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Spin-orbit couplings (SOCs), originating from the relativistic corrections in the Dirac equation, offer nonlin-

earity in the classical limit and are capable of driving chaotic dynamics. In a nanoscale quantum dot confined

by a two-dimensional parabolic potential with SOCs, various quantum scar states emerge quasi-periodically in

the eigenstates of the system, when the ratio of confinement energies in the two directions is nearly commensu-

rable. The scars, displaying both quantum interference and classical trajectory features on the electron density,

due to relativistic effects, serve as a bridge between the classical and quantum behaviors of the system. When the

strengths of Rashba and Dresselhaus SOCs are identical, the chaos in the classical limit is eliminated as the clas-

sical Hamilton’s equations become linear, leading to the disappearance of all quantum scar states. Importantly,

the quantum scars induced by SOCs are robust against small perturbations of system parameters. With precise

control achievable through external gating, the quantum scar induced by Rashba SOC is fully controllable and

detectable.

I. INTRODUCTION

Quantum scars which manifest as the localization behav-

ior displaying certain unstable classical periodic orbits exist

in the high-energy levels in the quantum system with chaotic

dynamics being driven in its classical limit. The quantum scar

was first discovered while studying the quantum eigenstates

of the stadium billiard model which drives chaotic dynamics

in the corresponding classical model [1] and later was named

as such by Heller [2]. Quantum scarring has thus far drawn

great attention and interest [3] and has been observed ex-

perimentally in various systems, including quantum well and

microwave resonators [4]. The localization nature of quan-

tum scarring without participation of the many-body system

is convenient to be applied and attracts interest across various

fields. On the other hand, the quantum many-body scars lo-

calizing eigenstates to prevent thermalization are expected to

be useful in quantum computing [5].

Recently, the perturbation induced quantum scars have been

studied in quantum dot (QD) systems confined at the semicon-

ductor heterostructure with or without an external magnetic

field [6–8]. These quantum scars are induced by a bunch of

impurities which make the (nearly) degenerate states of the

QD resonant to localize the electron density along the under-

lying classical trajectories. As an artificial atom [9], the low-

dimensional QD [10–14] offers an ideal platform for control-

ling both the spin and the charge of single or multiple elec-

trons. The parabolic confinements of QDs render the system

a two-dimensional (2D) quantum harmonic oscillator which

holds practical and fundamental significance in physics. The

quantum scars found in QDs also reveal profound connections

between the classical and the quantum systems.

Both nonrelativistic and relativistic quantum systems have

been found to possess quantum scars [15]. The focus has

also been on quantum scarring in relativistic quantum sys-

tems which are described by the Dirac equation, especially in
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graphene systems [16]. However, the experiments in mono-

layer and bilayer graphene to explore quantum chaos have

not been successful [17]. On the other hand, the spin-orbit

coupling (SOC) is also a relativistic effect originating from

the Dirac equation. Its corresponding classical Hamiltonian

leads to nonlinearity in Hamilton’s equation and it is possi-

ble to drive chaotic dynamics [18]. Exploring quantum scars

induced by SOCs could thus offer an intriguing avenue [19].

The studies on QDs with Rashba SOC or/and Dresselhaus

SOC have been reported extensively thus far [20–35]. The

ground states of QDs with SOCs have been studied to ex-

plore topological nontrivial features in spin fields [36–39].

Vortex-like spin textures in the ground states carry different

topological charges induced by Rashba SOC or linear Dres-

selhaus SOC. Considering that the Rashba SOC can be con-

veniently tuned via an external gate [40–44], the spin textured

ground states could have potential applications in spintronics

and quantum information [45–47]. Yet, the excited states in

QDs with SOCs have not been sufficiently studied, especially

in the energy region containing classical chaos.

