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2-LOCAL UNSTABLE HOMOTOPY GROUPS OF
INDECOMPOSABLE A% -COMPLEXES

ZHONGJIAN ZHU AND JIANZHONG PAN

ABSTRACT. In this paper, we calculate the 2-local unstable homotopy
groups of indecomposable A2-complexes. The main technique used is
analysing the homotopy property of J(X, A), defined by B. Gray for a
CW-pair (X, A), which is homotopy equivalent to the homotopy fibre of
the pinch map X UCA — X A.
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1. INTRODUCTION

For a suspended finite CW-complex X, if X ~ X; V X, and both X;
and Xs are not contractible, then X is called decomposable; otherwise X
is called indecomposable. Let AF be the homotopy category consisting of
(n —1)-connected finite CW-complexes with dimension less than or equal to
n+k (n > k+1). The objects of A are also called AX-complexes. In 1950,
S.C.Chang classified the indecomposable homotopy types in A2 (n > 3) [3],
that is

(i) Spheres: 8", §n+1 gn+2.

(ii) Elementary Moore spaces: M. , MI?TH where p is a prime, r € ZT
and Mllfr denotes M (Z/p", k), whose only nontrivial reduced homol-
ogy is Hy(M}) = Z/p"Z;
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(iii) Elementary Chang complexes: C’;H'Q, cnt2s ont2, Cptds (r,se€
77), which are given by the mapping cones of the maps 7, : S"*! —
ST, fS = (2% 01) 4 G5 - ST — SPHLV ST f = (10,270)
STV ST 87, £ = (P2 1) 5 JR (2 ) 1 STV S
Sty 8™ respectively,

where Z* denotes the set of positive integers; ¢, € m,(S™) is the identity
map of S™; 1y is the Hopf map S® — S? and n, = X" 21, for n > 3; j{‘“,

resp. j& is the inclusion of S"*1 resp. S, into S"!v S™.

The suspension ¥ gives us sequences of functors AF z Aﬁ 41 for all
n > k+ 1. The Freudenthal suspension theorem shows that these sequences

stabilize in the sense that for k + 1 < n the functor A% = Ak | is an
equivalence of additive categories. We point out that for £k + 1 = n, the

suspension functor A],: 41 z A],z 4o is a full representation equivalence, i.e.
it is full, dense and reflects isomorphisms [6], which implies that ¥ gives
a 1-1 correspondence of homotopy types. Thus we often study A’g 41 as a
beginning of the study of A¥ for n > k4 1. There has been a lot of research
on homotopy of spheres and elementary Moore spaces, but only a few on
homotopy of all indecomposable A2-complexes by taking them as a whole.
In the 1950s, P.J.Hilton calculated the n + 1,n + 2-dim homotopy groups of
A2-complexes [8, 9, 10]. In 1985, H.J.Baues calculated the abelian groups
[X,Y] and groups of homotopy equivalences Aut(X) for all indecomposable
A2-complexes X and Y [1]. In 2017, the authors obtained the complete
wedge decomposition of smash product X AY for all indecomposable A2-
complexes X and Y [22], and then as an application, we prove that the
stable homotopy groups of elementary Chang complexes C;' A are direct
summands of their unstable homotopy groups[23]. In 2020, we obtained the
local hyperbolicity, which is defined by R.Z.Huang and J.Wu to study the
asymptotic behavior of the p-primary part of the homotopy groups of simply
connected finite p-local complexes [11], of A2-complexes by an analysis of
decomposition of loop suspension [24]. In recent years, the problem of realis-
ability of groups as self-homotopy equivalences of A2-complexes are studied
by C. Costoya, et al.[5]. Then D.Mendez study the problem of realisability
of rings as the ring of stable homotopy classes of self-maps of A2-complexes
[13].

Calculating the unstable homotopy groups of finite CW-complexes is a
fundamental and difficult problem in algebraic topology. A lot of related
work [12, 15, 16, 18, 19, 21] has been done on CW-complexes with the
number of cells less than or equal to 2, such as spheres, elementary Moore
spaces, projective space and so on. J.Wu calculated the homotpy groups
of mod 2 Moore spaces by using the functorial decomposition [19] and re-
cently, J.X.Yang, et al. calculate the homotopy groups of the suspended
quaternionic projective plane in [21] by using the relative James construc-
tion. Although calculating the unstable homotopy groups of a CW-complex
with the number of cells greater than 2 will be more complicated, we realize
that it is possible to compute homotopy groups of A2-complex by similar
method after reading their preprint [21]. In this paper, we will calculate
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the 6 and 7 dimensional unstable homotopy groups of indecomposable A% -
complexes. We should point out that for an A% -complex X, the Freudenthal
suspension theorem implies that 7, (X) is in the stable range for m < 4, and
by the calculation of [10] so is 75(X) when X is indecomposable. Hence the
6-dimensional homotopy group of an indecomposable A% -complex (except
M;lr) is its first unstable homotopy group. As a potential application, the
7-dimensional homotopy group of A% -complexes may be used to study the
classification problem of 2-connected 8-dimensional manifolds M?, since the
homotopy class of the attaching map of its top cell is an element of 77(X),
where X is an A% -complex.

Theorem 1.1. The 6, 7-homotopy groups of all 2-loacl nontrivial indecom-
posable Ag—complea:es are listed as follows:

(1)
246922, r=1;
7T6(M237‘) = Zg @ Zy P Z2, r=2;
Ly ® Lo ® Lor, T2 3;

T7(M3) 2 Zo ® Zo ® (1 — €)Za;
W?(Mélr) = szin{l'rfl} & ZQT+1 ©® ZQ

7T6(C$) Ls;

76(C2) =2 Zo @ (1 — €)% ® Ligrter;

T6(C™%) X Zy @ Zo & Los;

m6(C*) X Ly @ Zy & (1 — €)Zp ® Ligmin(rsy D Lgrter -
(3)

m7(Cy) = Zz);

(&)
m7(CP) 2 Ly & Lot
( S

7 o ) = szin{s,2} D Zogs+2;
7"'7(0?’3) & Zgmin{s—er 2} ® Lomin{st1,r+1} B Los+2 B Ly,
where Z(Q) denotes the 2-local integers and Zy := Z/kZ.
1, r=1; .
€r = 0: r> 2’ in the Theorem and we also set €5, = 0 when r = oo

is allowed in the following text.
The proof of the first statement of the Theorem is given in Section 3 and
the remaining proofs are given in Section 4.2 and 4.3 respectively.

