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REPRESENTATION TYPE OF BLOCKS OF CYCLOTOMIC

HECKE ALGEBRAS OF TYPE G(r, 1, n)

YANBO LI AND XIANGYU QI

Abstract. Let K be an algebraically closed field with CharK 6= 2 and
(s1, s2, · · · , sr) ∈ Zr a multicharge with r > 2. Let Hn(q, Q) be a cyclotomic
Hecke algebra of type G(r, 1, n), where q 6= 0, 1 and Q = (qs1 , qs2 , · · · , qsr ).
For each block B of Hn(q, Q), we introduce a new invariant, called block move
vector, which can be considered as a generalization of the weight w(B). We
prove by using block move vector that block B has finite representation type if
and only if w(B) < 2, or B is Morita equivalent to K[x]/xw(B)+1. Blocks of fi-
nite representation type with weight more than one are determined completely
by block move vectors. This result implies that some blocks of finite type are
Brauer tree algebras whose Brauer trees have exceptional vertex. We also de-
termine representation type for all the blocks of cyclotomic q-Schur algebras.
Moreover, by using our result, we construct examples of blocks with the same
weight that are not derived equivalent. Examples of derived equivalent blocks
being in different orbits under the adjoint action of the affine Weyl group are
also given.
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1. Introduction

The cyclotomic Hecke algebras of type G(r, 1, n) (Ariki-Koike algebra) were in-
troduced in [8], [14] and [17] which include Hecke algebras of types A and B as
special cases. They play an important role in modular representation theory of
finite groups of Lie type, and are in relation with various significant objects, such
as quantum groups and rational Cherednik algebras. Consequently, these algebras
have received intensively and continuously study since their appearance. The inter-
est on these algebras has been strengthened by a result of Brundan and Kleshchev
[15], in which an explicit isomorphism between blocks of cyclotomic Hecke algebras
and type A cyclotomic Khovanov-Lauda-Rouquier algebras were constructed, and
many profound results emerged. For example, Jun Hu and Lei Shi proved the fa-
mous center conjectures in [31] recently. However, it is still an open problem to
determine the representation type of blocks of a cyclotomic Hecke algebra.

In general, it is an essential and difficult problem in representation theory to
determine the representation type of a finite dimensional algebra. Recall that a
finite dimensional algebra A has finite representation type if the number of in-
decomposable A-modules up to isomorphism is finite. Otherwise, A has infinite
representation type. If A has infinite type, then Drozd [21] proved that A is either
tame or wild and not both (we refer the reader to [21] for relevant definitions). Back
to Hecke algebras, the representation type of blocks of a Hecke algebra of type A
was determined by Erdmann and Nakano in [23]. Then Ariki [5] determined repre-
sentation type for all the block algebras of Hecke algebras of other classical types
by using a result obtained in [7] and the techniques developed in a series of papers
[6, 10, 11, 12]. In 2010, Wada [50] gave a necessary and sufficient condition on pa-
rameters for a type G(r, 1, n) cyclotomic Hecke algebra to have finite representation
type. Regarding to the blocks, as far as we know, there are two kinds of relevant
results, which are both given by Ariki and his collaborators. On one hand, the
representation type of some special cases are determined in [6, 10], in which the
main tool is cyclotomic Khovanov-Lauda-Rouquier algebras. On the other hand,
Ariki et al proved that an indecomposable self-injective cellular algebra A has finite
representation type if and only if A is isomorphic to a Brauer tree algebra whose
Brauer tree is a straight line with at most one exceptional vertex [7, Theorem 6.8].
However, given a finite dimensional algebra, it is in general difficult to determine
the structures of all its indecomposable projective modules and so one can not de-
termine the representation type of a block directly by the result aforementioned.
That is, it is still an open problem to determine when a block of a cyclotomic Hecke
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algebra of type G(r, 1, n) has finite representation type. Our main purpose in this
paper is to study this problem.

In order to describe the main result precisely, we need to recall some definitions
and fix some notations, which are also useful in other sections. Let K be an
algebraically closed field, 1 6= q ∈ K×. Define the quantum characteristic of q to be
the positive integer e which is minimal such that 1 + q+ · · ·+ qe−1 = 0. If no such
e exists, we set e = ∞. Fix positive integers n and r. Let (s1, s2, · · · , sr) ∈ Zr be a
multicharge and define Q = (Q1, Q2, · · · , Qr) ∈ Kr with Qi = qsi . Then Hn(q,Q),
the cyclotomic algebra of type G(r, 1, n) with parameters q and Q, is the unital
associative K-algebra with generators T0, T1, · · · , Tn−1 subject to the following
relations:

(H1) (T0 −Q1)(T0 −Q2) · · · (T0 −Qr) = 0;
(H2) T0T1T0T1 = T1T0T1T0;
(H3) (Ti + 1)(Ti − q) = 0 for 1 ≤ i ≤ n− 1;
(H4) TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2;
(H5) TiTj = TjTi for 0 ≤ i < j − 1 ≤ n− 2.

The cyclotomic q-Schur algebra Sn,r(q,Q1, Q2, · · · , Qr) associated to Hn(q,Q)
is the endomorphism algebra Sn,r = EndHn(q,Q)(

⊕
µM

µ), where µ runs all over

the r-multipartitions of n and whereMµ is a certain Hn(q,Q)-module (see [19] and
[44] for more details).

Now let us connect Hn(q,Q) to Lie theory. Let Γe be the oriented quiver with
vertex set I = Z/eZ and with directed edges i −→ i + 1, for all i ∈ I. Note that
I = Z if e = ∞. Thus, Γe is the quiver of type A∞ if e = ∞, and if e ≥ 2 then it

is a cyclic quiver of type A
(1)
e−1:

A∞ : · · · // −2 // −1 // 0 // 1 // 2 // · · ·

A1
e−1 :

0 1

0 1

2

0 1

23

. . .

e = 2 e = 3 e = 4

Let (ai,j)i,j∈I be the symmetric Cartan matrix associated with Γe, so that

ai,j =





2 if i = j,

0 if i 6= j ± 1,

−1 if e 6= 2 and i = j ± 1,

−2 if e = 2 and i = j + 1.

Following Kac [35, Chapt. 1], let (h,Π, Π̌) be a realization of the Cartan matrix,
and Π = {αi | i ∈ I} ⊂ h∗ the associated set of simple roots, {Λi | i ∈ I} ⊂ h∗ the
fundamental dominant weights, and (·, ·) the bilinear form determined by

(αi,αj) = ai,j and (Λi,αj) = δij , for i, j ∈ I.

Denote by P =
⊕

i∈I ZΛi and P+ =
⊕

i∈I NΛi the weight lattice and the dominant

weight lattice of (h,Π, Π̌), Q+ =
⊕

i∈I Nαi the positive root lattice, and W the
affine Weyl group, which is generated by {σi}i∈I , the fundamental reflections of the
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space h∗. Note that σiΛ = Λ − (Λ, αi)αi for Λ ∈ P and σiαj = αj − ajiαi for

arbitrary j ∈ I. The Kac-Moody Lie algebra corresponding to this data is ŝle.
Given a multicharge s = (s1, s2, · · · , sr), one can associate it with a dominant

weight Λ =
∑

i∈I kiΛi, where

ki =

{
♯{1 ≤ j ≤ r | sj ≡ i (mod e)} if e <∞,

♯{1 ≤ j ≤ r | sj = i} if e = ∞,

and the algebra Hn(q,Q) will be denoted by HΛ
n if needed. By [15, Section 4.1],

there is a natural system {e(i) | i ∈ In} (some could be zero) of pairwise orthogonal
idempotents in HΛ

n . Take β ∈ Q+ with
∑

i∈I(Λi,β) = n and let

Iβ = {i = (i1, i2, · · · , in) ∈ In | αi1 + · · ·+αin = β}.

If Iβ 6= ∅, then by [44, Theorem 2.11], eβ =
∑

i∈Iβ e(i) is a primitive central

idempotent of HΛ
n . Write by HΛ

β the block algebra eβHΛ
n . Then

HΛ

n =
⊕

β∈Q+, Iβ 6=∅

HΛ

β

is the decomposition of HΛ
n into a direct sum of blocks.

In [16, (3.4)], Brundan, Kleshchev and Wang defined the defect of β ∈ Q+ to
be (Λ,β)− 1

2 (β,β). It coincides with Fayers [24] definition of weight for the block

algebras HΛ

β and will be denoted by w(HΛ

β ).
In addition, we emphasize that using the derived equivalence given by Chuang

and Rouquier [18], which lifts Weyl group action, two blocks HΛ
α and HΛ

β of cyclo-
tomic Hecke algebras are derived equivalent if Λ − α and Λ − β are in the same
W -orbit.

The following is the main result of this paper.

Main Theorem. Let K be an algebraically closed field with CharK 6= 2 and
q ∈ K×, q 6= 1. Let HΛ

β be a block of Hn(q,Q), that is a cyclotomic Hecke algebra

of type G(r, 1, n) with r > 2. Then the following are equivalent.

(1) Block HΛ

β has finite representation type.

(2) The weight of HΛ

β is less than 2, or HΛ

β is Morita equivalent toK[x]/xw(HΛ

β )+1.

Let us describe in some details our approach to the proof of the above theorem.
It is generally believed that the weight can measure how complicated a block is.
We have no doubt on it in the case of type A because some well-known evidences,
for example, a block has finite representation if and only if the weight is less than
2. However, this is no longer true for Hn(q,Q). A block with a small weight is rel-
atively simple, but the opposite is not correct in general. As a result, most results
of type A that are related with wights have not cyclotomic versions, including rep-
resentation type of blocks. In fact, the representation type of a block of Hn(q,Q)
can not be determined by its weight completely. Consequently we need to look for
a generalization of the weight of a block. Thanks to [7, Theorem 6.8] aforemen-
tioned, we first studied the structure of a finite representation type cellular Brauer
tree algebra, and found that the so-called multiplication poset has to be a totally
ordered set. This simple observation leaded us to picking out the blocks whose
multiplication posets are not totally ordered sets. The main method is to construct
incomparable abaci. During the study, we gradually realized that the structure of
a multiplication poset, to some extent, is controlled by the process of an arbitrary
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abacus in the block moving to its core through elementary operations, which were
introduced in [33] by Jacon and Lecouvey. Accordingly, we defined a new invariant
for each block, which is called block move vector (see Definition 3.4.5 for details). It
is a key concept in this paper. Roughly speaking, just as its name implies, a block
move vector is a vector that records the process of an abacus in the block moving
to its core. Note that the sum of components of a block move vector is just the
weight of the corresponding block. This is just the reason why we say that block
move vectors generalize weights. Fortunately, one can determine all of the blocks
of finite representation type with weight more than one by a criterion about block
move vectors.

As by-products, our results can be used to determine the representation type of
blocks of a cyclotomic q-Schur algebra. We can also study the derived equivalence
among blocks of Hn(q,Q). It is well-known that two blocks of a Hecke algebra
of type A are derived equivalent if and only if they have the same weight, and if
and only if they are in the same orbit under the adjoint action of the affine Weyl
group. This is no longer right in cyclotomic case. We will construct examples of
blocks with the same weight that are not derived equivalent. Moreover, examples
of derived equivalent blocks in different orbits will also be given.

The paper is organized as follows. We begin our study with the multiplication
poset of an indecomposable selfinjective cellular algebra A in Section 2. The main
result is that if A is of finite representation type, then the multiplication poset
must be a totally ordered set. We emphasize that the result can help us determine
the representation type of most blocks in a cyclotomic algebra and may be used to
consider blocks of other algebras. Note that the cell modules of a cyclotomic Hecke
algebra are indexed by multipartitions and each multipartition can be represented
by an abaci. Then in Section 3, after give some preliminaries on blocks and abaci,
we study properties of abaci in details. Firstly, we give a description of the action
of an affine Weyl group on blocks by the language of abaci. Secondly, we define the
so-called incomparable abaci and prove that given a block, the existence of a pair
of incomparable abaci implies the existence of a pair of incomparable multiparti-
tions with respect to dominance order, which leads to infinity of the representation
type by Section 2. Thirdly, we define the (block) move vector and conduct some
preliminary study. Finally, we classify blocks and provide a framework of the proof
of Main theorem by block move vectors. Based on the preparation given in Section
2 and Section 3, We begin the proof in Section 4, which handles the case that at
least one component of block move vector is at least 2. In Section 5, we deal with
the case of all components of the block move vector being equal to 1 and Section
6 is devoted to the case left. In Section 7, we apply our results obtained to study
derived equivalence and in Section 8, we determine the representation type of all
blocks of a cyclotomic q-Schur algebra.

2. Poset and representation type

Let A be an indecomposable selfinjective cellular K-algebra with cell datum
(Λ,M,C, ∗), where K is a field with the characteristic different from two. We prove
in this section that if A is of finite type, then the poset Λ must be a totally ordered
set. This result will play a very important role in the whole paper.
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We begin with the definitions and some well-known results of cellular algebras
and Brauer tree algebras. The main references are [1, 13, 28]. The main result of
this section is given in Subsection 2.3.

2.1. Cellular algebras. Cellular algebras were introduced by Graham and Lehrer
in [28] in 1996. Cellular theory provides a systematic framework for studying the
representation theory of many interesting and important algebras coming from
mathematics and physics, including Ariki-Koike algebras, the main research object
of this paper. In particular, an Ariki-Koike algebra satisfying assumptions of Main
theorem is symmetric. The reader can find more information about symmetric
cellular algebras in [41, 42, 43].

Definition 2.1.1 ([28, Definition 1.1]). Let R be a noetherian commutative integral
domain. An associative unital R-algebra A is called a cellular algebra with cell
datum (Γ,M,C, ∗) if the following conditions are satisfied:

(C1) The finite set Γ is a poset with order relation ≥. Associated with each
λ ∈ Γ, there is a finite set M(λ). The algebra A has an R-basis {Cλ

S,T | λ ∈
Γ, S, T ∈M(λ)}.

(C2) The map ∗ is an R-linear anti-automorphism of A such that (Cλ
S,T )

∗ = Cλ
T,S

for all λ ∈ Λ and S, T ∈M(λ).
(C3) Let λ ∈ Λ and S, T ∈M(λ). For any element a ∈ A, we have

aCλ
S,T ≡

∑

S
′
∈M(λ)

ra(S
′, S)Cλ

S
′
,T

mod A(> λ),

where ra(S
′

, S) ∈ R is independent of T and A(> λ) is the R-submodule of
A generated by {Cµ

U,V | U, V ∈M(µ), µ > λ}.

Before giving a rather lengthy list of definitions associated with cellular algebras,
let us give a remark about the poset Γ in Definition 2.1.1. Firstly, we define another
poset Λ, which is equal to Γ as a set, and a partial ordering is as follows. For
arbitrary two elements λ, µ ∈ Λ, we say λ ≥ µ if and only if there exist some Cλ

S,T

and a ∈ A such that certain Cµ
U,V appears in the linear expansion of aCλ

S,T with
nonzero coefficient. Clearly, Γ is a refinement of Λ. It is worthwhile to note that Λ
is more essential than Γ for our study and will be called the multiplication poset of
A. It is easy to check that (Λ,M,C, ∗) is a cell datum of A too, and we will always
instead poset Γ by Λ throughout this section unless otherwise specified.

We now turn to give a number of basic definitions and results connected with
cellular algebras. As a natural consequence of the axioms, the cell module is defined
as follows.

Definition 2.1.2 ([28, Definition 2.1]). Let A be a cellular algebra with cell datum
(Λ,M,C, ∗). For each λ ∈ Λ, the cell module Wλ is an R-module with basis {CS |
S ∈M(λ)} and the left A-action defined by

aCS =
∑

S
′
∈M(λ)

ra(S
′

, S)CS
′ (a ∈ A, S ∈M(λ)),

where ra(S
′

, S) is the element of R defined in Definition 2.1.1 (C3).
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Let A be a cellular algebra with cell datum (Λ,M,C, ∗). For arbitrary elements
S, T, U, V ∈M(λ), Definition 2.1.1 implies that

Cλ
S,TC

λ
U,V ≡ Φ(T, U)Cλ

S,V mod A(> λ),

where Φ(T, U) ∈ R depends only on T and U . It is easy to check that Φ(T, U) =
Φ(U, T ) for arbitrary T, U ∈ M(λ). By using these Φ(T, U), one can define a
bilinear form for cell module Wλ introduced in Definition 2.1.2:

Φλ : Wλ ×Wλ −→ R

(CS , CT ) 7−→ Φ(S, T )

Define

radλ := {x ∈ Wλ | Φλ(x, y) = 0 for all y ∈Wλ}.

If Φλ 6= 0, then radλ is the radical of the A-module Wλ.
When R is a field, Graham and Lehrer [28] proved the following result.

Lemma 2.1.3. [28, Theorem 3.4] For any λ ∈ Λ, denote the A-module Wλ/ radλ
by Lλ. Let Λ0 = {λ ∈ Λ | Φλ 6= 0}. Then {Lλ | λ ∈ Λ0} is a complete set of
(representative of equivalence classes of ) absolutely simple A-modules.

For λ ∈ Λ and µ ∈ Λ0, let dλµ be the multiplicity of Lµ in Wλ. Sometimes,
we write dλµ as [Wλ : Lµ]. Denote the matrix (dλµ)λ∈Λ, µ∈Λ0 by D, which will be
called the decomposition matrix of A.

Lemma 2.1.4. [28, Proposition 3.6] Let λ ∈ Λ and µ ∈ Λ0. Then dµµ = 1.
Moreover, if dλµ 6= 0, then λ ≥ µ.

An equivalent basis-free definition of a cellular algebra was given by Koenig and
Xi [36], which is useful in dealing with structural problems.

Definition 2.1.5. [36, Definition 3.2] Let A be an algebra over a noetherian com-
mutative integral domain R with an R-involution ∗. A two-sided ideal J in A is
called a cell ideal if and only if the following data are given and the following con-
ditions are satisfied:

(1) The ideal J is fixed by ∗: (J)∗ = J.

(2) There exists a free R-module ∆ ⊂ J of finite rank, such that there is an
isomorphism of A-bimodules α : J ≃ ∆ ⊗R ∆∗ (∆∗ ⊂ J is the ∗-image of
∆) making the following diagram commutative:

J
α

−−−−→ ∆⊗R ∆∗

∗

y
yv1⊗v2 7→v∗

2⊗v∗

1

J
α

−−−−→ ∆⊗R ∆∗

The algebra A with R-involution ∗ is called cellular if and only if there is an
R-module decomposition A = J ′

µ1
⊕ J ′

µ2
⊕ · · ·J ′

µm
(for some m) with (J ′

µj
)∗ = J ′

µj

for each j (j = 1, . . . ,m) and such that setting Jµj
:=

⊕j
l=1 J

′
µl

gives a chain of
two-sided ideals of A:

0 = Jµm+1 ⊂ Jµm
⊂ Jµm−1 ⊂ Jµm−2 ⊂ · · · ⊂ Jµ1 = A

each of them fixed by ∗, and each J ′
µj

= Jµj
/Jµj+1 is a cell ideal of A/Jµj+1 (with

respect to the involution induced by ∗ on the quotient).
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For λ ∈ Λ0, let Pλ be the projective cover of Lλ. By applying the functor −⊗APλ

to the cell chain of A in Definition 2.1.5 gives a sequence of A-submodules

0 = Pλ(µm+1) ⊂ Pλ(µm) ⊂ Pλ(µm−1) ⊂ Pλ(µm−2) ⊂ · · · ⊂ Pλ(µ1) = Pλ,

which is in fact a cell filtration of Pλ.

Lemma 2.1.6. [28, Theorem 3.7] For λ ∈ Λ0, denote the multiplicity of a cell
module Wµ in Pλ by [Pλ : Wµ]. Then [Pλ : Wµ] = [Wµ : Lλ]. This implies that a
simple module Lλ is a composition factor of a cell module Wµ if and only if Wµ is
a factor of Pλ.

We should note that given a cellular algebra with cell datum (Λ,M,C, ∗), the
set {µ1, µ2, · · · , µm} in Definition 2.1.5 is in fact a linear extension of Λ. However,
we can find some more subtle structure of Pλ if we work with the original poset Λ.
The following lemma is a simple corollary of Lemma 2.1.6.

Lemma 2.1.7. Let λ ∈ Λ0, µ, ν ∈ Λ and µ, ν incomparable, denoted by µ ‖ ν.

Then W⊕dνλ
ν ⊕W

⊕dµλ
µ is a subquotient of Pλ.

Proof. Clearly, A := A/(A(> ν) + A(> µ)) is a cellular algebra. By abusing the
notations, we still denote the cell modules corresponding to ν and µ by Wν and
Wµ, respectively. Since µ ‖ ν, J ′

ν ⊕ J ′
µ is an ideal of A, and thus Wν and Wµ are

both submodules of a quotient of Pλ. Now the lemma is clear by Lemma 2.1.6. �

2.2. Brauer tree algebras. The main references of this subsection are [1, 13]. A
Brauer tree is a finite tree together with two additional structures on each vertex i:

(1) a circular ordering of the edges adjacent to i;
(2) a positive integer m(i), called the multiplicity satisfying at most one m(i)

is larger than one.

The vertex with multiplicity more than one is called the exceptional vertex, which
is drawn customarily as a blackened circle. A finite dimensional algebra A is called
a Brauer tree algebra if the structure of the indecomposable projective modules can
be described in terms of a Brauer tree in the following way.

(1) There is a one to one correspondence between the edges α of the tree and
the indecomposable projective A-modules Pα and hence the corresponding
simple A-modules Lα.

(2) For an edge α connecting vertices i and j, let (α = α1, · · · , αt) and (α =
β1, · · · , βr) be the circular orderings of edges adjacent to i and j, respec-
tively. Then radPα = Uα + Vα, where Uα ∩ Vα = Lα, Uα is uniserial with
composition factors Lα2 , · · · , Lαt

, Lα1 , m(i) times from top to bottom, and
Vα is uniserial with composition factors Lβ2 , · · · , Lβr

, Lβ1 , m(j) times from
top to bottom.

Given a Brauer tree T , let Γ be the quiver whose vertices are in one to one
correspondence with the edges of T . For a vertex i in T , the circular ordering
(α1, · · · , αt) give rise to an oriented cycle Ci. Then the vertex vα in Γ corresponding
to the edge α in T connecting vertices i and j belongs exactly two oriented cycles
Ci and Cj . Denote the path in Ci without repeated arrows starting and ending at

αk by p
(i)
αt . Define relations ρ to be (p

(i)
α )m(i) − (p

(j)
α )m(j), uv, where u is the arrow

in Ci with e(u) = α and v the arrow in Cj with s(v) = α, or u is the arrow in Cj
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with e(u) = α and v the arrow in Ci with s(v) = α. Then the algebra K(Γ, ρ) is a
Brauer tree algebra given by T . It is worth to note that a Brauer tree determines
a unique Brauer tree algebra up to Morita equivalence (see [38, Corollary 4.3.3]
for details). Furthermore, the cellularity of a Brauer tree algebra was studied by
Koenig and Xi in [36].

Lemma 2.2.1. [36, Proposition 5.3] A Brauer tree algebra is cellular if and only
if the Brauer tree is a straight line.

Let us illustrate some examples for later use.

Example 2.2.2. (1) Let A be a Brauer tree algebra for the following Brauer tree
T1.

•
α

1
◦
2

Then the indecomposable projective module is uniserial with composition factor
Lα, m(1) + 1 times from top to bottom.

Let ΓI be the quiver

vαα1,1
66

and let ρ be (α1,1)
m(1)+1. Then K(ΓI, ρ) is a Brauer tree algebra given by T1.

(2) Let A be a Brauer tree algebra for the following Brauer tree T2 with n > 1.

◦
1

α1
◦
2

◦
3

α2
······ ◦

n
◦

n+1

αn

Then the structures of indecomposable projective A-modules are illustrated as
follows.

Pα1 =




Lα1

Lα2

Lα1


 ; Pα2 =




Lα2

Lα1 Lα3

Lα2


 ; · · · Pαn

=




Lαn

Lαn−1

Lαn


 .

(3) Let A be a Brauer tree algebra for the following Brauer tree T3 with n > 1.

◦
1

α1
◦
2

··· •
j

··· ◦
n

◦
n+1

αn
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The indecomposable projective A-modules are illustrated as follows.

Pα1 =




Lα1

Lα2

Lα1


 , j 6= 1, 2; Pα1=j

=




Lα1

Lα1 Lα2

· · ·
Lα1

Lα1




; · · · ;

Pαj−1 =




Lαj−1

Lαj

Lαj−2 Lαj−1

...
Lαj

Lαj−1




; Pαj
=




Lαj

Lαj−1

Lαj
Lαj+1

...
Lαj−1

Lαj




; · · · ;

Pαn
=




Lαn

Lαn−1

Lαn


 , j 6= n+ 1; Pαn

=




Lαn

Lαn−1 Lαn

· · ·
Lαn

Lαn



, j = n+ 1.

2.3. Posets of finite type self-injective cellular algebras. Let A be a Brauer
tree algebra whose Brauer tree is a straight line. Then A is a cellular algebra by
Lemma 2.2.1. Assume that (Λ,M,C, ∗) is a cell datum of A. Then by Lemma
2.1.3, there is a one to one correspondence between the set of edges αi and Λ0. For
simplicity, we still denote the image of αi in Λ0 by αi. Let us determine the form
of a cell module of A.