Here we investigate the excited states as well as the quan-

tum scarring in spin-orbit coupled QDs. The scars can appear

in the eigenstates quasi-periodically (the period is not fixed

and gradually increased with the eigenenergy). We also con-

firm that the condition of scarring in the quantum states ex-

actly follows the chaos condition in the classical limit. When

the strengths of the Rashba and the Dresselhaus SOCs are

equal, the classical Hamilton’s equations are linear and no

longer lead to chaos, hence there is no scar in the quantum

system. Otherwise we observe various quantum scars depend-

ing on the systematic parameters. It is worth mentioning that

the quantum scars induced by SOCs in QDs are highly robust

against with small perturbations, unlike the classical chaotic

behavior and could be referred to its quantum feature that the

energies are discrete. Comparing with the impurities induced

quantum scars, the scars induced by SOCs are more tunable,

less random, exist at low-energy levels, and spin-involved.

We thus expect the corresponding measurements to be more

convenient by scanning tunneling spectroscopy [48], scanning

gate microscopy [49], scanning the NMR experiment [50] and

http://arxiv.org/abs/2302.05739v3
mailto:liuxiaochi@csu.edu.cn
mailto:luo.wenchen@csu.edu.cn


2

the spin-dependent transport [19, 51].

II. MODEL AND FORMULA

The Hamiltonian of the quantum dot with both the Rashba

and Dresselhaus SOCs is given by

H = P2

2m∗
+

m∗

2

(

ω2
x x2 + ω2

yy2
)

+
∆

2
σz +HS OC , (1)

HS OC = g1

(

σxPy − σyPx

)

+ g2

(

σyPy − σxPx

)

, (2)

where ωx and ωy describe the parabolic confinements in the x

and y dimensions, respectively. σ
i

is the Pauli matrix and the

strengths of the Rashba and Dresselhaus SOCs are g
1

and g
2

respectively. P
i
= p

i
+ eA

i
is the kinetic momentum, where

e is the charge of an electron and the vector potential can be

chosen in the symmetric gauge A = 1
2

B (−y, x, 0) with the

magnetic field B. The Zeeman term, which is the first order

correction of the relativistic effect, is ∆ = gµ
B

B, where g is

the Landé factor and µB is the Bohr magneton.

In anthe adiabatic model the SOCs could have a classical

correspondence [18] in the absence of a magnetic field,

HS OC = (g1 py − g2 px)σx + (g2 py − g1 px)σy

→ HC
S OC = −

√

(g1 py − g2 px)2 + (g2 py − g1 px)2, (3)

which provides nonlinearity and is able to drive chaotic dy-

namics in the system. The full classical Hamiltonian reads

HC =
p2

x + p2
y

2m∗
+

m∗

2
(ω2

xx2 + ω2
yy2)

−
√

g2
1
+ g2

2

√

p2
x + p2

y −
4g1g2

g2
1
+ g2

2

px py. (4)

By solving the canonical equations, chaotic dynamics can ap-

pear when the SOC is anisotropic. If there is only Rashba

SOC present, then HC
S OC
= −g1

√

p2
x + p2

y . On the other hand,

if only Dresselhaus SOC is present, then the classical cor-

respondence is the same as that of Rashba SOC. It implies

that whichever SOC is present, the classical behavior remains

the same. Note that if the confinement trap is isotropic, clas-

sical trajectories in the phase space would be regular. The

way leading to chaotic dynamics is to make the confinement

anisotropic, which effectively makes the SOC anisotropic in

the classical limit. Once chaos appears, the corresponding

quantum scar induced by the SOC should be observed in the

quantum dot. Considering the classical correspondence of the

two types of SOCs being the same, the quantum scar would

also be identical.

The system is highly tunable, as both the Rashba SOC and

confinements can be tuned by external gates, and the ratio of

the Rashba SOC to the Dresselhaus SOC can be modified by

applying an in-plane magnetic field [44]. It is worth mention-

ing a special case where g1 = ±g2, i.e. the two SOCs are

present simultaneously with equal strength. The classical cor-

respondence becomes HC
S OC
= −g1(px − py), which is a linear

term in the Hamiltonian and does not lead to chaos.