2. SOME NOTATIONS AND LEMMAS

In this paper, all spaces and maps are in the category of pointed CW-
complexes and maps (i.e. continuous functions) preserving basepoint. And
we always use * and 0 to denote the basepoints and the constant maps
mapping to the basepoints respectively. We denote A < X as an inclusion
map.
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Let (X, A) be a pair of spaces with base point x € A, and suppose that A
is closed in X. In [7], B.Gray constructed a space (X, A)s analogous to the
James construction, which is denoted by us as J(X, A) to parallel with the
the absolute James construction J(X). In fact, J(X, A) is the subspace of
J(X) of words for which letters after the first are in A. Especially, J(X, X) =
J(X). As parallel with the familiar symbol J,(X) which is the r-th filtration
of J(X), we denote the r-th filtration of J(X, A) by J,(X, A) := J(X,4) N
Jr(X), which is denoted by Gray as (X, A), in [7].

For example, J1 (X, A) = X, Jo(X,A) = (X xA)/((a,*) ~ (*,a)) for each
a € A. In fact there is a pushout diagram for r > 2:

X x At s g (X, A)

J‘% TlJX,A)

where FF C X x A" ! is the “fat wedge” consisting of those points in which
one or more coordinates is the base-point; II,. and I, are the projection and
the inclusion respectively and both of them are natural.

Remark 2.1. J,(X, A)/J,_1(X, A) is naturally homeomorphic to (X x A" 1) /F =
X A ANnTD),

It is well known that there is a natural weak homotopy equivalence w :
J(X) — QXX, which is a homotopy equivalence when X is a finite CW-

complex, and satisfies X—= J(X) == 05X , where X 25 ONX s
(95

the inclusion x +— ¢ where 1 : ST — S'A X, t =t A .

Let X i) Y be a map. We always use Cy, Fy and My to denote the
maping cone ( or say, cofibre ), homotopy fibre and mapping cylinder of f,
Cy 2y $X the pinch map and QXX 9, F, = Cf 2y $X the homotopy
fibration sequence induced by p respectively. We get the relative James

construction J(Myg, X) (resp. r-th relative James construction J,(My, X) )
for the pair (My, X).

Lemma 2.2. Let X i> Y be a map. Then we have
() Fy = J(My, X); |
(i) ST(Mp, X) = Vs (EY A XY ST (M, X) = VELEY A XN
(iii) If Y = XY, X = XX', then Jo(My,X) ~Y U, C(Y A X'), where
v = lidy, f] is the generalized Whitehead product.
Proof. The lemma follows from the Theorems of [7] for (My, X). O

Denote both the inclusion Y — Jp(My, X) and the composition of the
inclusions Y — Jo(My, X) — J(My, X) ~ F, by j, without ambiguous.

Lemma 2.3. Suppose the left diagram is commutative

X—Lsv ; B ~JMp,X)—> M;/X ~Cf —=£X

Ll e

X/L>Y’ ’ ’ /
Fp/ ~ J(Mf/,X)%Mf//X ﬁCf/ —3X
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then it induces the right commutative diagrams on fibrations, where [

satisfies
"

Y=—— My My —=Y'. Let

® ®

J(Bn) vy =1 (B0 ) =1

Mf = Jl(Mf’X)

Tt gy (v, x)=T2 (1)
Jo(My, X) = Jo(Mp, X7,
then we have the following commutative diagram

Ji(Mp, X') = My,

pAp

YAX Y'ANX'

(T

J2(B,p")

Jo(My, X)/J1 (M, X) —>J2(Mf/,X')/J1(Mf/,X')

Proof. The above lemma is easily obtained from [7]. O

The following Lemma 2.4 to Lemma 2.8 come from [21] in original or
generalized form.

Lemma 2.4. Let X i) Y be a map. Then the following diagram is homo-
topy commutative

x—' vy

2]

ovx —2—F,

Proof. We have the following homotopy-commutative diagram

Qx

(//\w

J(X) QxXx

/i J(i,idx)l ‘/8

Y—s M;“—— J(M;, X) —>F,

where the middle homotopy-commutative square comes from the naturality
of the relative James construction and the right homotopy-commutative

square comes from Lemma 4.1 of [7]. Thus the Lemma 2.4 is obtained.
(]

; -x .
Lemma 2.5. Let X 5 v 5 Cy 2onx 2 e o cofibration se-
quence. Then there is a homotopy commutative diagram with rows fibration
sequences:

onx —2= J(M;, X) C;y —L—=1wnx
& 1 H
a-=f) =y
QXX Oy J(Cf,Y) —= XX — > %Y

Proof. As pointed out in the proof of Lemma 4.1.of [7], there is a natural
inclusion Cy < J(C},Y) lifting the inclusion C}—— C;U; CY —= £ X
\_/’

P
The homotopy commutativity of the right square implies that there exists
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a map J(My, X) 2 QXY such that the left and the middle squares are
homotopy commutative. ]

Similar to the James-Hopf invariant, we define the n-th relative James-
Hopf invariant

J(X,A) An, J(XAANTIY gy H (i, ATig A\ - -Ai,)
1<zi<z2< - <xt<n
which are natural for pairs. Hy,(x122...2,) = 21 Axg A--- A x, implies the

following lemma

Lemma 2.6. Let X i) Y be a map. Then the following diagram is homo-
topy commutative

J(Mf7X) )J"(Mf7X)

Hp l lpinch

J(Mp A XNy <— N A XANOTD = T (M, X)) T (M, X)

Remark 2.7. By abuse of notion, Hs also denotes the composition of the
maps QXX = J(X) = J(X, X) 2 J(X A X) S QS(X A X), where X is
a CW-complex and let Hj : F, ~ J(My, X) EiEN J(M;AX) = JYAX) ~
OX(Y A X).

Lemma 2.8. Let X i) Y be a map. Then the following diagram is homo-
topy commutative

omx —2— > F,

Hzl lHé
[£)))

O5(X A X)L s v A X
Proof. By the Lemma 4.1 of [7] and the naturality of the 2nd relative James-
Hopf invariant, we have the following homotopy commutative diagram
15}

J(My, X)

QEX =—— J(X) = J(X, X)

14

J(3)

Ho Hzl Hzl H
M J(inidx) v

OB(X AX)=—— J(X A X) J(My AX) >~ Q8(Ms A X) —= Q8(Y A X)
QS(fAidx)

We complete the proof. O

The following lemma comes from [4]

Lemma 2.9. If X i) Y is a map, X is n — 1 connected, Cy is m — 1
connected, the dimension of W is less than or equal to m +n — 2, then we
have the exact sequence

W, x] L5 W v] - (W, oyl.
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Lemma 2.10. Let p be a prime and suppose that there is a commutative
diagrams of short exact sequences of p-torsion abelian groups with s <r

i2 P2

0 B A Ly 0.
T
0 B—ts-a-"oy 0

If the characteristic ch(B1) < p® and the bottom short exact sequence is
split then so is the top.