Lemma 2.3.1. Keep notations as above and let Wλ be a cell module. We have

(1) dλαi
≤ 1 for all i.

(2) Neither

(
Lαi−1 Lαi+1

Lαi

)
nor

(
Lα1 Lα2

Lα1

)
is a submodule

of a cell module W .

(3) Neither

(
Lαi

Lαi−1 Lαi+1

)
nor

(
Lαn

Lαi−1 Lαn

)
is a quotient

module of a cell module W .

Proof. (1) If dλαi
> 1 for some αi, then by Lemma 2.1.7, W

⊕dλαi

λ is a subquotient
of Pαi

. This is impossible for a Brauer tree algebra whose Brauer tree is a straight
line. We refer the reader to Example 2.2.2 for structures of Pαi

.
(2) If there exists a cell module W containing a submodule, which is of the form(
Lαi−1 Lαi+1

Lαi

)
(i > 1), then we conclude from Lemma 2.1.6 that Lαi+1

is a composition factor of Pαi−1 . However, according to the definition of a Brauer
tree algebra, the possible composition factors of Pαi−1 are Lαi−2 , Lαi−1 and Lαi

.
It is a contradiction.

Moreover, if j 6= 1, then clearly,

(
Lα1 Lα2

Lα1

)
is not a submodule of any

cell module W . If j = 1 and

(
Lα1 Lα2

Lα1

)
is a submodule of some cell

module W , then the multiplicity of Lα1 in Pα2 is at least 2. This is impossible.
(3) is proved similarly as (2). �
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Corollary 2.3.2. For a cellular Brauer tree algebra, each cell module Wµ is of the

form Lα1 , Lαn
,

(
Lαi−1

Lαi

)
or

(
Lαi+1

Lαi

)

Proof. An immediate corollary of Lemma 2.1.6 is that each cell module must be
a cell factor of an indecomposable projective module. Apply Lemma 2.3.1 to the
structures of indecomposable projective modules of a cellular Brauer tree algebra A.

We get that a cell module Wλ must be of the form Lαi
,

(
Lαi−1

Lαi

)
or

(
Lαi+1

Lαi

)
.

Hence we only need to prove each Lαi
with 1 < i < n is not a cell module. In fact,

Lαi
with 1 < i < n is a composition factor of Pαi−1 . If Lαi

a cell module, then by
Lemma 2.1.6, [Lαi

: Lαi−1 ] = [Pαi−1 : Lαi
] ≥ 1. It is a contradiction. �

Definition 2.3.3. We call the cell modules

(
Lαi−1

Lαi

)
are of type I and

(
Lαi+1

Lαi

)

are of type II.

Let us investigate the cell filtration of indecomposable projective modules Pαi
.

We begin with Pα1 .

Lemma 2.3.4. Let A be a cellular Brauer tree algebra with cell datum (Λ,M,C, ∗).
We have

(1) If vertex 1 is not exceptional, then a cell filtration of Pα1 is either of the form

Lα1 ⊂




Lα1

Lα2

Lα1


 ⊂ · · · ⊂ Pα1 , or of the form

(
Lα2

Lα1

)
⊂




Lα2

Lα1

Lα2

Lα1


 ⊂

· · · ⊂ Pα1 .
(2) If vertex 1 is exceptional, then cell filtration of Pα1 is either of the form

Lα1 ⊂

(
Lα1

Lα1

)
⊂ · · · ⊂ Pα1 , or of the form

(
Lα2

Lα1

)
⊂




Lα1

Lα2

Lα1


 ⊂

· · · ⊂ Pα1 .

Proof. It follows from Corollary 2.3.2 that each Lα2 is either a submodule of a type
I cell module or a quotient module of a type II cell module defined in Definition
2.3.3.

(1) If vertex 1 is not exceptional, then Pα1 is uniserial and radPα1 has composi-
tion factors (Lα2 , Lα1), m(2) times from top to bottom. A consequence of Lemma
2.3.2 is that each Lα2 has to combine with an Lα1 to form a cell module. This
forces the top or the socle of Pα1 to be a cell module. If the socle of Pα1 is a cell
module, then all the other m(2) cell modules have to be of type I, and if the top is
a cell module, then all the others have to be of type II.

(2) When vertex 1 is exceptional, only one Lα2 appears in Pα1 , and this Lα2

combining with the top or the socle of Pα1 forms a cell module. Now by Corollary
2.3.2, each Lα1 left is a cell module. �

A interesting result about the cellular structure of a cellular Brauer tree algebra
is that all the cell factors of Pαi

will be determined once the type of cell factors of
Pα1 is fixed. We describe it as a lemma as follows for later use.

Lemma 2.3.5. Let A be a cellular Brauer tree algebra with cell datum (Λ,M,C, ∗).
Then all cell modules with two composition factors are of the same type.
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Proof. Assume that the cell factors with two composition factors of Pα1 are of type
I. By Lemma 2.1.6, all of these cell modules are cell factors of Pα2 . Then the

structure of Pα2 forces topPα2 to be a quotient module of a cell module

(
Lα2

Lα3

)
,

which is of type I. As a result, all cell factors with two composition factors of Pα2

are of type I. Continuing this analysis for Pαi
one by one, we can deduce all cell

modules with two composition factor are of type I.
A similar analysis is efficient too when the cell factors with two composition

factors of Pα1 are of type II, and then we have completed the proof. �

Based on the above preparation, we can study the poset of a cellular Brauer tree
algebra.

Lemma 2.3.6. Let A be a cellular Brauer tree algebra with cell datum (Λ,M,C, ∗).
Then Λ is a totally ordered set.

Proof. Denote the set of indexes of cell factors of Pαi
by Λαi

. We claim that Λαi
is

a totally ordered set. In fact, let Wαi
be the cell module with topWαi

= topPαi
.

Then according to Lemma 2.3.2, 2.3.4 and 2.3.5, topWαi
is a composition factor

of each cell factor of Pαi
. By Lemma 2.1.4 this implies that αi is minimal in Λαi

.
Moreover, assume that there exist µ, ν ∈ Λαi

with µ || ν. Then Wµ ⊕ Wν is a
subquotient of Pαi

due to Lemma 2.1.7. It is in conflict with the structures of cell
factors of Pαi

determined by Lemma 2.3.4 and 2.3.5.
On the other hand, all cell modules with two composition factors are of the same

type by Lemma 2.3.5. If a type I cell module appears, Lemma 2.1.4 implies that
αi ≥ αi+1 for 1 ≤ i < n. Combine it with the above claim makes Λ to be a totally
ordered set, the minimal element of which is αn. For the case of type II, we can
deduce from Lemma 2.1.4 that αi+1 ≥ αi, and this also forces Λ to be a totally
ordered set, in which the α1 is the minimal element. �

Now we are ready to give the main result of this section.

Proposition 2.3.7. Let A be an indecomposable self-injective cellular K-algebra
with cell datum (Λ,M,C, ∗), where K is an algebraically closed field with the char-
acteristic different from two. If A is of finite type, then the poset Λ must be a totally
ordered set.

Proof. By [7, Theorem 6.8] and [37, Theorem 8.1], if A is an indecomposable self-
injective cellular K-algebra of finite type, then A is Morita equivalent to a cellular
Brauer tree algebra. It is well known that if two algebras are Morita equivalent,
then the lattices of ideals are isomorphic. The proposition then follows from Lemma
2.3.6. �

According to the results obtained above, for an indecomposable self-injective
cellular K-algebra of finite type, we can determine its the cellular structures com-
pletely. Let us illustrate an example.

Example 2.3.8. Let A be a Brauer tree algebra for the following Brauer tree.

◦
1

α1
◦
2

•
3

m(3)=3

α2
◦
4

α3
◦
5

α4
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Fix a cellular structure of A. Then the cell modules in sequence have to be one
of the following:

Lα1 <

(
Lα2

Lα1

)
<

(
Lα3

Lα2

)
<

(
Lα3

Lα2

)
<

(
Lα3

Lα2

)
<

(
Lα4

Lα3

)
< Lα4

Lα4 <

(
Lα3

Lα4

)
<

(
Lα2

Lα3

)
<

(
Lα2

Lα3

)
<

(
Lα2

Lα3

)
<

(
Lα1

Lα2

)
< Lα1

The following result is a simple corollary of the cellular structure of an indecom-
posable self-injective cellular algebra of finite type. We write it here for later use.
The proof is left to the reader as an exercise.

Corollary 2.3.9. Let A be the same as in Proposition 2.3.7 and λ, µ ∈ Λ. Assume
that

(1) neither λ nor µ is maximal;
(2) λ, µ /∈ Λ0.

Then dimWλ = dimWµ.

3. Abaci orbit, incomparable abaci and move vector

It is well-known that a block of a cyclotomic Hecke algebra of type G(r, 1, n)
satisfying the assumptions of Main Theorem is symmetric. In the light of the
result obtained in Section 2, in order to determine the representation type of an
indecomposable symmetric cellular algebra, one can analyze the poset first. We
will use this idea to determine the representation type of the blocks of a cyclotomic
Hecke algebra. The first important thing is to find a property which can help to
study the relevant posets. We emphasize that it is also needed to transform a block
into an easy-to-study form by derived equivalence. The aim of this section is to
make all necessary preparations, which includes the following. We begin with some
preliminaries about blocks and abaci. Then we translate the action of an affineWeyl
group on blocks into the language of abaci for later use. Next we define and study
the so-called incomparable abaci, which is one of key notions in this paper. Finally,
we introduce move vector and give a framework of the proof of Main Theorem.

3.1. Preliminaries on blocks and abaci. We begin with some combinatorics.
Let n be a positive integer. A partition λ of n is a non-increasing sequence of non-
negative integers λ = (λ1, · · · , λs) such that

∑s
i=1 λi = n and we write |λ| = n. The

Young diagram of a partition λ is the set of nodes [λ] = {(i, j) | 1 ≤ i, 1 ≤ j ≤ λi}.
The conjugate of λ is defined to be a partition λ′ = (λ′1, λ

′
2, · · · ), where λ

′
j is equal

to the number of nodes in column j of [λ] for j = 1, 2, · · · . A rim e-hook (or simply
an e-hook) of [λ] is a connected subset of the rim of [λ] with exactly e nodes, which
can be removed from [λ] to obtain another Young diagram [µ]. Given a partition λ,
unwrapping e-rim hook of [λ] one by one until none can be unwrapped, the partition
obtained is called the e-core of [λ] and the number of e-rim hook unwrapped is called
the e-weight of λ.

An r-partition of n is an r-tuple λ = (λ(1), · · · ,λ(r)) of partitions such that

|λ| =
∑r

i=1 |λ
(i)| = n. The partitions λ(1), · · · ,λ(r) are the components of λ. The

conjugate of an r-partition λ is defined to be λ′ = (λ(r)′ , · · · ,λ(1)′). For σ ∈ S, λσ
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is defined to be (λ(σ(1)), · · · ,λ(σ(r))). Denote the set of r-partitions of n by Pr,n.
Then for λ,µ ∈ Pr,n, we write λ☎ µ (or µ✂ λ) if

s−1∑

t=1

|λ(t)|+

j∑

i=1

λ
(s)
i ≥

s−1∑

t=1

|µ(t)|+

j∑

i=1

µ
(s)
i

for all 1 ≤ s ≤ r and all j ≥ 1. Write λ ✄ µ (or µ✁ λ) if λ ☎ µ and λ 6= µ. The
Young diagram of an r-partition λ is the set of nodes

[λ] = {(i, j, k) | 1 ≤ i, 1 ≤ j ≤ λ
(k)
i , 1 ≤ k ≤ r}.

Define the residue of node (i, j, k) ∈ [λ] to be qj−i+sk and define cf (λ) to be the
number of nodes in [λ] of residue f . By using the residues, Fayers defined the
weight for a multipartition, which coincides with defect given in Section 1.

Definition 3.1.1. [24, (2.1)] Let λ be an r-partition of n. The weight of λ is
defined to be the integer

w(λ) = (

r∑

i=1

cQi
(λ))−

1

2

∑

f∈K∗

(cf (λ)− cqf (λ))
2.

A λ-tableau is a bijective map t : [λ] → {1, 2, · · · , n}. A λ-tableau t is called
standard if the entries increase along each row and down each column in each
component. The set of standard λ-tableaux is denoted by Std(λ). The residue
sequence of t is defined to be the sequence (res t−1(1), · · · , (res t−1(n)). An r-
partition λ is said to be (Q, e)-restricted if there exists t ∈ Std(λ) such that the
residue sequence of any standard tableau of shape µ ✁ λ is not the same as the
residue sequence of t.

As far as we know, algebra Hn(q,Q) has three cellular bases. The first one was
given by Graham and Lehrer in [28] using Kazhdan-Lusztig basis of H(Sn), the
Hecke algebra of Sn. The second one is standard basis, which was constructed in
[19] by Dipper, James and Mathas. It is similar to the basis of H(Sn) introduced by
Murphy [47]. Then one has cell (Specht) modules W (λ), where λ are r-partitions.
Moreover, Ariki [3] proved that if λ is a Kleshchev r-partition, then L(λ), the top
of W (λ) is simple, and {L(λ) | λ Kleshchev} provide a complete set of simple
Hn(q,Q)-modules up to isomorphism.

In [32], Jacon proved the generalized DJM conjecture about Kleshchev r-partitions.
The reader can find more details about this conjecture in [29]. The following lemma
if a special case of [34, Theorem 5.1.1].

Lemma 3.1.2. An r-partition λ is Kleshchev if and only if λ is (Q, e)-restricted.

Recall that given a finite dimensional algebra A, two A-modules belong to the
same block if all of their composition factors belong to the same block. For a
cellualr algebra, according to [28, 3.9.8], all composition factors of a cell module
belong to the same block. Therefore, we can say in this sense block HΛ

β of Hn(q,Q)

contains cell module W (λ) and we abuse notation to say that λ lies in block HΛ

β .

More exactly, we often write pair (λ, s) in HΛ

β because the multicharge s cannot be
omitted in the circumstances of this paper. It is helpful to point out here that β is
uniquely determined by λ with β =

∑
i∈I cqi(λ)αi.

Given two pairs (λ, s) and (µ, s), we have the following lemma.
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Lemma 3.1.3. [28, Proposition 5.9 (ii)][44, Theorem 2.11] Pairs (λ, s) and (µ, s)
belong to the same block if and only of cf (λ) = cf (µ) for all f ∈ K.

The third cellular basis of Hn(q,Q) that we want to introduce was given by Hu
and Mathas in [30], which is compatible with the block decompose of Hn(q,Q).

Lemma 3.1.4. [30, Lemma 5.4 and Corollary 5.5, Theorem 5.8, Corollary 5.12]
Let Hn(q,Q) be a cyclotomic Hecke algebra of type G(r, 1, n). Then

(1) The algebra Hn(q,Q) is a graded cellular algebra with poset (Pr,n,☎) and
graded cellular basis {ψλ

s,t | λ ∈ Pr,n, s, t ∈ Std(λ)} (HM basis).

(2) Let HΛ

β be a block of Hn(q,Q). Then there exists P
Hβ

r,n ⊆ Pr,n such that

{ψλ
s,t | λ ∈ P

Hβ
r,n , s, t ∈ Std(λ)} is a graded cellular basis of HΛ

β .

(3) The corresponding ungraded cell modules coincide with the cell modules de-
termined by standard basis, respectively.

We also need the following easy results about Hn(q,Q).

Lemma 3.1.5. [50, Remarks 2.4 (iii)] For any 0 6= c ∈ K, we have an isomorphism
Hn(q,Q1, · · · , Qr) ∼= Hn(q, cQ1, · · · , cQr). For any permutation σ of r letters,
Hn(q,Q1, · · · , Qr) = Hn(q,Qσ(1), · · · , Qσ(r)).

Based on Lemma 3.1.5 and 3.1.3, pairs (λσ, sσ) and (λ, s) are in the same block
for σ ∈ Sr.

We now begin to recall some result about r-abaci. The main reference is [33].
Abaci first appeared in the work of Gordon James [34]. Given a partition λ and
s ∈ Z, one can associate it to a set of integers Ls(λ) = {λj − j + s | j ∈ N+}. Note
that we assume that λ has an infinite number of zero parts. As is well-known, the
set Ls(λ) can be expressed by an abacus. Let us illustrate an example.

Example 3.1.6. Let λ = (7, 5, 4, 1, 1) and s = 0. For each i ∈ Ls(λ), we set a
bead at i-th position on the horizontal abacus. Then Ls(λ) is expressed as below. A
position without a bead will be called an empty position. We usually omit the labels.

0 1 2 3 · · ·−1−2· · ·

Moreover, an abacus Ls(λ) can also be represented by an e-tuple of abacus, in
which the abaci are labeled by L0, L1, · · · , Le−1 from bottom to top. For each
k ∈ Ls(λ), if k = ye+ x with x, y ∈ Z and 0 ≤ x < e, then place a bead in position
(x, y), which means the y-th position of Lx. We will denote this r-tuple by Le

s(λ).
Let e = 3 and λ = (7, 5, 4, 1, 1). Then L3

0(λ) is

Let s = (s1, s2, · · · , sr) ∈ Zr be a multicharge and λ = (λ(1), · · · ,λ(r)) an r-
partition. Then the pair (λ, s) can be associated with an r-abacus Ls(λ) by setting

abaci Lsi(λ
(i)), i = 1, · · · , r, from bottom to top so that all the beads in position

0 of each abacus appear in the same vertical line, which will be called (e, s)-abacus
of pair (λ, s). Note that each r-abacus Ls(λ) can be mapped to a abacus by Uglov
map, whose definition is as follows.
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Definition 3.1.7. [49, Section 4.1], [33, Section 2.4] Let λ be an r-partition. Then
the image of or pair (λ, s) under Uglov map τe,r is (λ, s), which is defined as
follows. For each bead at position (x, y) in Ls(λ), let y = k.e + c with k ∈ Z
and c ∈ {0, ..., e − 1}. Then we set a bead in our new 1-abacus Ls(λ) in position
(r − x)e + ker + c.

It is not difficult to check the Uglov map is a bijection (see [49, Section 4.1]) and
s =

∑
i si.

In an r-abacus Ls(λ), the number of beads in column k is denoted by ck(Ls(λ)),
or ck if there is no danger of confusion. Denote by  i

j(λ, s) the j-th bead from

right to left of Lsi(λ
(i)). If there is no dangerous of confusion, we write it simply

as  i
j . The following lemma is easy to check and we omit the proof.

Lemma 3.1.8. For the (e, s)-abacus Ls(λ) of a pair (λ, s), we have

(1) The number of empty positions between  i
x and  i

x+1 is equal to λ(i)
x −

λ
(i)
x+1.

(2) The number of empty positions that are to the left of  i
j is equal to λ

(i)
j .

(3) Assume that the number of beads in Lsi(λ
(i)) on the right of the dashed

vertical line is ni1 and that the number of empty positions on the left of the
dashed vertical line is ni2. Then ni1 − ni2 = si.

By using the above lemma, we can study the relationship between the numbers
of certain positions in two r-abaci. Denote by nhi (Ls(λ)) the number of beads on
the right side of the h-th position in runner i. If there is no dangerous of confusion,
we write it simply as nkx.

Lemma 3.1.9. Let Ls(λ) and Lv(µ) be two r-abaci and 1 ≤ i, j ≤ r. Let h be

an integer such that all positions (i, l) in Lsi(λ
(i)) and positions (j, l) in Lvi(µ

(j)),
where l ≤ h, are occupied by beads. Then nhj (Lv(µ))− nhi (Ls(λ)) = vj − si.

Proof. Without loss of generality, we can assume h < 0. By dividing the nhj (Lv(µ))
beads into two parts with the dashed vertical line, one can obtained the following
equality: nhj (Lv(µ)) = −h− 1−nj2 + nj1. Note that by Lemma 3.1.8 (3), −nj2 +

nj1 = vj and hence nhj (Lv(µ)) = −h − 1 + vj . Similarly, we have nhi (Ls(λ)) =
−h− 1 + si. Combining the two equalities above, we complete the proof. �

Before we introduce more results on r-abaci, we need some additional notations
defined by Jacon and Lecouvey in [33]. Given two abaci L and L′, we write L ⊆ L′

if for each bead in position i of L, there is a bead in position i in L′. We also need
to recall two subsets of Zr .

A
r

e := {(s1, · · · , sr) ∈ Zr | ∀ i, j ∈ {1, · · · , r}, i < j, 0 ≤ sj − si ≤ e},

Ar
e := {(s1, · · · , sr) ∈ Zr | ∀ i, j ∈ {1, · · · , r}, i < j, 0 ≤ sj − si < e}.

Clearly, Ar
e ⊂ A

r

e.

Definition 3.1.10. [33, Definition 2.8, 2.10] An r-abacus is called (e, s)-complete
if

Ls1(λ
(1)) ⊂ Ls2(λ

(2)) ⊂ · · · ⊂ Lsr (λ
(r)) ⊂ Ls1+e(λ

(1)).

A pair (λ, s) is said to be a reduce (e, s)-core if its (e, s)-abacus is (e, s)-complete.
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By an easy observation, Jacon and Lecouvey revealed a relation between reduced
(e, s)-cores and A

r

e.

Lemma 3.1.11. [33, Proposition 2.11] Given a pair (λ, s), if λ is a reduced (e, s)-

core, then s ∈ A
r

e.

For convenience we agree the nonexistent positions (r + j, h) to be (j, h − e)
for 1 ≤ j < r when e 6= ∞. Let us collect some simple properties about the
(e, s)-abacus of a pair (λ, s).

Lemma 3.1.12. Given a pair (λ, s) and its (e, s)-abacus, we have

(1) Let 1 ≤ i ≤ r and e <∞. If position (i, l) is empty, then there exists some
k ∈ N, such that the bead at position (i, l − (k + 1)e) is black and position
(i, l − ke) is empty. If position (i, l) has a bead, then there exists some k
such that position (i, l+ke) has a bead and position (i, l+(k+1)e) is empty.

(2) Let s ∈ A
r

e. If in Ls(λ), positions (i, lt) have beads and positions (i+ j, lt)
are empty, where (t = 1, · · · ,m), 1 ≤ i ≤ r and 1 ≤ j < r, then there exist
h1, · · · , hm such that positions (i, hx) are empty and positions (i + j, hx)
have beads for x = 1, · · · ,m.

(3) Let e 6= ∞ and Ls(λ) be (e, s)-complete. If there exists a bead in column l
of Ls(λ), then all positions of column l − ke have bead for each k ∈ N+.

(4) Assume that si + k ≤ sj, for 1 ≤ i, j ≤ r and k ∈ N+. Then there exist
h1, · · · , hk ∈ Z such that in (λ, s), positions (i, ht) are empty and positions
(j, ht) have beads, where 1 ≤ t ≤ k. In particular, if Ls(λ) is complete, then
i < j and there exist h1, · · · , hk ∈ Z such that in Ls(λ), positions (x, ht)
are empty and positions (y, ht) have beads, where 1 ≤ x ≤ i, j ≤ y ≤ r and
1 ≤ t ≤ k.

Proof. (1), (2) and (3) are easy. We only prove (4). Let l be an integer such that in
Ls(λ), all positions (x, y) have beads, where 1 ≤ x ≤ r and y ≤ l. Since si+k ≤ sj ,
by Lemma 3.1.8, nlj − nli = sj − si ≥ k. We have proved the first half of the lemma.

Moreover, if Ls(λ) is complete, then in Ls(λ) position (i, h) being empty forces
positions (x, h) to be empty where 1 ≤ x ≤ i, h, and position (j, h) being oc-
cupied by a bead implies that all positions (y, h) have beads, where j ≤ y ≤ r.
Consequently, the second half of the lemma holds. �

3.2. Orbits of abaci. In this subsection, we give an explanation by abaci for
the action of an affine Weyl group on blocks. Let us first fix some notations.
Given a pair (λ, s), it clearly belongs a unique block. Denote by Λλ,s and βλ,s

the corresponding elements in dominant weight lattice and positive root lattice,
respectively. In addition, if e = ∞, then both j (mod e) and j + ke, k ∈ Z means
j, and 0 ≤ j ≤ e − 1 means j ∈ Z. For j ∈ I and pair (λ, s), define an action
of σj on (λ, s) by σj(λ, s) = (σj(λ), σj(s)), where the abacus of (σj(λ), σj(s)) is
obtained by interchanging columns j − 1 + ke and j + ke in Ls(λ) for all k ∈ Z.
A simple result about the action is that the charge is invariant. Let 0 ≤ i < e.
The diagram obtained by putting all j-th columns with j ≡ i (mod e) together
in the original order and with the original labels is called the i-th subabacus of
Ls(λ). For arbitrary x ∈ Z, we sometimes say x-th subabacus, which means the
i-the one, x ≡ i (mod e) and 0 ≤ i < e. Clearly, for a given abacus Ls(λ), both
the number of the beads in j − 1-th and j-th subabaci are infinite. However, if we
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ignore positions j − 1 + ke and j + ke, k ∈ Z, as long as both them are occupying
by beads, then in a natural way, we can say the difference between the number
of beads in j − 1-th subabacus and that in j-th one. For convenience, denote the
difference by m

j−1
j (Ls(λ)) =

∑
k∈Z

(cj−1+ke − cj+ke).