To study the quantum scar of the quantum dot system de-

scribed by the Hamiltonian in Eq. (1), the eigenstates are

calculated in the exact diagonalization scheme. The Hamil-

tonian matrix is constructed in the basis of the two dimen-

sional (2D) quantum oscillator whose Hamiltonian is H0 =
p2

2m∗ +
m∗

2

(

Ω2
xx2 + Ω2

yy2
)

+ ∆
2
σz, where the renormalized fre-

quency is defined as Ωx,y =

√

ω2
x,y + ω

2
c/4 with the cyclotron

frequency in a magnetic field being given by ωc = |e|B/m∗.
The basis of the 2D quantum oscillator is |n〉 ≡ |nx, ny, ns〉
where n is a collective index marking the number of the basis,

ns is the spin index in n, and nx and ny denote the two quan-

tum numbers in two directions of the 2D quantum oscillator,

respectively. The associated wave function of this basis is

ψnx ,ny
(r) =

exp

(

− x2

2ℓ2
x
− y2

2ℓ2
y

)

√

2nx+ny nx!ny!πℓxℓy

Hnx

(

x

ℓx

)

Hny

(

y

ℓy

)

, (5)

where the natural lengths in the two directions are ℓx,y =
√

~/m∗Ωx,y. In principle, there is no upper limit of nx,y, so that

the matrix of the Hamiltonian is infinity large. Practically, a

truncation of nx,y is necessary and the low-energy states can

be found accurately.

Once the Hamiltonian (1) is diagonalized, the m−th eigen-

state can be expressed by the basis, |Ψm〉 =
∑

n Cm
n |n〉, and its

wave function is Ψm(r) = 〈r|Ψm〉 =
∑

n Cm
n ψnx ,ny

(r)|ns〉. Here,

|ns〉 represents an eigenstate of σz, and thus the wave function

Ψm(r) is a two-component spinor. Generally, any observable

field is given by

Λ(r) = Ψ†m(r)ΛΨm(r), (6)

where Λ is the corresponding operator including the density

operator n (unity matrix), spin operators σµ with µ = x, y, z

and etc. The current fields which are related to the spin fields

are defined by jx (r) = − e
m∗Re

[

Ψ
†
m (r) PxΨm (r)

]

+ eg1σy (r)+

eg2σx (r) and jy (r) = − e
m∗Re

[

Ψ† (r) PyΨ (r)
]

− eg1σx (r) −
eg2σy (r).

Without loss of generality, we consider here the InAs quan-

tum dots with the material parameters: the effective mass of

electron is m∗ = 0.042me where me is the mass of free elec-

tron and Landé factor g = −14. The size of the QD is not fixed

here, but we could fix the confinement in x direction and vary

the other confinement. The confinement lengths are defined

by Ri =
√
~/m∗ωi and Rx is fixed to 30 nm associated with the

characterized confinement energy ~ωx = 2 meV.

III. RESULTS

A. Isotropic QD with a single SOC

When only one SOC is present and the quantum dot is

isotropic, ωx = ωy = ω, the associated classical Hamiltonian

is HC =
p2

x+p2
y

2m∗ +
m∗ω2

2
(x2 + y2) − g1(2)

√

p2
x + p2

y , which does

not lead to chaos [18]. In the quantum regime, the densities
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and the spin fields of all eigenstates in the isotropic quantum

dot are deformed by the SOC. The rotational symmetry does

not only exist in the ground state, but also exists in all ex-

cited states of the single-particle system, due to the symmetry

[Lz±σz/2,H] = 0, where Lz is the z component of the angular

momentum [36]. The topological feature of the spin fields is

also retained in the excited states, i.e. nontrivial patterns with

nonzero topological charges are textured by the SOC.