Proof. 1t follows from an easy diagram chasing argument. (]

The following generators of homotopy groups of spheres after localization
at 2 come from [18]. ¢, = [id] € m,(S™); m3(S?) = Zeay{m2}; 1 (S™) =
Zo{nn}(n > 3); mn42(S™) = Zo{nniint1 }(n > 3); 76(S%) = Za{v'}; m7(S*) =
Za{ZV"YOLg){va}; mny3(S™) = Zs{vn}(n > 5); m7(S%) = Zo{v'n6}; ms(S*) =
LAV nr} @ Zofvany}.

Throughout the paper, we will not distinguish a map and its homotopy
class in many cases.

In the following all spaces are 2-local. 2" = 0 is allowed, in this case we
denote r = o0, i.e, 2°° = 0, Zaw = Zg = Zy) (after 2-localization), Z; = 0
(trivial group), min{k, oo} = k for some integer k.

3. ELEMENTARY MOORE SPACES

In this section we calculate m,(Mj.)(n = 6,7) and m7(My,). For r =

2,3, many homotopy groups of these Moore spaces have been calculated

byJ Wu, J. Mukai, T. Shinpo, and X.G.Liu in [? ],[16], and [12] respectively.
There is a canonical cofibration sequence

gk 27k, 2", gk lk, Mk Pry ghtl (1)
where M, = ]\/.I"!C Sk Gkt
Let QSk+1 2 E,, — M% % §F+1 be the homotpy fibration sequence.
By Lemma 2.2 we get YF,, ~ S’l‘“L1 v G2+l y
3.1. Calculating 76(M;.). For M3, the 8-skeleton Skg(Fp,) ~ S*J, CS®

with ¥y = 0 and isomorphism [S°, 53] [S6,54] implies that v = 0. Thus
the 8-skeleton Skg(F),) ~ SV S®. By Lemma 2.4, we have exact sequence
with commutative squares

O
m<s4> 2 6 (F) ——> (M) —> 76(S4) —2 15 (Fy) (2)
j\.]pd* T:E jl)s*
o 53 —>(2 2 (59 5 (59) 2120 (59

75 (Fps) = Zo{jpsnsna}; m6(Fps) = Za{jipsV'} ® Lo {35, }, where ji : S —
Skg(F,,) is the inclusions of the wedge summand S°.
By the right commutative square of (2), we get Kerds, = Zo{nans}.
Next calculate Cokerdgs, in (2).
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By Lemma 4.5 of [18], (kip)a = ka for a € m,(S®), then by the left
commutative square of (2)

0o (SV') = 2 jy, /. (3)

Lemma 2.6, Lemma 2.8 for map S3 s, 63 give the following commuta-
tive diagram

77 (5%) 22 g (Fpy) =———m6(5% V §) (5% (4)
Hzl Hél Egl
ro (83 A §3 T (Ongs A 53 w2(S7)

By the right commutative square, Hy(jS.) = t7 for j§. € m6(Fp;). Ha(ra) =
t7 by Lemma 5.4 of [18].
Thus from the left commutative square of (4), we get

Do (V1) = Yjps V' + 27"j23 for some y € Zy. (5)

From Lemma 2.5, we have the following two (homotopy) commutative dia-
grams

,T Za{jpsv'} @ Ly {Gpsy  (6)
Jps

st Fp\ M3 %6

m7(8%) —————>m6(Fp;)

3
‘ ¢l/ /1 \jw*l
P1(—2"14)%
Q(—2"eq)

0S8t ——= Q8 —— J(M3., 5?), Za{3v'}

P12 w7(S%) = Zu{3V'} @ Zoy{va} — Z4{Sv'} is the canonical projection.
By comparing the Homology Hs(—;Z), we get

Glips = hOQY 1S3 — QS = OXS3, h is odd integer. (7)
(—2"14)4(v4) = 2%y — 2771(27 + 1)X0 by Lemma A.1.
P16.0x(v4) = P1(yds(jpst) + 2" 04(jp,)) = hySv' + 2" P16.(jp,) (By (5))
= (hy + 2"t)%v' (for some odd integer t).
Py(—=2"0y)u(vg) = P (2% 1y — 277 12" + 1)TV) = =27 1 (2" + 1)/
From (6), we get hyXv' + 2" Pi¢.(j5,) = —2"~1(2" + 1)Xv/, thus

r=1|r=2|cc>r>3
Zig D Yy = +1 2 0 (8)
From (3), (5), (8)
Z r=1;
Z4 @2(2) 4, )
CokerOpy = ——————— = Lg DLy, 1 =2; 9)
<(2r,0),(y’2r)> Ly ® Zor, 1 > 3.
0 —— Cokerdg, — mg(Ms.) s Kerds, = Zo{nuns} —=0. (10)

The above short exact sequence splits for r = 1, since 7T6(M§’) =7,4® Zso by
[19], i.e., there is an element ¢; € mg(M3) with order 2 such that ps.(s1) =
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nans. Hence by the Lemma 2.5 of [16], for » > 1, there is also an element
5. € mg(M3,) with order 2 such that ps.«(s.) = m4m5. Thus short exact
sequence (10) splits for r > 1.

Ly ® Zo, r=1,;
So 7T6(M§’7‘) = 7 ®Zo® Lo, 1T =2
Ly ® Lo ® Lor, T =3.

3.2. Calculating 77(Msj,). Consider the following diagram

o D6+
7r8<s4> o (Fpy) —— mr (M) = 17(5) —2 g (Fy ) (11)

j\ 7]1)3 *
2 L3

7T7 Sg —> 7T7(S3

where the first row is exact sequence, and the left square follows from Lemma
2.4. m7(Fpy) = Lo jpsv' 6} @ Za{jp,n6}-

| Z{25V} r=1;
From (3), (5), Kerds. = { ZaSW), r>2.

