

• The temperature of the mocap studio has increased sig-
nificantly throughout the measurements due to the equip-
ment in the studio. After the change in the temperature
was noticed, the room is measured almost every hour
for the second and the third day of the experiments but
the temperature data do not exist for the first day where
the room got significantly warmer in the evening. We
believe the temperature was around 28 °C. The internal
temperature change of the devices was not recorded.
The change in the temperature affects the propagation
medium of the air, which can have an impact on the
audio and radio based localization algorithms. This is
only important for using the “grid” data and there is no
significant temperature change observed for the “random”
data.

VIII. CONCLUSION

Localization is an essential process for many different
tasks and devices such as UAVs, autonomous cars, and ser-
vice robots. Localization algorithms require high computation
power where low power and high efficiency is the key to
enabling these new technologies in battery-operated devices.
In this paper, we have described a novel dataset that includes
different sensor (vision, audio, and radio sensors) data in the
given environment to accurately position devices (within cm)
in real-time. Overall, the dataset will contribute to the creation
of localization algorithms that maximize the usage of the
available data for low-power devices and also provide an in-
depth understanding and further development of AI/Machine
learning and 6G applications.
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