Lemma 3.2.1. For j ∈ I, σj(s) = s.

Proof. It is a direct corollary of the definition of the action of σj on a pair and
Lemma 3.1.8 (3). �

To achieve the target of this subsection, we first do some work on 1-abaci. Given
an abacus Ls(λ), let x ≥ 1 and  x at the h-th position. If the h+ 1-th position is
empty, then slide  x to the h+1-th position and denote by (µ, u) the new abacus.
By Lemma 3.1.8 (2), µx = λx + 1, and λi = µi for each i 6= x. Moreover, we have
from Lemma 3.1.8 (3) that u = s. Using this method, each abacus Ls(λ) can be
obtained from Ls(∅) by finite steps. Clearly, this process is invertible.

Lemma 3.2.2. If  i is at j + ke-th position in Ls(λ), where 0 ≤ j ≤ e − 1, then
the residue of node (i, λi) in [λ] is j.

Proof. By the definition of abacusLs(λ), we have s + λi − i = j + ke, that is, the
residue of node (i, λi) is j. �

Lemma 3.2.3. Assume that in abacus Ls(λ), position j+ke is empty and there is a
bead at position j−1+ke, where 0 ≤ j ≤ e−1. Denote by Ls(µ) the abacus obtained
by sliding the bead at position j− 1+ ke to position j+ ke. Then βµ,s = βλ,s+αj.

Proof. Suppose that the bead at position j − 1 + ke is  i. Then µi = λi + 1 and
µx = λx for all x 6= i. We can deduce from Lemma 3.2.2 that the residue of node
(i, µi) in [µ] is j. That is, βµ,s = βλ,s +αj . �

Lemma 3.2.4. Given an abacus Ls(λ), then

βσj(λ),s = βλ,s +m
j−1
j αj

for j ∈ I.

Proof. Firstly, let us find all pairs of positions that need to interchange under σj .
Assume X = {bi | i = 1, · · · , l} are all integers such that position j − 1 + bie is
empty and position j+bie has a bead. Note that X may be empty. Therefore there
is a set Y = {ah ∈ Z | h = 1, · · · , l + m

j−1
j } such that position j − 1 + ahe has a

bead and position j + ke is empty. By Lemma 3.2.3,

βσj(λ,s) = βλ,s + (mj−1
j + l)αj − lαj = βλ,s +m

j−1
j αj .

�

Lemma 3.2.5. For j ∈ I and a pair λ, s, we have σj(Λλ,s−βλ,s) = Λλ,s−βσj(λ),s.

Proof. Without loss of generality, we assume 0 ≤ s ≤ e− 1. Since arbitrary abacus
Ls(λ) can be obtained by a process aforementioned in this subsection, the lemma
can be proved by induction.
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We start from λ = ∅. Obviously, β
∅,s = 0. If j 6= s, we can deduce from the

shape of Ls(λ) that σj(∅, s) = (∅, s), that is, βσj(∅),s = β
∅,s = 0.

σj(Λ∅,s − β
∅,s) = σjΛs

= Λs − δjsαj

= Λs

= Λλ,s − βσj(∅),s.

If j = s, according to the shape of Ls(∅) and the definition of the action of σj
on pairs, Ls(σs(∅)) is obtained from Ls(λ) by sliding the bead at position s − 1
to position s, and consequently, σs(∅) = (1). This implies that Λ(1),s = Λs,
β(1),s = αs and thus

σs(Λ∅,s − β
∅,s) = σsΛs = Λs −αs = Λσs(∅),s − βσs(∅),s

Assume the lemma holds for pair (λ, s) and abacus Ls(µ) is obtained from Ls(λ)
by sliding the bead at position l − 1 + he to position l + he, where 0 ≤ l ≤ e − 1.
We now prove the lemma holds for pair (µ, s). By Lemma 3.2.3,

βµ,s = βλ,s +αl.(3.2.1)

Since for arbitrary pair (λ, s), the dominant weight Λλ,s is uniquely determined
by s and independent of λ, we denote it by Λ for simplicity during the rest of this
proof. Clearly Λ = Λs.

It is easy to check that ml−1
l (Ls(λ)) = ml−1

l (Ls(µ)) + 2.
For j = l, by Lemma 3.2.4, we have

βσj(λ),s = βλ,s +m
j−1
j (Ls(λ))αj(3.2.2)

and

βσj(µ),s = βµ,s + (mj−1
j (Ls(λ))− 2)αj(3.2.3)

Substituting (3.2.1) into (3.2.3), we obtain

βσj(µ),s = βλ,s + (mj−1
j (Ls(λ))− 1)αj .(3.2.4)

Then the lemma can be derived from the above preparation as follows.

σj(Λ− βµ,s)

= Λ− βµ,s − (αj ,Λ− βµ,s)αj (Defnition of σj)

= Λ− (βλ,s +αl)− (αj ,Λ− (βλ,s +αl))αj (Substituting (3.2.1))

= Λ− βλ,s −αl − (αj ,Λ− βλ,s)αj + (αj ,αl)αj

= (Λ− βλ,s − (αj ,Λ− βλ,s)αj) +αl (Definition of bilinear form( , ))

= σj(Λ− βλ,s) +αl (Defnition of σj)

= Λ− βσj(λ),s +αl (Induction hypothesis)

= Λ− (βλ,s + (mj−1
j (Ls(λ)) − 1)αj) (Substituting (3.2.2))

= Λ− βσj(µ),s. (Substituting (3.2.4))

For j 6= l, we consider two cases according to whether or not e = 2.

Case 1. e = 2. In this case, j = l − 1. It follows from Lemma 3.2.4 that

βσj(λ),s = βλ,s −ml−1
l (Ls(λ))αj(3.2.5)
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and

βσj(µ),s = βµ,s + (2−ml−1
l (Ls(λ)))αj(3.2.6)

Substituting (3.2.1) into (3.2.6), we get

βσj(µ),s = βλ,s +αl + (2 −ml−1
l (Ls(λ)))αj .(3.2.7)

With the above preparation, we can start our computation.

σj(Λ− βµ,s)

= Λ− βµ,s − (αj ,Λ− βµ,s)αj (Defnition of σj)

= Λ− (βλ,s +αl)− (αj ,Λ− (βλ,s +αl))αj (Substituting (3.2.1))

= Λ− βλ,s −αl − (αj ,Λ− βλ,s)αj + (αj ,αl)αj

= (Λ− βλ,s − (αj ,Λ− βλ,s)αj)−αl − 2αj (Definition of bilinear form( , ))

= σj(Λ− βλ,s)−αl + 2αj (Defnition of σj)

= Λ− βσj(λ),s −αl − 2αj (Induction hypothesis)

= Λ− βλ,s +ml−1
l (Ls(λ))αj −αl − 2αj (Substituting (3.2.5))

= Λ− (βλ,s + (2−ml−1
l (Ls(λ)))αj +αl)

= Λ− βσj(µ),s (Substituting (3.2.7))

Case 2. e 6= 2. There are three subcases need to handle.

Subcase 1. j = l + 1. Clearly, ml
l+1(Ls(λ)) = ml

l+1(Ls(µ)) − 1 We have from
Lemma 3.2.4 that

βσj(λ),s = βλ,s +ml
l+1(Ls(λ))αj(3.2.8)

and

βσj(µ),s = βµ,s + (ml
l+1(Ls(λ)) + 1)αj(3.2.9)

Substituting (3.2.1) into (3.2.9), we obtain

βσj(µ),s = βλ,s +αl + (ml
l+1(Ls(λ)) + 1)αj .(3.2.10)

Now we can check the lemma.

σj(Λ− βµ,s)

= Λ− βµ,s − (αj ,Λ− βµ,s)αj

= Λ− (βλ,s +αl)− (αj ,Λ− (βλ,s +αl))αj (Substituting (3.2.1))

= Λ− βλ,s −αl − (αj ,Λ− βλ,s)αj + (αj , αl)αj

= (Λ− βλ,s − (αj ,Λ− βλ,s)αj)− αl −αj (Definition of bilinear form( , ))

= σj(Λ− βλ,s)−αl −αj

= Λ− βσj(λ),s −αl −αj (Induction hypothesis)

= Λ− βλ,s −ml
l+1(Ls(λ))αj −αl −αj (Substituting (3.2.8))

= Λ− βσj(µ),s (Substituting (3.2.10))

Subcase 2. j = l − 1. It is proved similarly as Subcase 1 by consider l − 2-th
subabacus and l− 1-th one.
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Subcase 3. j 6= l, l ± 1. Under this condition, it is clear that m
j−1
j (Ls(λ)) =

m
j−1
j (Ls(µ)). By Lemma 3.2.4, we have

βσj(λ),s = βλ,s +m
j−1
j (Ls(λ))αj(3.2.11)

and

βσj(µ),s = βλ,s +αl +m
j−1
j (Ls(λ))αj(3.2.12)

. By using (3.2.11) and (3.2.12),

σj(Λ− βµ,s) = Λ− (βλ,s +αl)− (αj ,Λ− (βλ,s +αl))αj

= (Λ− βλ,s − (αj ,Λ− βλ,s)αj)−αl + (αj ,αl)αj

= σj(Λ− βλ,s)−αl

= Λ− βλ,s −m
j−1
j (Ls(λ))αj −αl

= Λ− (βλ,s +αl +m
j−1
j (Ls(λ))αj)

= Λ− βσj(µ),s

To sum up, the lemma holds for pair (µ, s).
According to induction, we have completed the proof. �

Now we are in a position to give the main result of this subsection.

Proposition 3.2.6. For 0 ≤ j ≤ e− 1 and pair (λ, s), we have

σj(Λλ,s − βλ,s) = Λλ,s − βσ(λ),s.

Proof. It follows from Lemma 3.2.5 that

σj(Λλ,s − βλ,s) = σj

r∑

i=1

(Λλ(i),si
− βλ(i),si

)

=

r∑

i=1

σj(Λλ(i),si
− βλ(i),si

)

=
r∑

i=1

(Λλ(i),si
− βσj(λ(i)),si

)

= Λλ,s − βσj(λ),s

The proof is completed. �

3.3. Incomparable abaci. In this subsection we introduce the so-called incom-
parable abaci, which is an very important concept in our study. The main result is
that from incomparable abaci we can construct incomparable multipartitions with
respect to the dominance order.

Definition 3.3.1. Given two r-abaci Ls(λ) and Ls(µ) with |λ| = |µ|. Assume
that there exist ι1, ι2 ∈ Z and κ1 6= κ2, 1 ≤ κ1, κ2 ≤ r such that

(1) In Ls(λ), there is a bead at position (κ1, ι1) and position (κ2, ι2) is empty,
and in Ls(µ), position (κ1, ι1) is empty and there is a bead at position
(κ2, ι2).
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(2) The beads on the right side of ι1-th position in Ls(λ
(κ1)) are the same

as those in Ls(µ
(κ1)), and the beads on the left side of ι2-th position in

Ls(λ
(κ2)) are the same as those in Ls(µ

(κ2)).

Then we say Ls(λ) and Ls(µ) are incomparable, which will be denoted by Ls(λ) ‖
Ls(µ), or Ls(µ) ‖ Ls(λ).

Example 3.3.2. Let e = 5, λ = ((2, 1, 1), (2, 2, 1, 1), (2, 2, 1), (4, 3, 1, 1)), and s =
(1, 0, 2, 0). Then Ls(λ) is

Let µ = ((2, 2, 2), (5, 1, 1, 1), (3), (4, 2, 1)) and s = (1, 0, 2, 0). Then Ls(µ) is

Take κ1 = 4, κ2 = 2, ι1 = 1, ι2 = −1. It is easy to check that the conditions (1)
and (2) of Definition 3.3.1 are satisfied. Then Ls(λ) and Ls(µ) are incomparable
abaci.

The original intention of introducing the concept of incomparable abaci is to find
incomparable multi-partitions that are in the same block. An easy computation
gives µ ☎ λ in Example 3.3.2. This implies that we can not conclude from two
abaci Ls(λ) and Ls(µ) being incomparable that the corresponding multi-partitions
are incomparable with respect to the dominance order ☎.

A simple observation tells us that if Ls(λ) and Ls(µ) are incomparable abaci,
then for arbitrary σ ∈ Sr, Lsσ(λ

σ) and Lsσ(µ
σ) are incomparable too, where sσ

is defined to be (sσ(1), · · · , sσ(r)). If we choose σ = (124) in Example 3.3.2, then
Lsσ(λ

σ) and Lsσ(µ
σ) are as follows.

µσ = ((4, 2, 1), (2, 2, 2), (3), (5, 1, 1, 1)), sσ = (0, 1, 2, 0)

Now let us consider λσ = ((4, 3, 1, 1), (2, 1, 1), (3, 1, 1), (2, 2, 1, 1)) and µσ =
((4, 2, 1), (2, 2, 2), (3), (5, 1, 1, 1)). It is easy to check λσ ‖ µσ. It is worth to point
out that this has general significance. That is, we can prove that if Ls(λ) ‖ Ls(µ),
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then there exists some σ ∈ Sr such that λσ and µσ are incomparable. To this aim,
let us first give some characterizations of incomparable abaci.

Lemma 3.3.3. Let Ls(λ) ‖ Ls(µ). Then

(1) The number of empty positions on the left side of position (κ1, ι1 + 1) in

Ls(λ
(κ1)) is the same as that in Ls(µ

(κ1)).

(2) The number of the beads on the right side of position (κ2, ι2−1) in Ls(λ
(κ2))

is the same as that in Ls(µ
(κ2)).

Proof. (1) Choose k ∈ Z such that all positions those are to the left of k + 1-th
positions of both Ls(
blam) and Ls(µ) are occupied by beads. According to Definition 3.3.1 (1), k < ι1.
On the other hand, we have from Lemma 3.1.8(2) that nkκ1

(Ls(λ)) = nkκ1
(Ls(µ)).

Then the result follows from Definition 3.3.1 (2).
(2) is proved similarly as (1). �

With the above result, we can prove a special case.

Lemma 3.3.4. Keep notations as in Definition 3.3.1. Let Ls(λ) ‖ Ls(µ) and

κ1 < κ2. If c ∈ {1, · · · , κ1 − 1}∪ {κ2+1, · · · , r} implies that Ls(λ
(c)) and Ls(µ

(c))
are the same, then λ ‖ µ.

Proof. Suppose that the bead at position (κ1, ι1) in Ls(λ) is  κ1

k (λ, s). Since
Ls(λ) ‖ Ls(µ), by Definition 3.3.1, the beads on the right side of ι1-th position in

Ls(λ
(κ1)) are the same as those in Ls(µ

(κ1)). This implies that for each 1 ≤ a < k,
if  κ1

a (λ, s) is in position b, then so is  κ1
a (µ, s). Moreover, we have from Lemma

3.3.3 that the number of empty positions on the left side of position (κ1, ι1 + 1)

in Ls(λ
(κ1)) is the same as that in Ls(µ

(κ1)). Consequently, the number of empty

positions on the left side of  κ1
a (λ, s) in Ls(λ

(κ1)) is the same as that on the left
side of  κ1

a (µ, s) in in Ls(µ
(κ1)) for 1 ≤ a < k. Then we obtain by Lemma 3.1.8

(2) that

λ(κ1)
a = µ(κ1)

a .(3.3.1)

Furthermore, since the position (κ1, ι1) in Ls(µ) is empty, it is clear that κ1

k (µ, s)
is on the left side of position ι1. Using Lemma 3.3.3 (1) again, there are fewer empty
positions on the left side of  κ1

k (µ, s) than on the left side of  κ1

k (λ, s). We deduce
from Lemma 3.1.8 (2) that

µ
(κ1)
k < λ

(κ1)
k .(3.3.2)

Combining (3.3.1) with (3.3.2) yields

k∑

a=1

µ(κ1)
a <

k∑

a=1

λ(κ1)
a .(3.3.3)

Note that the assumption implies that the rows below κ1-th row in Ls(λ) are

the same as that in Ls(µ), and thus for each 1 ≤ c < κ1, λ
(c) = µ(c). This gives

κ1−1∑

c=1

|µc| =
κ1−1∑

c=1

|λc|.(3.3.4)
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By combining (3.3.3) with (3.3.4), we get

κ1−1∑

c=1

|µ(c)|+
k∑

a=1

µ(κ1)
a <

κ1−1∑

c=1

|λ(c)|+
k∑

a=1

λ
(κ1)
a .(3.3.5)

On the other hand, let the bead at position (κ2, ι2) in Ls(µ) be  
κ2
t (µ, s). Then

by analyzing the number of beads as above, we can obtain the following two for-
mulas:

(1) λ(κ2)
x = µ

(κ2)
x for arbitrary x > t.

(2) µ
(κ2)
t < λ

(κ2)
t .

This implies that ∑

x≥t

µ(κ2)
x <

∑

x≥t

λ(κ2)
x .

Combing this formula with
r∑

c=κ2+1

|µ(c)| =
r∑

c=κ2+1

|λ(c)|,

which is an easy corollary of the assumption, leads to

∑

x≥t

µ(κ2)
x +

r∑

c=κ2+1

|µ(c)| <
∑

x≥t

λ
(κ2)
x +

r∑

c=κ2+1

|λ(c)|.(3.3.6)

Moreover, it follows from |λ| = |µ| that
r∑

c=1

|µ(c)| =
r∑

c=1

|λ(c)|.(3.3.7)

Then (3.3.7)− (3.3.6) is

r∑

c=1

|µ(c)| − (
∑

x≥t

µ(κ2)
x +

r∑

c=κ2+1

|µ(c)|) >
r∑

c=1

|λc| − (
∑

x≥t

λ(κ2)
x +

r∑

c=κ2+1

|λ(c)|).

Note that
r∑

c=1

|µ(c)| − (
∑

x≥t

µ(κ2)
x +

r∑

c=κ2+1

|µ(c)|) =
κ2−1∑

c=1

|µ(c)|+
t−1∑

x=1

µ(κ2)
x

and
r∑

c=1

|λc| − (
∑

x≥t

λ(κ2)
x +

r∑

c=κ2+1

|λ(c)|) =
κ2−1∑

c=1

|λ(c)|+
t−1∑

x=1

λ(κ2)
x .

We arrive at
κ2−1∑

c=1

|µ(c)|+
t−1∑

x=1

µ(κ2)
x >

κ2−1∑

c=1

|λ(c)|+
t−1∑

x=1

λ(κ2)
x .(3.3.8)

Now we come to the conclusion λ ‖ µ by combining (3.3.5) and (3.3.8) together. �

We can deduce a simple fact immediately from Lemma 3.3.4, that is, two incom-
parable abaci Ls(λ) ‖ Ls(µ) with κ1 = 1 and κ2 = r give a pair of incomparable
multi-partitions λ ‖ µ. Clearly, for Ls(λ) ‖ Ls(µ), we can always find σ ∈ Sr such
that σ(κ1) = 1 and σ(κ2) = r. As a result, Lsσ(λ

σ) ‖ Lsσ(µ
σ).
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Proposition 3.3.5. Suppose that Ls(λ) ‖ Ls(µ). Then there exists σ ∈ Sr such
that λσ ‖ µσ with respect to the dominance order.

3.4. Move vector. It is well-known that for an abacus Le
s(λ) of a partition λ,

sliding a bead from position (x, y) to (x, y − 1) is equivalent to unwrapping an e-
rim hook from [λ]. An r-abacus version of this operation was introduced by Jacon
and Lecouvey.

Definition 3.4.1. [33, Section 4.1] Let λ be an r-partition of rank n. An elemen-
tary operation in runner x on the (e, s)-abacus of Ls(λ) is a move of one bead from
runner x to another.

(1) First kind: if the bead at position (x, y) with 1 ≤ x < r is black and
(x + 1, y) is empty, then slide the bead to position (x + 1, y) (note that the
resulting r-abacus corresponds to an r-partition of rank n− sx+1 + sx − 1).

(2) Second kind: if e 6= ∞ and the bead at position (r, y) is black and (1, y− e)
is empty, then slide the bead to position (1, y − e) (note that the resulting
r-abacus corresponds to an r-partition of rank n− s1 + sl − e− 1).

To continue our study, we need to define concepts “before”, “after” and “be-
tween”, which are about relationship between positions in an abacus.

Definition 3.4.2. Given an r-partition λ and a multicharge s, let Ls(λ) be the
associated (e, s)-abacus. We say position (j, h) is before position (i, l) if one of the
conditions below is satisfied

(1) h = l and i < j ≤ r.
(2) h = l − (k + 1)e, where k ∈ N.

If position (j, h) is before position (i, l), then we also say position (i, l) is after
position (j, h). Let position (j, h) be before position (i, l). We say position (x, y) is
between positions (j, h) and (i, l) if it is after (j, h) and before (i, l).

Clearly, in an abacus Ls(λ), there exist two positions (i, l) and (j, h) such that
(i, l) is neither before nor after (j, h). However, this phenomenon will not happen
in a subabacus of Ls(λ). Let us list some observations about subabaci for later use.

(1) None of the positions of Ls(λ) belong to two different subabaci simultane-
ously.

(2) We can not move a bead from one subabacus to another by elementary
operations.

(3) Index a bead in a subabacus by x if there are exactly x − 1 beads after it.
Then elementary operations do not change the index of a bead.

Based on the above observations, elementary operations from Ls(λ) to Lv(µ)
is a definite set, which is independent of the choice of the procedure of move. We
often call this set operation set and denote it by F . Moreover, an elementary
operation happened in a subabacus does not affect other subabaci. Therefore, each
elementary operation of an abacus Ls(λ) can be naturally viewed as an elementary
operation of a subabacus. Given an elementary operation that slides the number
x bead at position (i, l), we record it by a triple [(i, l), x]. When the index need
not to be pointed out, the triple will be written as [(i, l), ∗]. The following is an
obvious result about operation sets.

Lemma 3.4.3. Let F be the operation set from Ls(λ) to its core with [(i, h), ∗] ∈ F ,
where 1 ≤ i ≤ r (if e = ∞, i 6= r) and h ∈ Z. We have in Ls(λ),
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(1) if position (i+ 1, h) has a bead, then there is an empty position before it;
(2) if position (i, h) is empty, then there is a position with a bead after it.

An interesting fact about elementary operations is that they are “commute” with
Uglov map.

Lemma 3.4.4. Let F be the operation set from Ls(λ) to Lv(µ). Then there exists
a definite operation set τF from Ls(λ) to Lv(µ), where (λ, s) and (µ, v) are images
of (λ, s) and (µ,v) under Uglov map, respectively, such that the following diagram
commute.

Ls(λ)
τe,r

−−−−→ Ls(λ)

F

y
yτF

Lv(µ)
τe,r

−−−−→ Lv(µ)

Proof. (Sketch) We only need to consider the case of F containing only one ele-
mentary operation [(x, y), ∗]. Let y = ke + c. It is not difficult to check that if
y < r, the corresponding elementary operation is moving in Le

s(λ) the bead in po-
sition (c, r − x+ kr) to (c, r − x− 1 + kr). If x = r, the corresponding elementary
operation is moving in Le

s(λ) the bead in position (c, kr) to (c, kr − 1). Then it is
a routine to check the diagram commute. �

Operation sets give rise to a key notion in this paper, move vector, whose defi-
nition is as follows.

Definition 3.4.5. Let F be the operation set from Ls(λ) to Lv(µ). Define

mi = ♯{[(i, h), x] ∈ F | h ∈ Z, x ∈ N+}.

Then M = (m1,m2, · · · ,mr) is called the move vector from Ls(λ) to Lv(µ).

For the reason of importance, let us give an example of operation sets and move
vectors.

Example 3.4.6. Let e = 3, s = (0, 2, 1) and λ = ((2, 1), (3, 2), (4, 3, 1)). Then the
associated (e, s)-abacus of pair (λ, s) can be represented as follows.

Let µ = (∅, (4, 3, 1), (3, 2)) and v = (0, 1, 2). Then the associated (e, s)-abacus
Lv(µ) can be represented as follows.

The operation set from Ls(λ) to Lv(µ) is

F = {[(2,−2), 4], [(1, 1), 3], [(2, 1), 3], [(3, 1), 3]},

and consequently, M = (1, 2, 1).
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The following lemma reveals that the move vector from abacus Ls(λ) to another
one can reflect variations of multicharge s and the shape of Ls(λ). It is a simple
corollary of Definition 3.4.5 and Lemma 3.1.9, and we omit the proof and leave it
as an exercise.

Lemma 3.4.7. Let M = (m1,m2, · · · ,mr) be the move vector from Ls(λ) to
Lu(µ). Then for 1 ≤ i ≤ r, we have nhi (Ls(λ))− nhi (Lu(µ)) = mi−mi−1 = si−ui
(the meaning of m0 is mr).

The purpose of introducing concept “move vector” is to study blocks of cyclo-
tomic Hecke algebras. Let us recall the definition of the core of a pair (λ, s) which
introduced by Jacon and Lecouvey.

Definition 3.4.8. [33, Definition 4.2] Let (λ, s) be a pair with s ∈ A
r

e. The core
of (λ, s) is a pair (λ∗, s∗), whose abacus is complete and is obtained from Ls(λ) by
elementary operations.