O (Sv/n7) = jpg(QTLg)I//’I% =0 (12)

Assume 07, (van) = ajp,v'ne + bjSST]G with a,b € Zy. By Lemma 2.6 and
Lemma 2.8, we get the following commutative diagrams

074

75(8Y) T (Fpy) 7 (S7 V §°) —rr (89)

4 |

2 (8% A §3 5 Ongd A 5% s(S7)

0 = (2" A 3) Ho(vany) = Hy0n (vanz) = Hy(ajpsv'n6 + bjS,ne) = bz,

which implies that b = 0.
Diagram (6) induces the following commutative diagram

07 . .
m8(S") =7 (Fpy) = Za{nsv'n6}  Z2 {0}

M) ¢*l
7T8(S4) = ZQ{EV/?’W} D ZQ{V4?’]7} i} ZQ{ZV/TW}
where Py : Zo{Xv'n7} @ Zo{vanz} — Zo{Xv'n;} is the canonical projection.
Py(—=2"1y) s (vam7) = PL((2% vy — 277127 + 1)S0))ipr) = €, 507
= P10 (vamr) = Prou(agp,v'ne) = a¥v'ny,

Hence a = ¢,,00 > r > 1. Thus

D7« (van7) = €Jps V' N6, (13)
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The diagram (3) of [16] induces the following commutative diagram for r > 1

0 —— Zo{jp, 16} O Za{ip,ne} —— mr(M3r) —— Za{Sv'} ——0.  (14)

Z2{j23776} 77 (M3) —— Zo{2%0'} ——=0

By [19], m7(M3) = Zy ® Zs, hence from Lemma 2.10, the top short exact
sequence splits. Thus 77(M3.) = Zy ® Zo ® (1 — €,)Zy for co > 7 > 1.

0

3.3. Calculating 77(M3.). For M3, by (iii) of Lemma 2.2, the 8-skeleton
Sks(F),) ~ S* U= ] C(S* A S3%) = 54 Usrfua,0a] CS”. Then the cofibra-

=[t4,2"14

. Jpa . .
tion sequence S7 L 4 < F,, — S® induces the following exact sequence

by Lemma 2.9:

* ] *
Z(Q){W} = 7'('7(57) L) 7'('7(54) = Z4{EV/} D Z(Q){V4} p—4> 7T7(Fp4) —0
with v, (t7) = (2"[ta, ta])tr = 27Ty — 2750/
Consider the following exact sequence with commutative squares

07 6«
m8(S°) —— m7(Fp,) ——> m7(M3,) — 717(S°) — m6(Fp, ) (15)

E fon = j

(27 04)s (2704) =0
_—

m7(8*) —— m7(S?) 76 (S*) 76(S*)

The right commutative square in (15) implies Kerdgx = Zs.
By the left commutative square in (15), we get

Orx(5) = O (Zvs) = Gpas (27 0a)va) = 2% jipyva — 277127 — 1)5p, 20 (16)

Za{Jp, XV'} © Loy {Jpava}
(2rtlg,,va — 27§, X0 227 G vy — 2771 (27 — 1) 5y, B0)
~ Z(Q) {a, b} - Z(2) {a7 b}
- <2r+1b — 27a, 22rh 27’—1(27" _ 1)@, 4a> - <2r+1b, Qmin{r71,2}a> ’
= ZQmin{Q,rfl} {a} @ ZQT+1{b}.

Since m7(M3) = Zy @ Z4 from Theorem 5.10.0f [19], the same argument in
dealing with diagram (14) implies that

Cokeror, =

7T7(M§l'r) =~ Cokerd7, ® Kerdg, = ZQmm{z,r_U @D Zor+1 B Zo,r > 1. (17)

4. ELEMENTARY CHANG-COMPLEXES

In this section, we calculate the 6,7-dimensional unstable homotopy groups
of elementary Chang-complexes in A2, i.e. m,(C3), m,(C%*), m,(CY*) for
n = 6,7. Note that 7T6(C;;’) = Zg and 7T7(C$) = Z are given by Proposition
8.2 of [15].

In the first Section we denote j{”‘l, resp. jy as the canonical inclusion of
S+l resp. S™, into S™H1 v S™. In the following, for the special case n = 3,
we simplify the notion j; = ji and jo = j3.
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4.1. Fibration sequence and cofibration sequence. In order to calcu-
late homotopy groups in a unified and efficient way, we denote the space
C’;f’,’f which is a mapping cone of f7, i.e., there is a cofibration sequence

sty s? I gty g3 2y o By g5 gt (18)
where f; . = (j1(2°t4) + €j2n3, j2(2713)), € = 1 or 0; 00 > 7,5 > 0.
Then Gy = C2VSY CF) = CO3vSY O = Oy Oy = M v S3v st
Note that f3,ji = 1(20a) + s f7.2 = 2(1a)
Let (5% v S%) D, Ero— (G T, 5y S be the homotpy fibration

sequence, where F’, ~ J(Mfs S4v $3). From Lemma 2.2, SFS, ~ S*v

re T
S°v S8y S8y Sy A7 . where A7 is a wedge of spheres with dimension
> 10.

Sks(Fj.) ~ Jo(Myps SV §%) = (8 v §%) Uye C((S*V 5%) A (S? v 57))

where v, . = [idgaygs, f7]. Let

7S lsonss 5% A5 UL, T2 (5% v 53 A (53 v §2) 255 gty 53,
Vi elsings = Vic(a A L) = [idsayss, (G2 A G3) = lidsayssja, fiedi]

= [j2,71(2°14) + €jomz] = [J2, J1(2°a)] + €[j2, jans] = 2°[j1, J2].
Similary,
7:,6’54/\52 = ’Yﬁ,s(jl /\Jg) - [idS4VS37 fﬁ,s](]l /\j%);

= [idgayss i, [rede] = [41,52(2"e3)] = 2" [j1, jal;
Vielssnse: = Vi (o A J3) = lidsaysslz, £ 2] = 2, 52(2713)] = 2" [j2, o] = 0
Velsinss =51 AGY) = lidgayss, [ (L A 3Y) = lidgayssin, fie)

= [J1,71(2°04) + €j2ns] = [j1,J1(2°04)] + [j1, €52n3]

= 2s+1]1y4 — 255150 + €[j1, 2| m6-
where [j1,71(25t4)] = 25[j1, 1] = 2%j1[ea, ta] = 2551 (204 — B) = 25T jywy —
25135V [, gems] = [J12es, joXna] = [J1, 4223 A m2 = 41, J2lne; [d2, 1] =

(=1)BFDEED 5 o] and [fa, j2] = 0 by the injection m5(S* Vv S3) z m6(S5V
S4). Hence there is a cofibration sequence

S5V S0y S0y ST Ty gty 53 Ty g I 50y 5Ty STV S8 (19)

SkS(Fﬁ’e) = (S4 Vv SB) U'Yﬁ,e:(ozs[j17j2]72T[j17j2}77$,5‘54/\53) C(S5 Vv S6 Vv SG Vv 57)
~(S*V ) Uins g2t g2 lnal) (% v SO v ST)\/ 56,
Let jgs : SO — Skg (Fy.) be the canonical inclusion of the wedge summand