-5 0 5
-5

0

5

-2.6

-1.3

0.0

1.3

2.6

-5 0 5
-5

0

5

-5 0 5
-5

0

5

0.0

1.0

2.0

3.0

4.0

-5 0 5
-5

0

5

FIG. 1. (Color online) The density profiles and the spin fields of the

100th eigen states in an isotropic QD (Rx = Ry = 30 nm) with dif-

ferent SOCs, in the absence of external magnetic field. Panels (a)

and (c) are for the QD with Dresselhaus SOC ~g2 = 40 nm·meV,

while panels (b) and (d) are for the QD with Rashba SOC ~g1 = 40

nm·meV. In (a) and (b), the color represents the density of the elec-

tron and the arrows represent the current vector ( jx(r), jy(r)). (c) and

(d): The color stands for σz(r) and the arrows for the in-plane spin

fields (σx(r), σy(r)) with topological charge −1 and 1, respectively.

All the observable quantities are in units of 1/R2
x hereafter.

Our study indicates that the densities of all eigenstates have

a circular shape with topological nontrivial vortex-like spin

textures [Fig. 1]. The Rashba SOC induces a topological

charge +1 of the in-plane spin field, while the Dresselhaus

SOC leads to topological charge −1 [36, 37]. Further, the cur-

rent fields of the two cases are also shown in Fig. 1, where

the two SOCs lead to rotating currents with the same vorticity

related to their spin fields.

When a perpendicular magnetic field is introduced, the

electron has a cyclotron motion in the magnetic field. The

densities of the eigenstates maintain a circular structure with

rotational symmetry when only one SOC is present in an

isotropic QD. However, the directions of the current may be

changed by the magnetic field in different eigenstates.

B. Isotropic QD with combination of different SOCs

The chaotic dynamics can be driven in the isotropic dot by

combining the two SOCs arbitrarily and |g1| , |g2|. The clas-

sical Hamiltonian is

HC =

(

p′x
)2
+

(

p′y
)2

2m∗
+

1

2
m∗ω2

(

x2 + y2
)

−
√

(g1 + g2)2 (

p′x
)2
+ (g1 − g2)2

(

p′y
)2
, (7)

where p′x = (py − px)/
√

2 and p′y = (px + py)/
√

2. It is ob-

vious that the Hamiltonian governs a linear system only when

g1 = ±g2, since its canonical equations are linear. Otherwise,

the canonical equations are nonlinear and such systems are

possible to hold the chaotic dynamics. The isotropically con-

fined QD becomes to an anisotropic system due to the arbi-

trary mixing of the two SOCs. This implies that, in the quan-

tum regime, the quantum scars which is represented by the

electron density localizing along the classical trajectory can

appear in the excited states. The absence of the magnetic field

conserves the time reversal symmetry and the quantum scar

states appear in pair due to the Kramers pair.
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FIG. 2. (Color online) The quantum scar states in an isotropic QD

(Rx = Ry = 30 nm) with mixing of the two SOCs, ~g1 = 40 nm·meV

and ~g2 = 10 nm·meV. In (a) and (b), the color represents the densi-

ties of the electron n(r) in the 1028th and 1247th eigenstates, respec-

tively.

In Fig. 2, we show two quantum scars in the excited states

of an isotropic QD with a combination of Rashba and Dres-

selhaus SOCs, ~g1 = 40 nm·meV and ~g2 = 10 nm·meV. In

Fig. 2(a), the density of electron is localized to an axe-shape

pattern, while an ‘X’-trajectory appears in Fig. 2(b). These

patterns are different from the array-shaped density profiles of

states in a QD without SOC significantly (i.e. the densities

observed in a 2D quantum oscillator).

C. Quantum Lissajous scar in anisotropic dot induced by a

single SOC

Another quantum scar, which is called quantum Lissajous

scar [8], can emerge in an anisotropic QD where the ratio of

the 2D confinementsωx/ωy is a rational number. The two con-

finement potentials are accessible to be manipulated via gates.