Lemma 3.4.9. Let s ∈ A
r

e and u,v ∈ Zr. If the move vector from Ls(λ) to Lv(ν)
is equal to that from Lu(µ) to Lv(ν), then s = u and (λ, s) and (µ, s) belong to
the same block.

Proof. Let (m1, · · · ,mr) be the move vector from Ls(λ) to Lv(ν) with m1 + · · ·+
mr = l. Then by Lemma 3.4.7 vi − si = mi −mi−1 = vi − ui for 1 ≤ i ≤ r, in
which m0 means mr. This implies s = u.

Let τe,s(λ) = λ, τe,s(µ) = µ, τe,v(ν) = ν and s =
∑r

i=1 si, v =
∑r

i vi. If we
need k elementary operations from Le

v(ν) to its e-core, then by Lemma 3.4.4 we
can obtain this e-core from both Le

s(λ) and Le
s(µ) by k + l elementary operations,

respectively. Therefore, (λ, s) and (µ, s) belong to the same block. This is equivalent
to Ce,s(τe,s(λ)) = Ce,s(τe,s(µ). By [33, Corollary 2.23], Ce,s(λ) = Ce,s(µ). We
deduce from Lemma 3.1.3 that (λ, s) and (µ, s) belong to the same block. �

The most important value of move vector is that they induce a new block invari-
ant, which can play a greater role than weights. Let us prove a lemma for giving
the definition.

Lemma 3.4.10. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e and Ls∗(λ
∗) its core. If (µ, s) ∈ HΛ

β ,

then its core is also Ls∗(λ
∗) and the move vector from Ls(µ) to Ls∗(λ

∗) is equal to
that from Ls(λ) to Ls∗(λ

∗).

Proof. Since (λ, s) and (µ, s) are in the same block, we have from [33, Lemma 2.23]
that (λ, s) and (µ, s) are in the same block and therefore (λ, s) and (µ, s) have the
same e-core (λ∗, s∗). Note that Uglov map is injective. This implies that (λ∗, s∗) has
a unique preimage, which is a reduced (e, s)-core by Lemma 3.4.4. Consequently,
the preimage has to be Ls∗(λ

∗).
Suppose that the weight of HΛ

β is w, the move vector from Ls(λ) to Ls∗(λ
∗) is

(m1, · · · ,mr), and the move vector from Ls(µ) to Ls∗(λ
∗) is (m′

1, · · · ,m
′
r). Then

Lemma 3.4.7 implies mi −mi−1 = s∗i − si = m′
i −m′

i−1 for 1 ≤ i ≤ r, in which m0

means mr. Then the result follows from m1 + · · ·+mr = w = m′
1 + · · ·+m′

r. �

In the light of Lemma 3.4.10, we also say Ls∗(λ
∗) is the core of block HΛ

β .

Definition 3.4.11. Let (λ, s) ∈ HΛ

β with λ ∈ Ar
e. Then the block move vector of

HΛ

β is defined to be the move vector from Ls(λ) to the core of the block.
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In order to simplify the descriptions of some lemmas’ proofs in subsequent sec-
tions, let us do some work that is related to operation sets and move vectors be-
forehand.

Firstly, we study the move vector related to a simple deformation of abaci.
Given an abacus Ls(λ) in HΛ

β with s ∈ A
r

e and e <∞, denote by Lµ(µ) the abacus

obtained by deleting the the first i runners and putting Lsx+e(λ
(x)), 1 ≤ x ≤ i on

the top in Ls(λ). Let M = (m1, · · · ,mr) and M′ = (m′
1, · · · ,m

′
r) be the move

vectors and F and F ′ the operation sets from Ls(λ) and Lu(µ) to their cores,
respectively. Then we have some easy results as follows.

Lemma 3.4.12. The followings hold.

(1) m′
j = mi+j for 1 ≤ j ≤ r − i.

(2) m′
j = mi+j−r for r − i+ 1 ≤ j ≤ r.

(3) [(j, h), ∗] ∈ F ′ if and only if [(i+ j, h), ∗] ∈ F for 1 ≤ j ≤ r.
(4) Lu∗(µ∗) can be obtained from Ls∗(λ

∗) by deleting the the first i runners and

putting Ls∗x+e(λ
∗(x)), 1 ≤ x ≤ i in the original order on the top in Ls∗(λ).

(5) u ∈ A
r

e and (µ,u) ∈ HΛ

β .

Secondly, we consider the composition of certain elementary operations. The
following lemma is a generalization of [33, Remark 4.3 (1)]. It is easy and we omit
its proof.

Lemma 3.4.13. Let Ls(λ) be an abacus with position (i, l) having a bead and
position (j, l−ke) is empty and before (i, l), where 1 ≤ i, j ≤ r, l ∈ Z, k ∈ N and k =
0 when e = ∞. Move in Ls(λ) the bead at position (i, l) to position (j, l − ke) and
denote by Lu(µ) the new abacus obtained. Then Lu(µ) can be obtained from Ls(λ)
by elementary operations and the operation set is {[(i, l), ∗], · · · , [(r, l), ∗], [(1, l −
e), ∗], · · · , [(r, l − e), ∗], · · · , [(r, l − ke+ e), ∗], [(1, l − ke), ∗], · · · , [(j, l − ke), ∗]}.

The following two results are direct corollaries of Lemma 3.4.13. We list them
below without proofs.

Lemma 3.4.14. Let F be the operation set from Ls(λ) to its core (λ∗, s∗). If in
Ls(λ), position (i, h) has a bead and position (j, h− ke) is empty and before (i, h),
where k ∈ N and k = 0 if e = ∞. Then the operations moving the bead at position
(i, h) to (j, h− ke) are contained in F .

Lemma 3.4.15. Let Ls(λ) be an abacus with position (i, l) having a bead and
position (j, l) being empty, where 1 ≤ i < j ≤ r. Let Lu(µ) be the abacus obtained
by moving in Ls(λ) the bead at position (i, l) to position (j, l). Then Lu(µ) can be
obtained from Ls(λ) by elementary operations with move vector M = (m1, · · · ,mr),
where mt = 1 if i ≤ t ≤ j − 1 and mt = 0 otherwise.

Let us consider a special case of Lemma 3.4.13. We can give more details in this
case.

Lemma 3.4.16. Let Ls(λ) be an abacus.

(1) Assume that position (i, l) is empty and position (i, l+e) has a bead. Denote
by Lu(µ) the abacus obtained from Ls(λ) by moving the bead at position
(i, l + e) to position (i, l). Then u = s and the move vector from Ls(λ) to
Lu(µ) is (1, · · · , 1). Moreover, [µ] can be obtained by deleting a rim e-hook

from [λ(i)].
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(2) If [µ] can be obtained by deleting a rim e-hook from [λ(i)], then there exists
l ∈ Z such that in Ls(λ), position (i, l) is empty and position (i, l + e) has
a bead.

Proof. It is an evident corollary of Lemma 3.4.7, 3.4.13 and [33, Remark 4.3(1)]. �

Thirdly, we introduce a new concept, dual abacus.

Definition 3.4.17. Given an abaci Ls(λ), the dual of Ls(λ), denoted by LsD(λ
D),

is an abacus, in which position (i, h) is empty if and only if in Ls(λ), there is a

bead at position (r − i + 1,−h− 1). Furthermore, (λD, sD) is called the dual pair
of (λ, s).

Example 3.4.18. Let λ = ((2, 1), (4), (1, 1)) and s = (0, 2, 3). Then Ls(λ) is

The dual abacus LsD(λ
D) is

It is easy to check that λD = ((2), (1, 1, 1, 1), (2, 1)) and sD = (−3,−2, 0).

By an easy observation on Example 3.4.18, we have λD is in fact the conjugate
of λ and sDi = −sr−i+1. We emphasize that this has general significance. Let us
summarize into a lemma for later use.

Lemma 3.4.19. Let LsD(λ
D) be the dual of Ls(λ). Then λD = λ′, sDi = −sr−i+1

for 1 ≤ i ≤ r and consequently, if s ∈ A
r

e, then sD ∈ A
r

e and if s ∈ Ar
e, then

sD ∈ Ar
e.

About dual abaci, we have the following lemmas, which will be used later.

Lemma 3.4.20. Let (λ, s) and (µ, s) be two pairs. Then

(1) (λ, s) and (µ, s) belong to the same block if and only if (λD, sD) and (µD, sD)
belong to the same block.

(2) Ls(λ) ‖ Ls(µ) if and only if LsD(λ
D) ‖ LsD(µ

D).

Lemma 3.4.21. Let F , M and F ′, M′ be the operation sets and move vectors
from Ls(λ) and LsD(λ

D) to their cores, respectively. Then [(i, h), ∗] ∈ F if and
only if [(r − i,−h− 1), ∗] ∈ F ′. Moreover, mi = m′

r−i+1 for all 1 ≤ i ≤ r.

Proof. We first consider operation sets. It is clear by Definition 3.4.17 that we only
need to prove if [(i, h), ∗] ∈ F , then [(r− i,−h−1), ∗] ∈ F ′. In fact, take an element
[(i, h), ∗] ∈ F such that in Ls(λ), position is empty and position (i, h) has a bead.

Then in LsD(λ
D), position (r− i,−h−1) has a bead and position (r− i+1,−h−1)

is empty. This implies [(r− i,−h−1), ∗] ∈ F ′. By sliding the bead at position (i, h)
to (i+1, h) in Ls(λ), and sliding bead at position (r−i,−h−1) to (r−i+1,−h−1)

in LsD(λ
D), we clearly get two dual abaci. Since F is a finite set, by repeating this

process finite many times, abacus Ls(λ) arrives to its core.
Furthermore, as a direct corollary of the above, we can obtain the result on move

vectors and we complete the proof. �
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3.5. Frame of the proof of Main Theorem. We conclude this section by provide
a frame for the proof of the Main Theorem.

Let K be an algebraically closed field with CharK 6= 2 and q ∈ K×, q 6= 1 with
quantum characteristic e. Let s = (s1, s2, · · · , sr) ∈ Zr be a multicharge. Define
s̃ := (s′1, · · · , s

′
r) ∈ {0, · · · , e − 1}r such that s′i ≡ si (mod e). Then there exists a

unique σs ∈ Sr such that

(1) s′
σs(1)

≤ s′
σs(2)

≤ · · · ≤ s′
σs(r)

(2) If sσs(i) = sσs(i+1) for i ∈ {1, · · · , r − 1}, then σs(i) < σs(i+ 1).

Set s̃σs := (s′
σs(1)

, s′
σs(2)

, · · · , s′
σs(r)

). Then clearly, s̃σs ∈ Ar
e. Since (λ, s) and

(λσs , s̃σs) belong to two isomorphic blocks, without loss of generality, we can assume
s ∈ Ar

e. Because the representation type of blocks of a Hecke algebra of type A or
B have been determined by Erdmann and Nakano in [23] and by Ariki in [5], we
always assume in this paper that r > 2.

Given a cyclotomic Hecke algebra Hn(q,Q), let Sn,r(q,Q1, Q2, · · · , Qr) be the
cyclotomic q-Schur algebra associated to it. Take ν = (∅, · · · ,∅, (1n)). Let ϕν ∈
Sn,r be the identity map on Mν and zero on others. Then ϕν is an idempotent of
Sn,r and ϕνSn,rϕν is isomorphic to Hn(q,Q). If B is a block of Sn,r, then clearly,
ϕνBϕν is isomorphic to a block of Hn(q,Q). Moreover, it is well-known ([22]) that
if ϕνBϕν has infinite type, then so is B. If the weight of a block of Sn,r is 1, then
by [24, Theorem 4.12] and [50, Proposition 1.7] the block has finite representation
type. Consequently, the weight one blocks of Hn(q,Q) has finite representation
type. As a result, we only need to handle the blocks of weight more than one.

Based on the above analysis, the proof of Main Theorem is divided into three
parts according to the characteristic of the block move vectorM = (m1,m2, · · · ,mr):

Part I. There exists some mi ≥ 2.

Part II. All mi are equal to 1, for i = 1, · · · , r.

Part III. All mi are less or equal to 1, and there exist at least one mj = 0.

4. Proof of Main Theorem: Part I

Given a pair (λ, s) ∈ HΛ

β with s ∈ A
r

e and r > 2, let F be the operation set

from Ls(λ) to its core and (m1,m2, · · · ,mr) the block move vector. In this section,
we prove that if there exists 1 ≤ i ≤ r such that mi ≥ 2, then HΛ

β has infinite
representation type. To this aim, in the light of Proposition 2.3.7 and 3.3.5, we can
form incomparable abaci in HΛ

β . The method is to analyzing the property of the

associated F of an arbitrary pair (λ, s) ∈ HΛ

β . It is easy to know that each F must
be one of the following two types:

Type I. There exists 1 ≤ i ≤ r such that [(i, h1), ∗], [(i, h2), ∗] ∈ F with h1 6= h2;
Type II. [(i, h1), ∗], [(i, h2), ∗] ∈ F implies h1 = h2 for all 1 ≤ i ≤ r.
For example, let e = 5, s = (2, 2, 2, 3) and λ = ((1), (1, 1), (2, 2)(1, 1)). Then

Ls(λ) is
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Clearly, [(2, 0), ∗], [(2, 1), ∗] ∈ F , 0 6= 1, that is, pair (λ, s) is of Type I.
If we take µ = (∅,∅, (1), (1, 1)), then Ls(µ) is

Clearly, F = {[(2, 1), 2], [(3, 1), 2], [(1, 1), 1], [(2, 1), 1]}, and thus pair (µ, s) if of
Type II.

We will begin with some preparation in Subsection 1., and then prove the result
of this section in Subsection 4.2 and 4.3.

4.1. Some existence conditions of incomparable abaci. This subsection is
devoted to provide some circumstances, under which one can construct incompara-
ble abaci.

Lemma 4.1.1. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e. If there exist 1 ≤ j ≤ r, h1, h2 ∈ Z

with h1 6= h2 such that in Ls(λ):

(1) there is a bead at (j, h1) and position (j + 1, h1) is empty;
(2) there is a bead at (j, h2) and position (j + 1, h2) is empty,

then there exist r-partitions µ,ν such that (µ, s), (ν, s) ∈ HΛ

β and Ls(µ) ‖ Ls(ν).

Proof. Slide the beads at positions (j, h1) and (j, h2) in Ls(λ) to positions (j+1, h1)
and (j + 1, h2), respectively. Denote by Ls̄(λ̄) the new abacus obtained. Then the
move vector from Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr), where

mi =

{
2, if i = j;

0, if i 6= j.

It follows from Lemma 3.1.12 (2) that there exist h3, h4 such that in Ls(λ) the
positions (j, h3) and (j, h4) are empty and positions (j + 1, h3) and (j + 1, h4) are
occupied by beads. Then in Ls̄(λ̄), positions (j, h1), (j, h2), (j, h3) and (j, h4) are
empty and there are beads at positions (j + 1, h1), (j + 1, h2), (j + 1, h3) and
(j + 1, h4). Define {l1, l2, l3, l4} to be equal to {h1, h2, h3, h4} as a set satisfying
l1 < l2 < l3 < l4.

Slide the beads at positions (j+1, l1) and (j+1, l4) to positions (j, l1) and (j, l4) in
Ls̄(λ̄), respectively. Denote by Lu(µ) the new abacus. Slide the beads at positions
(j+1, l2) and (j+1, l3) to positions (j, l2) and (j, l3) in Ls̄(λ̄), respectively. Denote
the new abacus by Lv(ν). Clearly, the move vectors from Lu(µ) and Lv(ν) to Ls̄(λ̄)
are both equal to M. Hence we can deduce from Lemma 3.4.9 that s = u = v and
(µ, s), (ν, s) ∈ HΛ

β . Moreover, take (κ1, ι1) = (j, l4) and (κ2, ι2) = (j + 1, l1). It is

easy to check that the conditions (1) and (2) of Definition 3.3.1 are satisfied. Then
Ls(λ) ‖ Ls(µ). �

The way to construct two incomparable abaci in Lemma 4.1.1 will be used over
and over again. In order to help the reader understand the construction process,
let us give an example below.

Example 4.1.2. Let e = 5, λ = ((14), (2, 15),∅, (1) and s = (2, 2, 3, 3). Then
Ls(λ) is



32 YANBO LI AND XIANGYU QI

Taking j = 1, h1 = −4 and h2 = 2 and sliding the beads according to Lemma
4.1.1, we get Ls(λ) as follows, where λ = ((23, 1),∅,∅, (1)) and s = (0, 4, 3, 3).

Choose h3 = −2, h4 = 3. Then l1 = −4, l2 = −2, l3 = 2 and l4 = 3 and
the abaci Ls(µ) and Ls(ν) constructed by using Lemma 4.1.1 are as follows, where
µ = ((2, 13), (16),∅, (1)) and ν = ((16), (2, 13),∅, (1)).

The following lemma will be used only if the number of runners in an abacus is
not less than four.

Lemma 4.1.3. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e, where r ≥ 4. Assume that in Ls(λ),

(1) there is a bead at position (i, l) and (i+ 1, l) is an empty position;
(2) there is a bead at position (j, h) and (j + 1, h) is an empty position,

where l, h ∈ Z, 1 ≤ i, j ≤ r with i + 1 < j and i 6= 1 if j = r. Then there exist
r-partitions µ, ν such that (µ, s), (ν, s) ∈ HΛ

β and Ls(µ) ‖ Ls(ν).

Proof. Slide the beads at positions (i, l) and (j, h) in Ls(λ) to positions (i + 1, l)
and (j + 1, h), respectively. Denote by Ls̄(λ̄) the new abacus obtained. Then the
move vector from Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr), where

mk =





1, if k = i;

1, if k = j;

0, others.

It follows from Lemma 3.1.12 (2) that there exist l′, h′ ∈ Z such that in Ls(λ)
the positions (i, l′) and (j, h′) are empty and there are beads at positions (i+ 1, l′)
and (j+1, h′). Then in Ls̄(λ̄), the positions (i, l), (i, l

′), (j, h) and (j, h′) are empty
and there are beads at positions (i+1, l), (i+1, l′), (j+1, h) and (j+1, h′). Define
{h1, h2} to be equal to {h, h′} as a set satisfying h1 < h2. Define {l1, l2} to be
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equal to {l, l′} as a set satisfying l1 < l2. Hence we can deduce from Lemma 3.4.9
that s = u = v and (µ, s), (ν, s) ∈ HΛ

β .

Denote by Lu(µ) the abacus obtained by sliding the beads at positions (i+1, l2)
and (j + 1, h1) in Ls̄(λ̄) to positions (i, l2) and (j, h1), respectively and denote by
Lv(ν) the abacus obtained by sliding the beads at positions (i+1, l1) and (j+1, h2)
in Ls̄(λ̄) to positions (i, l1) and (j, h2), respectively. Clearly, the move vectors from
Lu(µ) and Lv(ν) to Ls̄(λ̄) are both equal to M.

If we take (κ1, ι1) = (i, l2), (κ2, ι2) = (j + 1, h1), then Ls(µ) and Ls(ν) satisfy
the conditions (1) and (2) of Definition 3.3.1 and consequently, Ls(µ) ‖ Ls(ν). �

Lemma 4.1.4. Let (λ, s) ∈ HΛ

β and s ∈ A
r

e. Assume there exists 1 ≤ i ≤ r such

that in Ls(λ),

(1) there is a bead at position (i, l1) and position (i+ 1, l1) is empty;
(2) position (i, l2) is empty and there is a bead at position (i+ 1, l2);
(3) there is s a bead at position (i + 1, l3) and position (i + 2, l3) is empty;
(4) position (i + 1, l4) is empty and there is a bead at position (i+ 2, l4) ,

where l1, l2, l3, l4 ∈ Z such that l1 6= l4 or l2 6= l3 holds. Then there exist r-partitions
µ, ν with (µ, s), (ν, s) ∈ HΛ

β and Ls(µ) ‖ Lsν).

Proof. According to the relationship among l1, l2, l3, l4, we divide the proof into the
following three cases.

Case 1. l1 6= l4 and l2 6= l3.

In Ls(λ), slide the bead at position (i, l1) to position (i + 1, l1) and slide the
bead at position (i+ 1, l3) to position (i + 2, l3). Denote by Ls̄(λ̄) the new abacus
obtained. Then the move vector from Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr),
where

mk =

{
1, if k = i, i+ 1;

0, others.

In Ls̄(λ̄), the positions (i, l1), (i, l2), (i + 1, l2) and (i + 1, l3) are empty and there
are beads at positions (i+1, l1), (i+1, l2), (i+2, l3) and (i+2, l4). Define {h1, h2}
to be equal to {l1, l2} as a set satisfying h1 < h2 and define {h3, h4} to be equal to
{l3, l4} as a set satisfying h3 < h4.

Denote by Lu(µ) the abacus obtained by sliding the beads at positions (i+1, h2)
and (i + 2, h3) to positions (i, h2) and (i + 2, h3) in Ls̄(λ̄) and denote Lv(ν) the
abacus obtained by sliding the beads at positions (i+1, h1) and (i+2, h4) to (i, h1)
and (i + 1, h4) in Ls̄(λ̄). Clearly, both the moving vectors from Lu(µ) and Lv(ν)
to Ls̄(λ̄) are equal to M. We can deduce from Lemma 3.4.9 that s = u = v

and (µ, s), (ν, s) ∈ HΛ

β . Furthermore, it is easy to know Ls(µ) ‖ Ls(ν) by taking

(κ1, ι1) = (i, h2) and (κ2, ι2) = (i+ 2, h3).

Case 2. l1 = l4 and l2 6= l3

Since there are beads at positions (i+1, l2) and (i+1, l3) and position (i+2, l3)
is empty, if position (i + 2, l2) is empty, then by Lemma 4.1.1, the result follows.
Now we assume that there is a bead at position (i + 1, l2).

Slide in Ls(λ) the beads at positions (i, l1) and (i+ 1, l3) to positions (i+ 1, l1)
and (i+ 2, l3), respectively. Denote by Ls̄(λ̄) the new abacus obtained. The move
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vector from Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr), where

mk =

{
1, if k = i, i+ 1;

0, others.

Let us take a look at Ls̄(λ̄). Positions (i, l1), (i, l2) and (i + 1, l3) are empty, and
there are beads at positions (i+1, l1), (i+1, l2), (i+2, l1), (i+2, l2) and (i+2, l3).
Define {h1, h2} to be equal to {l1, l2} as a set satisfying h1 < h2. The rest of our
discussion is divided into the following two subcases.

Subcase 1. l3 > h2 or l3 < h1. Denote by Lu(µ) the abacus obtained by sliding
in Ls̄(λ̄) the beads at positions (i + 1, h2) and (i + 2, h2) to (i, h2) and (i+ 1, h2),
respectively, and denote by Lv(ν) the abacus obtained by sliding in Ls̄(λ̄) the beads
at positions (i+1, h1) and (i+2, l3) to positions (i, h1) and (i+1, l3), respectively.
Clearly, both the move vectors from Lu(µ) and Lv(ν) to Ls̄(λ̄) are equal to M.
Hence we can deduce from Lemma 3.4.9 that s = u = v and (µ, s), (ν, s) ∈ HΛ

β . It

is easy to check Ls(µ) ‖ Ls(ν) by taking (κ1, ι1) = (i, h2), (κ2, ι2) = (i+ 2, h2).
Subcase 2. h1 < l3 < h2. We construct two incomparable abaci as follows. In

Ls̄(λ̄), sliding the beads at positions (i+1, h1) and (i+2, h1) to positions (i, h1) and
(i + 1, h1), respectively, gives an abacus Ls(µ) and sliding the beads at positions
(i+ 2, l3) and (i + 1, h2) to positions (i, h1) and (i, h2), respectively, gives another
one, Ls(ν). Then by taking (κ1, ι1) = (i+1, h2) and (κ2, ι2) = (i+2, h1), we know
Ls(µ) ‖ Ls(ν).

Case 3. l1 6= l4 and l2 = l3.

It is a dual case of Case 2. �

Corollary 4.1.5. Let (λ, s) ∈ HΛ

β and s ∈ A
r

e. Assume there exists 1 ≤ i ≤ r such

that in Ls(λ),

(1) position (i, h1) has a bead and position (i + 1, h1) is empty;
(2) position (i + 1, h2) has a bead and position (i + 2, h2) is empty;
(3) position (i + 2, h1) is empty or position (i, h2) has a bead.

Then there exist (µ, s), (ν, s) ∈ HΛ

β with Ls(µ) ‖ Ls(ν).

Proof. By Lemma 3.1.12, there exist h3, h4 ∈ Z such that in Ls(λ)

• position (i, h3) is empty and position (i+ 1, h3) has a bead;
• position (i+ 1, h4) is empty and position (i+ 2, h4) has a bead.

Clearly, if position (i, h2) has bead, then h3 6= h2, and if position (i + 2, h1) is
empty, then h4 6= h1. By Lemma 4.1.4 the proof is completed. �

Let us do some work under the condition e <∞.