56 of Sks(F;,). Simplify the notation ji := jgs : S*V §% < Skg(F3,) or
Stv 83— F..
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4.2. Calculating m6(C?), m6(C**) and 76(C2*®). In the following, r and s
cannot be equal to co at the same time, unless otherwise stated..
From Lemma 2.4, we get the exact sequence with two commutative squares

5 4 (07 )ex s, a5 . 5 4 (97 )5
w7 (S° V8% ———= w6 (F) ) —— w6 (Cy S)—>ﬂ'6(S VS )—>7T5(FT376)

TE Tjﬁ,e* TNE NTJ?,E*
s s

76(S1V S?) ﬁ>7r,n,(s4v53) m5(S*Vv S?) h>7r5(54v83)
(20)
m5(S*V S%) = Zo{jima} © Zo{jamana};
16(S° V §1) = Zo{Sg1n5} ® Zo{Xjomans};
m6(S*V S?) = Zo{j1nans Y B Za{ o'} ® Zioy {1, j2) 1
m7(S° v S = Zo{jinsme} @ Za{iaSv'} @ Zio) {Javal}-

By the right commutative square in (20)
(05 )54 (3715) = Ji o f5c(ima) = 75 (j1(2°0a) + €joms)na = €55 jomsna.
(05 )5 (G3nans) = Ji J 5 (Ganana) = ji j2(2"13)n3ma = 0.

Thus Ker((?;f,e)5* = Zz{j§?74775} for e = 1.

Lemma 4.1. () = Zol{J; J1mam5 } OLa{ 37 Jov" YO Logmintrsy {7 e [91, 2]}
Zy{jsste}

Proof. From Lemma 2.9 and the section jge : S¢ — Skg(F,), the cofibration
sequence (19) induces the following exact sequence

m6(S VS5V S0V §T) 5 (S v §3) L g(FL) —e (S8 = Zyo {u)
'\}_,/
1564

where 76(5° vV S8V S0V ST) = Zo{jins} & Zay{jhte} ® Z) {56}, Jy, is the
canonical inclusion of the k-th wedge summand of S® Vv S6 v §6 v S7; Tt is

easy to get r)/r 5*(.]3775) - 0,’}/7» e*(]QLG) =2° []laJQ] r)/r 5*(]3L6) 2" [jl,j2]'
Hence one gets mq(F; ) by Calculatlng Cokeryy; . O

Lemma 4.2.

Coker(0;

T

1)6* = ZQ D (1 - ET)Z2 D Z2min{r,s} ©® Z27"+51";OO Z r Z 1.
Proof. By the right commutative square in (20)

(35,5)6*(115775776) = (8ﬁ75)6*2(j1774775) - jf,efﬁ,e*(j1n4775) - jf,e(ff,ejl)n4n5

= jpc(71(2°u4) + €janz)nans = 2€j;. jor/ (21)
(85 )ox (2 SV) = (05 )ex S (jat) = J5 cu i G2v') = G5 (f G2)V
= Jr(G2(2"e3))V' = 2747 jar/. (22)

There is a map M3, AN C’Ef making the following left ladder homotopy com-
mutative and it induces the following right homotopy commutative ladder
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3 P3

53 53 M3, 54 st —2 > p, — s M3

RN

f’V‘S T,€
StV S —= 8tV S ——=(Chf —= 5PV St OS°V St s Fi — C5¢,

(23)

2713

|

where 03, >~ j; j2, i.e., 53% F:. by Lemma 2.3. So we get the

Jped2
following commutative ladder
77(54) — e g (B, ) —— > (57 A 5°) 2 () (24)
jé‘*l H*L (jQAjz)*—idl
(07 e« Py

m7(SPVSY) = mg(Fs.) — =76 ((S* v S3) A (S V 5%)) = 7m(S0)

(05 )ox (Java) =0x06: (v4) = 0u (Yps V' + 2770,) = (y+2"m)j; o/’ £27jgs 16 (25)
where y comes from (8) and m comes from the assumption
0*(]]6)3) = ljf,ej1774775 + mji,ejQV/ + ajf,e[jth] + jSGL67 (26)

for some TG ZQ, m & Z47 a € ZQmin{r,s}-
From (21),(22) and (25) , for e = 1, we get

Coker(0; 1)6x
 Lo{G; inanst @ Za{37 gov' ® Lomintrsy {37 1, 2]} © Zigy{jsete}
(272 g2V, 2738 gV (y =+ 2rm) 3 Jav' £ 2 jgete)
Z{a,b,c,d}

(2a, 2b, 2minirste, yb+27d)

>~

= 22@(1_6T)Z2®22m1n{r,s} @ZZT+ET, 0 Z T Z 1

O

As the proof of the split of (10), there is also an element fg, € 7T6(C5 7)
with order 2 such that qm*( ) = janans. Hence the short exact sequence

o @
Coker(0; 1)6x— 776(057’1) Ker((?r Dss = Zo{jdnans} splits.

SO’ 7-[-6(05775) = Z2 @ ZQ @ (1 - GT‘)ZQ @ ZQmin{r,s} @ Z2r+er,oo 2 T Z 1 .

m6(Cor°) = me(C2 v S*) 22 76(C2) @ m6(S?) @ me(CF) = m6(CF) & Zg @
Zgr+er, which implies mg(C2) 2 Zo & (1 — €,)Za @ Zor+ep, 7 > 1.

776(0251) = 7T6(C5’s V 54) =7 (05 s) & 7T6(S4) & 7'('6(08 s) = 7'('6(05’5) &
Z3 @ Z 3y, which implies 76(C C5) 2 Ly @ Ly ® ZLps, 5 > 1.
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4.3. Calculating 77(C?), 77(C>*) and m7(C>®). From Lemma 2.4, we get
the exact sequence with two commutative squares

(670 e (67 e~
(S5 v 81y T (B3, 7r(C38) o (S5 v §4) S g (B3,

TE Tjj’”
s

Irex
7T7(S4 V SB) — 7T7(S4 V SB)

(27)

m7(SV S?) = Zgy {j1va} @ Za{ 130"} ® Zo{jov'n6} ® Zo{[j1, Jolne }
ms(S7V §Y) = Zs{jivs} & Lo{5sS'nr} © Zo{jyvans} @ Ly {57, 2]}
From (8), (21), (22), (25), we get

Z4{€rj1 nsne + JaSv'}, r
Ker(0; )ex = 2){32 V4} @ Zu{jy>v'},
7T7(S v §4 ), r

v
88z
|| I

1;
= 0.
In the following we also allow (r,s,e) = (0,0,0). Then Cg,’g ~ (Stv
S3)U;4 C(S*V S3) ~ x and all the results in Section 4.1 hold.
Lemma 4.3. 77(F;,) = Za{jsene} ©Z2y{py .} © Coker(v; )1, where py . €
w7 (Fye) is a lift of p;. in (29) and Coker(v; )7« is given by (30).