The original idea to realize the quantum Lissajous scars is by
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the massive random impurities which induce chaos and mix

different eigenstates of the basis. The scar indicates the clas-

sical behavior of an anisotropic 2D oscillator, so that the den-

sity of the electron of the quantum scar state localizes around

the Lissajous curve corresponding to the ratio ωx/ωy.

In an anisotropic QD with Rashba or Dresselhaus SOC, the

corresponding classical Hamiltonian also leads to chaotic dy-

namics in the phase space obtained by its Hamilton’s equation.

For simplicity, the dimensionless Hamiltonian with m∗ = 1 is

HC = p2
x + p2

y +
1

2
ω2

xx2 +
1

2
ω2

yy2 − g1(2)

√

p2
x + p2

y , (8)

without the vector potential, i.e. no magnetic field. The Lya-

punov exponent (LE) is employed to estimate the oscillation

modes under parameter variation. The largest LE being posi-

tive indicates the existence of a chaotic state, while the largest

LE being negative denotes the system described by periodical

states only. In Fig. 3, the largest LE [53] of the two exam-

ples with ωx/ωy = 3/1, 3/2 demonstrate chaos in the system,

when g2 = 0 and g1 is tuned (equivalent to tuning energy of

the system). Note that for some g1 the system shows no chaos.

0 20 40 60 80 100

0.00

0.04

0.08

0.12

L
E

g1

 ω
x
/ω

y
=3/2 

 ω
x
/ω

y
=3/1 

FIG. 3. (Color online) The largest LEs of the two anisotropic systems

with ωx/ωy = 3/1 and 3/2. These LEs are calculated in the dimen-

sionless Hamiltonian in Eq. (8) with varied g1 and fixed g2 = 0. The

chaos of the system is related to g1.

We then demonstrate that the quantum Lissajous scars can

be achieved by the relativistic correction, i.e., the SOC. In the

quantum regime, the emerging quantum scars display the tra-

jectory of a particle confined in a classical 2D oscillator. We

first discuss the scars related to the specific closed Lissajous

curves, (x, y) ∼
(

cos ηxt, cos(ηyt + π
2ηx

)
)

, where ωx,y = ηx,yω0.

The open curve obtained by shifting the phase will be dis-

cussed in the next subsection. The quantum Lissajous scars

for ωx/ωy = 2/1, 3/1, 3/2, 4/3 are shown in Figs. 4(a)-(d),

respectively. Around the cross points in the curves, the inter-

ference stripes are clearly visible, indicating both the classical

and quantum features. In addition, the density profiles of the

first 2000 states in different cases that the confinement ratios

and the SOCs are varied are integrated into a video, which can

be found in Supplementary Material [52].

In Figs. 5(a) - (d), we also indicate the associated spin fields

of the four quantum Lissajous scars [Figs. 4(a) - (d)], respec-

tively. Although the spin textures are somehow difficult to

calculate analytically given that the perturbation calculations

become complex and are not valid with a strong SOC, we can

still numerically determine that the in-plane spins exhibit non-

trivial patterns. There are numerous spin vortices localized
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FIG. 4. (Color online) The quantum scar states in an anisotropic QD

(Rx = 30 nm) with only the Rashba SOC, ~g1 = 40 nm·meV. Colors

represent for the density of the electron, n(r). (a) The quantum scar

in the 91st eigenstate around the Lissajous curve ∼ (sin 2t, sin t) since

Ry =
√

2Rx and ωx/ωy = 2/1. (b) For the QD with Ry =
√

3Rx and

ωx/ωy = 3/1, the quantum scar in the 535th eigenstate around the

Lissajous curve ∼ (sin 3t, sin(t + π/2)). (c) For the QD with Ry =√
3/2Rx and ωx/ωy = 3/2, the quantum scar in the 331st eigenstate

around the Lissajous curve ∼ (sin 3t, sin 2t)). (d) For the QD with

Ry =
√

4/3Rx and ωx/ωy = 4/3, the quantum scar in the 1404th

eigenstate around the Lissajous curve ∼ (sin 4t, sin 3t)). The dashed

lines are the corresponding Lissajous curves drawn for guidance.
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FIG. 5. (Color online) The spin fields of the quantum scar states

in the anisotropic QD with the same systematic parameters as those

used in Fig. 4. Colors represent σz(r) and the vectors represent the

in-plane spin fields (σx(r), σy(r)).
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and attached with the density profile, which are textured by

the SOC.