Lemma 4.1.6. Let e 6= ∞ and (λ, s) ∈ HΛ

β with s ∈ A
r

e. Assume that there exist

1 ≤ i ≤ r, l1, l2 ∈ Z with l1 + e 6= l2, such that in Ls(λ)

(1) there is a bead at position (i, l1) and position (i+ 1, l1) is empty;
(2) there is a bead at position (i+ 1, l2) and (i+ 2, l2) is empty,

and there is a bead at position (i+1, l1+e) or position (i+1, l2−e) is empty. Then
there exist (µ, s), (ν, s) ∈ HΛ

β such that Ls(µ) ‖ Ls(ν).

Proof. It follows from Lemma 3.1.12 (2) that there exist h1, h2 ∈ Z such that in
Ls(λ), there are beads at positions (i + 1, h1) and (i + 2, h2) and positions (i, h1)
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(i + 1, h2) are empty. If h1 6= l2 or h2 6= l1, then we are in the circumstances of
Lemma 4.1.4. Hence we only need to consider h1 = l2 and h2 = l1.

We first assume that there is a bead at position (i + 1, l1 + e). If there exists
l3 ∈ Z with l3 6= l1, l3 6= l2 such that there is a bead at position (i + 1, l3), and
position (i, l3) or (i + 2, l3) is empty, then by Lemma 4.1.1 and Lemma 4.1.4 the
result follows. Now we suppose that both positions (i, l3) and (i+2, l3) are occupied
by beads whenever there is a bead at position (i+1, l3) for each l3 ∈ Z with l3 6= l1
and l3 6= l2. There are three possible cases need to consider.

Case 1. l2 < l1

There exists k ∈ N by Lemma 3.1.12(1) such that in Ls(λ) position (i, l2 − ke)
is empty and position (i, l2 − (k + 1)e) is occupied by a bead. Move the beads at
positions (i+1, l1 + e) and (i+1, l2) in Ls(λ) to positions (i+1, l1) and (i+2, l2),
respectively. Denote by Ls̄(λ̄) the new abacus obtained. Then by Lemma 3.4.16
the move vector from Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr), where

mt =

{
2, if t = i+ 1;

1, others.

Denote by Lu(µ) the abacus obtained by moving in Ls̄(λ̄) the beads at positions
(i, l2−(k+1)e) and (i+2, l2) to positions (i, l1−ke) and (i+1, l2), respectively and
denote by Lv(ν) the abacus obtained by moving in Ls̄(λ̄) the beads at positions
(i+1, l1) and (i+2, l1) to positions (i, l1+e) and (i+1, l1), respectively. Clearly, the
move vectors from Lu(µ) and Lv(ν) to Ls̄(λ̄) are both equal to M. We can deduce
by a routine verification process that Ls(µ) ‖ Ls(ν) with (µ, s), (ν, s) ∈ HΛ

β .

Case 2. l1 < l2 < l1 + e

Move the beads at positions (i+1, l2), (i, l1) and (i, l1 + e) in Ls(λ) to positions
(i + 2, l2), (i + 1, l1) and (i, l1), respectively. Denote by Ls̄(λ̄) the new abacus
obtained. Then by Lemma 3.4.16 the move vector from Ls(λ) to Ls̄(λ̄) is M =
(m1,m2, · · · ,mr), where

mt =

{
2, if t = i, i+ 1;

1, others.

Denote by Lu(µ) the abacus obtained by moving in Ls̄(λ̄) the beads at positions
(i + 2, l2), (i + 1, l2) and (i, l1) to positions (i + 1, l2), (i, l2) and (i + 1, l1 + e)
respectively, and denote by Lu(ν) the abacus obtained by moving in Ls̄(λ̄) the
beads at positions (i+1, l1 + e), (i+2, l1 + e) and (i+1, l2 − (k+1)e) to positions
(i, l1 + e), (i+ 1, l1 + e) and (i+ 1, l2 − ke), respectively. Clearly, the move vectors
from Lu(µ) and Lv(ν) to Ls̄(λ̄) are both equal to M. Hence we can deduce from
Lemma 3.4.9 that s = u = v and Ls(µ) ‖ Ls(ν) with (µ, s), (ν, s) ∈ HΛ

β .

Case 3. l1 + e < l2

We have from Lemma 3.1.12 (1) that there exists k ∈ N such that in Ls(λ)
position (i, l2 − ke) is empty and there is a bead at position (i, l2 − (k + 1)e). In
Ls(λ), move the bead at position (i + 1, l2) to position (i + 2, l2) and move the
bead at position (i + 1, l1 + e) to position (i + 1, l1). Denote by Ls̄(λ̄) the new
abacus obtained. Then by Lemma 3.4.13 the move vector from Ls(λ) to Ls̄(λ̄) is
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M = (m1,m2, · · · ,mr), where

mt =

{
2, if t = i+ 1;

1, others.

Denote by Lu(µ) the abacus obtained by moving the beads at position (i+2, l1+e)
to (i + 1, l1 + e) and moving the bead at position (i, l2 − (k + 1)e) to position
(i, l2 − ke) in Ls̄(λ̄). The move vector from Lu(µ) to Ls̄(λ̄) is equal to M, and by
Lemma 3.4.9 s = u. Then Ls(λ) and Ls(µ) are incomparable abaci that we need
to construct. �

Lemma 4.1.7. Let e 6= ∞ and (λ, s) ∈ H Λ

β with s ∈ A
r

e. Suppose there exist
1 ≤ i ≤ r and l1, l2 ∈ Z such that

(1) there are beads at positions (i, l1), (i, l1 + e) and (i− 1, l1);
(2) position (i + 1, l1) is empty.

Then there exist (µ, s), (ν, s) ∈ HΛ

β such that Ls(µ) ‖ Ls(ν).

Proof. Since in Ls(λ), position (i, l1) is occupied by a bead and position (i+ 1, l1)
is empty, we have from Lemma 3.1.12 (2) that there exist l2 ∈ Z such that position
(i, l2) is empty and there is a bead at position (i + 1, l2). Clearly, l2 6= l1 + e. We
consider two cases.

Case 1. Position (i − 1, l2) is occupied by a bead.

By Lemma 3.1.12 (2), the bead at (i − 1, l2) and empty position (i, l2) ensure
the existence of h1 ∈ Z, such that position (i − 1, h1) is empty and position (i, h1)
is occupied by a bead. Moreover, h1 6= l1 and we have in Ls(λ),

• position (i− 1, l2) is occupied by a bead and position (i, l2) is empty;
• position (i− 1, h1) is empty and position (i, h1) is occupied by a bead;
• position (i, l1) is occupied by a bead and position (i+ 1, l1) is empty;
• position (i, l2) is empty and position (i+ 1, l2) is occupied by a bead.

That is, we are in the circumstances of Lemma 4.1.4 and thus the result follows.

Case 2. Position (i − 1, l2) is empty.

Slide in Ls(λ) the bead at position (i, l1) to position (i + 1, l1) and denote the
new abacus by Ls̄(λ̄). The move vector from Ls(λ) to Ls̄(λ̄) is M = (m1, · · · ,mr),
where

mt =

{
1, if t = i;

0, others.

Slide in Ls̄(λ̄) the bead at position (i+1, l2) to position (i, l2) and denote by Ls′′(ξ)
the new abacus obtained. It is easy to check that the move vector from Ls′′(ξ) to
Ls̄(λ̄) is equal to M. By Lemma 3.4.9, we have s′′ = s and (ξ, s) ∈ HΛ

β . Now in

Ls(ξ), we have

• position (i− 1, l1) is occupied by a bead and position (i, l1) is empty;
• position (i, l2) is occupied by a bead and position (i+ 1, l2) is empty;
• position (i, l1 + e) is occupied by a bead and l1 + e 6= l2,

which are requirements of Lemma 4.1.6 . This complete the proof. �

Lemma 4.1.8. Let e 6= ∞ and (λ, s) ∈ H Λ

β with s ∈ A
r

e. Assume that there exist

h1, h2 ∈ Z such that in Ls(λ),

(1) position (r − 1, h1) is occupied by a bead and position (r, h1) is empty;
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(2) position (r − 1, h2) is empty and position (r, h2) is occupied by a bead.

If the first empty position before (r, h2) is in runner 1 and the first bead after
(r− 1, h2) is not in runner r, then there exist (µ, s), (ν, s) ∈ HΛ

β such that Ls(µ) ‖
Ls(ν).

Proof. Suppose that the first empty position before (r, h2) in Ls(λ) is (1, h2− (k1+
1)e), where k1 ∈ N. Then the positions between (1, h2−(k1+1)e) and (r−1, h2) are
occupied by beads. Particularly, there is a bead at position (r, h2 − k1e). Suppose
that the first bead after (r−1, h2) is (l, h2+k2e), where k2 ∈ N. Then the positions
between (r, h2) and (l, h2 + k2e) are empty. Particularly, (l+1, h2 + k2e) is empty.

If k1 6= 0, by direct observation of abacus Ls(λ), we have

• position (r − 1, h1) is occupied by a bead and position (r, h1) is empty;
• position (r, h2 − k1e) is occupied by a bead and position (1, h2 − (k1 + 1)e)
is empty;

• position (r − 1, h2) is empty and position (r, h2) is occupied by a bead,
h2 6= h2 − k1e,

and the result follows from Lemma 4.1.4.

Now we assume k1 = 0 and consider three cases as follows.

Case 1. 1 < l and l + 1 < r.

We have in thus case that positions (1, h2−e) and (l+1, h2+k2e) are empty and
there are beads at positions (l, h2 + k2e) and (r, h2), which are conditions required
by Lemma 4.1.3.

Case 2. l+ 1 = r. We need to consider two subcases.

Subcase 1. h2+k2e 6= h1. In Ls(λ), positions (r, h2+k2e) and (r, h1) are empty
and there are beads at positions (r − 1, h2 + k2e) and (r − 1, h1). Then the result
holds by Lemma 4.1.1.

Subcase 2. h2+k2e = h1. It is clear k2 6= 0 because h2 6= h1. Note that in Ls(λ),
position (r, h2) is occupied by a bead and position (1, h2 − e) is empty. By Lemma
3.1.12 (2) there exists h3 ∈ Z such that position (r, h3) is empty and there is a
bead at position (1, h3− e). Moreover, position (1, h2+ k2e− e) is empty since it is
between positions (r− 1, h2) and (r− 1, h2+k2e), and consequently, h3 6= h2+k2e.
To sum up, we have in Ls(λ),

• position (r− 1, h2 + k2e) is occupied by a bead and position (r, h2 + k2e) is
empty;

• position (r, h2) is occupied by a bead and position (1, h2 − e) is empty;
• position (r, h3) is empty and position (1, h3 − e) is occupied by a bead,

which are conditions of Lemma 4.1.4.

Case 3. l = 1.

If r > 3, then l+1 < r−1 and the conditions of Lemma 4.1.3 have been satisfied.
That is, positions (l + 1, h2 + k2e) and (r, h1) are empty and there are beads at
positions (l, h2 + k2e) and (r − 1, h1).

So we now assume r = 3 and consider two subcases.
Subcase 1. k2 6= 0. Under this condition, we have in Ls(λ),

• position (1, h2 + k2e) is occupied by a bead and position (2, h2 + k2e) is
empty;

• position (2, h1) is is occupied by a bead and position (3, h1) is empty;
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• position (2, h2) is empty and position (3, h2) is occupied by a bead, h2 6=
h2 + k2e.

Then by Lemma 4.1.4 we get the result.
Subcase 2. k2 = 0. The following is observation of abacus Ls(λ):

• position (2, h1) is occupied by a bead and position (3, h1) is empty;
• position (1, h2) is occupied by a bead and position (2, h2) is empty;
• position (3, h2) is occupied by a bead and (1, h2 − e) is empty.

Slide the bead at position (2, h1) to position (3, h1) and denote by Ls′(λ̄) the
new abacus obtained. The move vector from Ls(λ) to Ls′(λ̄) is M = (0, 1, 0).
Define {l1, l2} to be equal to {h1, h2} as a set satisfying l1 < l2.

In Ls′(λ̄), slide the bead at position (3, l1) to position (2, l1) and denote by Lu(µ)
the new abacus obtained. Slide the bead at position (3, l2) to position (2, l2) and
denote by Lû(µ̂) the new abacus obtained. Clearly, both the move vectors from
Lu(µ) and Lû(µ̂) to Ls′(λ̄) are equal to M, and we have by Lemma 3.4.9 that
s = u = û, (µ, s), (µ̂, s) ∈ HΛ

β .

Notice that position (2, l2) in Ls(µ̂) is occupied by a bead. By Lemma 3.1.12 (1),
there exists k ∈ N such that position (2, l2+ke) is occupied by a bead and position
(2, l2 + (k + 1)e) is empty. Move in Ls(µ̂) the bead at position (1, h2) to position
(1, h2 − e) and denote by Ls′′(ξ) the new abacus obtained. Then by Lemma 3.4.16
the move vector from Ls(µ̂) to Ls′′(ξ) is M′ = (1, 1, 1).

In Ls′′(ξ), move the bead at position (2, l2 + ke) to position (2, l2 + (k + 1)e).
Denote the new abacus obtained by Lv(ν). Clearly, the move vector from Lv(ν)
to Ls′′(ξ) is equal to M′. For this reason, we can deduce from Lemma 3.4.9 that
v = s and (ν, s) ∈ HΛ

β . Then the proof is completed by taking (κ1, ι1) = (1, h2)

and (κ2, ι2) = (3, l1). �

Lemma 4.1.9. Let e 6= ∞ and (λ, s) ∈ H Λ

β with s ∈ A
r

e. If there exist 1 ≤ j <

i < r, l1, l2 ∈ Z such that in Ls(λ),

(1) positions (i, l1) and (i + 1, l1) are empty;
(2) there are beads at positions (i, l2) and (i + 1, l2);
(3) there is a bead at (j, l1) and position (j + 1, l1) is empty;
(4) there is a bead at (j − 1, l2 − e) and position at (j, l2 − e) is empty,

then there exist (µ, s), (ν, s) ∈ HΛ

β with Ls(µ) ‖ Ls(ν).

Proof. Let us consider position (j, l2). If there is a bead at (j, l2), then it is easy
to check that we are in the circumstances of Lemma 4.1.6. So we assume from now
on that position (j, l2) is empty. We consider two cases.

Case 1. i+ 1 6= r or j 6= 1.

By moving the bead at position (j, l1) to position (i, l1), we obtain a new aba-
cus Ls′(λ̄). By Lemma 3.4.13 the move vector from Ls(λ) to Ls′(λ̄) is M =
(m1, · · · ,mr), where

mt =

{
1, if j ≤ t < i;

0, others.

In Ls′(λ̄), move the bead at position (i, l2) to position (j, l2). Denote this new
abacus by Lu(µ). Clearly, the move vector from Lu(µ) to Ls′(λ̄) is equal to M
and by Lemma 3.4.9, s = u, (µ, s) ∈ HΛ

β . Observing abacus Ls(µ) gives

• position (j−1, l2−e) is occupied by a bead and position (j, l2−e) is empty;
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• position (i, l1) is occupied by a bead and position (i+ 1, l1) is empty.

If j 6= 1, j < i, the result follows from Lemma 4.1.3. If j = 1, then i + 1 < r.
Furthermore, according to the previous engagement, position (j−1, l2−e) is (r, l2).
Then Lemma 4.1.3 leads to the result.

Case 2. i+ 1 = r and j = 1.

We first rewrite the known conditions on abacus Ls(λ) in this case.

(1) Positions (r − 1, l1) and (r, l1) are empty.
(2) There are beads at position (r − 1, l2) and (r, l2).
(3) There is a bead at position (1, l1).
(4) Positions (1, l2 − e) and (1, l2) are empty.

In Ls(λ), slide the bead at position (r, l2) to position (1, l2 − e) and slide the bead
at position (r − 1, l2) to position (r, l2). Then move the bead at position (1, l1) to
position (r, l1). Denote by Ls′(λ̄) the new abacus obtained. The move vector from
Ls(λ) to Ls′(λ̄) is M = (m1,m2, · · · ,mr), where

mt =

{
r − 1, if t = i;

1, others.

Define {h1, h2} to be equal to {l1, l2} as a set satisfying h1 < h2. Note that in
Ls′(λ̄), there is a bead at position (r, h2). By Lemma 3.1.12 (2), there exists k ∈ N
such that position (r, h2 + ke) is occupied by a bead and position (r, h2 + ke + e)
is empty.

Let us construct two incomparable abaci from Ls′(λ̄) by elementary operations.
The first one, Lu(µ) is obtained by moving the bead at position (1, l2−e) to position
(1, l2), and sliding the bead at position (r, h2) to position (r − 1, h2). The second
one, Lv(ν) is obtained by moving the bead at position (r, h2 + ke) to position
(r, h2 + (k + 1)e), and sliding the bead at position (r, h1) to position (r − 1, h1). It
is easy to check that both the move vector from Lu(µ) and Lv(ν) to Ls′(λ̄) are
equal to M. This implies by lemma 3.4.9 that u = v = s and (µ, s), (ν, s) ∈ HΛ

β .

To know Lu(µ) ‖ Lv(ν), one only need to take (κ1, ι1) = (1, l2), (κ2, ι2) =
(r − 1, h1). �

Lemma 4.1.10. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e, where e 6= ∞. If there exist

1 ≤ i1, i2 ≤ r with i1 6= i2 and h1, h2 ∈ Z such that in abacus Ls(λ)

(1) position (i1, h1) is empty and position (i1, h1 + e) has a bead;
(2) position (i2, h2) is empty and position (i2, h2 + e) has a bead,

then there exist (µ, s) ∈ HΛ

β such that Ls(λ) ‖ Ls(µ).

Proof. Let j 6= i1 and j 6= i2. There exist h3, h4 ∈ Z with e ∤ h3 − h4 such that in
Ls(λ),

• position (j, h3) has a bead and position (j, h3 + e) is empty;
• position (j, h4) has a bead and position (j, h4 + e) is empty.

Move in Ls(λ) the bead at positions (i1, h1 + e) and (i2, h2 + e) to positions

(i1, h1) and (i2, h2), respectively. Denote by Lŝ(λ̂) the new abacus. We have from

Lemma 3.4.16 that the move vector from Ls(λ) to Lŝ(λ̂) is M = (2, · · · , 2). Next,

move in L
λ̂
(λ̂) the beads at positions (j, h3) and (j, h4) to positions (j, h3 + e) and

position (j, h4 + e), respectively. Denote by Lu(µ) the new abacus obtained. It is

easy to check that the move vector from Lu(µ) to Lŝ(λ̂) is M. We can deduce
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from Lemma 3.4.9 that u = s and (µ, s) ∈ HΛ

β . In order to prove Ls(λ) ‖ Ls(µ),

one only need to take (κ1, ι1) = (i1, h1 + e). (κ2, ι2) = (i2, h2). �

Remark 4.1.11. The above lemma still holds without condition i1 6= i2. We omit
the details here.

Corollary 4.1.12. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e, where e 6= ∞. If there exist

1 ≤ i1, i2 ≤ r, i1 6= i2, h1, h2 ∈ Z, k1, k2 ∈ N+ such that in Ls(λ),

(1) position (i1, h1) is empty and position (i1, h1 + k1e) has a bead;
(2) position (i2, h2) is empty and position (i2, h2 + k2e) has a bead,

then there exists (µ, s) ∈ HΛ

β such that Ls(λ) ‖ Ls(µ).

Proof. It is easy to check there exist l1, l2 ∈ N such that positions (i1, h1+ l1e) and
(i2, h2+ l2e) are empty and positions (i1, h1+(l1+1)e) and (i2, h2+(l2+1)e) have
beads. Then the result follows from Lemma 4.1.10. �

The following lemmas are mainly used in the proof of Type II.

Lemma 4.1.13. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e. If there exist 1 ≤ i1 < i2 < i3 <
i4 ≤ r such that

(1) position (i1, h) is occupied by a bead and position (i3, h) is empty;
(2) position (i2, h) is occupied by a bead and position (i4, h) is empty,

then there exist (µ, s), (ν, s) ∈ HΛ

β such that Ls(µ) ‖ Ls(ν).

Proof. Move in Ls(λ) the beads at positions (i1, h) and (i2, h) to positions (i3, h)
and (i4, h), respectively. Denote by Ls̄(λ̄) the new abacus obtained. The move
vector from Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr), where

mt =





1, if i3 ≤ t ≤ i4 − 1;

2, if i2 ≤ t ≤ i3 − 1;

1, if i1 ≤ t ≤ i2 − 1;

0, if others.

It follows from Lemma 3.1.12 (2) that there exist h1 6= h, h2 6= h such that in Ls(λ),
and consequently in Ls̄(λ̄)

• position (i1, h1) is empty and position (i3, h1) is occupied by a bead;
• position (i2, h2) is empty and position (i4, h2) is occupied by a bead.

Moreover, in Ls̄(λ̄),

• position (i1, h) is empty and position (i3, h) is occupied by a bead;
• position (i2, h) is empty and position (i4, h) is occupied by a bead.

Define {l1, l3} to be equal to {h, h1} as a set satisfying l1 < l3. and define
{l2, l4} to be equal to {h, h2} as a set satisfying l2 < l4. Denote by Ls′(µ) the
abacus obtained by moving in Ls̄(λ̄) the beads at positions (i3, l3) and (i4, l2) to
positions (i1, l3) and (i2, l2), respectively and denote by Ls′′(ν) the abacus obtained
by moving in Ls̄(λ̄) the beads at positions (i3, l4) and (i4, l1) to positions (i1, l4)
and (i2, l1). It is easy to check that both the move vectors from Ls′(µ) and Ls′′(ν)
to Ls̄(λ̄) are equal to M. Hence we can deduce from Lemma 3.4.9 that s = s′ = s′′

and (µ, s), (ν, s) ∈ HΛ

β . Finally, it is a routine task to check that Ls(µ) ‖ Ls(ν) by

taking (κ1, ι2) = (i1, l3) and (κ2, ι2) = (i4, l2). �
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Lemma 4.1.14. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e. Assume that there exist 1 ≤ i1 <
i2 < i3 ≤ r such that

(1) position (i1, h1) is occupied by a bead and position (i2, h1) is empty;
(2) position (i3, h1) is empty and position (i3, h1 + e) is occupied by a bead.

Then there exist (µ, s), (ν, s) ∈ HΛ

β such that Ls(µ) ‖ Ls(ν).

Proof. Move the bead at position (i1, h1) to position (i2, h1) in Ls(λ). Denote by
Ls̄(λ̄) the new abacus obtained. Then by Lemma 3.4.13 the move vector from
Ls(λ) to Ls̄(λ̄) is M = (m1,m2, · · · ,mr), where

mt =

{
1, if i1 ≤ t ≤ i2 − 1;

0, if others.

It is ensured by Lemma 3.1.12 the existence of h2 6= h1, such that in Ls(λ) position
(i2, h2) is occupied by a bead and position (i1, h2) is empty.

Define {l1, l2} to be equal to {h1, h2} as a set satisfying l1 < l2. Denote by
Ls′(µ) the abacus obtained by moving the bead at position (i2, l2) to position
(i1, l2) in Ls̄(λ̄), and denote by Ls′′(ξ) the abacus obtained by moving the bead at
position (i2, l1) to position (i1, l1) in Ls̄(λ̄). Clearly, both the move vectors from
Ls′(µ) and Ls′′(ξ) to Ls̄(λ̄) are equal to M. By Lemma 3.4.9, s = s′ = s′′ and
(µ, s), (ξ, s) ∈ HΛ

β .

Let us construct a new abacus from Ls(ξ). Since position (i2, l1) is empty, we
have from Lemma 3.1.12 (2) that there exists k ∈ N such that position (i2, l1 −
(k + 1)e) is occupied by a bead and position (i2, l1 − ke) is empty. We first slide

the bead at position (i3, h1 + e) to position (i3, h1) in Ls(ξ) and denote by Lŝ(ξ̂)
the new abacus obtained. Then by Lemma 3.4.16 the move vector from Ls(ξ) to

Lŝ(ξ̂) is M′ = (m′
1,m

′
2, · · · ,m

′
r), where m

′
t = 1 for all 1 ≤ t ≤ r. Then in Lŝ(ξ̂),

move the bead at position (i2, l1 − (k + 1)e) to position (i1, l1 − ke), and denote

by Ls′′′(ν) the abacus obtained. Clearly, the move vector from Ls′′′(ν) to Lŝ(ξ̂) is
equal to M′. Therefore, s = s′′′ and (ν, s) and (ξ, s) are in the same block HΛ

β .

By taking (κ1, ι2) = (i1, l2) and (κ2, ι2) = (i3, h1), we arrive the result Ls(µ) ‖
Ls(ν). �

A dual lemma of Lemma 4.1.14 is as follows. Its correctness is ensured by Lemma
3.4.19 and Lemma 3.4.20.

Lemma 4.1.15. Let (λ, s) ∈ HΛ

β and s ∈ A
r

e. If

(1) position (i2, h1) is occupied by a bead and position (i3, h1) is empty;
(2) position (i1, h1 − e) is empty and position (ii, h1) is occupied by a bead,

where 1 ≤ i1 < i2 < i3 ≤ r, then there exist (µ, s), (ν, s) ∈ HΛ
β such that Ls(µ) ‖

Ls(ν).