Proof. There is a fibration sequence for the map p; . in (19)

pre

Q(SG\/S7\/S7\/SS)—>F’ — SksFs. —% S0v STv STV S8,

where Fps =~ J(M,s ,5° Vv S6Vv S0V ST), with SksFp: =~ S*v S3v S8
From Lemma 2.4 and Lemma 2.9, there is an exact sequence

(vr,e)7 ; (77,e)6

77(X) = (S S%) = mp(FE,) 25 mr(RX) 22 m(X) — (S v 5%,

where X = S°v.59v S0V ST and m6(X) = Zo{jins} B Z2) { o6} B Z2) {506 }-
Let (3% := b7 and 23 := Sjlir.

Ker(v;)ex = Zioy{ps.c} ® Zo{Ej1n6},

0>s>r>0|loc0>r>s5>0 r=s 29
Pi,e — 257TL$5 _ L$4 L%d 27‘st;4 LA%J _ L?4 ( )

Zgy{j1va} © Za{j1XV'} @ Zo{jav'ne} © ZQ{[]la]Z]UG}

Coker(v; .
(Vr.e)7s (25 g1y — 255150 + €[j1, Jo]me)

(30)
]7"6 * 7‘6*
0 — Coker(v; )7 — m7(F:) —— Zy{p;.} © Z2{Eg 6} — 0.

Above exact sequence splits since in (19), the wedge summand S° of
56v STV STV 58 has a section jgs : S® — Skg(F3,). Thus we complete the
proof of this lemma. O
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From the commutative square in (27)

(05 )7 (37v5) = (05, )71 2(j1va) = e wfienGrva) = 35 (f51)va
= Jrc(J1(2°04) + €janz)va = J; (71(2°ta)va + €janzva + [71(2°14), €jans] H (va))

=227 jiva — 2712 = 1) i DV + €47 o' s (31)
(65,6)7* (]512’/777) = (35,5)7*202”,776) = ji,sff,e(jzylnﬁ) = j:,e( igjz)V,%
= Jr.cJ2(2"t3)v'ne = 0. (Note nzva = v'ng.) (32)

From (13) and the commutative diagram (23)

(af,e)7*(j§7/4777) = 0.07.(van7) = 9*(Erjp37/776) = €r9jp3V'776 = frjf,ej27/776-
(33)

It remains to compute (85 )7([j7,75]) the determination of which requires

the computation of ( 3070)77*([j§,j§]).

Since Coker (v, )7 = Lys+21{j; cjrva} @ Zalj; 1 XV} © Za{j; J2v'n6} in
(30), suppose

(05 1)7([47, 52)) = P51 + yisens + kjsijiva + Lig 1SV + wjs 1 jav'ng (34)

where y,u € Zo; | € Zy; k € Zos+2; © € Z are to be determined.
By simplifying the 53, : Stv 83— Sks(F3, o) by j5, we also suppose
(0% 0)7+(137, J2)) =t &2+ fisoms +vigirvatwig iy Sv' +u' ji jav'ne + 253 v dalne,
(35)
where t',v € Z, y',u', 2z € Zo, w € Zy.

The determination of the first two coefficients in (34) and (34) can be
done simultaneously in the following Lemma.

Lemma 4.4. In (34), (35), y = 1,5/ = 0 € Zo; & = 2m"nshe ¢/ = 25¢ ¢t is
odd.

Proof. There is a map Cg:g o, C;f’f making the following left ladder homo-
topy commutative and it induces the following right homotopy commutative

ladder

0

. 0,
Sy 58 e gty 58 cso S5V St QST VS —2 By — O30

l l9° l% le_o
fS qS 85

StV 8P —= 8ty 83— 5 — =85 v §1, (8P Vv §Y) = F, —— 2.

0
90,0

id id

We get the following two commutative diagrams

0
(60,0)7* 178,0*

-0
mg(SP Vv §1) ——=m7 (FF)  wr(S* v S?) oo 77 (Fgo) — > m7(S® v 87 v S7)

00+« l id leo* lég*
(07 )7« i ;

71'8(55\/54) —_— 7r7(Ff€), 7T7(S4 \% SS) E—— 7T7(FT376) —_— 71'7(56 v STV 57),

id

~ o9
where 0y = (f; Aid)|goyg7yg7 by Lemma 2.3. and Q(S°v s =% Fo070 is a
homotopy equivalence. Thus from C’oker(yg,o)m = Zs{j1va} ®Zo{jov'ns} ®
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Za{[j1, j2lnet in (30) we get

(88.0)7+ (147, 731) = 18,0 + yoise e + koo 0J1va + t0jg od2'n6 + woid o1, J2lne
where t is odd integer, yq, ug, wo € Zo,ky € Zsg.

P3ex (05 )74 (37, 55)) = 15004 (00.0) 7 ([47, 43 )
=9~0*p8 0+ (tP0.0 F Yodse e + ko0 o1va + 00 o2t m6 + w00 o [i1s 26 )
=00 (t(e° — 3*) + yoZiine) = £(2°13° — 2703") + teXjime.
=omin{rshyps + teSine
On the other hand, from (34) and (35)
Pr1+(0; )7*([1'15,]'3]) = prae(@pry + yisens + kjpajiva+ ... ) = xp) 1 + yXjine
poo,O*(aoo,O)7*([jir)’j§]) = ll)gc>,()*(f/b~743 + 9 jgons + vigiiva+ ... ) =t +y'Sjine

Soy=t=1€Zy, y =0 € Zy; x = 2mindrsty. ¢/ = gminfoosty — 9s¢ ¢ ig
odd. O

The determination of the remaining coefficients in (34) depends on the
remaining coefficients in (35).

The following short exact sequence is split since 77(S°) splits out of
77 (M).