It is worth noting that some eigenstates do not show any dif-

ferent density profile other than the regular dot-array patterns

of the 2D quantum oscillator without the SOC. It is because

in the corresponding energy region, the classical dynamics

can be regular without chaos [18], resulting in the absence

of quantum scar states. The chaotic behavior induced by the

SOC differs significantly from that induced by random impu-

rities, and so are the quantum scar states. Due to the random-

ness of the impurities sizes and locations, the quantum scar

states therein can not be controlled or tracked precisely, and

only the percentage of scar states among all eigenstates can be

approximately estimated.

One cannot predict where the quantum scar states induced

by impurities are, which makes detection of the scar states

challenging. In contrast, in an anisotropic QD with SOC, the

emerging quantum Lissajous scars are not random and can

be accurately predicted. Each two quantum Lissajous scar

states (due to the Kramers pair) appear quasi-periodically in

a few eigenstates. For instance, in the case of ωx/ωy = 3/2

with ~g1 = 40 nm·meV, the quantum scar states with density

profile similar as those shown in Fig. 4(c) appear repeatedly

in the (157th, 158nd), (167th, 168th), (177th, 178th), (189th,

190th), (199th, 200th) eigenstates, with a period of approx-

imate 10 states between the two pairs of quantum Lissajous

scar states. In higher energies, the Lissajous scar states appear

in the (303rd, 304th), (317th, 318th), (331st, 332nd), (347th,

348th), (361st, 362nd), (377th, 378th) eigenstates. The sep-

aration between the two pairs of the quantum Lissajous scar

states becomes about 14. The period is not fixed and will grad-

ually increase (not monotonically) with increase of the energy.

Moreover, the quantum Lissajous scars induced by SOC

can be found at very low energies, such as the ‘8’ shape Lis-

sajous trajectory shown in Fig. 4(a), which can be identi-

fied even down to the 15th eigenstate. More importantly, the

Rashba SOC can be controlled by an external gate allowing

for the manipulation of the quantum scar states. These char-

acteristics of the quantum scars induced by SOC imply that

SOC, especially the tunable Rashba SOC, greatly facilitates

the measurement of the quantum scar state.

Considering the nature of the classical chaotic dynamics

being sensitive to initial conditions, one might wonder if the

quantum scar states are similarly sensitive to system param-

eters. If not, then the quantum scar states are more easily

detected. We adjust the confinement ratio slightly, for in-

stance, ωx/ωy = 3/2 → 3.01/2, and observe that the posi-

tions of the quantum scar states in all the eigenstates remain

unchanged, as do their density profiles. We also examine the

effect of adding a weak magnetic field, B = 0.05 T. Although

the Kramers’ degeneracy is lifted, the quantum scars persist in

the same eigenstates as in the absence of the magnetic field,

with only slight changes in density profiles. Similarly, when

the SOC strength g1 is slightly tuned, the positions or the den-

sity profiles of the quantum scar states remain unchanged. As

illustrated in Fig. 6(a), when the Rashba SOC is increased by

one percent compare to that in Fig. 4(c), namely ~g1 = 40.4

nm·meV, the quantum Lissajous scar does not change at all.

We note that the current flow direction, displayed in Fig. 6(b),

does not align with the classical Lissajous trajectory, but is

relevant to the spin fields shown in Fig. 5(c). This character

underscores the fundamental distinction between the classical

behavior and the quantum mechanism.
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FIG. 6. (Color online) The quantum scar state in an anisotropic QD

(Rx = 30 nm and Ry =
√

3/2Rx) with the Rashba SOC, ~g1 = 40.4

nm·meV which is a little deviated from that used in Fig. 4(c). (a)

The quantum Lissajous scar in 331st eigenstate is the same (both the

number of the eigenstate and the density profile) as that shown in Fig.