4.2. Proof of Type I. In this subsection, we will prove the result of this section
as long as in block HΛ

β , there is a pair (λ, s) such that the operation set F from

Ls(λ) to its core is of Type I. We divide the proof into 7 cases according to the
possible shape of abaci.

Case 1. Positions (i + 1, h1) and (i + 1, h2) are empty and there are beads at
positions (i, h1) and (i, h2).

This is just the result of Lemma 4.1.1.
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Case 2. Position (i + 1, h1) is empty and there are beads at positions (i, h1),
(i, h2) and (i+ 1, h2).

Note that the case of i = r can be transformed into the case i < r by Lemma
3.4.12. So we only need to prove for the case of i 6= r. Firstly, let e 6= ∞. By lemma
3.4.3, there exist empty positions before (i+1, h2). Let (j+1, h2 − ke) be the first
one, where 1 ≤ j ≤ r, k ∈ N. Then all the positions between (j + 1, h2 − ke) and
(i− 1, h2) are not empty. Particularly, position (j, h2 − ke) is occupied by a bead.
We discuss according to whether or not j = r.

Subcase 1. j 6= r. There are two possibilities to consider.

(1) |i − j| > 1. Then in Ls(λ), positions (j + 1, h2 − ke) and (i + 1, h1) are
empty and there are beads at positions (j, h2 − ke) and (i, h1). These are just the
requirements of Lemma 4.1.3.

(2) |i− j| ≤ 1. This implies that j + 1 = i, or i+ 1 = j or j = i.

(i) If j + 1 = i, then k 6= 0 because position (i, h2 − ke) is before (i + 1, h2). As
a result, there are beads at positions (i, h2 − ke+ e) and (i + 1, h2 − ke + e) since
they are between positions (i, h2 − ke) and (i − 1, h2). Moreover, it is clear that
h2 − ke + e 6= h1. Now we have possessed all the conditions required by Lemma
4.1.6. For the convenience of the reader, we illustrate them as follows.

• Position (i− 1, h2 − ke) has a bead and position (i, h2 − ke) is empty.
• Position (i, h1) has a bead and position (i + 1, h1) is empty.
• Position (i, h2 − ke+ e) has a bead, h2 − ke+ e 6= h1.

(ii) If i + 1 = j, then there is a bead at position (i, h2 − ke) since it is between
positions (i+ 2, h2 − ke) and (i− 1, h2). By combining this fact with facts

• there is a bead at position (i, h1) and position (i+ 1, h1) is empty;
• there is a bead at position (i + 1, h2 − ke) and position (i + 2, h2 − ke) is
empty,

• there is bead at position (i, h2 − ke).

we get all the conditions required by Corollary 4.1.5.

(iii) If i = j, we consider the relationship between h1 and h2 − ke.
If h1 6= h2 − ke, then in Ls(λ) we have

• position (i, h1) is occupied by a bead and position (i+ 1, h1) is empty;
• position (i, h2 − ke) is bead and (i + 1, h2 − ke) is empty position.

Then the result follows from Lemma 4.1.1.
Conversely, we assume h1 = h2− ke. Note that position (i+1, h2− ke) is before

(i + 1, h2). This implies k 6= 0 and therefore, both positions (i, h2 − ke + e) and
(i− 1, h2 − ke) are between positions (i+1, h2 − ke) and (i− 1, h2). Consequently,
these two positions are occupied by beads. In addition, there is a bead at position
(i, h2 − ke) and position (i + 1, h2 − ke) is empty. By Lemma 4.1.7, we get the
result.

Subcase 2. j = r. We need to analyze the following three possibilities.
(1) 1 < i and i+ 1 < r. Then in Ls(λ), we have

• position (i, h1) is occupied by a bead and position (i+ 1, h1) is empty;
• position (r, h2 − ke) is occupied by a bead and position (1, h2 − ke − e) is
empty.

They are conditions of Lemma 4.1.3.



REPRESENTATION TYPE OF BLOCKS OF CYCLOTOMIC HECKE ALGEBRAS 43

(2) 1 = i. The proof is similar to Subcase 1. (2) (i). We omit the details and
leave it as an exercise.

(3) i + 1 = r. The proof is similar to Subcase 1. (2) (ii). We leave it as an
exercise.

A final remark is for the case of e = ∞. The proof is a copy of Subcase 1, in
which k need to be replaced by 0. Then we have completed the proof.

Case 3. Positions (i, h1), (i + 1, h1) and (i + 1, h2) are empty and there is a
bead at position (i, h2).

It is dual to Case 2.

Case 4. Positions (i+1, h1) and (i, h2) are empty and there are beads at positions
(i, h1) and (i+ 1, h2).

By Lemma 3.4.12, we can transform the case i = r into the case i < r. So we
only need to handle the case i < r. Let us first give the proof under the assumption
e 6= ∞. Note that the existence of empty positions before position (i + 1, h2) is
ensured by Lemma 3.4.3, and thus we suppose that position (j +1, h2 − k1e) is the
first one, where k1 ∈ N, 1 ≤ j ≤ r. Then there is a bead at position (j, h2 − k1e).
Furthermore, Lemma 3.4.3 also tells us there are positions occupied by blacks beads
after position (i, h2). Let (l, h2 + k2e) be the first one, where k2 ∈ N, 1 ≤ l ≤ r.
Note that then position (l + 1, h2 + k2e) is empty. We divide the proof into four
parts according to the values of j and l.

Subcase 1. j = l = r. Under this condition, position (r, h2 + k2e) is after (i, h2).
This implies k2 6= 0 and therefore, h2 − k1e 6= h2 + k2e. Now in Ls(λ),

• position (r, h2 − k1e) is occupied by a bead and position (1, h2 − (k1 + 1)e)
is empty;

• position (r, h2 + k2e) is occupied by a bead and position (1, h2 − k2e− e) is
empty;

We complete the proof of this subcase by Lemma 4.1.1.

Subcase 2. j = r and l 6= r. We consider three possibilities.

(1) 1 < i and i+ 1 < r. Now the conditions of Lemma 4.1.3 are all in readiness.

• Position (r, h2 − k1e) is occupied by a bead and position (1, h2 − (k1 + 1)e)
is empty.

• Position (i, h1) is occupied by a bead and position (i+ 1, h1) is empty.

(2) 1 = i and i+1 < r. We have owned all conditions required by Lemma 4.1.4.
Let us illustrate them as follows.

• Position (r, h2 − k1e) has a bead and position (1, h2 − (k1 + 1)e) is empty.
• Position (1, h1) has a bead and position (2, h1) is empty.
• Position (1, h2) is empty and position (2, h2) has a bead.
• h2 6= h2 − (k1 + 1)e.

(3) 1 < i and i+ 1 = r. We are in the circumstances of Lemma 4.1.4.

Subcase 3. j 6= r and l = r.

It is dual to (2).

Subcase 4. j 6= r and l 6= r. We consider two possibilities according to the
relationship among i, j and l.

(1) |i− j| > 1 or |i− l| > 1.
If |i− j| > 1, by combining it with facts that
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• position (i, h1) is occupied by a bead and position (i+ 1, h1) is empty;
• position (j, h2 − k1e) is occupied by a bead and position (j +1, h2 − k1e) is
empty,

we have gathered all the conditions required by Lemma 4.1.3.
On the other hand, if |i − l| > 1, we can obtain the result by the following

information of Ls(λ), which is required by Lemma 4.1.3.

• Position (i, h1) has a bead and position (i + 1, h1) is empty.
• Position (l, h2 + k2e) has a bead and position (l + 1, h2 + k2e) is empty.

(2) |i− j| ≤ 1 and |i − l| ≤ 1. We consider 7 possibilities.

(i) If j = i+ 1 and l = i− 1, then l + 1 < j and

• position (l, h2 + k2e) has a bead and position (l + 1, h2 + k2e) is empty;
• position (j, h2 − k1e) has a bead and position (j + 1, h2 − k1e) is empty,

which are requirements of Lemma 4.1.3.

(ii) If j = i+ 1 and l = i, then position (i, h2 + k2e) is after position (i, h2) and
hence k2 6= 0. Since all positions between (i, h2) and (i, h2 + k2e) are empty, we
have position (i+2, h2+k2e) is empty. Note that in Ls(λ), position (i+1, h2−k1e)
has a bead and position (i+2, h2− k1) is empty. We have from Lemma 3.1.12 that
there exists h3 ∈ Z such position (i+ 1, h3) is empty and position (i+ 2, h3) has a
bead with h3 6= h2+k2e. Here is a summary of useful information in abacus Ls(λ).

• Position (i, h2 + k2e) has a bead and position (i+ 1, h2 + k2e) is empty.
• Position (i+1, h2 − k1e) has a bead and position (i+2, h2 − k1e) is empty.
• Position (i+ 1, h3) is empty and there is a bead at position (i+ 2, h3).

which suit the conditions of Lemma 4.1.4.

(iii) If j = i+1 and l = i+1, then (i+1, h2 + k2e) is after (i, h2) and this leads
to k2 6= 0 and h2 − k1e 6= h2 + k2e. Note that in Ls(λ),

• position (i+1, h2 − k1e) has a bead and position (i+2, h2 − k1e) is empty;
• position (i+1, h2 + k2e) has a bead and position (i+ 2, h2 + k2e) is empty.

It is proper to use Lemma 4.1.1.

(iv) If j = i − 1 and |l − i| ≤ 1, then position (i, h2 − k1e) is before position
(i+ 1, h2) and so k1 6= 0. By observing abacus Ls(λ), we have

• position (i− 1, h2 − k1e) has a bead and position (i, h2 − k1e) is empty;
• position (i, h1) has a bead and position (i + 1, h1) is empty;
• position (i, h2) is empty and position (i+ 1, h2) has a bead.

Clearly, h1 6= h2. Then by Lemma 4.1.4, we get the result.

(v) If j = i+1 and l = i− 1, then all positions between position (i+1, h2− k1e)
and position (i, h2) are occupied by beads, which include position (i− 1, h2 − k1e).
Notice that in Ls(λ), position (i− 1, h2+ k2e) has a bead and position (i, h2+ k2e)
is empty. By Lemma 3.1.12, there exists h3 ∈ Z with h3 6= h2 − k1e such that
position (i − 1, h3) is empty and position (i, h3) has a bead. We have gathered all
conditions of Lemma 4.1.4 Let us make a summary as follows.

• Position (i− 1, h2 + k2e) has a bead and position (i, h2 + k2e) is empty.
• Position (i, h2 − k1e) has a bead and position (i+ 1, h2 − k1e) is empty.
• Position (i− 1, h3) is empty and position (i, h3) has a bead.
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(vi) If j = i+1 and l = i, then we have k1 6= 0 from that position (i+1, h2−k1e)
is before position (i + 1, h2). As a result, h2 − k1e 6= h2 + k2e. Then in Ls(λ), we
have

• position (i, h2 − k1e) has a bead and position (i+ 1, h2 − k1e) is empty;
• position (i, h2 + k2e) has a bead and position (i+ 1, h2 + k2e) is empty.

This fits Lemma 4.1.1.

(vii) If j = l = i + 1, then k2 6= 0 because position (i + 1, h2 + k2e) is after
position (i, h2). This implies that h2 6= h2 + k2e. Now in Ls(λ),

• position (i, h2 − k1e) has a bead and position (i+ 1, h2 − k1e) is empty;
• position (i+1, h2 + k2e) has a bead and position (i+2, h2 + k2e) is empty;
• position (i, h2) is empty and position (i+ 1, h2) has a bead.

The conditions of Lemma 4.1.4 have been satisfied.
Let us give a final remark to complete the proof. If e = ∞, then the proof is a

copy of case j 6= r, l 6= r, in which both k1 and =k2 are replaced by 0.

Case 5. Positions (i, h1) and (i+1, h1) are empty and there are beads at positions
(i, h2) and (i+ 1, h2).

For the same reason as in the cases above, we assume i < r. Firstly, let e 6= ∞.
By Lemma 3.4.3, there exist beads after position (i, h1). Let the bead at position
(l, h1+ k1e) be the first one, where 1 ≤ l ≤ r, k1 ∈ N. Note that position (i+1, h1)
is empty. Then all the positions between (i + 2, h1) and (l, h1 + k1e) are empty.
Particularly, position (l + 1, h1 + k1e) is empty. Moreover, we have from Lemma
3.4.3 that there exist empty positions before position (i + 1, h2). Let position
(j + 1, h2 − k2e) be the first one, where 1 ≤ j ≤ r, k2 ∈ N. Note there is a bead
at position (i, h2). Then all positions between (j + 1, h2 − k2e) and (i − 1, h2) are
occupied by beads, including position (j, h2 − k2e). We consider four subcases.

Subcase 1. l = j = r. There are two possibilities.
(1) If h1 + k1e 6= h2 − k2e, then in Ls(λ),

• there is a bead at position (r, h1 + k1e) and position (1, h1 + k1e − e) is
empty.

• there is a bead at position (r, h2 − k2e) and position (1, h2 − k2e − e) is
empty.

By Lemma 4.1.1, the result follows.
(2) If h1 + k1e = h2 − k2e, then positions (i, h1) and (i + 1, h1) are empty and

there are beads at positions (i, h1 + (k1 + k2)e) and (i + 1, (k1 + k2)e), which are
just conditions of Corollary 4.1.12.

Subcase 2. l < r and j = r. We consider three situations.
(1) If 1 < l and l + 1 < r, then in Ls(λ),

• there is a bead at (l, h1 + k1e) and empty at (l + 1, h1 + k1e) is empty;
• there is a bead at (j, h2 − k2e) and empty at (j + 1, h2 − k2e) is empty.

It is clear that we are in the circumstances of Lemma 4.1.3.
(2) If l+1 = r, then there is a bead at position (r−1, h1+k1e). Since (l, h1+k1e)

is after position (i, h1), position (l+2, h1+k1e) is between positions (i+2, h1) and
(l, h1 + k1e). This implies that position (l + 2, h1 + k1e) is empty, or position
(1, h1+k1e−e) is empty. Moreover, we have in Ls(λ) that position (1, h2−k2e−e)
and (r, h1 + k1e) is empty and there are a bead at position (r, h2 − k2e). We have
gathered all conditions required by Corollary 4.1.5.
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(3) If l = 1, we consider the value of k1. If k1 6= 0, then position (l, h1 + k1e) is
after position (i, h1). This forces positions (r, h1 + k1e) and (1, h1 + k1e− e) being
between positions (i + 2, h1) and (1, h1 + k1e), and therefore they are empty. In
addition, position (r, h2−k2e) has a bead. This implies that h2−k2e−e 6= h1+k1−e.
Here is a summary of useful information in abacus Ls(λ).

• there is a bead at (r, h2 − k2e) and position at (1, h2 − k2e− e) is empty;
• there is a bead at (1, h1 + k1e) and position at (2, h1 + k1e) is empty.
• Position at (1, h1 + k1e− e) is empty and h1 + k1e− e 6= h2 − k2 − e.

which are requirements of Lemma 4.1.6.
If k1 = 0, we consider positions (i + 1, h2 − k2e) and (i, h2 − k2e). They are

between positions (1, h2 − k2e − e) and (i − 1, h2) and consequently occupied by
beads. By combining this with the following facts

• positions (i, h1) and (i+ 1, h1) are empty
• there is a beads at position (r, h2−ke) and position (1, h2−ke−e) is empty;
• there is a bead at position (1, h1) and position (2, h1) is empty;

we obtain all conditions of Lemma 4.1.9.

Subcase 3. l = r and j < r.

It is dual to Subcase 2.

Subcase 4. l < r and j < r. We consider the relationship between j and l. If
|l − j| > 1, then the following facts are just required by Lemma 4.1.3.

• There is a bead at position (l, h1 + k1e) and position (l + 1, h1 + k1e) is
empty.

• There is a bead at position (j, h2 − k2e) and position (j + 1, h2 − k2e) is
empty.

On the other hand, if |l − j| ≤ 1, we need to handle three possibilities, l = j or
l+ 1 = j or l − 1 = j.

(1) l = j. We need to discuss the situation. If h1 + k1e 6= h2 − k2e, then in
Ls(λ),

• there is a bead at position (l, h1+k1e) and position (l+1, h1+k1e) is empty,
• there is a bead at position (l, h2−k2e) and position (l+1, h2−k2e) is empty.

Then the correctness of the result is ensured by Lemma 4.1.1.
If h1 + k1e = h2 − k2e, then positions positions (i, h1) and (i+ 1, h1) are empty

and there are beads at positions (i, h1 + (k1 + k2)e) and (i+ 1, (k1 + k2e)e), which
are just conditions of Corollary 4.1.12

(2) l+1 = j. Note that position (j−1, h2−k2e) is between positions (j+1, h2−
k2e) and (i− 1, h2). This implies that there is a bead at position (j − 1, h2 − k2e).
Then in Ls(λ),

• there is a bead at position (l, h1+k1e) and position (l+1, h1+k1e) is empty.
• there are beads at positions (l, h2 − k2e) and (l + 1, h2 − k2e) and position
(l + 2, h2 − k2e) is empty.

The all conditions of Corollary 4.1.5 are satisfied.

(3) l − 1 = j. We need to discuss according to the values of k1 and k2.
If k2 ≥ 2, then positions (j+1, h2−k2e+e) and (j+2, h2−k2e+e) are between

positions (j+1, h2−k2e) and (i− 1, h2), and therefore they are occupied by beads.
This forces h2−k2e+ e 6= h1+k1e because position (j+2, h1+k1e) is empty. Now
in abacus Ls(λ), we have
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• position (j, h2 − k2e) has a bead and position (j + 1, h2 − k2e) is empty;
• position (j+1, h1+ k1e) has a bead and position (j+2, h1+ k1e) is empty;
• there is a bead at (j + 1, h2 − k2e+ e), h2 − k2e+ e 6= h1 + k1e,

which are all conditions required by Lemma 4.1.6 and we obtain the result. Sim-
ilarly, we can prove the result if k1 ≥ 2. So we only need to consider k1 < 2 and
k2 < 2. It is necessary to point out here that we can prove the result by the way
above if k2 = 1 and i ≤ j + 1 or if k1 = 1 and l ≤ i+ 1.

Let us divide the proof into the following.
(i) k1 = k2 = 1. By the analysis above, we only need to work under the assump-

tions i > j + 1 and l > i+ 1. Obviously, this is contradict with l − 1 = j.
(ii) k1 = 0 and k2 = 0. Note that position (l, h1 + k1e) is after position (i, h1).

Then k1 = 0 implies l < i. Moreover, position (j + 1, h2 − k2e) is before position
(i + 1, h2). A simple corollary of k2 = 0 is i + 1 < j + 1, or i < j. As a result, we
get l < j, which is contradict to l = j + 1.

(iii) k1 = 0 and k2 = 1. We only need to give a proof under condition j + 1 < i.
Then in Ls(λ),

• positions (i, h1) and (i + 1, h1) are empty and there are beads at positions
(i, h2) and (i+ 1, h2);

• position (j + 1, h1) has a bead and position (j + 2, h1) is empty.
• position (j, h2 − e) has a bead and position (j + 1, h2 − e) is empty.

All conditions of Lemma 4.1.9 are satisfied.
(iv) k1 = 1 and k2 = 0. It is a dual case of (ii).

Finally, if e = ∞, then the proof is a copy of case j 6= r, l 6= r, in which both k1
and =k2 are replaced by 0.

Case 6. There are beads at positions (i+ 1, h1) and (i+ 1, h2).

Because positions (i+1, h1) and (i+1, h2) have beads and [(i, h1), ∗], [(i, h2), ∗] ∈
F , the operation set F has to contain [(i + 1, h1), ∗] and [(i + 1, h2), ∗]. If one of
positions (i + 2, h1) and (i + 2, h2) is empty, then we arrive at Case 1 or Case 2.
Otherwise, repeat the above analysis process. Clearly, the process will end after
finite times. since F is finite and this completes the proof.

Case 7. Positions (i, h1) and (i, h2) are empty.

Note that positions (i, h1) and (i, h2) are empty and [(i, h1), ∗], [(i, h2), ∗] ∈ F .
This forces [(i − 1, h1), ∗], [(i − 1, h2), ∗] ∈ F . If one of positions (i − 1, h1) and
(i − 1, h2) is not empty, then we are in the circumstances of Case 1 or Case 3.
Otherwise, we can repeat the above analysis process. Note that F is finite. This
implies that we only need to do the analysis process finite times.

4.3. Proof of Type II. In this subsection, we will prove the result os this section
as long as in block HΛ

β , there is a pair (λ, s) such that the operation set F from

Ls(λ) to its core is of Type II. Assume mi ≥ 2 and the operations happen in column
h.

We divide the proof into the following 4 cases.

Case 1. Position (i, h) is empty and there is a bead at position (i+ 1, h).

By Lemma 3.4.12, we can transform the case i = r into the case i < r. So we
only need to handle the case i < r. Let us first give the proof under the assumption
e 6= ∞. In this case, it is clear that there exist at least two empty positions
before position (i + 1, h). Let position (j1, h − k1e) and (j2, h − k2e) be the first
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one and the second one, respectively, where k1 ≤ k2 ∈ N. This implies that all
positions between (j1, h − k1e) and (i + 1, h) and those between (j2, h − k2e) and
(j1, h−k1e) are occupied by beads. If k1 = 0 then i+1 < j1 ≤ r and if k2 = 0 then
i+ 1 < j1 < j2 ≤ r. On the other hand, there exist at least two positions occupied
by beads after position (i+1, h). Let positions (j3, h+k3e) and (j4, h+k4e) be the
first one and the second one, respectively, where k3 ≤ k4 ∈ N. Clearly, all positions
between (i, h) and (j3, h + k3e) and those between (j3, h + k3e) and (j4, h + k4e)
are empty. Moreover, if k3 = 0 then 1 ≤ j3 < i and if k4 = 0 then 1 ≤ j4 < j3 < i.
We now analyze the possible values of k2 and k4. If k2 > 1, then by Lemma 3.4.14
[(r, h), ∗], [(r, h − e), ∗] ∈ F . It is contradict with the conditions of this type and
therefore, k2 ≤ 1. Similarly, we have k4 ≤ 1. Furthermore, if k4 = k2 = 1, then
[(r, h), ∗], [(r, h + e), ∗] ∈ F . It is also a contradiction. That is, we have proved
k2+ k4 ≤ 1. In addition, if k2 + k4 = 1, by conditions of this type, we have j2 ≤ j4.

Now let us divide the proof into five subcases according to the values of k1 and
k2 and the relationship between j2 and j4.

Subcase 1. k2 = k4 = 0. Under this condition, it is easy to check that

• positions (j1, h) and (j2, h) are empty;
• there are beads at positions (j4, h) and (j3, h);
• 1 ≤ j4 < j3 < j1 < j2 ≤ r.

By Lemma 4.1.13, the result follows.

Subcase 2. k2 = 1, k4 = 0 and j2 = j4. The given conditions implies that

• positions (i, h) and (j4, h− e) are empty;
• there are beads at positions (j3, h) and (j4, h);
• 1 ≤ j4 < j3 < i.

Clearly, this is just the case Lemma 4.1.15 handled.

Subcase 3. k2 = 1, k4 = 0 and j2 < j4. Move the runners 1, · · · , j2 of Ls(λ)
e positions to the right and put them on the top in the original order. Denote
by Ls′(λ) the new abacus obtained. Then by Lemma 3.4.12 (5), Ls′(λ) ∈ HΛ

β ,

s′ ∈ A
r

e. By analyzing the shape of Ls(λ) and using the relationship between Ls(λ)
and Ls′(λ), we get that in Ls′(λ),

• positions (i− j2, h) and (r, h) are empty;
• there are beads at positions (j3 − j2, h) and (j4 − j2, h);
• 1 ≤ j4 − j2 < j3 − j2 < i− j2 < r,

which are conditions required by Lemma 4.1.13.

Subcase 4. k2 = 0, k4 = 1 and j2 < j4. Move the runners j4, · · · , r of Ls(λ) e
positions to the left and put them at the bottom in the original order. Then the
proof left is similar to Subcase 3.

Subcase 5. k2 = 0, k4 = 1 and j2 = j4. By observing abacus Ls(λ), we have

• positions (j1, h) and (j2, h) are empty;
• there are beads at positions (i+ 1, h) and (j2, h+ e);
• i + 1 < j1 < j2 ≤ r.

Then Lemma 4.1.14 provides us a pair of incomparable abaci.

Finally, if e <∞, then the proof is the same as Subcase 1.

The following three cases can be handled similarly as Case 1. We omit the details
here.
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Case 2. Position (i, h) is occupied by a bead and position (i+ 1, h) is empty.

Case 3. Both position (i, h) and (i+ 1, h) are occupied by beads.

Case 4. Both positions (i, h) and (i+ 1, h) are empty.

5. Proof of Main Theorem: Part II

Given a pair (λ, s) ∈ HΛ

β with s ∈ A
r

e and r > 2, let M = (1, 1, · · · , 1) the block

move vector from Ls(λ) to its core. We prove in this section that HΛ

β has infinite
representation type. Clearly, the condition on M in this section forces e < ∞.
Moreover, s has to be one of the following two types.

Type I: There exists 1 ≤ j < r such that sj 6= sj+1.
Type II: sj = sj+1 for all 1 ≤ j < r.