Coker(05, o) = m7(Mgs vV S*V ) = m7(S°V SY) = m7(S%) 77 (Sh)

Note that (93, )7« is given by (31) (32) (33) (35),i.e
Coker(05, )7* = Zo{jgsme} & H®, where H® is glven by the following
Z(Z){L7 YD Lst1 {55104 }OLa{ 1 SV YO Lo {j5 521" 16 YD L2 {55 i1 g2]n6 }

(21 g2 a5/, 225 jgjwa—2o"1 (25—1) S/, 25tir P HujSiwatw Sy +u' j§ja netzidn g2lne)
(36)

On the other hand, by (17), we have

7T7(M24s \/SB\/S4) = 7T7(M§s)@71'7(53) @7‘(’7(54) @7‘(’7(M§s /\52) EBTW(MSLS AN
53) @ mr(S® A S3) X Lgsrs @ ZLiges & Ly ® Ly ® Ly ® Ly ® Ly ® Ligs & Ly,
where ag = min{2,s — 1}.

Thus H® = Lios+1 @ Ligas D Lios @ Lo & Zo. (37)
Lemma 4.5. In (35), for s > 1, 2% |w, 2° | v.

The proof of the Lemma is elementary and will be postponed to the
Appendix. Assuming the Lemma one gets the remaining coefficients in (34)
as follows.

Lemma 4.6. k = 2{rsty/ qnd | = 2mn{s=L1 1 for some K, 1 € Z.
Proof. We have following commutative diagrams by Lemma 2.3, where F}, X

F3, o is induced by the map Cf 18 o so in the right commutative diagrams

(82 1)7s pis £z

78(S° VS = o (Fy) — = mr((5* Vv §%)1%) §tv 88 s 5ty 58— O

id lX* l(h/\id)* id 31‘(]’170)l lx
(9%,0)7% Poc,0x &

m8(S7 V §*) = 77 (F o) — > mr((S*V $%)"?), g4y g8 =5 ghy g8 — > 050

00,0

(38)
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where xj2, = j§j1, Stv g3cnt Fiy——>FS,.
) v
g
By noting that jgsng is 2-torsion, for s > 1, we suppose that
X (Gigoms) =25t s grva + 2m VUL 58 5y S0+ #4536 521" s + g v, 2176,
X+ (B51) = 257 ™ + t1jsjiva + tag§ i SV + tajijar'ne + tagglit, jolne.
L s<ry

257" s>,
From (34) and Lemma 4.4

where x;f = tl,tll € Z,tz,té € Z4,t3,t%,t4,til € Zs.

S

X (02 )7 (157 3]) = X (2350 | + Ggome + ks yjiva + s a5 + gl jav/6)
— 28“}43 + (Qmin{r,s}ttl + 28t/1 + k)j8j1V4 + (Qmin{r,s}tt2 + Qmin{s—l,l}tl2 + l)]gjlzl/,

T

By the left commutative diagram in (38), X*(8571)7*([j{’,j§]) also equals to
(05,.0)7+ (137, 43)) = 257" + vjsjrva + wig i1 S + '35 javne + 255 i1, Jolne.

Thus 27n(5) i, 4 95¢1 1 k = v and 2min{nshygy 4 gminGs—Li)s 4] —
By Lemma 4.5, k = 27m{rs} i/ and [ = 2minds—L1Y) 1/ 1 e 7.
U

Remark 4.7. The case s = oo is not allowed in the above proof of Lemma 4.6,
since we get the maps F% % FZand Ci’loo EN Ci?g ~ (Stv S U, C(Stv
S3) where the targets of the maps are not covered by Lemma 4.5. However
the fibration F55 — C’g’gg — §°Vv 5% splits, which implies that (93 )7« = 0
in the left commutative diagram of (38). Hence it is easy to see that Lemma
4.6 is also true for s = co.

From Lemma 4.4 and Lemma 4.6, one gets Coker(9: )7, in the following

r,1
Lemma whose proof is also postponed to the Appendix.

Lemma 4.8. COkeT(aﬁl)n = ZQmin{s—em,Q} @ZQmin{s+l,r+1} D Zgs+2,00 > 1 >
1.

Lemma 4.9. The following short exact sequence is split for co > r > 1.

0— Coker(0; 1 )7« —>7T7(C’E7’f) — Ker(dy1)ex —0 (39)

T T

where Ker(9; )6« and Coker(0; )7« are given by (28) and Lemma 4.8.

Proof. For r > 2, there is o € 7w7(Mj,) with order 4, which is a lift of
Yv' € Kerdg«. By the commutative diagram (23), fa € 777(057’18 ) is a lift of
ja¥v' € Ker(95 )+ So the short exact sequences (39) splits for 7 > 2, so
is for r = oo. B

For r = 1, There is an induced map M; 2, 015’11 = C’f’l from the left
commutative diagram (23). By Lemma 1.6. of [1,4], there is an element
ag € 7T7(Cf’1) with order 4 such that 2a5 = 0731516 Where 73 € m5(M3) is a
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lift of 74, i.e., p3n3 = n4. We have the following commutative diagram
N4x =

77(5%) B (M3) —— 2~ Kerds, — Zo{Sv'}

\Le* Jg* \[\

1
q1,1%

17(CYY) —— Ker(011)6x = Za{jinsne + js>v'},

a1,1.0:71: (M516) = 41,1, (O31576) = 241 1,.(2);

On the other hand

01 1,073+ (5m6) = 3. max(15m6) = 2(3n5m6 + j3S0")

Hence qil*(&\i) = +(j?n5m6+j3X'). Thus the short exact sequences (39)
splits for r = s = 1.

For co > s > 2, there is a commutative ladder

1
91,1

fl
StV §P —1> gty §° o 5% v S

dglt J/ﬁ id
s

1,1 1,1
StV 83— 5tV §8 ——= (P —> 5%V §

id

where dgfl = (7125 Lug, Jor3).
Then ¢f 1, (paz) = qil*(&\i) = +(jnsme + j3Xv'). It implies the short
exact sequences (39) also splits for r = 1,00 > s > 2. O

So
. (CS,S) ~ ZQmin{s—eq«,Q} D Z2min{s+l,r+1} D ng+2 D Z47 T Z 1,
1) = Lomin{s,2y @ Ligs+1 B Ligs+2 © Ly D Z(Q), r = 00.
From 7'('7(0577100) = m7(8* Vv D) = m7(C2) @ 17(S*) @ 77 (CP), 7T7(C§<’>‘f1)
77(S4 Vv C5%) =2 m7(C%%) @ m7(S*) @ 77(C?%) and 77(C8) = 0, m7(C®%) =
Zgs+1 (stable) in [22], we get

77(C2) X Ly & L1, 7 > 1
7T7(05’S) = 7T7(CE,’1S) & Ligmin{s,2y @ Zigs+2,8 > 1.
7T7(CT5,S) = 7T7(07-5,7f) = ZQmin{sferﬂ} @ ZQmin{s+1,r+1} @ Z25+2 @ Z4,T 2 1, S 2 1.