4(c). (b) The current field of the 331st eigenstate.

The robustness of the quantum scar states against the ex-

ternal perturbations relies on the quantum properties of the

system rather than its classical behavior. It can also be boiled

down to the fact that small perturbations do not significantly

alter the eigen energies of the eigenstates, allowing the corre-

sponding classical behavior to remain within the chaos region,

thus the scarring is frozen in the discrete-energy quantum sys-

tem. This feature is also helpful for identifying the quantum

scar states to make the possible measurement convenient.

Given that the classical Hamiltonians are identical for both

Rashba and Dresselhaus SOCs, the density profiles of the

quantum scar states induced by either one of the two SOCs

are indistinguishable. Suppose that there are two QDs with

the same confinement potentials, but one with Rashba SOC

and the other with Dresselhaus SOC. The coupling strengths

in the two QDs are identical, g1 = g2. Our numerical studies

indicate that the quantum scar states appear in the same po-

sition in the eigenstates of both cases, exhibiting exactly the

same density profiles. However, the spin fields of these two

states are different, providing a signature to distinguish the

types of SOC.

D. Lissajous curves pair scar

In anisotropic QDs with one SOC, the Lissajous patterns in

open curves can also be found in scarring states, albeit with

much lower probability. However, due to mirror symmetry,

x → −x and y → −y without a magnetic field, a single open

curve of the Lissajous pattern, which has lower symmetry, can

not be found in any state. Instead, only a pair of Lissajous

curves making up this symmetry emerges in a scarred state.

In QDs with ωx/ωy = 2/1, 3/1, 3/2, 4/3, the pairs of Lis-

sajous curves in the quantum scars are illustrated in Figs. 7(a)
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FIG. 7. (Color online) The Lissajous curves pairs in the quantum scar

states in the anisotropic QD with the same systematic parameters as

those used in Fig. 4. Colors represent the density of the electron.

The quantum scars in (a) the 417th eigenstate with ωx/ωy = 2/1, (b)

the 659th eigenstate with ωx/ωy = 3/1, (c) the 705th eigenstate with

ωx/ωy = 3/2, and (d) the 1571st eigenstate with ωx/ωy = 4/3. The

lines are the corresponding Lissajous curves drawn for guidance.

- (d), where the classical orbits (x, y) ∼ (cos ηxt, cos ηyt) +

(cos ηxt, cos(ηyt + π/ηx)) are identified, respectively.

E. Quantum regular states in anisotropic quantum dots

Finally, we discuss the effect of combining two SOCs in

anisotropic QDs. As expected, when g1 , ±g2, the quantum

Lissajous scars appear. In Fig. 8, we show that the electron

density forms the Lissajous curve in the 781st eigenstate, how-

ever, the Lissajous curve is not as regular as the case with only

one SOC, and is slightly twisted, as does the corresponding

current field.
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FIG. 8. (Color online) The quantum scar state in an anisotropic QD

with Rx = 30 nm and Ry =
√

3/2Rx. The two SOCs are all present,

~g1 = 40 nm·meV and ~g2 = 10 nm·meV. (a) The quantum Lissajous

scar in 781st eigenstate is similar to that in Fig. 4(c), but is a bit

twisted. (b) The associated current field of this eigenstate.