5.1. Proof of Type I. Let us first prove two lemmas under the assumptions of
this type.

Lemma 5.1.1. Let Ls(λ) be (e, s)-complete, where s ∈ Ar
e. Then there exists h ∈ Z

such that in Ls(λ), position (r, h) has a bead and position (1, h) is empty.

Proof. Let us use reduction to absurdity. Assume that in Ls(λ), if position (r, h)
has a bead, then so is position (1, h). Note that (λ, s) is complete. This implies
that for arbitrary h ∈ Z, if position (1, h) has a bead, then all positions (x, h) have
beads for 1 ≤ x ≤ r, and if position (1, h) is empty, then all positions (x, h) are
empty for all 1 ≤ x ≤ r. That is, all runners in Ls(λ) are the same. By Lemma
3.4.7, this forces s1 = s2 = · · · = sr. It contradicts with the assumption of Type I
and this completes the proof. �

For the other lemma, we continue to use the method of disproof.

Lemma 5.1.2. There exists k ∈ Z such that in Ls(λ), position (1, k) has a bead
and position (r, k + e) is empty.

Proof. Suppose for arbitrary l ∈ Z, the bead at position (1, l) implies a bead being
at position (r, l + e). Denote by Lu(µ) the abacus obtained by in Ls(λ) deleting

Ls1(λ
(1)) and putting Ls1+e(λ

(1)) on the top. It follows from Lemma 3.1.9 that
ur−1 = sr and ur = s1 + e. Then in Lu(µ), a bead at position (r, l) forces there
being a bead at position (r− 1, l). Let h be an integer such that all positions (i, x)
are occupied by beads, where 1 ≤ i ≤ r and x ≤ h. Then in Lu(µ), positions
(r− 1, y) with y > h having beads are more than that in runner r. Combining this
fact with Lemma 3.1.9, we get ur−1 ≥ ur, or sr ≥ s1 + e. This contradict with
s ∈ Ar

e. We have completed the proof. �

We are ready to give the proof of Type I. The strategy is to construct incompa-
rable abaci.

Proof of Type I. Let Ls∗(λ
∗) be the core of Ls(λ). Then a direct corollary

of Lemma 3.4.7 is s∗ = s. Note that Ls(λ
∗) is (e, s)-complete. We have from

Lemma 3.1.12 (2) that there exists h ∈ Z such that in Ls(λ
∗), position (r, h) has

a bead and position (1, h) is empty. Take the biggest one and denote it still by h.
According to the definition of (e, s)-complete, we can find 1 < j ≤ r such that in
Ls(λ

∗), positions (x, h) have beads for j ≤ x ≤ r and positions (y, h) are empty for
1 ≤ y < j. On the other hand, Lemma 5.1.2 implies the existence of k ∈ Z such
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that in Ls(λ
∗), position (1, k) has a bead and position (r, k + e) is empty. Write

the biggest one still by k for simplicity. It is clear h 6= k+ e by assumptions above.
We consider two cases.

Case 1. h < k + e.

In Ls(λ
∗), move the beads at positions (1, k) and (j, h) to positions (r, k + e)

and (1, h), respectively, and then move successively the beads at positions (x, h) to
positions (x − 1, h) for all j < x ≤ r from j + 1 to r. Denote by Lu(µ) the new
abacus obtained. Furthermore, suppose that in Ls(λ

∗),  2
1 is at position (2,m).

Move in Ls(λ
∗) the bead at position (2,m) to position (2,m + e) and denote by

Lv(ν) the abacus obtained. By Lemma 3.4.13 , both move vectors from Lu(µ) and
Lv(ν) to Ls(λ

∗) are equal to M = {1, 1, · · · , 1}. We deduce from Lemma 3.4.9
that u = v = s and (µ, s), (ν, s) ∈ HΛ

β . To prove Ls(µ) ‖ Ls(ν), we can take

(κ1, ι1) = (1, h), (κ2, ι2) = (2, h).

Case 2. k + e < h. We divide the proof into two subcases.

Subcase 1. j > 2. This implies that in Ls∗(λ
∗) position (2, h) is empty. Suppose

that in Ls(λ
∗), the bead  1

1 is at position (1,m). Move this bead to (1,m+ e) and
denote by Lu(µ) the new abacus obtained. On the other hand, move in Ls(λ

∗) the
bead at position (1, k) to position (r, k + e) and then move the bead at position
(2, k) to position (1, k). Move the bead at position (j, h) to position (2, h), and next
move successively the beads at positions (x, h) to positions (x− 1, h) for j < x ≤ r
from j+1 to r. Denote the final abacus obtained by Lv(ν). In the light of Lemma
3.4.13, both the move vectors from Lu(µ) and Lv(ν) to Ls(λ

∗) are equal to M.
According to Lemma 3.4.9, u = v = s and (µ, s), (ν, s) ∈ HΛ

β . It is a routine task

to check Lu(µ) ‖ Lv(ν) by taking (κ1, ι1) = (1,m+ e) and (κ2, ι2) = (r, h).

Subcase 2. j = 2. This implies that in Ls(λ
∗) position (2, h) has a bead. Assume

bead  2
1 in Ls(λ

∗) is at position (2,m). Let us construct two incomparable abaci by
Ls(λ

∗). Firstly, denote by Lu(µ) the abacus obtained by moving bead at position
(2,m) to position (2,m+ e). Secondly, move in Ls(λ

∗) the bead at position (1, k)
to position (r, k + e), and move successively beads at positions (x, h) to (x − 1, h)
for 2 ≤ x ≤ r from 2 to r. Denote by Lv(ν) the new abacus. Then u = v = s and
(µ, s), (ν, s) ∈ HΛ

β . By taking (κ1, ι1) = (2,m+ e) and (κ2, ι2) = (r, k + e), we get

Lu(µ) ‖ Lv(ν).

5.2. Proof of Type II. Let us first depict the frame of abaci in a block with block
move vector being (1, 1, · · · , 1). For this aim, we need the following lemma.

Lemma 5.2.1. If Ls(λ) is (e, s)-complete, then all runners in Ls(λ) are the same.

Proof. Let h ∈ Z such that in Ls(λ) all positions (x, y) are occupied by beads,
where 1 ≤ x ≤ r and y ≤ h. Assume the bead at position (1, h) is  1

j . Note that
s1 = sr. So by Lemma 3.1.9, the bead at position (r, h) is  r

j . On the other hand,

We can derive from Ls(λ) being complete that for all l ∈ Z,

• if position (r, l) is empty, then all positions (x, l) in Ls(λ) are empty;
• if there is a bead at position (1, l), then all positions (x, l) in Ls(λ) have
beads.

As a result, for 1 ≤ k < j,  1
k and  r

k are in the same column. This forces all
runners are the same. �
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In the following two lemmas, we always assume (λ, s) ∈ HΛ

β with s ∈ Ar
e and

Ls∗(λ
∗) its core. The pair (λ, s) satisfies assumptions of this subsection. Based on

Lemma 5.2.1, we can describe all the abaci in HΛ

β .

Lemma 5.2.2. The following are equivalent.

(1) (µ, s) ∈ HΛ

β .

(2) In Ls(µ) there is an empty position (j, l) such that position (j, l + e) has a
bead and Ls∗(λ

∗) can be obtained from Ls(µ) by moving the bead at position
(j, l + e) to position (j, l).

(3) λ∗ can be obtained from µ by deleting a rim e-hook in µ(j).

Proof. (2) ⇔ (3) is a clear corollary of Lemma 3.4.16 and “(2) ⇒ (1)” is a direct
corollary of Lemma 3.4.9 and 3.4.16. Thus we only need to prove“(1) ⇒ (2)”.

By Lemma 3.4.7, we have s∗ = s. Since (µ, s) ∈ HΛ

β , we deduce from Lemma

3.4.10 that the core of Ls(µ) is Ls(λ
∗). Obviously, Ls(λ

∗) is (e, s)-complete, and
then all its runners are the same in the light of Lemma 5.2.1. This forces the final
operation from Ls(µ) to Ls(λ

∗) is [(r, l + e) ∗] for some l ∈ Z. Suppose the final
operation is done in abacus Lv(ν). Then in Lv(ν), we have

• position (1, l) is empty and all the other positions in column l have beads;
• position (r, l+ e) has a bead and all the other positions in column l+ e are
empty;

• for each h 6= l, l+ e, all positions in column h are either occupied by beads
or empty.

Consequently, operations from Ls(µ) to Lv(ν) must happen in columns l and l+e.
Furthermore, in Ls(µ) column l, there is only one empty position (i, l) and in
column l+ e there is only one position (j, l+ e) occupied by a bead. Note that the
block move vector is (1, 1, · · · , 1). This forces i = j. �

The following corollary is easy and we omit its proof.

Corollary 5.2.3. All multipartitions in HΛ

β is a totally ordered set with respect

to the dominance order. Moreover, assume one can obtain λ∗ from µ and ν by
deleting a rim e-hook in µ(i) and ν(j), respectively. If i < j, then µ✄ ν.

Next we consider the simple modules of a block satisfying assumptions of this
subsection.

Lemma 5.2.4. If pair (λ, s) is a Kleshchev one, then λ∗ can be obtained from λ

by deleting a rim e-hook in µ(r).

Proof. By Lemma 5.2.2, λ∗ can be obtained from λ by deleting a rim e-hook in
µj , where 1 ≤ j ≤ r. If j < r, let σ be transposition (j, r) and write λσ = ν.
Since λ∗ can be obtained from ν by deleting a rim e hook in νr, we have from
Lemma 5.2.2 that (ν, s) ∈ HΛ

β . It is clear that if t is a standard (λ, s)-tableau, then

tσ is a standard (ν, s) tableau. Note that s1 = s2 = · · · = sr. This implies that
resλ,s(t) = resν,s(tσ). By Corollary 5.2.3, λ✄ν. Then we can deduce from Lemma
3.1.2 that pair (λ, s) is not Kleshchev. This completes the proof. �

We divide the proof into two cases according to whether or not e = 2.

Case 1. e 6= 2
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It is a classical result (see [46, Exercise 5.10]) that there are exactly e partitions

λ(1)✄λ(2)✄ · · ·λ(e) of weight 1 with e-core λ(r−1)∗, and because e 6= 2, the numbers
of standard λ(e)-tableaux and standard λ(e−1)-tableaux are not same. Let

µ = (λ∗(1), · · · ,λ∗(r−2), λ(e),λ
∗(r))

and

ν = (λ∗(1), · · · ,λ∗(r−2), λ(e−1),λ
∗(r)).

Clearly, the numbers of standard µ-tableaux and standard ν-tableaux are not same.
We have from Lemma 5.2.2 that (µ, s), (ν, s) ∈ HΛ

β . Moreover, it follows from
Lemma 5.2.4 that neither µ nor ν is a Kleshchev multipartition, and from Corollary
5.2.3 that both µ and ν are not maximal. We deduce from Corollary 2.3.9 that
block HΛ

β has infinite representation type.

Case 2. e = 2.

Given a pair (λ, s) satisfying the assumptions of this subsection with (λ∗, s∗) its
core, we deduce from Lemma 5.2.2 that

(1) Ls∗(λ
∗) can be obtained from Ls(λ) by moving certain bead at position

(j, h) to empty position (j, h− 2);
(2) s∗ = s;

(3) all runners in Ls∗(λ) are same and λ∗(1) = λ∗(2) = · · · = λ∗(r) are 2-cores.

It is easy to check that λ
∗(i) is of the form (m,m − 1, · · · , 1) with m ≥ 0. The

2-core is ∅ when m = 0. Assume the bead  1
1 in Ls∗(λ

∗) is at position (1, x). Move

this bead to position (1, x+ 2) and denote by Ls(λ̃(m)) the new abacus obtained.

It follows from Lemma 5.2.2 that (λ̃(m), s) and (λ, s) belong to the same block.
By Lemma 3.1.5, we can assume that s1 = s2 = · · · = sr = 0. Then Λλ̃(m),s = rΛ0

and

βλ̃(m),s =

{
r[k2α0 + k(k + 1)α1] +α0 +α1, if m = 2k;

r[(k + 1)2α0 + k(k + 1)α1] +α0 +α1, if m = 2k + 1.
(5.2.1)

We claim that

rΛ0 −α0 −α1 =

{
(σ0σ1)

k(rΛ0 − βλ̃(m),s), if m = 2k;

(σ0σ1)
kσ0(rΛ0 − βλ̃(m),s), if m = 2k + 1.

We use induction on m. Clearly, the claim holds when m = 0. Assume the claim
holds for m− 1. We now prove the claim holds for m. Let us consider two cases.

If m = 2k, then

σ1(rΛ0 − βλ̃(m),s)

= σ1(rΛ0 − r[k2α0 + k(k + 1)α1]−α0 −α1) (Substituting (5.2.1))

= rΛ0 − r[k2α0 + k(k + 1)α1]−α0 −α1

−(α1, rΛ0 − r[k2α0 + k(k + 1)α1]−α0 −α1)α1 (Definition of σ1)

= rΛ0 − r[k2α0 + k(k − 1)α1]−α0 −α1 (Definition of bilinear form( , ))

= rΛ0 − βλ̃(m−1),s. (Substituting (5.2.1))

That is, (σ0σ1)
k(rΛ0 − βλ̃(m),s) = (r0r1)

k−1r0(rΛ− βλ̃(m−1),s). By the induction

hypothesis, the claim follows in this case.
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If m = 2k + 1, then

σ0(rΛ0 − βλ̃(m),s)

= σ0(rΛ0 − r[(k + 1)2α0 + k(k + 1)α1]−α0 −α1) (Substituting (5.2.1))

= rΛ0 − r[(k + 1)2α0 + k(k + 1)α1]−α0 −α1

−(α0, rΛ0 − r[(k + 1)2α0 + k(k + 1)α1]−α0 −α1)α0 (Definition of σ0)

= rΛ0 − r[k2α0 + k(k + 1)α1]−α0 −α1 (Definition of bilinear form ( , ))

= rΛ0 − βλ̃(m−1),s. (Substituting (5.2.1))

This implies that (σ0σ1)
kσ0(rΛ0 − βλ̃(m),s) = (σ0σ1)

k(rΛ − βλ̃(m−1),s). By the

induction hypothesis, the claim holds in this case and we have proven the claim.
According to a classical result proved in [18] by Chuang and Rouquier, we only

need to consider block HrΛ0
α0+α1

. We have from Lemma 3.1.4 that this block has

a basis {eα0+α1y
i
1y

j
2 | 0 ≤ i < r, 0 ≤ j < 2}, or the block is isomorphic to

K[y1, y2]/〈yr1, y
2
2〉. Clearly, the block has infinite representation type.

6. Proof of Main Theorem: Part III

Let HΛ

β be a block with block move vector M = (m1, · · · ,mr), where r > 2,
satisfying

(1) w =
∑

imi ≥ 2;
(2) mi ≤ 1 for 1 ≤ i ≤ r;
(3)

∏
imi = 0.

Define an oriented quiver Γr associated with HΛ

β as follows. The vertex set is

I = Z/rZ = {1̄, 2̄, · · · , r̄} and directed edges are ī −→ i+ 1 for all mi = 1.
If e = ∞, then the meaning of 0 ≤ j ≤ e− 1 is j ∈ Z.

6.1. Infinite representation type cases. To simplify the proof, we can assume
according to Lemma 3.4.12 in this subsection that mr = 0. A direct benefit is that
we can write elements ī in Z/rZ as i and compare them as natural numbers without

any confusion. Let (λ, s) ∈ HΛ

β with s ∈ A
r

e and Γr the associated oriented quiver.

Denote by Ls∗(λ
∗) the core of Ls(λ). We handle four cases in this subsection,

which are all of infinite representation type.

Case 1. There exist at least two connected components (not isolated dots) in
Γr.

Since there exist at least two connected components (not isolated dots) in Γr,
there exist 1 ≤ i1 < i2 + 1 < i3 ≤ i4 < r such that the path from i1 to i2 + 1
and path from i3 to i4 + 1 are two connected components. To prove block HΛ

β has
infinite representation type in this case, we construct two incomparable abaci from
Ls(λ).

By Lemma 3.4.7, we have s∗i1 = si1 − 1, s∗i2+1 = si2+1 + 1, s∗i3 = si3 − 1 and

s∗i4+1 = si4+1 + 1. Note that s ∈ A
r

e. This implies si1 ≤ si2+1 and si3 ≤ si4+1.
Therefore, s∗i1 + 2 ≤ s∗i2+1, s

∗
i2

+ 2 ≤ s∗i4+1. Then we can deduce from Lemma
3.1.12 (4) that there exist h1, h2, h3, h4 ∈ Z with h1 < h2 and h3 < h4 such that in
Ls∗(λ

∗),
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• positions (i1, h1) and (i1, h2) are empty and positions (i2 +1, h1) and (i2 +
1, h2) have beads;

• positions (i3, h3) and (i3, h4) are empty and positions (i4 +1, h3) and (i4 +
1, h4) have beads.

Define Ls̃(λ̃) to be the abacus such that the move vector from Ls(λ) to it is M =
(m1, · · · ,mr), where

mj =

{
1, if i1 ≤ j ≤ i2 or i3 ≤ j ≤ i4;

0, otherwise.

It is clear that Ls̃(λ̃) is uniquely determined and runners i1, · · · , i2, i2 + 1 and

i3, · · · , i4, i4+1 in Ls̃(λ̃) and Ls∗(λ
∗) are the same, respectively. Denote by Lu(µ)

the abacus obtained by moving in Ls̃(λ̃) the bead at positions (i2 + 1, h2) and

(i4 + 1, h3) to positions (i1, h2) and (i3, h3) respectively. Moreover, move in Ls̃(λ̃)
the beads at positions (i2 + 1, h1) and (i4 + 1, h4) to positions (i1, h1) and (i3, h4),
respectively. Denote by Lv(ν) the new abacus obtained. By Lemma 3.4.13, both

the move vectors from abaci Lu(µ) and Lv(ν) to Ls̃(λ̃) are equal to M. It follows
from Lemma 3.4.9 that u = v = s and (µ, s), (ν, s) ∈ HΛ

β . To prove Ls(µ) ‖ Ls(ν),

we only need to take (κ1, ι1) = (i1, h2), (κ2, ι2) = (i4+1, h3) and this complete the
proof of this case.

In the following three cases, we assume in Γr, there is only one non

isolated dot connected component, which is a path from i1 to i2 +1 with

length not less than 2. It is easy to check that the move vector from

Ls(λ) to Ls∗(λ
∗) is M = (m1, · · · ,mr), where

mj =

{
1, if i1 ≤ j ≤ i2;

0, otherwise.

.

Case 2. There exists i1 < i3 < i2 such that si3 6= si3+1.

We have from Lemma 3.4.7 that s∗i1 = si1 − 1, s∗i2+1 = si2+1 + 1 and s∗j = sj

for all i1 < j ≤ i2. As a result, s∗i3 = si3 . Since s ∈ A
r

e and si3 6= si3+1,
we have si3 < si3+1. Then we come to a conclusion s∗i3 = si3 < si3+1 ≤ s∗i3+1, or
s∗i3 +1 ≤ s∗i3+1. Furthermore, combining s∗i1+1 = si1+1, s

∗
i1
+1 = si1 and si1 ≤ si1+1

gives s∗i1+1 ≤ s∗i1+1. Similarly, s∗i2+1 ≤ s∗i2+1. Note that Ls∗(λ
∗) is complete. Then

by Lemma 3.1.12 (4), the fact s∗i1 + 1 ≤ s∗i1+1 implies that there exists l1 ∈ Z such
that in L(λ∗, s∗), position (i1, l1) is empty and positions (i1 +1, l1), · · · , (i2 +1, l1)
have beads. Similarly, there exists l2 ∈ Z such that positions (i1, l2), · · · , (i3, l2)
are empty and positions (i3 + 1, l2), · · · , (i2 + 1, l2) have beads, and there exists
l3 ∈ Z such that position (i1, l3), · · · , (i2, l3) are empty and position (i2 + 1, l3)
has bead. The configuration of L(λ∗, s∗) described above implies that l1, l2 and l3
are different from each other. Define {h1, h2, h3} to be equal to {l1, l2, l3} as a set
satisfying h1 < h2 < h3, and define {j1, j2, j3} to be equal to {i1 +1, i3 + 1, i2 +1}
as a set such that in Ls∗(λ

∗),

• positions (i1, h1), · · · , (j1−1, h1) are empty and positions (j1, h1), · · · , (i2+
1, h1) have beads;

• positions (i1, h2), · · · , (j2−1, h2) are empty and positions (j2, h2), · · · , (i2+
1, h2) have beads;
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• positions (i1, h3), · · · , (j3−1, h3) are empty and positions (j3, h3), · · · , (i2+
1, h3) have beads.

We consider two possibilities.

(1) j1 > j3. Move in Ls∗(λ
∗) the beads at positions (j3, h3) and (i2 + 1, h1)

to positions (i1, h3) and (j3, h1), respectively. Denote by Lu(µ) the new abacus.
Another abacus Lv(ν) is obtained by moving in Ls∗(λ

∗) the beads at position
(i2 + 1, h2) to position (i1, h3). By Lemma 3.4.13, both the move vectors from
Lu(µ) and Lv(ν) to Ls∗(λ

∗) are equal to M. We reach a conclusion by Lemma
3.4.9 that u = v = s and (µ, s), (ν, s) ∈ HΛ

β . By taking (κ1, ι1) = (i1, h3), (κ2, ι2) =

(i2 + 1, h1), we get Ls(µ) ‖ Ls(ν).

(2) j1 < j3. Denote by Lu(µ) the abacus obtained by moving in Ls∗(λ
∗) the

bead at position (i2 + 1, h2) to position (i1, h2). On the other hand, move in
Ls∗(λ

∗) the beads at positions (j1, h1) and (i2 + 1, h3) to positions (i1, h1) and
(j1, h3), respectively, and denote the new abacus by Lv(ν). For the same reason as
Subcase 1, we have u = v = s and (µ, s), (ν, s) ∈ HΛ

β . To reach Ls(µ) ‖ Ls(ν), we

can choose (κ1, ι1) = (i1, h2), (κ2, ι2) = (i2 + 1, h2).

Case 3. si1 6= si1+1.

By analyzing similarly as in Case 2, we get s∗i1 + 2 ≤ s∗i1+1 and s∗i2 + 1 ≤ s∗i2+1.
According to Lemma 3.1.12 (4), there exist integers h1 < h2 such that in Ls∗(λ

∗),
positions (i1, h1) and (i1, h2) are empty and at positions h1 and h2 all runners
i1 + 1, · · · , i2 + 1 have beads. For the same reason ,there exists l1 ∈ Z such that in
Ls∗(λ

∗) positions (i1, l1), · · · , (i2, l1) are empty and position (i2+1, l1) has a bead.
Let us consider three possibilities. We will only illustrate incomparable abaci in
each situation and omit the details.

(1) h1 < h2 < l1. Move in Ls∗(λ
∗) the bead at position (i2 + 1, h2) to position

(i1, h2). The new abacus is Ls(µ). Move in Ls∗(λ
∗) the bead at positions (i1+1, h1)

and (i2+1, l1) to positions (i1, h1) and (i1+1, l1), respectively. The abacus obtained
is Ls(ν). By taking (κ1, ι1) = (i1, h2), (κ2, ι2) = (i2 + 1, h2), we arrive at Ls(µ) ‖
Ls(ν).

(2) l1 < h1 < h2. The proof is similar to (1).
(3) h1 < l1 < h2.
By moving in Ls∗(λ

∗) the bead at position (i2 + 1, h1) to position (i1, h1), we
get abacus Ls(µ). Abacus Ls(ν) is obtained by moving in Ls∗(λ

∗) the beads at
positions (i2+1, l1) and (i1+1, h2) to positions (i1+1, l1) and (i1, h2), respectively.
It is a routine task to check Ls(µ) ‖ Ls(ν) by taking (κ1, ι1) = (i1+1, h2), (κ2, ι2) =
(i2 + 1, h1).

Case 4. si2 6= si2+1.
The proof is similar to Case 3.

6.2. Finite representation type case. Let (λ, s) ∈ HΛ

β with s ∈ Ar
e. and Γr

the associated oriented quiver. Denote by Ls∗(λ
∗) the core of Ls(λ). Suppose that

there is only one non isolated dot connected component in Γr, which is a path from
i to i + w − 1. According to results of previous subsection, if mr = 1, then the
block has infinite representation type. Then based on the previous subsection there
is only one case to consider, that is, si = si+1 = · · · = si+w and mr = 0. Fix the
meaning of i and w throughout this subsection. Our aim now is to prove the blocks
have finite representation type. Let us first study the configuration of Ls∗(λ

∗).
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Lemma 6.2.1. There exist h, h′ ∈ Z such that in Ls∗(λ
∗),

(1) positions (1, h), · · · , (i, h) are empty and and positions (i + 1, h), · · · , (r, h)
have beads;

(2) positions (1, h′), · · · , (i+w− 1, h′) are empty and and positions (i+w, h′),
· · · , (r, h′) have beads;

(3) runners i, i+ 1, · · · , i+ w are the same except for columns h and h′.
(4) for each l ∈ Z with l 6= h, h′, the number of beads in column l is either more

than r − i, or less than r − i− w + 1.