First author was partially supported by National Natural Science Founda-
tion of China (Grant No. 11701430); second author were partially supported
by National Natural Science Foundation of China (Grant No. 11971461).
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APPENDIX A.
Lemma A.1.
(27 1g) vy = 22wy — 27127 — 1)V
(=2"1y)vg = 2%y — 27 (2" + 1)S.

Proof. By Proposition 2.10 of [17] and (5,8) of [18], (2t4)v4 = 21/4:|:(§) [ta,0a]H(v4)) =
vy — X' or X/, where H is the second Hilton-Hopf invariant. If (2u4)v4 =
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Y/, then (4deg)vy = (204)(2e4)vy = (204)(EV') = 250/ On the other hand,
(deg)vy = 4vy £ (3) [t4, 4] H (v4) = 1614 — 650" or —8vy + 6%/, which is not
equal to 2X0/. Thus (2u4)vy # 3V, ie., (2u4)vy = 4y — X0/,

(27 04)vg = (2771 0y) (2ea)vs = (2710 vy — 2V)) = 427 gy — 2771
= 22"y, — 2" 12" —1)%/ (by induction).

(=2"04)vg = (—14) (2" ta)vy = (—1g) (2% 0y — 277127 — 1)ZV)
= ()27 + 22T — )% = 2%y @) [tay La] H (2% vy) + 2771 (27 — 1)20/

=22y — 2" N2 )NV or =327y 4+ (327 2 sy (40)
On the other hand
—2" 2" +1
(—2rL4)V4 = —2rV4 + < 9 >[L4, L4]H(I/4) = —2”/4 + ( 9 )[L4, L4]H(V4)
=2y — 27N 2 DSV o — (27 427 Dy 27N SV (41)
Compare (40) with (41), we get (—2"14)vy = 2%"vy — 27 71(27 + 1)20/.
O

Proof of Lemma 4.5. Let a = %%, b = j8jiva, ¢ = j51 50, d = j5j2v/'ns,
e = j8lj1, j2]me. Let w = 2%w’, where 2 { w'; v = 250/, where 2 { w’,2 { 0.
By (36),

Zyia,b,c,d, e}
L
L = <28+1b —2%¢,2%h — 2571(2° — 1)¢,2%a 4 2°b + 2% + upd + z9e,2°T1b, 4c, 2d, 26>

H* =

= <23+1b, 2% ¢, 2%a 4 2°b + 2% + usd + 29e, 2d, 2€>

Note that a Z3)-linear isomorphism of Z ) {a, b, c} dose not change the group
structure of H%.
Assume v’ = 1 € Zs, then

L= (21,2%¢, 2% + 2% + 2% + d + 2, 2d, 2¢ )

= <25+1b, 2%¢,2%a 4+ 2°b + 2% + d + 29e, 25T a + 20 p + 29F ¢, 26>

Z(2){a7 b, c, 6}
(25H1p, 2as ¢ 25+l 4 2B8+1p 4 2041c 2¢)

12
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which has at most four (resp. three) cyclic direct summands for s > 2 (resp.
s = 1) and contradicts to (37). Thus v’ = 0. By the same argument, we get
z=0and f>1, a>1 when s > 2. So we get

H* = Zy{d} @ Zofey & 2280 wieh I, = (20 ¢,2%a + 20 + 2%, 25+11),

Ifa<ag thenas=2,s>2 a=1.

Ly = (25T1a 4 2071, 2% + 2°b 4 2¢,2571b).

Lgs+1 DLy B Lios ® Lo ® Lo = H® = 7o B 7Ly @ Zo ® A for some group A,
which is impossible.

Hence a > a, i.e., 2% |w. Ly = <20‘$c, 2%a + 2°b, 28+1b>.
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If B <s, Ly = (2%¢,2%a+ 2°b,2%117Pa). H® = 7y ® 7Ly & Lo, ® A with
exact sequence 0 — Zg2s+1-5 — A — Zgys — 0. This is a contradiction since
A = Zos ® Zgs+1 is not a solution of above exact sequence. So § > s. We
complete the proof of Lemma 4.5. U

Proof of Lemma 4.8. Coker(’yﬁl)n = Zos+2{j1va }BL4{ 1 XV }BZo{jov 16 }
in (30).

Simplify a := p7 1, b:= jgene, ¢ := j;11va, d = j 15V, e = 71 jav'ne.
From (31),(32),(33), (34), Lemma 4.4 and Lemma 4.6, we get

Z ’b7 ’d’
Coker (0 1)7« = @l ISC 6}.

I;?:<2b, 2°2¢ 4d, 2e, 2% c— 2771 (25—1)d+e, 27 g b oMt e ominds LI gy e, e,ne>
=(@mirdr st} (14 | o)+ 282! g 92912¢ 4d, 2e, 225 c— 2571 (2°—1)d +-e,

2min{r,s}ta+b+2min{7’ﬁ}k/c+Qmin{&l,l}l/d_}_ue, 67«6>

Z ) ’d?
Coher(3})7, = A% a0

I;s :<2min{r+1$+1}(ta+ /{?/C)+2mm{s’2}lld, 23+2c7 4d, 2e, 2230_2$1 (28—1)d+6, 67»6>
since 22 g € (2°%2¢,4d, 2e, 2% c— 2571 (2°-1)d +-e)
I;s :<2min{r+1$+1}(ta+klc)7 2s+2C’ 4d, 26, 2230_2$1 (28—1)d+€, €r€>

K Zin{c,d, e
C’oker(&f’l)n = Z2min{7\+l,s+1} {a + ?C} S¥ %

1% = (272¢,4d, 2¢, 2% c— 271 (25 1)d+e, er€) .

For oo >r > 2

1"

15 = (2"2¢,4d, 2% c—2%(2°~1)d, 2% c— 2"} (2°~1)d+e)
_ <23+2C’ gmin{s,2} 2250—2*1(25—1)d+e>

Z(Q){Ca d}
23+2C, 2min{s,2}d>

CO/{?GT( f71)7* = ZQmin{m—H,s-H} D <
= ZQmin{H—l,s-H} D Z2min{$—€7‘,2} D Z25+2.
For r =1,

(8¢c,4c—d,e) , s=1;
<2‘°’"20, gmin{2,s—1} g e>, 00 >85> 2.

= Coker(ail)7* = Z4 (&%) Z23+2 (&%) ZQmin{gysfl},OO 2 S 2 1.

I/ =(2°2¢,4d, 2% c— 251 (2°-1)d, e) = {

We complete the proof of Lemma 4.8. U
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