The special case that g1 = g2 has the classical correspon-

dence,

HC =

(

p′x
)2
+

(

p′y
)2

2m∗
+

1

2
m∗ω2

x x2 + +
1

2
m∗ω2

yy2 − 2g1 p′x, (9)

which describes a linear system without chaos. A similar

Hamiltonian can be derived for g1 = −g2. Thus for g1 = ±g2

whether the QD is isotropic or anisotropic, no classical chaotic

dynamics occur and no quantum scar appears. Our numerical

calculation also confirms that all the density profiles of the

eigenstates are alike dot-array, which are the same as the den-

sities of the eigenstates of the QD without SOC, as shown in

Fig. 9. The array-like densities are totally induced by the Her-

mite polynomials in the basis wave functions. The difference

of the two cases is that the in-plane spin fields are nonzero in

the QD with SOCs while the spin field is only polarized in the

z direction in the QD without SOC.
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FIG. 9. (Color online) An example of array-like density in

anisotropic QD with Rx = 30 nm and Ry =
√

3/2Rx. The colors

represent the density of the electron. The 390th eigenstate is se-

lected for the cases (a) with equal Rashba and Dresselhaus SOCs

~g1 = ~g2 = 10 nm·meV, and (b) without SOC. The arrows in (a)

represent the in-plane spin field of the state, while the in-plane spin

field in (b) is zero.

When the external magnetic field is weak, the quantum Lis-

sajous scars persist for g1 , ±g2. However, when the mag-

netic field is increased, the scars are overwhelmed by the cy-

clotron motion. In the case of g1 = ±g2, due to the lack of

chaotic dynamics, the densities of all the eigenstates form cir-

cles with rotational symmetry induced by the magnetic cy-

clotron motion in an isotropic dot. Nevertheless, the densities

of the eigenstates remain arrays in an anisotropic QD when

the magnetic field is weak, but evolve to elliptical shapes with

increase of the magnetic field.

IV. CONCLUSION

In summary, we have studied the quantum scar states in

quantum dots induced by relativistic effects, viz. the SOCs.

For isotropic quantum dots, only the combination of Rashba

and Dresselhaus SOCs can induce quantum scars, since the

anisotropy and chaotic dynamics arise from the interplay be-

tween the two SOCs. In an anisotropic quantum dot, either
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one SOC or a combination of the two SOCs can lead to quan-

tum Lissajous scar which may consist of one or a pair of Lis-

sajous curves. We have to emphasize a special case where

g1 = ±g2 (the two SOCs have the same strength), which cor-

responds to a linear classical system without chaos. Thus,

regardless of the confinement of the quantum dot, there is no

quantum scar appearing in this case.

The quantum scars induced by SOCs are robust against

small perturbations of the external conditions, such as small

alterations in the confinement ratio ωx/ωy, weak magnetic

fields, or variation in the strengths of the SOCs. The quantum

Lissajous scars induced by SOCs emerge quasi-periodically in

the eigenstates and can manifest at very low energies in par-

ticular. It implies that tuning the SOC is a stable and control-

lable way to obtain predictable quantum scars, unlike systems

where quantum scars induced by a bunch of random impuri-

ties distribute randomly in the high-energy eigenstates. Given

that the quantum scars discussed here appear in low-energy

states and the direct observation of the orbit of the ground state

of a quantum dot is already realized [54], our work paves the

way to observe the quantum scars directly in such nanoscale

systems, regardless of the materials, as long as the SOC is

present. Furthermore, if direct observation is difficult cur-

rently, other indirect detection methods, such as spin polariza-

tion measurements, may also be useful due to the robustness

of the associated quantum scars and the tunable property of

the Rashba SOC. Especially, transport signals may be utilized

to determine the scarring trajectory in quantum dot systems

with SOCs, and spin-involved transport could prove benefi-

cial for spintronics applications.
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(2005); P. Pietiläinen, and T. Chakraborty, Phys. Rev. B 73,

155315 (2006).

[26] A. Ambrosetti, F. Pederiva, and E. Lipparini, Phys. Rev. B 83,

155301 (2011).

[27] C. F. Destefani, S. E. Ulloa, and G. E. Marques, Phys. Rev. B

69, 125302 (2004).

[28] T. Chakraborty, and P. Pietiläinen, Phys. Rev. B 71, 113305
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