Proof. It follows from Lemma 3.4.7 that s∗i + 1 = si, s
∗
i+w − 1 = si+w and s∗j = sj

for i < j < i+ w. Note that si = si+1 = · · · = si+w we have

s∗i + 1 = s∗i+1 = · · · = s∗i+w−1 = s∗i+w − 1.

Then (1) and (2) follow from Lemma 3.1.12 (4).
(3) Let k be an integer such that all positions (x, y) in Ls∗(λ

∗) are occupied by
beads, where 1 ≤ x ≤ r and y ≤ k. In the light of Lemma 3.1.9, we have

nki+1 = · · · = nki+w−1,(6.2.1)

nki+1 = nki + 1(6.2.2)

and

nki+w = nki+w−1 + 1.(6.2.3)

Let us use reduction to absurdity. Suppose that there exists l 6= h, h′ such that
in Ls∗(λ

∗), position (j, l) is empty and position (j + 1, l) has a bead, where i ≤
j ≤ i + w − 1. If j = i, then nki+1 = nki + 2. It contradicts to equality (6.2.2).

If i < j < i + w − 1, then nkj − nkj+1 ≥ 1. It contradicts to equality (6.2.1). If

j = i + w − 1, then nki+w − nki+w−1 ≥ 2. It contradicts to equality (6.2.3) and the
proof of (3) is completed.

(4) Let l ∈ Z with l 6= h, h′. If position (i, l) has a bead, then it follows from
Ls∗(λ

∗) being complete that all positions (j, l) have beads for i ≤ j ≤ r, that is,
column l has at least r − i+ 1 beads.

On the other hand, if position (i, l) is empty, then by (3), all positions (j, l) are
empty for 1 ≤ j ≤ i+w. This implies that column l has at most r−i−w beads. �

From now on, we fix the meaning of h and h′.

Lemma 6.2.2. Under the assumptions of this subsection, we have

(1) each elementary operation from abacus Ls(λ) to Ls∗(λ
∗) is of the form

[(x, h), ∗] or [(x, h′), ∗];
(2) the abaci Ls(λ) and Ls∗(λ

∗) are the same except for positions {(x, y) | i ≤
x ≤ i+ w, y = h, h′};

(3) in Ls(λ), the number of beads in column h is r− i and that in column h′ is
r − i− w + 1.

Proof. (1) We use disproof. Assume that [(i + j, y), ∗] ∈ F with 0 ≤ j < w and
y 6= h, h′. This implies that at least one of the positions (i, y), (i+1, y), · · · , (i+j, y)
is empty and at least one of the positions (i+ j + 1, y), · · · , (i+ w, y have a bead.
This contradicts to Lemma 6.2.1 (3). Therefore, y is equal to h or h′.

(2) is a corollary of (1) and the assumption on block move vector.
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(3) Note that mr = 0 forces all elementary operations being of the first kind.
Therefore, the number of beads in each column is not changed. Then the result
follows from Lemma 6.2.1 (1). �

Lemma 6.2.3. In Ls(λ), only one of the positions (i, h), (i+ 1, h), · · · , (i+w, h)
is empty and only one of positions (i, h′), (i + 1, h′), · · · , (i + w, h′) has a bead.

Proof. According to the assumptions of this subsection, all w elementary operations
from Ls(λ) to Ls∗(λ

∗) are of the first kind, and happens in columns h and h′ in
the light of Lemma 6.2.2. Note that Ls∗(λ

∗), we have from Lemma 6.2.1 (1) that
only one of the positions (i, h), (i + 1, h), · · · , (i + w, h) is empty and only one of
positions (i, h′), (i+1, h′), · · · , (i+w, h′) has a bead. Clearly, the number of beads
in each column does not change under the first kind elementary operations. Then
the lemma follows. �

Now all pairs (µ, s) in block HΛ

β can be determined completely.

Lemma 6.2.4. Pair (µ, s) is in HΛ

β if and only if

(1) Ls(µ) and Ls∗(λ
∗) are the same except for positions {(x, y) | i ≤ x ≤

i + w, y = h, h′};
(2) there exists i ≤ j ≤ i + w such that in Lu(µ), position (j, h) is empty and

position (j, h′) has a bead.

Proof. “⇒” By Lemma 6.2.2 (2), we only need to prove (2). Let l be an integer
such that all positions (x, y) in Ls(µ) are occupied by beads, where 1 ≤ x ≤ r
and y ≤ l. By Lemma 3.1.9, condition si = si+1 = · · · = si+w implies that
nli = nli+1 = · · · = nli+w. Then (2) follows from Lemma 6.2.2 and 6.2.3.

“⇐” By moving in Lu(µ) the beads at positions (i, h) and (j, h′) to positions
(j, h) and (i + w, h′), respectively, we get Ls∗(λ

∗). By Lemma 3.4.13, the move
vector from Lu(µ) to Ls∗(λ

∗) is just the block move vector. Then we have from
Lemma 3.4.9 that (µ, s) ∈ HΛ

β . �

We can give some more details on the shape of abaci of pairs in HΛ

β . Since
mr = 0, the following lemma is clear.

Lemma 6.2.5. Let (µ, s) ∈ HΛ

β and e 6= ∞. If in Ls(µ), position (j, l) has a bead,

then all positions (x, l− ke) have beads for k ∈ N+. In particular, h 6= h′ (mod e).

According to the definition of the action of affine Weyl group W , it is easy to

check that in each W -orbit of blocks, there exists Λ− β̂ such that (αj ,Λ− β̂) ≥ 0

for all 0 ≤ j ≤ e − 1. Take a pair (λ̂, s) in block HΛ

β̂
. Because block move vector

and the multicharge are invariant under the action of W , block HΛ

β̂
satisfies the

assumptions of this subsection. Then abaci Ls(λ̂) has an interesting property, which
is described as follows.

Lemma 6.2.6. In Ls(λ̂), the number of beads in column l− 1 is not less than that
in column l for arbitrary l ∈ Z.

Proof. We first prove the lemma under the assumption e 6= ∞. We consider three

cases according to cl, which is the number of beads in column l of Ls(λ̂).

Case 1. 0 < cl < r.
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Subcase 1. 0 < cl−1. Let us use disproof. Suppose that cl−1 < cl. We have from
Lemma 6.2.5 that cl−ke = r = cl−1−ke and cl−1+ke = 0 = cl+ke for each k ∈ N+.
This implies ml−1

l < 0. On the other hand, let l = j (mod e) with 0 ≤ j ≤ e − 1.
It follows from Lemma 3.2.6 that

Λ− β̂ − (αj ,Λ− β̂)αj = σj(Λ− β̂) = Λ− β
σ(λ̂),s = Λ− β̂ −ml−1

l αj ,

which implies that ml−1
l = (αj ,Λ− β̂) ≥ 0. We reach a contradiction.

Subcase 2. cl−1 = 0. Suppose cl−1−ae = r, where a ∈ N+ such that cy < r
for all y ∈ Z with y > l − 1 − ae and y ≡ l − 1 (mod e). By Lemma 6.2.5
cl−1−ae−ke = r = cl−ke and cl−1+ke = 0 = cl+ke for all k ∈ N+. Consequently,

ml−1
l < 0. We can also get a contradiction similar to Subcase 1.

Case 2. cl = r.

Clearly, we only need to prove cl−1 = r. Suppose cl+ae = 0, where a ∈ N+ such
that cy > 0 for all y ∈ Z with y < l + ae and y ≡ l (mod e). If 0 < cl−1 < r,
then by Lemma 6.2.5, cl−ke = r = cl−1−keand cl+ae+ke = 0 = cl−1+ke for k ∈ N+.
Therefore, ml−1

l < 0, which leads to a contradiction.
If cl−1 = 0, one can analyze similarly. We omit the details here.

Case 3. cl = 0.

Nothing need to prove in this case.
Finally, if e = ∞, then for j ∈ Z by Lemma 3.2.6, the number of beads in column

j − 1 is m more than that in column j, where m = (αj ,Λ− β). Since m ≥ 0, the
result follows. �

Based on the preparations above, we can prove the result of this subsection now.
By the result given by Chuang and Rouquier in [18], we only need to consider block

Ls(λ̂). Let us first summarize characteristics on the shape of abaci of pairs (λ̂, s)
in HΛ

β̂
.

By Lemma 6.2.1 (4), 6.2.2 (3) and Lemma 6.2.6, we have

(1) cl > r − i if l < h, cl < cr−i−w+1 if l > h′ and cl ≥ cl+1 for all l ∈ Z;
(2) h′ = h+ 1.

According to Lemma 6.2.4, assume in Ls(λ̂), position (i+j, h) is empty and position
(i + j, h′) has a bead, where 0 ≤ j ≤ w. Then by combing the characteristics (1),

(2) above with Lemma 6.2.6, we get that in Ls(λ̂),

(3) if position (x, y) has a bead, where x 6= h′, then so is position (x, y − 1);
(4) position (i + j, h− 1) has a bead.

In light of Lemma 3.1.8, characteristic (3) and (4) force |λ̂| = 1. As a result, all
multipartitions in HΛ

β̂
are of the form

(∅1, · · · ,∅i−1, (1)i,∅i+1, · · ·∅i+w,∅i+w+1, · · · ,∅r)

(∅1, · · · ,∅i−1,∅i, (1)i+1, · · ·∅i+w,∅i+w+1, · · · ,∅r)

· · ·

(∅1, · · · ,∅i−1,∅i,∅i+1, · · · (1)i+w,∅i+w+1, · · · ,∅r)

From Lemma 3.1.4, we deduce that the block has a basis {1, x, · · · , xw}. That is,HΛ

β̂

is isomorphic to k[x]/(xw+1), which has finite representation type. Consequently,
all blocks that are in the same W -orbit with HΛ

β̂
are of finite representation type.

By [7, Theorem 6.8], this forces these blocks being Morita equivalent with a Brauer
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tree algebra, whose Brauer tree is T1 in Example 2.2.2 with m(1) = w. That is,
these blocks are Morita equivalent to k[x]/(xw+1).

Remark 6.2.7. The result of this subsection implies that in cyclotomic case, there
exist blocks of finite representation type are Brauer tree algebras whose Brauer trees
have exceptional vertex. Clearly, this can only appear when r ≥ 3.

6.3. Remarks on finite type. In this subsection, we give two additional results
on blocks of finite representation type in this section. One is about multipartition
and the other is an equivalence characterization of conditions in Subsection 2. In
our opinion, they are interesting, although they are not necessary in the proof of
the Main Theorem.

It is known that all multipartitions in HΛ

β form a totally ordered set with respect
to dominance order E. In fact, we can write them out in order. For this goal, we
first introduce a new notation. Let (µ, s) ∈ HΛ

β . If in abacus Ls(µ), position

(i + j, h) is empty and position (i + j, h′) has a bead, where 0 ≤ j ≤ w, then we
rewrite multipartition µ by λ [j].

Lemma 6.3.1. For 0 ≤ j < w, we have

(1) if h < h′, then λ [j]✄ λ [j + 1];
(2) if h > h′, then λ [j]✁ λ [j + 1].

Proof. (1) Let the bead at position (i+ j, h′) in Ls(λ [j]) be  i+j
a and let the bead

at position (i + j, h) in Ls(λ [j + 1]) be  i+j
b . By observing the shape of the two

abaci, it is easy to know

(i) a ≤ b;

(ii) nh−1
i+j (Ls(λ [j])) = nh−1

i+j (Ls(λ [j + 1]));

(iii) the number of empty positions on the left side of h′+1-th position in runner
i + j of Ls(λ [j]) is equal to that of Ls(λ [j + 1]).

Combining this observation with Lemma 3.1.8 (2), we get that for arbitrary x
with 1 ≤ x < a or x > b,

λ [j](i+j)
x = λ [j + 1](i+j)

x .(6.3.1)

For a ≤ x ≤ b, the number empty positions in Ls(λ [j]) on the left side of position
 

i+j
x is one more than that in Ls(λ [j + 1]). Note that the empty position is just

(i+ j, h). As a result of Lemma 3.1.8 (2), if a ≤ x ≤ b, then

λ [j](j)x > λ [j + 1](j)x .(6.3.2)

A direct corollary of (6.3.1) and (6.3.2) is

|λ [j](i+j)| > |λ [j + 1](i+j)|.(6.3.3)

For each 1 ≤ c ≤ r with c 6= i+ j, i+ j + 1, runner c in Ls(λ [j]) is the same as
that in Ls(λ [j + 1]). This fact leads to

λ [j](c) = λ [j + 1](c),(6.3.4)

and consequently,

(6.3.5)

i+j−1∑

y=1

|λ [j](y)| =

i+j−1∑

y=1

|λ [j + 1](y)|.



60 YANBO LI AND XIANGYU QI

Combining (6.3.3) with (6.3.5) leads to

(6.3.6)

i+j∑

y=1

|λ [j](y)| >

i+j∑

y=1

|λ [j + 1](y)|.

Note that all multipartitions in HΛ

β is a totally order with respect to the domi-

nance order. Then (6.3.6) implies λ [j]✄ λ [j + 1].
(2) is proved similarly. �

In order to describe the second result, we need to define a new vector for a given
block.

Definition 6.3.2. Let (λ, s) ∈ HΛ
β and F be the operation set from Ls(λ) to its

core. Define Wλ = (w0λ, w1λ, · · · , we−1λ), where

wi = ♯{[(x, h), ∗] ∈ F | 1 ≤ x ≤ r, h ≡ i (mod e)}.

Then W(HΛ
β) = (w0, w1, · · · , we−1) =

∑
(λ,s)∈HΛ

β
Wλ is called the subabacus move

vector of block HΛ
β.

Lemma 6.3.3. Let HΛ

β be a block satisfying the assumptions of Subsection 2. Then
the number of non-zero components in W is 2.

Proof. Keep notation as in Subsection 2. Let (µ, s) ∈ HΛ

β . Then by Lemma 6.2.2

all the elementary operations from Ls(µ) to Ls∗(λ
∗) happen in columns h and h′.

Moreover, we from Lemma 6.2.5 that columns h and h′ are in different subabaci
of Ls(µ). As a result, the number of non-zero components in W is not more than
two.

On the other hand, we know that [(i, h), ∗], [(i + 1, h′), ∗] ∈ F , where F is the
operation set from Ls(λ [1]) to Ls∗(λ

∗), that is, the number of non-zero components
in W is two. �

Lemma 6.3.4. Let HΛ

β be a block satisfying assumptions of this section and assume
in Γr, there is only one non isolated dot connected component, which is a path from
i1 to i2+1 (1 ≤ i1 < i2 < r) with length not less than 2. If there exists i1 ≤ i3 ≤ i2
such that si3 6= si3+1, then the number of non zero components in W is not less
than 3.

Proof. We consider three cases.

Case 1. i1 < i3 < i2.

Let l1, l2, l3 be integers as Case 2 of Subsection 1. By Lemma 3.1.12 (3), it is
easy to check that columns l1, l2 and l3 are in different subabaci. Move in Ls∗(λ

∗),
which is the core of HΛ

β , the beads at positions (i1+1, l1), (i3+1, l2) and (i2+1, l3)

to positions (i1, l1), (i1 + 1, l2) and (i3 + 1, l3), respectively. Denote by Lu(µ) the
new abacus obtained. It follows from Lemma 3.4.13 that the move vector from
Lu(µ) to Ls∗(λ

∗) is equal to M. In light of Lemma 3.4.9, we have u = s and
(µ, s) ∈ HΛ

β . This implies that in W = (w0, · · · , we−1), components wj1 , wj2 and

wj3 are nonzero, where 0 ≤ j1, j2, j3 < e and j1 ≡ l1 (mod e), j2 ≡ l2 (mod e),
j3 ≡ l3 (mod e).

Case 2. i3 = i1.
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Let l1 be an integer as Case 3 of Subsection 1. By Lemma 3.1.12(3), it is easy
to check that columns h1, h2 and l1 are in different subabaci.

Move in Ls∗(λ
∗) the bead at positions (i1 + 1, h1) and (i2 + 1, l1) to positions

(i1, h1) and (i1 + 1, l1). Denote the new abacus by Lu(µ). Move in Ls∗(λ
∗) the

beads at positions (i1 + 1, h2) and (i2 + 1, l1) to positions (i1, h2) and (i1 + 1, l1).
Denote the new abacus by Lv(ν). It is routine to check that u = v = s and
(µ, s), (ν, s) ∈ HΛ

β . This implies that in W = (w0, · · · , we−1), components wj1 , wj2

and wj3 are nonzero, where 0 ≤ j1, j2, j3 < e and j1 ≡ h1 (mod e), j2 ≡ h2 (mod e),
j3 ≡ l1 (mod e).

Case 3. i3 = i2.
The proof is similar to Case 2. �

Combining Lemmas 6.3.3 and 6.3.4, we get the following result.

Theorem 6.3.5. Let HΛ

β be a block of weight more than 1 and M its block move

vector. Then HΛ

β has finite representation type if and only if

(1) mr = 0;
(2) Γr has only one non isolated dot connected component;
(3) the number of non zero components of W is 2.

7. Derived equivalence of blocks

In this section, we study the derived equivalence of blocks of a cyclotomic Hecke
algebra by using the theory developed in this paper.

Recall that two blocks of a Hecke algebra of type A are derived equivalent if and
only if their weights are equal and if and only if they are in the same orbit under the
adjoint action of the affine Weyl group. However, this does not hold in cyclotomic
case (r > 2). Firstly, we can easily find two blocks with the same weights, and one
of them has infinite representation type, and the other is Morita equivalent to a
truncated polynomial ring, which has finite representation type. This implies that
equal in weight does not mean derived equivalence. So our discussion in this section
will center on constructing examples of derived equivalent blocks being in different
orbits under the adjoint action of the affine Weyl group.

It is an open problem to give a necessary and sufficient condition for two blocks
of a cyclotomic Hecke algebra being derived equivalent. In the light of Ariki’s
result [7, Theorem 6.8], a finite representation type indecomposable self-injective
cellular algebra is Morita equivalent to a Brauer tree algebra whose Brauer tree
is a straight line with at most one exceptional vertex. The problem of derived
equivalence of Brauer tree algebras is complete resolved in [48]. We will translate
the results [7, Theorem 6.8] and [48, Theorem 4.2] into the language of weight and
charge for blocks of a cyclotomic Hecke algebra. Obviously, two blocks being Morita
equivalent to truncated polynomial rings are derived equivalent if and only if they
have the same weights. Thus we only need to handle the weight one case.

Given two pairs (λ, s) and (µ,u) with s,u ∈ A
r

e and (λ∗, s∗) and (µ∗,u∗) the
corresponding cores, respectively, denote by Bλ,s and Bµ,u the blocks containing
(λ, s) and (µ,u), respectively. Suppose that w(Bλ,s) = w(Bµ,u) = 1. Then we
have the following proposition.
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Proposition 7.0.1. Blocks Bλ,s and Bµ,u are derived equivalent if and only if the
number of non-zero components in W(Bλ,s) is equal to that of W(Bµ,u).

Proof. Let the block move vector of Bλ,s be M = (m1,m2, · · · ,mr) with mj = 1
and mi = 0 for all 1 ≤ i ≤ r, i 6= j. Assume that sj+1 − sj = a (sr+1 is defined to
be s1 + e if e <∞). We claim that the number of multipartitions in Bλ,s is a+ 2.
In fact, if j < r, we have from Lemma 3.4.7 that s∗j+1 = sj+1 + 1 and s∗j = sj − 1

and thus s∗j + a + 2 = s∗j+1. It follows from Lemma 3.1.12 (4) that there exist

h1, · · · , ha+2 ∈ Z such that in Ls∗(λ
∗), positions (j, h1), · · · , (j, ha+2) are empty

and positions (j + 1, h1), · · · , (j + 1, ha+2) have beads. Let h be an integer such
that all positions (x, y) in Ls∗(λ

∗) are occupied by beads, where 1 ≤ x ≤ r and
y ≤ h. In the light of Lemma 3.1.9, nhj+1 − nhj = a + 2. Note that Ls∗(λ

∗) is
complete. This implies that if position (j, k) is empty and position (j + 1, k) has a
bead, then k ∈ {h1, · · · , ha+2}. Because w(Bλ,s) = 1, this forces each abacus of a
pair in Bλ,s has to be obtained by sliding in Ls∗(λ

∗) the bead at position (j+1, k)
to position (j, k) with k ∈ {h1, · · · , ha+2}. The case j = r can be transformed into
the case j < r by using Lemma 3.4.12.

Combining [24, Theorem 4.12] with [7, Theorem 6.8] gives that Bλ,s is Morita
equivalent to a Brauer tree algebra, whose Brauer tree is a straight line with a+ 1
edges and without exceptional vertex.

Moreover, by Lemma 3.1.12 (3) we have e ∤ hx−hy for all x, y ∈ {1, 2, · · · , a+2}.
This implies that for arbitrary pair (λ, s) ∈ Bλ,s, columns h1, · · · , ha+2 are in
different subabaci of Ls(λ), and consequently, the number of non-zero components
of W(Bλ,s) is a+ 2.

By the same reason, block Bµ,u is also Morita equivalent to a Brauer tree algebra,
whose Brauer tree is a straight line without exceptional vertex. According to [48,
Theorem 4.2], derived equivalence classes of Brauer tree algebras are determined
by the number of the edges and the multiplicity of the exceptional vertex. Then
the proposition follows. �

Now let us give some examples. The first one is from the blocks Morita equivalent
to truncated polynomial rings.

Example 7.0.2. Let e = 5 and s = (1, 1, 1, 3, 3, 3). Take λ = ((1),∅,∅,∅,∅,∅)
and µ = (∅,∅,∅, (1),∅,∅). Then abacus Ls(λ) is

and abacus Ls(µ) is
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It is easy to check that M(Bλ,s) = (1, 1, 0, 0, 0, 0) and M(Bµ,s) = (0, 0, 0, 1, 1, 0).
According to the result obtained in Subsection 6.2, both Bλ,s and Bµ,s are isomor-
phic to K[x]/(x3). On the other hand, all abaci in block Bµ,s can be determined
completely by Subsection 6.2. In the accordance with the definition of the action of
an affine Weyl group on abaci, non of the abaci in Bµ,s is belong to the image of
Ls(λ). This implies by Proposition 3.2.6 that blocks Bλ,s and Bµ,s are in different
orbits.

Another example is from the blocks of weight one.

Example 7.0.3. For arbitrary r ≥ 3, let e = r and s = (0, 1, 2, · · · , r − 1).
For 1 ≤ i ≤ r, define λ [i] = (∅, · · · ,∅︸ ︷︷ ︸

i−1

, (2),∅, · · · ,∅︸ ︷︷ ︸
r−i

). Clearly, M(Bλ [i],s) =

(m1,m2, · · · ,mr), where mi = 1 and mj = 0 if j 6= i. It follows from Proposition
7.0.1 that all blocks Bλ [i],s are derived equivalent, and that all abaci in Bλ [i],s can
be listed completely. By Proposition 3.2.6, all blocks Bλ [i],s are in different orbits.

For example, let r = 4. Then Ls(λ [1]) is

Abacus Ls(λ [2]) is

Abacus Ls(λ [3]) is

Abacus Ls(λ [4]) is
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The last example is a derived equivalent class of infinite representation type
blocks.

Example 7.0.4. Let k ≥ 2 be an integer. Take r = e = 3k and s = (1, 1, 2, · · · , ).
For 1 ≤ i ≤ k, define λ [i] = (∅, · · · ,∅︸ ︷︷ ︸

3i−1

, (2),∅, · · · ,∅︸ ︷︷ ︸
r−3i

). It is easy to check Bλ,s is

of infinite representation type. Moreover, all blocks Bλ,s, 1 ≤ i ≤ k, are derived
equivalent and in different orbits.

8. Blocks of cyclotomic q-Schur algebra

We end our paper by a remark on representation type of blocks of a cyclotomic
q-Schur algebra.

Combining Theorem A and Theorem B in [5] gives that a block of a Hecke
algebra of type B has finite representation type if and only if its weight is not more
than one. This implies that the representation type of a block of the cyclotomic
q-Schur algebra associated to a type B Hecke algebra is finite if and only if its
weight is not more than one. On the other hand, in [50, Corollary 3.20], Wada
proved that any block of Sn,r(q,Q1, Q2, · · · , Qr) is Morita equivalent to a certain
block of Sn′,2(q,Qi, Qj) for some i, j ∈ {1, 2, · · · , r}. Therefore, the representation
type of each block of a cyclotomic q-Schur algebra can be determined in this sense.
By using the Main Theorem, we can give a direct result without using the Morita
equivalence mentioned above.

We point out that if a block B of Hn(q,Q) is Morita equivalent to a truncated
polynomial ring, then the Auslander algebra (see [13] for definition) of B is just
the corresponding block of Sn,r. It is well-known that the Auslander algebra of
K[x]/(xi) has finite representation type if and only if 0 < i < 4. Let B be a block
of Sn,r and B the corresponding block in Hn(q,Q). Then by Main Theorem, we
get

(1) If w(B) > 2, then B has infinite representation type.
(2) If w(B) < 2, then B has finite representation type.
(3) If w(B) = 2, then the representation type of B is the same as that of B.

According to the above result, w(B) = 1 is only a sufficient condition for B being
of finite representation type (non simple).
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